
Future Generation Computer Systems 72 (2017) 208–218
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A multi-user searchable encryption scheme with keyword
authorization in a cloud storage
Zuojie Deng a,b,∗, Kenli Li c,d, Keqin Li c,d,e, Jingli Zhou a

a School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
b School of Computer and Communication, Hunan Institute of Engineering, Xiangtan, Hunan, 411104, China
c College of Information Science and Engineering, Hunan University, Changsha, Hunan 410082, China
d National Supercomputing Center in Changsha, Changsha, Hunan 410082, China
e Department of Computer Science, State University of New York, New Paltz, NY 12561, United States

h i g h l i g h t s

• A security model of keyword authorization search over encrypted files is defined.
• We propose a multi-user searchable encryption scheme with keyword authorization.
• To describe keyword authorization relationships, a KABtree is defined.
• We construct MSESK with asymmetric bilinear map groups of Type-3 and KABtrees.
• The performance evaluation experiments explain the feasibility of MSESKA.

a r t i c l e i n f o

Article history:
Received 28 October 2015
Received in revised form
7 March 2016
Accepted 18 May 2016
Available online 1 June 2016

Keywords:
Cloud storage
Encrypted data
Keyword authorization
Multi-user searchable encryption

a b s t r a c t

Multi-user searchable encryption (MSE) allows a user to encrypt its files in such a way that these files
can be searched by other users that have been authorized by the user. The most immediate application
of MSE is to cloud storage, where it enables a user to securely outsource its files to an untrusted cloud
storage provider without sacrificing the ability to share and search over it. Any practical MSE scheme
should satisfy the following properties: concise indexes, sublinear search time, security of data hiding and
trapdoor hiding, and the ability to efficiently authorize or revoke a user to search over a file. Unfortunately,
there exists no MSE scheme to achieve all these properties at the same time. This seriously affects the
practical value of MSE and prevents it from deploying in a concrete cloud storage system. To resolve
this problem, we propose the first MSE scheme to satisfy all the properties outlined above. Our scheme
can enable a user to authorize other users to search for a subset of keywords in encrypted form. We use
asymmetric bilinear map groups of Type-3 and keyword authorization binary tree (KABtree) to construct
this scheme that achieves better performance. We implement our scheme and conduct performance
evaluation, demonstrating that our scheme is very efficient and ready to be deployed.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

Cloud storage has become a prevalent storage scheme in recent
years, where a user can store and share its files [1]. However, the

∗ Corresponding author at: School of Computer of Science and Technology,
Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

E-mail addresses: zjdeng@hotmail.com (Z. Deng), lkl@hnu.edu.cn (K. Li),
lik@newpaltz.edu (K. Li), jlzhou@hust.edu.cn (J. Zhou).

http://dx.doi.org/10.1016/j.future.2016.05.017
0167-739X/© 2016 Elsevier B.V. All rights reserved.
cloud storage provider is not fully trusted, if a user outsources its
confidential files to a remote cloud storage server in plaintext form,
it may cause some horrible privacy leakage. A promising approach
to protect confidential files for a user in a cloud storage is to encrypt
its files by using a secure symmetric encryption algorithm, e.g. AES.
However, storing files in encrypted form will make some useful
file operation functions, such as search, sharing, etc., unavailable.
If a user cannot share and search over its files on a remote cloud
storage server, it will be reluctant to outsource its files to the cloud
storage.

To resolve the searchable problem of encrypted files in a cloud
storage server, we can use the searchable encryption technology

http://dx.doi.org/10.1016/j.future.2016.05.017
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.05.017&domain=pdf
mailto:zjdeng@hotmail.com
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
mailto:jlzhou@hust.edu.cn
http://dx.doi.org/10.1016/j.future.2016.05.017

Z. Deng et al. / Future Generation Computer Systems 72 (2017) 208–218 209
in the literature [2–9]. A user can store its files in encrypted form
at an untrusted cloud server by using these searchable encryption
schemes, and delegate the cloud server to search over its files by
issuing a trapdoor (i.e. encrypted keyword). However, all these
schemes are limited to the single-user setting where the file
owner who generates these encrypted files is also the single-
user performs searches on it. Therefore, their schemes cannot
support encrypted file sharing. Generally speaking, there exists file
sharing between a set of users in the cloud storage, and the file
owner should authorize other users to search over its encrypted
files. Since above schemes do not support this, we cannot apply
these schemes to cloud storage directly. Curtmola et al. suggested
to share the secure key for file search among some users by
extending their single-user scheme directly [4]. Later, other
researchers proposed some schemes for multi-user [10–15]. In
all these schemes, there exists a user manager to manage the
search capabilities of multiple users (e.g. enable them to search
each other’s files). However, there usually exists no trusted user
administrator in a cloud storage, so all these multi-user schemes
cannot directly be applied to cloud storage setting as well. To
resolve this problem, Popa et al. proposed a searchable encryption
scheme that enables keyword search on files encrypted with
different keys [16]. But the granularity of authorization in their
scheme is very coarse, and theydid not explicitly specify howui can
authorize uj to search its indexes, where i ≠ j. Subsequently, Tang
extended the Popa–Zeldovich scheme, and proposed a secure and
scalable multi-party searchable encryption scheme [17]. However,
there are still three shortcomings in the scheme as follows:
• Firstly, since the authorization in the scheme is granted on the

index level, the authorization granularity is also coarse. If ui
wants to authorize uj to search for a subset of keywords in its
indexes, then the scheme cannot complete this task.
• Secondly, the scheme only supports search authorization, but it

does not support search authorization revocation explicitly.
• Thirdly, the match algorithm in the construction of the scheme

has two pairing map operations, which seriously affect its
performance.

1.2. Our contributions

In this work, we study the problem of how to enable a user to
share its files with others and authorize them to search its files
using a subset of keywords in encrypted form.We propose amulti-
user searchable encryption scheme with keyword authorization
in a cloud storage (MSESKA), which can be regarded as multi-
user version of the symmetric searchable encryption proposed by
Song et al. [2]. Briefly, our MSESKA allows every user to build an
encrypted index for each of its files and store it on a cloud storage
server. The index contains a list of encrypted keywords which are
well organized, and some authorization information selectively
authorizes other users to search for a subset of keywords in the
index. Our contribution can be summarized as follows:
• Firstly, we define a formal security model of how to authorize

a user to search for a word over an encrypted file in a cloud
storage. In particular, our definition captures a strong noting
of security, which is adaptive security against chosen-keyword
attacks.
• Secondly, we propose a multi-user searchable encryption

scheme with keyword authorization in a cloud storage, which
supports keyword authorization revocation explicitly. Our
scheme overcomes shortcomings in the Tang scheme [17].
• Thirdly, we propose a KABtree, and use it to organize the index

in our scheme. If there exist n users and m keywords in a
KABtree, then the construction timeof theKABtree isO(mn), the
authorization or revocation time for a keyword of the KABtree
is O(m log n), and the search time for a keyword of the KABtree
is O(r log n), where r is the number of users that have been
authorized to the keyword.
• Fourthly, we construct the MSESKA using asymmetric bilinear
map groups of Type-3 [18] and prove that the construction is
secure in the random oracle model under the BDHV and SXDH
assumptions.
• Fifthly, we implement our scheme and conduct performance

evaluation. The results show that our scheme is very efficient
and practical.

The paper is organized as follows. In Section 2, we present the
preliminary knowledge. In Section 3, we describe and give some
definitions about the problem and define a multi-user searchable
encryption schemewith keyword authorization in a cloud storage.
The keyword authorization binary tree is presented in Section 4. In
Section 5,we give a construction forMSESKA using Type-3 pairings
and KABtree. In Section 6, we give the security and performance
analysis for our construction. In Section 7, we implement our
scheme and conduct a performance evaluation and performance
evaluation results are presented here. In Section 8, we discuss
related works. Finally, some conclusions are given in Section 9.

2. Preliminary

2.1. Notations

In this paper, we use the following notation. k is the security
parameter. p.p.t . denotes probabilistic polynomial time, x ∥ y
denotes the concatenation of x and y, and y

$
←− A(x1, x2, . . . , xn;

o1, o2, . . . , on) denotes that y is the output of the algorithm A
which runs with the input x1, x2, . . . , xn and access to oracles
o1, o2, . . . , on. When X is a finite set, we use x∈R X to denote that
x is chosen from X uniformly at random, and use |X | to denote the
size of X . We say that a function f is negligible in a parameter k, if
for every polynomial p(k), there exists an integer K such that for
all k > K , f (k) < 1

p(k) . For simplicity, we write f (k) = negl(k). If
f (k) is negligible, then we say 1− f (k) is overwhelming.

2.2. Assumptions

We use asymmetric bilinear map groups of Type-3 [18] for
our construction. Setup(k) is a bilinear group generator that takes
a security parameter k as input, and outputs curve parameters
params = (p,G1,G2,GT , e, g1, g2, gT) where:

• G1, G2 and GT are three disjoint cyclic subgroups on an elliptic
curve of Type-3.
• g1, g2 and gT are generators of G1, G2 and GT .
• e is an efficiently-computable bilinear pairing map e : G1 ×

G2 → GT that satisfies two properties:
(1) Bilinearity: for all a, b ∈ Zp, e(ga

1 , g
b
2) = e(g1, g2)ab.

(2) No-degeneracy: e(g1, g2) ≠ 1.

Definition 1 (Bilinear Diffie–Hellman Variant (BDHV) Assumption
[16]). Given T = (p,G1,G2,GT , e, g1, g2), for all p.p.t. adver-
sary A, for every sufficiently large security parameter k and a, b,

c ∈R Zp and R∈R GT , A’s advantage εBDHV = |Pr[A(T , ga
1 , g

1
a
2 , g

b
a
2 , gc

1,

e(g1, g2)bc) = 1] − Pr[A(T , ga
1 , g

1
a
2 , g

b
a
2 , gc

1, R)]| = negl(k).

Definition 2 (Symmetric EXternal Diffie–Hellman (SXDH) Assump-
tion [19]). Given T = (p,G1,G2,GT , e, g1, g2), for all p.p.t. adver-
sary A, for every sufficiently large security parameter k and a, b,
c, d, r1, r2 ∈R Zp, A’s advantage εSXDH = max(ε1, ε2) = negl(k),
where ε1 = |Pr[A(T , ga

1 , g
b
1 , g

ab
1) = 1]− Pr[A(T , ga

1 , g
b
1 , g

r1
1) = 1]|,

and ε2 = |Pr[A(T , gc
2, g

d
2 , g

cd
2) = 1] − Pr[A(T , gc

2, g
d
2 , g

r2
2) = 1]|.

Definition 3 (n-Parallel Decisional Diffie–Hellman (PDDHn) As-
sumption [20]). Given T = (p,G1,G2,GT , e, g1, g2), for all p.p.t.

210 Z. Deng et al. / Future Generation Computer Systems 72 (2017) 208–218
Fig. 1. The system model.

adversary A, for every sufficiently large parameter k and a1, a2,
a3, . . . , an ∈R Zp and R1, R2, . . . , Rn ∈R G1, A’s advantage εPDDHn =

|Pr[A(T , ga1
1 , ga2

1 , . . . , gan
1 , ga1a2

1 , ga2a3
1 , . . . , gana1

1) = 1] − Pr[A(T ,

ga1
1 , ga2

1 , . . . , gan
1 , R1, R2, . . . , Rn) = 1]| = negl(k).

It has been proven that PDDHn assumption is equivalent toDDH
assumption in G1, namely εDDH ≤ εPDDHn ≤ nεDDH ≤ nεSXDH . In the
same way, PDDHn assumption can be defined in G2.

3. Problem and definition

3.1. The system model

The systemmodel is described in Fig. 1. It consists of two kinds
of entities: a cloud server and a set of users ui (1 ≤ i ≤ N). N
is an integer, which is a polynomial in the security parameter k.
Each entity has different responsibility respectively. Each user can
encrypt its files and generate encrypted indexes for its files, and
give other users access to its files by giving them the decryption
keys. All encrypted indexes and encrypted files are stored on
the cloud server which owned by some cloud storage provider.
When a user initiates a trapdoor to the cloud server to search
for a word, the cloud server searches for it over all encrypted
indexes on the user’s behalf. If the server finds some encrypted
files that match the trapdoor, it will return these encrypted files
to the user, and the user restores these encrypted files with
the decryption keys that are given by the file owners. In the
following sections, we use cloud storage provider and cloud server
interchangeably.

3.2. Problem formalization

Since the cloud storage is entirely distributed, there is no
trusted third party for a user to choose keys or to help with
providing access to files. Each user generates its file keys and gives
other users access to its files. It builds an encrypted index for each
of its files. The index contains a list of encrypted keywords which
arewell organized, and some authorization information selectively
authorizes other users to search for a subset of keywords in the
index. All indexes and files on the cloud server are encrypted by
different keys, which are owned by different users. If a user wants
to search for a keyword in all the files that it can access, it should
only give one search trapdoor to the cloud server.We can formalize
the problem as follows:

When a user, say u1, wants to store n files at the cloud server,
u1 generates (MPK 1,MSK 1), which is its master public/private key
pair. For each of its file, u1 first extracts (w0, w1, . . . , wM−1)which
is a list of keywords, then uses (w0, w1, . . . , wM−1), MSK 1 and
MPK i (1 ≤ i ≤ N) to generate an encrypted index, and finally
outsources the index to the cloud storage server. The encrypted
index contains a list of ciphertexts for (w0, w1, . . . , wM−1) and
a list of authorization tokens (au1,1,0, au1,1,1, . . . , au1,N,M−1). The
list of authorization tokens indicates who can search the index. To
search for a specific keyword w, a user, say u2 issues a trapdoor
Trapw to the cloud server, generated based on w and MSK 2,
where MSK 2 is his master private key. With Trapw from u2, the
cloud storage server first selects the encrypted indexes whose
attached authorization information indicates that u2 is authorized
to search for w. Then, for each selected index, the cloud server
runs a match algorithm to decide whether the index contains the
same keyword w as that in Trapw . If u1 want to revoke u2 the
keyword authorization ofw, it usesMSK 1,w andMPK 2 to generate
AUR1,2,w , where AUR1,2,w is an authorization revocation indication.
According to AUR1,2,w , the cloud storage server removes au1,2,w
from u1’s every encrypted index.

3.3. The MSESKA scheme

In order to solve the problem that we have formalized in
Section 3.2, we design a multi-user searchable encryption scheme
with keyword authorization in a cloud storage.

Definition 4 (MSESKA). A multi-user searchable encryption
scheme with keyword authorization in a cloud storage is a tuple
of algorithms as follows:

• Setup(k)→ params: It takes the security parameter k as input,
and outputs the public parameter params.
• KeyGen(params)→ (MPK i,MSK i): This algorithm is run by

ui (1 ≤ i ≤ N), it takes the system parameters params as input
and outputs a master public/private key pair (MPK i,MSK i).
• AuthToken(MSK i,MPK j, wt) → aui,j,t : This algorithm is run

by ui, it takes MSK i, MPK j, and wt as input and generates an
authorization token aui,j,t as output. The token aui,j,t denotes uj
can search for thewordwt over ui’s encrypted files.WeuseAU i,j
to denote the authorization token set that uj can use to search
over the ui’s encrypted files, where AU i,j = (aui,j,0, aui,j,1, . . . ,
aui,j,M−1), and use AU i to denote the authorization token set
generated by ui, where AU i = (AU i,1, AU i,2, . . . , AU i,N).
• BuildIndex(MSK i,W , AU i, f) → (Indexidf , FK idf): This algo-

rithm is run by ui, it takesMSK i,W , AU i and f as input and out-
puts an index file Indexidf and a file-specific secret key FK idf . f is
a file owned by ui, W = (w0, w1, . . . , wM−1) is a keyword set
where no keyword should repeat, and AU i is the authorization
token set that ui authorizes uj to search its file f .
• Enc(FK idf , w) → c: This algorithm is run by ui, it takes FK idf

and w as input and outputs c , where c is an encryption of the
keyword w.
• Trapdoor(MSK j, w) → Trapw: This algorithm is run by uj, it

outputs a trapdoor Trapw for the keyword w.
• Match(Trapw, Indexidf)→ b: This algorithm is run by the cloud

server, it takes trapw and Indexidf as input and outputs a bit b.
• AuthRevoke(MSK i,MPK j, w) → AURi,j,w: This algorithm is run

by ui, it takes MSK i, MPK j and w as input and outputs an
authorization revocation token AURi,j,w .
• Revoke(Indexidf , AURi,j,w) → Index′idf : This algorithm is run

by the server, it takes an encrypted index Indexidf and an
authorization revocation token AURi,j,w as input and outputs a
new encrypted index Index′idf .

Definition 5 (Soundness of MSESKA). For any polynomial n, for
every sufficiently large security parameters k, for all w0 ≠

w1 ∈R{0, 1}n(k), there exists a negligible function negl such that

Z. Deng et al. / Future Generation Computer Systems 72 (2017) 208–218 211
Pr

Setup(k)→ params;
KeyGen(params)→ (MPK i,MSK i);
AuthToken(MSK i,MPK j, w0)→ aui,j,0;

Buildindex(MSK i,W , AU i, f)→ (Indexidf , FK idf),

where w0 ∈ W , aui,j,0 ∈ AU i and aui,j,1 ∉ AU i;

Trapdoor(MSK j, w0)→ Trapw0
;

Trapdoor(MSK j, w1)→ Trapw1
;

Match(Trapw0
, Indexidf) = 1 and

Match(Trapw1
, Indexidf) = 0

= 1− negl(k).

The soundness ofMSESKA sayswhen searching for the keyword
w0, that has been authorized to search, the encryption of w0 in
some files will match, but if not having been authorized to search
a different keyword w1, then the encryptions of w1 will not match
the search.

3.4. Security model for MSESKA

Intuitively, we require two security properties for the MSESKA
scheme: the ciphertext and the trapdoor should not reveal the
value of the underlying plaintext, and the only information
revealed to the server is whether a search trapdoor matches
a ciphertext only when the server determines whether one is
searching for the same word as before. We formalize these
properties with Data hiding game and Trapdoor hiding game, that
express these goals. In Data hiding game and Trapdoor hiding
game, we assume u1 to be the challenger that is honest, and use
the adversary to play the role of untrusted cloud storage provider
or other malicious users ui (2 ≤ i ≤ N).

3.4.1. Data hiding
Intuitively, the data hiding property say that, if u1 has not

authorized a keyword in an index to any other user, then the
attacker will not learn anything about the keyword in this index
unless u1 reveals it by issuing the relevant trapdoor.

In Data hiding game, we define data hiding property formally
through a standard challenger–attacker attack game. Themalicious
adversary tries to distinguish between ciphertexts of two values
that do not matched by some trapdoor. Data hiding game has six
phases: Setup, QueryToken, QueryIndex, Challenge, Adaptive step
and Guest.
Data hiding game.
• Setup: First, the challenger runs the setup function of the

MSESKA and gets the public parameter params, then runs the
KeyGen function of the MSESKA and gets (MPK 1,MSK 1), and
sends params and MPK 1 to the adversary.
• QueryToken: The adversary generates (MPK i,MSK i) (2 ≤ i ≤

N) and wt (0 ≤ t ≤ M − 1), and sends MPK i (2 ≤ i ≤ N) and
wt (0 ≤ t ≤ M − 1) to the challenger to query token au1,i,t .
The challenger runs the authorize function and gets au1,i,t and
sends au1,i,t to the adversary.
• QueryIndex: The adversary selects a file f randomly, and sends f

andAU1 to the challenger to query its index. The challenger runs
the buildindex function of the MSESKA to generate an Indexidf ,
and sends Indexidf to the adversary.
• Challenge: The adversary chooses w0, w1 randomly, and pro-

videsw0,w1 to the challenger. The challenger chooses a random
bit b and providesMSESKA.Enc(FK idf , wb) to the adversary.
• Adaptive step: The adversarymakes the following queries to the

challenger adaptively. the lth query can be:
(1) ‘‘Encrypt wl (wl ≠ w0, w1) to f ’’: the challenger returns

MSESKA.Enc(FK idf , wl).
(2) ‘‘Trapdoor for word wl for user i: the challenger returns

MSESKA.Trapdoor(MSK i, wl).
• Guest: The adversary outputs b′, its guess for b.

We say that if b = b′ then the adversary wins the Data hiding
game.

Definition 6. If for any p.p.t . adversary, for all sufficiently large
k, the probability that the adversary wins the Data hiding game
satisfies (1), then we say ourMSESKA is data hiding.

Pr[winDatahidinggame(k)] <
1
2
+ negl(k). (1)

3.4.2. Trapdoor hiding
Intuitively, Trapdoor hiding requires that an adversary cannot

learn the keyword that one searches for. Namely, if u1 does not
authorize any other user, then the attacker will not learn anything
about the keywords in the u1’s trapdoors unless these trapdoors
match an index that has shared with the attacker.

In Trapdoor hiding game, the malicious adversary try to play
a game with challenger to distinguish a trapdoor of a designated
keyword from some other trapdoors. If he can accomplish this
task, then he can get some useful information from trapdoor
set. Trapdoor hiding game has six phases: Setup, QueryToken,
QueryIndex, Challenge, Adaptive step and Guest.
Trapdoor hiding game.

• Setup: First, the challenger runs the setup function of the
MSESKA, and gets the public parameter params, then runs the
KeyGen function of the MSESKA and gets (MPK 1,MSK 1), and
sends params andMPK 1 to the adversary.
• QueryToken: The adversary generates (MPK i,MSK i) (2 ≤ i ≤

N) and wt (0 ≤ t ≤ M − 1), and sends MPK i (2 ≤ i ≤ N) and
wt (0 ≤ t ≤ M − 1) to the challenger to query token au1,i,t .
The challenger runs the authorize function and gets au1,i,t and
sends au1,i,t to the adversary.
• QueryIndex: The adversary selects a file f randomly, and sends f

andAU1 to the challenger to query an index. The challenger runs
the buildindex function of the MSESKA to generate an Indexidf ,
and sends Indexidf to the adversary.
• Challenge: The adversary chooses w0, w1 randomly, and

provides w0, w1 to the challenger. The challenger chooses
a random bit b and provides Trapdoor(MSK 1, wb) to the
adversary.
• Adaptive step: The adversarymakes the following queries to the

challenger adaptively. The lth query can be:
(1) ‘‘Encrypt wl (wl ≠ w0, w1) to f ’’: the challenger returns

MSESKA.Enc(FK idf , wl).
(2) ‘‘Trapdoor for word wl for user i’’: the challenger returns

MSESKA.Trapdoor(MSK i, wl).
• Guest: The adversary outputs b′, its guess for b.

We say that if b = b′ then the adversary wins Trapdoor hiding
game.

Definition 7. If for any p.p.t . adversary, for all sufficiently large k,
the probability that wins the Trapdoor hiding game satisfies (2),
then we say ourMSESKA is trapdoor hiding.

Pr[winTrapdoorhidinggame(k)] <
1
2
+ negl(k). (2)

4. Keyword authorization binary tree

To make our scheme revoke authorization conveniently, we
will use some data structure to organize keyword authorization.
Let W = (w0, w1, . . . , wM−1) be a set of keywords for fi. We

212 Z. Deng et al. / Future Generation Computer Systems 72 (2017) 208–218
Fig. 2. An example of a KABtree.

view each individual file fi as a bit-string of polynomial length, i.e.,
fi = {0, 1}poly(k). Let U = (u1, u2, . . . , uN) be a sequence of users
with corresponding identifiers idu = (1, 2, . . . ,N). We assume
that the universe of keywords is fixed but the users can grow. We
design a data structure for keyword authorization which refers
to as a keyword authorization binary tree (KABtree) (see Fig. 2).
The intuitive reason for the KABtree is that we want to allow both
keyword-based operations (by following paths from the root to the
leaves) and user-based operations (by following paths from the
leaves to the root). As we will see later, this property is useful for
handling authorization revocation efficiently.

4.1. Definition

Definition 8. A KABtree is a binary tree with the difference that
its nodes store an M-bit vector data to indicate the keyword
authorization relation, and its leaves store the user identifiers as
well. Its nodes satisfy the following properties:

• For every leaf l storing identifier j, we set datal[i] = 1 if and only
if user uj can search keyword wi.
• At each internal node s of the tree T , it stores an M-bit vector

datas. The ith bit of datas accounts for keyword wi. Specifically,
if datas[i] = 1, then there is at least one path from s to some leaf
that stores some identifier j, such that uj can search wi.
• Let s be an internal node of the tree T with left child v and

right child z. The vector datas of the internal node s is computed
recursively according to Eq. (3).

datas = datav + dataz (3)

where+ denotes the bitwise Boolean OR operation.

Assume U = (u1, . . . , uN) is a set users, idu = (1, . . . ,N)
is a set of user identifiers, W = (w0, w1, . . . , wM−1) is a key-
word set of keywords, and Tau = (Tau1,0; . . . ; TauN,M−1) is
a set of keyword authorization indications. To construct a KAB-
tree, we can use the following procedure, which we denote as
BuildKABtree(U,W , Tau):

(1) Build a binary tree T on top of (1, . . . ,N). At each leaf l, store
anM-bit vector datal. The jth bit of datal accounts for keyword
wj, for j = 0, 1, . . . ,M − 1. If Taui,j = 1 then set datal[j] = 1,
otherwise set datal[j] = 0.

(2) At each internal node s of the tree, store an M-bit vector
datas. The ith bit of datas accounts for keyword wi, for i =
0, 1, . . . ,M − 1. If datas[i] = 1, then there is at least one path
from s to some leaf that stores some identifier j, such that user
uj can search wi.

(3) Assume s be an internal node of T with left child v and right
child z. The vector datas of the internal node s is computed
recursively according to Eq. (3).

To search these authorization users for w in the KABtree T ,
assume that i is the position in theM-bit vectors to account forw at
each node, we can use the following procedure, which we denote
as SearchKABtree(T , i):
Check the bit at position i of node v and examine v’s children if
the bit at the same position is 1. When this traversal is over, return
these identifiers in all the leaves that were reached.

To revoke the keyword authorization of w for the user uj in
a KABtree T , we can use the following procedure, denoted as
RevokeFromKABtree(T , i, uj), where i is the position in the M-bit
vectors to account for w at the nodes of T :
(1) Traverse T to reach the leaf l that stores the identity of the user

uj, and set its datal[i] = 0.
(2) Traverse T from the leaf l to the root , compute all the M-bit

vector in these internal nodes recursively according to Eq. (3).

Lemma 1. Assume U = (u1, . . . , un) be a set of n users that are
authorized to search m keywords W = (w0, w1, . . . , wm−1). Then
there exists a KABtree for keyword authorization organization such
that: (1) the space complexity of the KABtree is O(mn); (2) the
constructing time of the KABtree is O(mn); (3) the search time for a
keyword w (w ∈ W) is O(r log n), where r is the number of users
that is authorized to search w; (4) the time to authorize or revoke a
keyword authorization of a user u (u ∈ U) is O(m log n).

Proof. The space complexity of the underlying binary tree in a
KABtree is O(n) and there exists a bit-vector ofm bits at each node,
we can get that the space complexity of the KABtree is O(mn).

According to Eq. (3), we can build the KABtree on the user
collection U by following a postorder traversal. As the time to
compute the OR of two m-bit vectors is O(m) and a postorder
traversal visits O(n) nodes, we can get that the time for KABtree
is O(mn).

According to the SearchKABtree procedure, we know that
search for a keyword w, which corresponds to position i of the
m-bit vectors, proceeds as follows: while the bit at position i of
node s is 1, examine s’s children. Therefore the search procedure
will traverse as many paths as the users can search keyword w,
namely r paths. Since the maximum height of the binary tree is
maintained to be O(log n), the search time is O(r log n).

Since it uses the m-bit vector in each node to represent the
keyword authorization relation, when we authorize or revoke the
authorization of w to a user u. It only sets or unsets the bit in the
m-bit vector that accounts for w on the leaf representing u. Since
themaximumheight of the binary tree ismaintained to beO(log n),
the traversal time from the root to the leaf l that stores the identity
of the user u is O(log n) and the time spent in each node is O(m),
the time to authorize or revoke a keyword authorization of u is
O(m log n). �

4.2. An illustrative example

In Fig. 2, we use a KABtree to organize keyword authorization
for file f . The KABtree is built on four users, namely u1, u2, u3, u4
over four keywords, namely w1, w2, w3, w4. All the nodes in
the KABtree store a 4-bit vector data to indicate the keyword
authorization. For example, the vector value on the leaf u2 is 1011,
which indicates that u2 can search three keywords in F , namely
w1, w3, w4.
(1) Searching. Searching is the main operation in the KABtree.

Suppose the server wants to determine which users are
authorized to search for w3. It first gets the position of w3
in the 4-bit vector. In our example, this position is 3. After
completing that, it checks datar [3] in root r and finds that this
bit is 1. As this bit is 1, it continues to visit the children of r and
examines their 4-bit vectors. Because datar2 [3] is 0, it does not
examine the children of node r2. But datar1 [3] is 1, so it keeps on
examining the children of r1, and finds that datau1 [3] = 1 and
datau2 [3] = 1. Since node u1 and u2 are leaves, it can determine
that u1 and u2 are users that are authorized to search for w3,
and returns u1 and u2.

Z. Deng et al. / Future Generation Computer Systems 72 (2017) 208–218 213
(2) Revoking an authorization. Suppose the server wishes to
revoke the keyword authorization of w1 for u3, it traverses T
to reach the leaf u3 and sets datau3 [1] = 0. Then it computes
datar2 and datar according to Eq. (3) in turn. As a result, it sets
datar2 [1] = 0 and datar [1] = 1.

5. A construction for MSESKA

Let H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → G2 be hash func-
tions, which are modeled as random oracles. Let k be the security
parameter, our construction for MSESKA is as follows:

• Setup(k)→ params: It takes k as input and outputs params,
where params = (p,G1,G2,GT , e, g1, g2, gT).
• KeyGen(params)→ (MPK i,MSK i): It takes params as input and

outputs a master public/private key pair (MPK i,MSK i), where

MPK i = g
1
xi
2 and MSK i = xi for xi ∈R Zp.

• AuthToken(MSK i,MPK j, wt)→ aui,j,t : It inputsMSK i andMPK j

and returns aui,j,t = (MPK i,MPK j, i, j,H2(g
xi
xj
2 ∥ i ∥ j ∥

wt).g
xi
2). It uses AU i,j to denote the authorization tokens that

uj can search the word wt in the encrypted files owned by ui
where AU i,j = (aui,j,0, aui,j,1, . . . , aui,j,M−1) and uses AU i =

(AU i,1, AU i,2, . . . , AU i,N) to denote the set of authorization to-
kens generated by ui.
• Buildindex(MSK i,W , AU i, f) → Indexidf : It parses MSK i as xi,

W as (w0, w1, . . . , wM−1) and AU i as (aui,1,0, aui,1,1, . . . ,
aui,N,M−1) and outputs an index file Indexidf owned by ui. The
index file Indexidf is built as follows:
(1) For the file f , select a unique index identifier idf ∈R{0, 1}k,

and generate a file-specific secret key FK idf = k1 where
k1 ∈R Zp.

(2) Generate TAGidf = (Enc(FK idf , w0), Enc(FK idf , w1), . . . ,
Enc(FK idf , wM−1)), where TAGidf is a set of the ciphertexts.

(3) Build a KABTree Tf as follows:
(1) For every aui,j,t ∈ AU i, parse it as (MPK i,MPK j, i, j,

H2(g
xi
xj
2 ∥ i ∥ j ∥ wt).g

xi
2), set TUj = MPK j and

Tauj,t = 1. It generates TU = (TU1, TU2, . . . , TUn) and
Tau = (Tau1,0, Tau1,1, . . . , Taun,M−1).

(2) Call BuildKABtree(TU, TAGidf , Tau) to output Tf .

(4) For every aui,j,t ∈ AU i, generate ΘMPK j = g
k1
xj
2 .

(5) For ui, generate ΘMPK i = g
k1
xi
2 for himself. It can use ΘMPK i

to search f or to revoke the keyword authorization of other
users from f .

(6) Set ∆idf = (ΘMPK1 , . . . , ΘMPKN).
(7) Return Indexidf = (idf , TAGidf , ∆idf , Tf).
• Enc(Fkidf , w) → c: It parses FK idf as k1 and returns c , where

c = e(H1(w), g2)k1 .
• Trapdoor(MSK j, w) → Trapw: It parses MSK j as xj and returns

Trapw = (MPK j,H1(w)xj).
• Match(Trapw, Indexidf) → b: It parses Trapw as (α, β) and

parses Indexidf as (idf , (Enc(FK idf , w0), . . . , Enc(FK idf , wM−1)),
∆idf , Tf) and proceeds as follows:
(1) If Θα ∉ ∆idf return 0.
(2) If Test(Enc(FK idf , wt), β) = 1 for some 0 ≤ t ≤ M − 1, set

pos = t , otherwise return 0. Let Test(Enc(Fkidf , wt), β) = 1
iff c = e(β, Θα).

(3) Call SearchKABtree(Tf , pos) to outputUID which is the set of
users that can search w in f .

(4) If α ∈ UID return 1, otherwise return 0.
• AuthRevoke(MSK i,MPK j, w) → AURi,j,w: It parses MSK i as xi
and MPK j as g

xj
2 and returns AURi,j,w where AURi,j,w = (MPki,

MPK j, i, j,H2(w)xi , gxi
2 ,H2(g

xi
xj
2 ∥ i ∥ j ∥ w)).

• Revoke(Indexidf , AURi,j,w) → Index′idf : It takes Indexidf and
AURi,j,w as input and outputs a new encrypted index Index′idf .
It parsesAURi,j,w as (AUd1 , AUd2 , AUd3 , AUd4 , AUd5 , AUd6 , AUd7)
and proceeds as follows:

(1) If AUd6 ∗ AUd7 ≠ H2(g
xi
xj
2 ∥ i ∥ j ∥ w).gxi

2 , abort.
(2) If Test(Enc(FK idf , wt), AUd5) = 1 for some 0 ≤ t ≤ M −

1, set pos = t , otherwise abort. Let Test(Enc(FK idf , wt),
AUd5) = 1 iff c = e(AUd5 , ΘAUd1

).
(3) Call SearchKABtree(Tf , pos) to output UID, which is the set of

users that can search for w over f . If AUd2 ∉ UID, abort.
(4) Call RevokeFromKABtree(Tf , pos, AUd2) to revoke uj the

keyword authorization of w, which is authorized by ui and
generate a new index Index′idf .

6. Security and performance analysis

In this section, we will show that our scheme is secure and
efficient. In Theorem 1, we demonstrate that our scheme is sound.
We prove Theorems 2 and 3 by a sequence of hybrid games. In
Remark 1, we discuss the problem about the search authorization
being exposed to the cloud server, and show that it does not
affect the security of our scheme. In Theorem 4, we analyze the
performance of our scheme, and show that our scheme is efficient.

6.1. Security analysis

Theorem 1. The construction of the MSESKA achieves sound un-
der Definition 5.

Proof. Assume f is a file owned by ui, w0 and w1 are two different
keywords which are randomly selected from f . Let MSK i = xi,

MPK i = g
1
xi
2 , MSK j = xj, MPK j = g

1
xj
2 and FK idf = k1, we

can get ΘMPK j = g
k1
xj
2 , c = Enc(Fkidf , w0) = e(H1(w0), g2)k1 ,

Trapdoor(MSkj, w0) = (MPK j,H1(w0)
xj) and Trapdoor(MSkj, w1)

= (MPK j,H1(w1)
xj).

As e(H1(w0)
xj , ΘMPK j) = e(H1(w0)

xj , g
k1
xj
2) = e(H1(w0), g2)k1

and e(H1(w1)
xj , ΘMPK j) = e(H1(w1)

xj , g
k1
xj
2) = e(H1(w1), g2)k1 , the

equality e(H1(w0)
xj , ΘMPK j) = c hold with probability 1.

Since H1 is a secure hash function, we can get H1(w0) ≠
H1(w1) holds with probability 1-neg(k). As a result, the inequality
e(H1(w1)

xj , ΘMPK j) ≠ c holds with probability 1− negl(k).
The value of Buildindex(MSK i,W , AU i, f) is the same as

required in Definition 5. If ui authorized uj to search for w0
and did not authorize uj to search for w1 over f , the equalities
Match(Trapdoor(MSkj, w0), Indexidf) = 1 and Match(Trapdoor
(MSkj, w1), Indexidf) = 0 hold with probability 1 − negl(k). This
completes the proof. �

Theorem 2. Under the BDHV and SXDH assumptions in the random
oracle model, the construction of MSESKA achieves data hiding
property under Definition 6.

Proof. We will create a sequence of hybrid games as follows:
Game 1: The challenger performs everything in the Data hiding

game. Let the adversary’s advantage be ε, according to the Data
hiding game, we have ε = Pr[winDatahidinggame(k)] − 1

2 .

214 Z. Deng et al. / Future Generation Computer Systems 72 (2017) 208–218
Game 2: The challenger performs the same as in Game 1, except
for the following. The challenger constructs an empty hash value
list for H1. The list is consisted of two columns, the first column is
used to store keyword w and the second column is used to store
its hash value H1(w). When the adversary queries H1(w) where
w ∈ {w0, w1}, the challenger first checks whether w has been
stored in the list. If w is not in the hash value list, the challenger
chooses γ ∈R G1 as the hash value, appends w and γ in the list
and sends γ to the adversary, otherwise the challenger returns
the existing value in the list to the adversary. When the adversary
queries H1(w) where w ∉ {w0, w1}, the challenger first checks
whether w has been stored in the list. If so, it returns the existing
hash value, otherwise it chooses r ∈R Zp and uses g r

1 as the hash
value, and appends w and g r

1 in the list. The challenger sends g r
1 to

the adversary. This game is identical to Game 1. Let the adversary’s
advantage be ε2 in this game, and we have ε2 = ε1.

Game 3: The challenger performs the same as in Game 2, except

for the following. It gives (gx
1, g

1
x
2 , g

k
x
2 ,H(w0),H1(w1), e(H1(wb),

g2)k, e(H1(wb̄), g2)
k) to the adversary and asks it to guess b.

With gx
1, g

1
x
2 and g

k
x
2 , the adversary can answer Buildindex oracles

on its own. Let the adversary’s advantage be ε3 in Game 3. As
the adversary has been given the additional information by the
challenger, we have ε3 ≥ ε2.

Game 4: The challenger performs the same as in Game 3, except
for replacing e(H1(wb), g2)k with R0 ∈R GT and e(H1(wb̄), g2)

k with

R1 ∈R GT . The challenger gives (gx
1, g

1
x
2 , g

k
x
2 ,H1(w0),H1(w1), R0, R1)

to the adversary and asks it to guess b. Let the adversary’s
advantage be ε4 inGame4, andwehave |ε3−ε4| ≤ εBDHV+εSXDH . In
Game 4, the challenge is independent from b, it is clear that ε4 = 0.

According to above games,wehave ε ≤ εBDHV+εSXDH . εBDHV and
εSXDH are negligible under the BDHV and SXDH assumptions, and
we can get ε is also negligible. Namely Pr[winDatahidinggame(k)] <
1
2 + negl(k). This completes the proof. �

Theorem 3. Under the SXDH assumption in the random oracle
model, the construction of the MSESKA achieves Trapdoor hiding
property under Definition 7.

Proof. We will create a sequence of hybrid games as follows:
Game 1: The challenger faithfully performs everything in Trap-

door hiding game. Let the adversary’s advantage be ε, according to
the Trapdoor hiding game, we have ε = Pr[winTrapdoorhidinggame(k)]
−

1
2 .
Game 2: The challenger performs the same as in Game 1, except

for the following. The challenger constructs an empty hash value
list for H1. The list is consisted of two columns, the first column is
used to store keyword w and the second column is used to store
its hash value H1(w). When the adversary queries H1(w) where
w ∈ {w0, w1}, the challenger first checks whether w have been
stored in the list. If w is not in the hash value list, the challenger
chooses a value γ ∈R G1 as the hash value, appends w and γ in the
list and sends γ to the adversary, otherwise the challenger returns
the existing value in the list to the adversary. When the adversary
queries H1(w) where w ∉ {w0, w1}, the challenger first checks
whether w has been stored in the list. If so, it returns the existing
hash value, otherwise it chooses r ∈R Zp and returns g r

1 as the hash
value, and appends w and g r

1 in the list. The challenger sends g r
1 to

the adversary. This game is identical to Game 1. Let the adversary’s
advantage be ε2 in this game, and we have ε2 = ε1.

Game 3: The challenger executes the same as in Game 2, except
for the following.

According to the Trapdoor hiding game, we know that u1 plays

the role of the challenger. Let MPK 1 = g
1
x∗
2 and MSK 1 = x∗.
The challenger selects k∗1 ∈R Zp and computes g
k∗1
x∗
2 ; it computes

H1(wb)
x∗ and H1(wb̄)

x∗ when getting wb and wb̄ from the
adversary. The challenger answers any buildindex oracle query
with the input(W , AU) as follows:

(1) It uses AU to generate TU and Tau.
(2) If MPK 1 ∉ TU , the challenger rejects the query and lets the

adversary answer it by itself.
(3) If MPK 1 ∈ TU and w0, w1 ∉ W , the challenger performs the

following steps:
• Select a unique identifier idf ∈R{0, 1}k for the index.
• Select z ∈R Zp.
• Suppose H1(w) = g r

1 for every w ∈ W , then set its cipher-

text e(gx∗
1 , g

k∗1
x∗
2)rz . Use all the ciphertexts to generate TAGidf .

• SetΘMPK1 = g
k∗1z
x∗

2 . Since allMPK t are releasedpubliclywhere

MPK t = g
1
xt
2 , the challenger can use k1,MPK t and z to gener-

ate ΘMPK t for all MPK t ∈ TU , where ΘMPK t = g
k∗1z
xt

2 , and use
all ΘMPK t to generate ∆idf .
• Use TU , TAGidf and Tau to build a KBAtree T .
• Return Indexidf = (idf , TAGidf , ∆idf , T).

(4) IfMPK 1 ∈ AU and w0, w1 ∈ W , do the following.
• Select a unique identifier id∈R{0, 1}k for the index.
• Select z ∈R Zp.

• If w0, w1 ∈ W , let e(H1(wb)
x∗ , g

k∗1
x∗
2)z be its ciphertext. For

every w ∈ W and w ∉ {w0, w1}, suppose H1(w) = g r
1

then set its ciphertext e(gx∗
1 , g

k∗
x∗
2)rz . Use all the ciphertexts

to generate TAGidf .

• SetΘMPK1 = g
k∗1z
x∗

2 . Since allMPK t are releasedpubliclywhere

MPK t = g
1
xt
2 , the challenger can use k1, MPK t and z to

generate ΘMPK t for all MPK t ∈ TU , where ΘMPK t = g
k∗1z
xt

2 ,
and use all ΘMPK t to generate ∆idf .
• Use TU , TAGidf and Tau to build a KBAtree T .
• Return Indexidf = (idf , TAGidf , ∆idf , T).

Since the adversary has not been given any additional
information by the challenger in Game 3, it is indeed identical to
Game 2. Let the adversary’s advantage be ε3 in Game 3, and we
have ε3 = ε2.

Since AU is released publicly, it is clear that the challenger
only needs (gx∗

1 ,H1(w0),H1(w1),H1(wb)
x∗ ,H1(wb̄)

x∗) to faithfully
answer any buildindex oracle query from the adversary in Game 3.

Game 4: The challenger performs the same as in Game 3,
except for replacing H1(wb)

x∗ with R1 ∈R G1 and H1(wb̄)
x∗ with

R2 ∈R G1. Let the adversary’s advantage be ε4 in this game. It is clear
that, in Game 3 and Game 4, the adversary can be regarded as a
distinguisher for extended 3-PDDH problem in G1, and εPDDH3 ≤

3εDDH ≤ 3εSXDH . Therefore, we have |ε3 − ε4| ≤ 3εSXDH . Since the
challenge is independent from b in Game 4, it is clear that ε4 = 0.

According to above games, we have ε ≤ 3εSXDH . It is clear that
εSXDH is negligible under the SXDH assumption, and we can get ε is
negligible. Namely, Pr[winTrapdoorhidinggame(k)] < 1

2 + negl(k). This
completes the proof. �

Remark 1. In construction of the MSESKA, the cloud server can
get the keyword authorization from three kinds of entities, namely
KABtree, authorization token and authorization revocation token.
Given w ∈ W , its position in m-bit vector data is exposed to the
cloud server due to the KABtree. But the server cannot learn the
value of w. If we use the following technology, it will reduce the

Z. Deng et al. / Future Generation Computer Systems 72 (2017) 208–218 215
ability of the server to deduce the position of w in m-bit vector
data. When the file owner wants to build the KABtree for the file f ,
it first generatesm dummykeywords, and randomlymixes thesem
dummy keywordswith them keywordswhich are abstracted from
f , and generates a new keyword set with 2m keywords. Then it
uses the new keyword set to generate 2m-bit vector data′, and sets
all bits in the leaves that account for these dummy keywords to 0,
and calls BuildKABtree to generate the KABtree. At the same time,
it uses the new keyword set to generate a set of the ciphertexts
TAGidf = (Enc(FK idf , w0), Enc(FK idf , w1), . . . , Enc(FK idf , w2m−1)).
After that, the cloud server cannot deduce the position of w
in the 2m-bit vector data′ in MSESKA, and it does not affect
the function of MSESKA. The authorization token aui,j,w =

(MPK i,MPK j, i, j,H2(g
xi
xj
2 ∥ i ∥ j ∥ w).gxi

2) and the authorization re-

vocation token AURi,j,w = (MPki,MPK j, i, j,H2(w)xi , gxi
2 ,H2(g

xi
xj
2 ∥

i ∥ j ∥ w)). In aui,j,w and AURi,j,w , w is blinded by g
xi
xj
2 . Since the

private key xi is kept by ui securely, the cloud server cannot get

any information of w from H2(g
xi
xj
2 ∥ i ∥ j ∥ w).gxi

2 , H2(w)xi and

H2(g
xi
xj
2 ∥ i ∥ j ∥ w). Therefore, though keyword authorization in

our scheme is exposed to the cloud server, it does not affect the
security of the construction of the MSESKA.

6.2. Performance analysis

Theorem 4. In the construction of the MSESKA, assume n users that
are authorized to search for m keywords over a file f , we can get
that: (1) in the initialization phrase, the client computation complex-
ity is O(mn); (2) in the search phrase, the client computation complex-
ity is O(1), the server computation complexity is O(r log n); (3) in the
revoking phrase, the client computation complexity is O(1), the server
computation complexity is O(m log n); (4) the client storage complex-
ity is O(1).

Proof. In the initialization phrase, the client runs the Authtoken
to compute mn authorization tokens and runs the buildindex to
generate an index file. In the buildindex, the client generates m
ciphertexts, builds a KABtree Tf and generates∆idf which has nΘs.
According to Lemma 1, we know that the time of buildindex is
O(mn), and as a result, the client computation complexity isO(mn).

In the search phrase, the client runs the trapdoor which its time
isO(1) and the server runs thematch. Inmatch, it needs search∆idf
which needs n computation time, and calls the test function which
needsm computation time, and calls the SearchKABtree. According
to Lemma 1, we know that the time of SearchKABtree is O(r log n),
where r is the number of authorized users. Hence, the computation
cost of thematch in the server is O(r log n).

In the revoking phrase, the client calls the authrevoke to
generate the revocation indication, where its computation time
is O(1). After receiving the authorization indication from the
file owner, the server runs the test function which needs m
computation time, then it calls the SearchKABtree to generate
the set of users that can search the keyword, and it calls the
RevokeFromKABtree. According to Lemma 1, we know that the time
of SearchKABtree is O(r log n) and the time of RevokeFromKABtree
is O(m log n). Hence, in the revoking phrase, the computation
complexity of the server is O(m log n).

In our construction, the client only stores its private key, there-
fore its space complexity is O(1). This completes the proof. �

7. Experiments

In order to evaluate the performance of the MSESKA, we have
realized our construction for MSESKA using C and PBC library [21]
Fig. 3. Execution time for MSESKA.Buildindex.

for implementation of a type-3 curve. We have performed all
experiments on an Intel R⃝ Pentium R⃝ Dual E2160 1.8 GHz with
4 GB RAM running Fedora 8.0 with kernel 2.6.23.1. The disk of the
experiment machine is Western Digital Caviar SE hard drive that
has 320 GB capacity, 7200 rpm with 8 MB cache. All experiments
ran single-threaded on the machine and all data represents the
mean of 10 executions.

In our experiments, we chose two sets of real-world data. The
first set was selected from the Enron emails [22]; we extracted
a subset of emails as file collections. The second set consisted
of Microsoft documents (using the Word, PowerPoint, and Excel
file types) which produced by our research group. In a similar
fashion to the emails, we chose a subset of this collection as smaller
file collections. To index the emails and documents, we used an
indexer that employs Apache POI to extract unique words from
each file. The indexer also extracts properties of the files from
the Linux filesystem, such as owner of the file. To evaluate the
performance of MSESKA, we ran the MSESKA algorithms specified
in Section 5 on the emails and documents.

Fig. 3 shows the results of the Buildindex algorithm,which takes
the most time of MSESKA. Note that the Buildindex algorithm is
executed by the file owner before his files are sent to the cloud
storage. Fig. 3 shows the difference between the documents and
the emails. As Microsoft Office documents are a collection of rich
text file, which may contain some visual components (such as
images), which are not indexed, so each file in documents has
few words. However, the emails are a collection of plain text files,
which consist of email headers, so almost every byte of every file
is part of a word that will be indexed, and each small file contains
many words. From Fig. 3, we can see that the index generation in
MSESKA requires significantly more time for large text collections
than that for the common office documents.

In our MSESKA, the search function is performed by the Match
algorithm on the server. Since search was performed for the word
that was indexed for the most files, the total needed for the search
depended on the prevalence of words in files. Documents had few
words, even in 50 MB of content, whereas more words occur in
every email. Fig. 4 gives the time needed for the server to perform
amatch, given a search trapdoor (we neglect the cost of generating
a trapdoor, since it is a small constant inmicroseconds). Thematch
costs in MSESKA is small, even for the email index, the longest
search takes only about 20 ms to complete.

Fig. 5 shows the execution time for revoke an authorization for
a word over files. The cost of the operation is divided into several
components: MSESKA.AuthRevoke refers to client generation of

216 Z. Deng et al. / Future Generation Computer Systems 72 (2017) 208–218
Fig. 4. Execution time for MSESKA.Match.

Fig. 5. Execution time for MSESKA.Revoke.

the authorization revocation token, and MSESKA.Revoke refers to
the server using the revocation token to update the index. From
Fig. 5, we know that the cost on the server is low, this allows the
server to support many clients easily.

As there exist only two practical multi-user searchable
encryption schemes that support search on files encrypted with
different keys in the literature. We refer to them as MSES-
Poa [16] and MSES-Tang [17] respectively, we perform the search
experiments of our MSESKA against MSES-Poa and MSES-Tang.
When perform a search, MSES-Poa adjusts the trapdoor first and
then runs match to do the search, but MSESKA and MSES-Tang
do not need to adjust the trapdoor, they run match directly.
From Fig. 6, we can see that the search performance of MSESKA
outperforms those of other schemes. This is because MSES-Poa
needs to run adjust and match algorithm, MSES-Tang needs to
perform two test operations which are pairing operation, whereas
our MSESKA only performs one pairing operation and one search
on a KABtree, as a result, the server can search for a word quickly
using our MSESKA.

8. Related works

There exist many works on the searchable encryption in the
literature. Song et al. proposed the first searchable encryption
Fig. 6. Search performance comparison.

scheme in the symmetric setting [2]. Subsequently, many re-
searchers have proposed some other schemes with strong secu-
rity properties or some other properties for different application
fields. Goh formally formulated a security model known as seman-
tic security against adaptive chosen keyword attack (IND-CKA),
and developed an efficient IND-CKA secure index construc-
tion by using pseudo-random functions and Bloom filters [3].
Chang et al. proposed some efficient searchable encryption
schemes [5]. Curtmola et al. showed that the indistinguishabil-
ity and simulation-based definitions for both indexes and trap-
doors were equivalent and proposed some searchable encryption
schemes [4]. Kamara et al. proposed a dynamic searchable encryp-
tion scheme using inverted index [6]. They assume one user and
one server in these schemes, where the user can generate search-
able indexes and store them at the server, and later entrust the
server to search on his behalf, and we cannot use these schemes to
address our problem. Goldreich et al. studied software protection
based on oblivious RAM,we can realize a searchable encryption us-
ing his work, however, the overhead of the oblivious RAMS is too
big to be applied to cloud storage [23].

There also exist some searchable encryption schemes for
multi-user setting. Curtmola et al. proposed the first multi-user
searchable encryption scheme, where a user can be authorized to
search the files of others [4]. Bao et al. introduced a user manager
tomanage the search capabilities ofmultiple users [10]. As the user
manager can submit search queries and decrypting encrypted data,
it needs to be fully trusted. However, there usually exists no trusted
third party in a cloud storage, sowe cannot apply the scheme to the
cloud storage. There exist similar problems in the schemes of Dong,
Zhao and Yang [11,12,14].

López-Alt et al. investigated the computation over data en-
crypted with different key [24]. They designed a fully homomor-
phic encryption (FHE) scheme in which anyone can evaluate a
function over data encrypted with different keys. However, their
scheme is not practical due to its low efficiency. Popa et al. pro-
posed amulti-user searchable encryption schemewhich is the first
practical work that addresses a similar problem to ours [16]. How-
ever the granularity of authorization in his scheme is very coarse,
and they did not explicitly specify how a user ui can authorize an-
other user uj to search his index, where i ≠ j. Later, Tang put
forward a secure and scalable multi-party searchable encryption
scheme [17], but the authorization is granted on the index level. If
ui wants to authorize uj to search for a subset of keywords over its
indexes, then his scheme cannot complete this task. The scheme

Z. Deng et al. / Future Generation Computer Systems 72 (2017) 208–218 217
did not explicitly specify how a user ui can revoke the authoriza-
tion of other user uj to search over its index.

Boneh et al. proposed some encryption schemes with keyword
search in the public-key setting (PEKS) [25]. Later, Abdalla et al.
studied how to transform an anonymous IBE scheme to a secure
PEKS scheme [26]. Bellare et al. presented PEKS schemes that per-
mitted fast searchwith provable privacy and the length preserving
feature [27]. Golle et al. proposed schemes for conjunctive keyword
search in public-key setting [28]. However the above PEKS schemes
cannot complete our task as well.

9. Conclusion

Cloud storage has become an important storage scheme, where
we can store our files and share our files with others conveniently.
To keep our files from information leakage, we usually encrypt
our files before storing them on the cloud storage. Encryption
makes the function of file sharing and search useless. In this paper
we formally define a secure and efficient searchable encryption
scheme in a cloud storage, which can enable a file owner share its
files with others and authorize some designated users to search
its files in encrypted form on a cloud storage, and use asymmetric
bilinear map groups of Type-3 and keyword authorization binary
tree (KABtree) to construct this scheme that achieves better
performance. Using this scheme, we can authorize a designated
user to search for a subset of keywords. Our theoretical proofs and
experimental results demonstrate that it is feasible.

Acknowledgments

The authors would like to express their gratitude to the
anonymous reviewers for their insightful comments. The research
was partially funded by the Key Program of National Natural
Science Foundation of China (Grant Nos. 61133005, 61432005),
and the National Natural Science Foundation of China (Grant Nos.
61370095, 61472124, 61502163).

References

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility, Future Gener. Comput. Syst. 25 (2009) 599–616.

[2] D.X. Song, D.Wagner, A. Perrig, Practical techniques for searches on encrypted
data, in: Proceedings of the 21st IEEE Symposiumon Security and Privacy, IEEE,
New York, NY, USA, 2000, pp. 44–55.

[3] E.-J. Goh, Secure indexes, IACR Cryptology ePrint Archive, 2003. Accessible on
https://eprint.iacr.org/2003/216.pdf, July, 2015.

[4] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky, Searchable symmetric
encryption: improved definitions and efficient constructions, in: Proceedings
of the 13th ACM Conference on Computer and Communications Security,
CCS’06, ACM, New York, NY, USA, 2006, pp. 79–88.

[5] Y.-C. Chang, M. Mitzenmacher, Privacy preserving keyword searches on
remote encrypted data, in: J. Ioannidis, A. Keromytis, M. Yung (Eds.), Applied
Cryptography and Network Security, Springer, Berlin, Heidelberg, 2005,
pp. 442–455.

[6] S. Kamara, C. Papamanthou, T. Roeder, Dynamic searchable symmetric
encryption, in: Proceedings of the 19th ACM Conference on Computer
and Communications Security, CCS’12, ACM, New York, NY, USA, 2012,
pp. 965–976.

[7] M. Raykova, A. Cui, B. Vo, B. Liu, T. Malkin, S.M. Bellovin, S.J. Stolfo, Usable,
secure, private search, IEEE Secur. Privacy 10 (2012) 53–60.

[8] B. Hore, S. Mehrotra, M. Canim, M. Kantarcioglu, Secure multidimensional
range queries over outsourced data, VLDB J. 21 (2012) 333–358.

[9] B.K. Samanthula, W. Jiang, E. Bertino, Privacy-preserving complex query
evaluation over semantically secure encrypted data, in: Computer Security-
ESORICS 2014, Springer, Berlin, Heidelberg, 2014, pp. 400–418.

[10] F. Bao, R.H. Deng, X. Ding, Y. Yang, Private query on encrypted data in
multi-user settings, in: L. Chen, Y. Mu, W. Susilo (Eds.), Information Security
Practice and Experience—ISPEC 2008, Springer, Berlin, Heidelberg, 2008,
pp. 71–85.

[11] C. Dong, G. Russello, N. Dulay, Shared and searchable encrypted data for
untrusted servers, J. Comput. Secur. 19 (2011) 367–397.
[12] F. Zhao, T. Nishide, K. Sakurai, Multi-user keyword search scheme for secure
data sharing with fine-grained access control, in: H. Kim (Ed.), Information
Security and Cryptology—ICISC 2011, Springer, Berlin, Heidelberg, 2012,
pp. 406–418.

[13] R. Rajan, A.V.V.P. Coimbatore, Efficient and privacy preserving multi user
keyword search for cloud storage services, Int. J. Adv. Technol. Eng. Res.
(IJATER) 2 (2012).

[14] Y. Yang, H. Lu, J. Weng, Multi-user private keyword search for cloud
computing, in: Proceedings of 2011 IEEE Third International Conference on
Cloud Computing Technology and Science (CloudCom), IEEE, New York, NY,
USA, 2011, pp. 264–271.

[15] D.D. Rane, V.R. Ghorpade, Multi-user multi-keyword privacy preserving
ranked based search over encrypted cloud data, in: Proceedings of the 2015
International Conference on Pervasive Computing, ICPC 2015, IEEE, New York,
NY, USA, 2015, pp. 1–4.

[16] R.A. Popa, N. Zeldovich, Multi-Key Searchable Encryption, Technical Report,
MIT, 2013, Accessible on http://people.csail.mit.edu/nickolai/papers/popa-
multikey-eprint.pdf, July, 2015.

[17] Q. Tang, Nothing is for free: security in searching shared and encrypted data,
IEEE Trans. Inf. Forensics Secur. 9 (2014) 1943–1952.

[18] X. Boyen, The uber-assumption family, in: S.D. Galbraith, K.G. Paterson (Eds.),
Pairing-Based Cryptography—Pairing 2008, Springer, Berlin, Heidelberg, 2008,
pp. 39–56.

[19] G. Ateniese, J. Camenisch, S. Hohenberger, B. de Medeiros, Practical group
signatures without random oracles, IACR Cryptology ePrint Archive, 2005.
Accessible on https://eprint.iacr.org/2005/385.pdf, July, 2015.

[20] M. Abdalla, E. Bresson, O. Chevassut, D. Pointcheval, Password-based group
key exchange in a constant number of rounds, in: M. Yung, Y. Dodis,
A. Kiayias, T. Malkin (Eds.), Public-Key Cryptography—PKC 2006, Springer,
Berlin, Heidelberg, 2006, pp. 427–442.

[21] B. Lynn, Pbc library: the pairing-based cryptography library,
https://crypto.stanford.edu/pbc/, 2007.

[22] W.W. Cohen, Enron email dataset, http://www.cs.cmu.edu/~enron/, 2005.
[23] O. Goldreich, R. Ostrovsky, Software protection and simulation on oblivious

rams, J. ACM 43 (1996) 431–473.
[24] A. López-Alt, E. Tromer, V. Vaikuntanathan, On-the-fly multiparty computa-

tion on the cloud via multikey fully homomorphic encryption, in: Proceedings
of the Forty-fourthAnnual ACMSymposiumonTheory of Computing, STOC’12,
ACM, New York, NY, USA, 2012, pp. 1219–1234.

[25] D. Boneh, G. Crescenzo, R. Ostrovsky, G. Persiano, Public key encryption with
keyword search, in: C. Cachin, J.L. Camenisch (Eds.), Advances in Cryptology—
EUROCRYPT 2004, Springer, Berlin, Heidelberg, 2004, pp. 506–522.

[26] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-
Lee, G. Neven, P. Paillier, H. Shi, Searchable encryption revisited: consistency
properties, relation to anonymous ibe, and extensions, in: V. Shoup (Ed.),
Advances in Cryptology—CRYPTO 2005, Springer, Berlin, Heidelberg, 2005,
pp. 205–222.

[27] M. Bellare, A. Boldyreva, A. O’Neill, Deterministic and efficiently searchable
encryption, in: A. Menezes (Ed.), Advances in Cryptology—CRYPTO 2007,
Springer, Berlin, Heidelberg, 2007, pp. 535–552.

[28] P. Golle, J. Staddon, B. Waters, Secure conjective keyword search over
encrypted data, in:M. Jakobsson,M. Yung, J. Zhou (Eds.), Applied Cryptography
and Network Security—ACNS 2004, Springer, Berlin, Heidelberg, 2004,
pp. 31–45.

Zuojie Deng received the M.S. degree in Department of
Computer Engineering from Hunan University, Changsha,
China, in 2004. He is an associate professor in School of
Computer and Communication at Hunan Institute of En-
gineering, Xiangtan, China. Currently, he is a Ph.D. candi-
date in the School of Computer Science and Technology at
Huazhong University of Science and Technology, Wuhan,
China. His research areas include storage security, search-
able encryption, network security and privacy enhanced
technologies.

Kenli Li received the Ph.D. degree in computer science
from the Huazhong University of Science and Technology,
China, in 2003. He was a visiting scholar at the University
of Illinois at Urbana–Champaign from 2004 to 2005. He
is currently a full professor of computer science and
technology at Hunan University and an associate director
of National Supercomputing Center in Changsha. His
major research includes parallel computing, grid and cloud
computing, and DNA computing. He has published more
than 90 papers in international conferences and journals,
such as IEEE Transactions on Computers, IEEE Transactions

on Parallel andDistributed Systems, ICPP, and CCGrid. He is an outstandingmember
of CCF.

http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref1
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref2
https://eprint.iacr.org/2003/216.pdf
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref4
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref5
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref6
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref7
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref8
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref9
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref10
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref11
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref12
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref13
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref14
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref15
http://people.csail.mit.edu/nickolai/papers/popa-multikey-eprint.pdf
http://people.csail.mit.edu/nickolai/papers/popa-multikey-eprint.pdf
http://people.csail.mit.edu/nickolai/papers/popa-multikey-eprint.pdf
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref17
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref18
https://eprint.iacr.org/2005/385.pdf
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref20
https://crypto.stanford.edu/pbc/
http://www.cs.cmu.edu/%7Eenron/
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref23
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref24
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref25
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref26
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref27
http://refhub.elsevier.com/S0167-739X(16)30128-5/sbref28

218 Z. Deng et al. / Future Generation Computer Systems 72 (2017) 208–218
Keqin Li is a SUNY Distinguished Professor of computer
science. His current research interests include parallel
computing and high-performance computing, distributed
computing, energy-efficient computing and communica-
tion, heterogeneous computing systems, cloud comput-
ing, big data computing, CPU–GPU hybrid and cooperative
computing, multicore computing, storage and file sys-
tems, wireless communication networks, sensor net-
works, peer-to-peer file sharing systems, mobile
computing, service computing, Internet of things and cy-
ber–physical systems. He has published over 390 journal

articles, book chapters, and refereed conference papers, and has received several
best paper awards. He is currently or has served on the editorial boards of IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on Computers,
IEEE Transactions on Cloud Computing, Journal of Parallel and Distributed Comput-
ing. He is an IEEE Fellow.

Jingli Zhou is a Professor in the School of Computer Sci-
ence and Technology at Huazhong University of Science
and Technology. Her current research interests include
high performance storage technology and system, multi-
media data processing and communication, network se-
curity. She has published more than 50 papers in interna-
tional journals.

	A multi-user searchable encryption scheme with keyword authorization in a cloud storage
	Introduction
	Motivation
	Our contributions

	Preliminary
	Notations
	Assumptions

	Problem and definition
	The system model
	Problem formalization
	The MSESKA scheme
	Security model for MSESKA
	Data hiding
	Trapdoor hiding

	Keyword authorization binary tree
	Definition
	An illustrative example

	A construction for MSESKA
	Security and performance analysis
	Security analysis
	Performance analysis

	Experiments
	Related works
	Conclusion
	Acknowledgments
	References

