
AccTFM: An Effective Intra-Layer Model
Parallelization Strategy for Training Large-Scale

Transformer-Based Models
Zihao Zeng , Chubo Liu ,Member, IEEE, Zhuo Tang ,Member, IEEE,

Kenli Li , Senior Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—Transformer-based deep neural networks have recently swept the field of natural language processing due to their

outstanding performance, and are gradually spreading to more applications such as image/video processing. However, compared with

general DNNs, training a sizeable transformer-based model is further time-consuming and memory-hungry. The existing distributed

training strategies for general DNNs are not appropriate or can not efficiently handle transformer-based networks. In view of this, we

propose an intra-layer model parallelization optimization strategy, AccTFM, which introduces a novel fine-grained pipeline execution

and hybrid communication compression strategy to overcome the synchronization bottleneck. Specifically, on one hand, it first

decouples the inter-layer computation and communication dependencies, and then searches for the optimal partitioning strategy to

maximize the overlap of computation and communication. On the other hand, the hybrid communication compression module consists

of token-level top-k sparsification and piecewise quantization methods aiming at minimizing communication traffic. Experimental results

show that AccTFM accelerates transformer-based DNNs training by up to 2.08x compared to state-of-the-art distributed

training techniques.

Index Terms—Communication hiding, deep learning, intra-layer model parallelization, quantization, Top-k sparsification

Ç

1 INTRODUCTION

TRANSFORMER-BASED deep neural network models (DNNs)
[1] [2] have been widely exploited in the area of Natural

Language Processing (NLP). They have shown unprece-
dented performance improvements over previous models
based on Recurrent Neural Networks (RNN) or Long Short-
Term Memory networks (LSTM) [3] [4] in various NLP tasks.
Recently, transformer-based DNNs are spreading across wider
fields such as image/video processing [5][6] and achieved bet-
ter performance. For example, Vision Transformers (ViTs) [5]
refreshed the state-of-the-art accuracy on ImageNet. However,
the higher performance brought by transformer-based DNNs
comes along with the explosion of model size. For example,
with the state-of-the-art NLP models evolved from the base

transformer model to GPT-3 [7], the number of parameters of
the model increased significantly from 65million to 175 billion,
and it is far beyond singleGPUmemory (e.g., the latestNVIDIA
V100 GPU with 32 GB memory). Furthermore, this phenome-
non that improves application performance by developing
larger-scalemodels continues, and the necessity todistributedly
process transformer-based DNNs rises sharply in this era of
faster services.

Existing distributed approaches for general DNNs
mainly include Data Parallelization (DP) [8] [9] and Pipeline
Parallelization (PP) [10]. In DP, each mini-batch input sam-
ple are distributed to multiple computing devices while
each device holds a complete copy of the model weight
parameters. Many studies have improved the performance
of DP by mitigating the impacts of gradient synchroniza-
tion, such as gradient scheduling [11], [12], [13], [14], [15]
and compression [16], [17], [18], [19] techniques. Pipeline
Parallelization, sometimes referred to as inter-layer model
parallelization, vertically partitions the model into multiple
consecutive groups of layers. A batch of training samples is
further split into smaller micro-batches, which are then
pipelined passes through each partition. Generally, a suit-
able model partitioning strategy is required to achieve load
balancing between devices. To mitigate the pipeline bubble
overhead, PipeDream [20] introduced a micro-batches
scheduling strategy. In addition, each device stored multi-
ple weight versions to ensure correct gradient computation.

However, the existingDPandPP training strategies can not
tightly couple with the characteristics of numerous parame-
ters of transformer-based DNNs, and thus are ineffective for
training them. Recently, intra-layer Model Parallelization

� Zihao Zeng, Chubo Liu, Zhuo Tang, and Kenli Li are with the College of
Information Science and Engineering, National Supercomputing Center in
Changsha, Hunan University, Hunan 410082, China. E-mail: {zengzh,
liuchubo, ztang, lkl}@hnu.edu.cn.

� Keqin Li is with the College of Information Science and Engineering,
National Supercomputing Center in Changsha, Hunan University, Hunan
410082, China, and also with the Department of Computer Science, State
University of New York, New Paltz, NY 12561 USA. E-mail: lik@newpaltz.
edu.

Manuscript received 23 March 2022; revised 15 June 2022; accepted 23 June
2022. Date of publication 5 July 2022; date of current version 23 August 2022.
This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2021YFB0300300, in part by the Pro-
grams of National Natural Science Foundation of China under Grant
62072165, and in part by the Fundamental Research Funds for the Central
Universities.
(Corresponding authors: Chubo Liu and Kenli Li.)
Recommended for acceptance by D. Tiwari.
Digital Object Identifier no. 10.1109/TPDS.2022.3187815

4326 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4745-5331
https://orcid.org/0000-0002-4745-5331
https://orcid.org/0000-0002-4745-5331
https://orcid.org/0000-0002-4745-5331
https://orcid.org/0000-0002-4745-5331
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0002-2372-6715
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:zengzh@hnu.edu.cn
mailto:liuchubo@hnu.edu.cn
mailto:ztang@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
mailto:lik@newpaltz.edu

(MP) [21] has been performed for accelerating transformer-
based DNNs. It horizontally divides each layer of weight
parameters. Different computing devices train their portion of
parameters in parallel based on the same input sample. Unfor-
tunately, similar toDP, the efficiency of the existing intra-layer
MP approaches are also limited by the communication over-
head between computing devices. Even worse, in low band-
width networks such as 1 Gbps Ethernet commonly used in
distributed development environments of small IT compa-
nies, the communication overhead will dominate the perfor-
mance of intra-layer MP training. There is still a research gap
in solving the communication barrier of intra-layerMP.

In this paper, we focus on speeding up the process of
intra-layer MP training for transformer-based models.
There are two major challenges for breaking the communi-
cation barrier of intra-layer MP. First, since intra-layer MP
exerts more strong computation and communication depen-
dencies between layers, it is challenging to get the most of
both computing and network bandwidth resources. Specifi-
cally, the computation of the following layer can not start
until the complete output of the preceding layer is obtained.
During All-Reduce communication, aggregating output
only from the part of workers will result in incorrect model
predictions. Second, since the model convergency is sensi-
tive to the communication content (i.e., intermediate output
tensor and loss tensor of each layer) of intra-layer MP, it is
challenging to achieve high communication compression
ratios without accuracy loss. When employing intra-layer
MP for transformer-based DNNs, taking the below 50% of
elements of intermediate output tensor for synchronization
will result in a notable accuracy loss. In this case, fre-
quently-used top-k sparsification methods can not work
due to expensive index transmission.

To this end, we propose AccTFM, an effective training
acceleration approach for large-scale transformer-based
DNNs, which exploits multi-level intra-layer MP optimiza-
tion for distributed training in a cluster environment with
limited network bandwidth. Specifically, the initial optimi-
zation is to decouple the computation and communication
dependencies across the DNN layers, allowing for fine-
grained pipeline execution between computation and com-
munication operation. Then, a dynamic programming algo-
rithm is developed to determine the optimal partitioning of

each layer operation. Further, a hybrid communication com-
pression strategy is explored and combined with fine-
grained pipeline execution to enable the more effective
intra-layer MP training. In summary, the specific contribu-
tions of this paper are the following:

� We propose AccTFM that leverages multi-level opti-
mizaiton to provide high-performance distributed
training for large-scale transformer-based DNNs. To
the best of our knowledge, we are the first effort try-
ing to break the communication barrier of intra-layer
MP.

� We design fine-grained pipeline execution in intra-
layer MP and propose a dynamic programming
algorithm to determine the partitioning scheme of
each layer, which aims to maximize the overlap of
computation and communication.

� We develop a token-level top-k communication spar-
sification method, which eliminates the redundant
communication of unimportant tokens according to
their attention score.

� Based on the distribution characteristics of the values
of the communication data chunk, we explore a
piecewise quantization method, which can signifi-
cantly reduce communication traffic in collaboration
with the top-k sparsification method.

� Expensive experiments show that AccTFM can
increase the training throughput of the transformer-
based DNNs by 2.08x over the previous intra-layer
MP methods without affecting the convergence of
the model.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 introduces some prelimi-
naries. Section 4 describes our proposed AccTFM in detail.
Section 5 evaluates the performance of ourmethodwith exten-
sive experiments, and finally, Section 6 concludes the paper.

2 RELATED WORK

There are many efforts aimed at improving the training per-
formance of deep neural network models. We only mention
those most relevant to our work and list which scheme they
can support in Table 1.

TABLE 1
Distributed Training Solutions

Schemes Parallelism Parameter Update
Mechanism

Main Technique(s)

SparCML [17], gTop-k[18] DP Synchronous Gradient compression
MG-WFBP [11] DP Synchronous Gradient merging
P3 [12], TicTac [13], PACE [15],
ByteScheduler [14]

DP Synchronous Communication scheduling

Gpipe [10] PP Synchronous Inter-layer pipeline execution
PipeDream [20] DP & PP Asynchronous Worker partitioning & Computation scheduling
Xpipe [22] PP Asynchronous Weight prediction
PipeMare [23] PP Asynchronous Learning rate rescheduling & Discrepancy

correction
Mesh-Tensorflow [24] DP & Intra-layer MP Synchronous Tensorflow language extension
Megatron-LM [21] Intra-layer MP Synchronous Intra-layer parameters partitioning strategy
AccTFM Intra-layer MP Synchronous Fine-grained pipeline execution & Hybrid

communication compression

ZENG ETAL.: ACCTFM: AN EFFECTIVE INTRA-LAYER MODEL PARALLELIZATION STRATEGY FOR TRAINING LARGE-SCALE 4327

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

Data Parallelization. In data parallelization technology,
each worker holds a complete copy of the model and only is
responsible for processing a subset of the mini-batch train-
ing samples. The gradient communication process, which is
implemented commonly by All-Reduce or Parameter Server
(PS) architecture, is required to collect the local gradients
computed by each worker.

Some studies explored gradient compression technolo-
gies to mitigate the communication overhead. Aji et al. [16]
first proposed the gradient sparsification approach to accel-
erate the data parallelization training. It transmits only 1%
of the most significant gradients during gradient synchroni-
zation and accumulates the dropped gradients to the next
iteration. Considering inconsistent indices of sparse gra-
dients from each worker, Renggli et al. [17] implemented a
scalable communication library based on the All-Gather
method. It switches the intermediate result vector to a dense
format once its sparsity exceeds a threshold during gradient
aggregation. Shi et al. [18] proposed a global top-k (gTop-k)
gradient sparsification method to reduce communication
complexity further. After aggregating the local gradient vec-
tor, gTop-k sparsifies the accumulating result once again.
These works focus only on the communication operation in
the data parallelization training process, which needs to
find a trade-off between high compression rates and low
accuracy losses.

The alternative approach is communication scheduling.
Gradient computation and communication can be pipelined
in most deep learning frameworks, e.g., Tensorflow, Pytorch,
MXNet, S-Caffe, and Poseidon [25], [26], [27]. Considering
that merging some small gradient communication operations
into one can reduce communication startup time, MG-
WFBP [11] proposed an optimization algorithm to determine
which gradients should bemerged. P3 [12] implemented over-
lapping of backward gradient communication and forward
computation on MXNet PS architecture by using parameter
slicing and priority-based parameter update. TicTac [13] was
a similar idea and implemented on Tensorflow PS architec-
ture. ByteScheduler [14] was a generic communication sched-
uler that supported different distributed architecture (i.e., All-
Reduce and PS architecture) and DNN frameworks (i.e., Ten-
sorflow, PyTorch, and MXNet). PACE [15] considered the
DAG representation of DNN training and introduced pre-
emptive communication scheduling combined with tensor
fusion to achieve better overlapping of communication with
computation. Despite these efforts to overcome the communi-
cation bottleneck of data parallelization, the storagewall is still
not broken. Data parallelization solutions cannot operate
when the model size surpasses the memory of a single
worker.

Pipeline Parallelization. Pipeline parallelization is com-
monly referred to as inter-layer model parallelization. It
divides the DNN model into sequential segments and
assigns each one to a worker. A batch of input samples is
also split into smaller micro-batches and continuously fed
into the model in a pipeline manner.

Gpipe [10] is the first research on pipeline parallelization.
It focuses on synchronous stochastic gradient descent train-
ing and utilizes re-materialization to reduce memory
requirements. However, Gpipe exposes two performance
drawbacks. First, there is a significant bubble overhead (i.e.,

some workers will be idle) due to backward propagation
not starting until all micro-batches have been processed in
the forward phase. Second, Gpipe is not equipped with
load-balancing inter-layer partitioning solutions, and load-
unbalancing between devices will undoubtedly damage
training performance. Asynchronous pipeline paralleliza-
tion technology has received recent interest to fill bubble
overhead and improve training throughput. It needs to be
carefully designed to control the impact on model conver-
gence. Xpipe [22] and PipeMare [23] introduced weight pre-
diction [28] and learning rate rescheduling algorithms,
respectively, to mitigate the accuracy slide, but they did not
focus on inter-layer partitioning of the model. Pipe-
Dream [20] filled idle workers by scheduling them to pro-
cess the next batch of samples in advance and implemented
load-balancing partitioning between workers. It maintains
multiple weight versions to address the parameter inconsis-
tency problem caused by multiple active batches in the
pipeline. However, this way requires expensive memory
space, limiting the capacity of the existing accelerator for
training large-scale DNN models. Our AccTFM is based on
intra-layer MP, which has good load-balanced and mem-
ory-friendly characteristics. Moreover, it is orthogonal to
inter-layer pipeline parallelization and can be effectively
combined to achieve higher performance gains [21].

Intra-layer Model Parallelization. The weight tensor and
activation tensor (or loss tensor) are partitioned across mul-
tiple workers in intra-layer model parallelization technol-
ogy. Each weighted layer requires a synchronization point
to aggregate the results of all workers during the forward or
backward propagation.

To avoid memory limits and improve training perfor-
mance, AlexNet [29] introduced cross-GPU intra-layer MP
that partitions convolutional filters between two GPUs. Dis-
tBelief [30] was early one of the DNN frameworks that sup-
port intra-layer MP. It implements synchronization between
workers by using PS architecture. Dryden et al. [31] focused
on CNN training and proposed a family of algorithms to
explore intra-layer MP along the channel dimension. In the
DNN computational graph, each tensor is either replicated
or partitioned across individual workers. Based on this,
Mesh-Tensorflow [24], a language extension of Tensorflow,
is designed to achieve general distributed tensor computa-
tion that supports tensor division in arbitrary dimensions.
Megatron-LM [21] implemented intra-layer MP training on
PyTorch for transformer-based models. It specifies how
model parameters are partitioned and only requires a few
synchronization points during distributed training. Unfor-
tunately, these efforts still suffer from severe communica-
tion bottlenecks and even worse in weak network
connection environments. Taking a first step forward, our
AccTFM breaks through the communication barrier of
intra-layer MP with fine-grained pipeline execution and
hybrid communication compression optimization.

3 PRELIMINARIES

3.1 Transformer Architecture

The transformer-based DNNs are built by stacking multiple
encoder and decoder modules. Specifically, each encoder or

4328 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

decoder module contains two main components: (a) multi-
head attention, and (b) a feed-forward network.

The multi-head attention relies on multiple self-attention,
each of which operates on three tensors, queries (Q), keys
(K), and values (V). It is computed by

AttentionðQ;K; V Þ ¼ softmax
QKTffiffiffiffiffi

dk
p

� �
V; (1)

here, Q, K, and V are computed from the input tensors
through three linear mapping layers respectively, and dk is
the dimension of keys. The different self-attention functions
are independent of each other, and they represent different
linear transforms and information extraction for the input
tensors. These self-attention outputs are then concatenated
and once again linearly transformed to produce the final
values.

The second component of each encoder or decoder mod-
ule is a feed-forward network. It contains two fully con-
nected layers with a ReLU activation in the first layer that
are written as

FFNðxÞ ¼ ReLU xW1 þ b1ð ÞW2 þ b2; (2)

where W1 and W2 are the parameter matrices of two fully
connected layers respectively.

Generally, by using the more number of heads in multi-
head attention and the larger inner-layer dimension in the
feed-forward network, transformer-based DNNs can be
extended to achieve superior accuracy in many NLP tasks.

3.2 Intra-Layer Model Parallelization

In intra-layer model parallelization, the parameter matrices
of each layer are partitioned to multiple computing devices,
and input tensors or output tensors of each layer are also
partitioned accordingly [21][32], as shown in Fig. 1. When
the parameter matrices are partitioned along the input
dimension, the output tensors of this layer in each comput-
ing device are only a partial sum in the DNN forward exe-
cution phase. A global communication process is therefore
required to obtain the complete output of the layer. When
the parameter matrices are partitioned along the output
dimension, the global communication process between
computing devices takes place in the loss backpropagation
phase of this layer. The data transmission unit between
devices is the partial sum of the loss tensors of the layer.

On the whole, the parameter matrices of each layer have
two partitioning ways, which will result in a total of 2L

intra-layer partitioning schemes for the whole DNN, where
L is the number of layers of DNN. In fact, however, an ideal
overall partitioning scheme is to divide the parameter
matrices of each layer alternately along the input and out-
put dimensions, which can effectively avoid complex inter-
layer communication [33]. Generally, the necessary global
communication process in each layer is implemented by
All-Reduce primitive, both in the forward and backward
phases of the DNN training process.

For distributed training of transformer-based DNNs,
Megatron-LM is a recently proposed intra-layer MP
approach. However, it is not optimized for expensive com-
munication overhead between computing devices.

3.3 Communication Model

The time cost of the global communication process between
devices depends primarily on two variables: the number of
devices, the message sizes. There are many optimized collec-
tive communication algorithms such as Ring-based All-
Reduce and Recursive Doubling All-Reduce. They have their
advantages and disadvantages when applied to different
numbers of devices and message sizes. Without loss of gen-
erality, these collective communication algorithms can be
modeled uniformly. We assume a bidirectional, direct peer-
to-peer communication link between devices, and all devices
can send and receive one message simultaneously. Thus, the
time cost of All-Reduce operation can bemodeled as

TcommðmÞ ¼ a� c1 þ b� c2 �m; (3)

where both a, the communication latency (or startup time),
and b, the transmission time per byte, are relevant only to
the hardware configuration. m represents the message size
in bytes. In addition, c1 and c2 depend on the specific col-
lective communication algorithm, which usually involves
multiple communication iterations. Each communication
iteration implies that all devices send or receive one mes-
sage simultaneously. c1 represents the number of itera-
tions, and c2 is the sum of message granularity for all
communication iterations. The message granularity for
each iteration is between 0 and 1, which is independent of
message size.

Overall, the cost model of All-Reduce operations consists
of startup time and data transfer time, which is a generally
used Latency-Bandwidth communication model.

Fig. 1. Forward and backward propagation in intra-layer model parallelization.

ZENG ETAL.: ACCTFM: AN EFFECTIVE INTRA-LAYER MODEL PARALLELIZATION STRATEGY FOR TRAINING LARGE-SCALE 4329

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

4 METHODOLOGY

4.1 Overview

For training acceleration of large-scale transformer-based
DNNs, we propose AccTFM, which exploits multi-level
intra-layer MP optimizations for distributed training in a
cluster environment with limited network bandwidth. Fig. 2
shows the overview of the proposed AccTFM approach. It
mainly involves fine-grained pipeline execution (overlap-
ping computation and communication) and hybrid commu-
nication compression optimization for intra-layerMP.

To drive concurrent utilization of computing and net-
work bandwidth resources, we first decouple the computa-
tion and communication dependencies between layers by
splitting the operation of each layer along the sample
dimension. It creates opportunities for computation and
communication overlapping. Then, a dynamic program-
ming partitioning algorithm was proposed to determine the
partitioning scheme of each layer, which aims to maximize
the overlap of computation and communication. It is a
global optimization for all computation and communication
tasks in intra-layer MP training.

For the local optimization of communication tasks, we
develop a novel hybrid communication compression mech-
anism. Token-level top-k sparsification method removes
redundant communication of unimportant tokens based on
the attention matrice of each layer. Notably, the computa-
tional complexity of the token-level top-k sparsification
method is negligible since it has a far smaller search space

than the element-level top-k execution. At the same time, a
piecewise quantization method is developed to compress
the communication overhead further. It adaptively quanti-
fies the elements in different ranges of values.

Algorithm 1. Determine Optimal Partition Size for Each
Layer

Input:
1. Batch size, Bs,
2. The number of weighted layers in a DNNmodel, L,
3. The shape of input data for each layer, SS½1. . .L�,
4. The communication latency, a, and the network band-
width, b,
5. The number of optional partition schemes for each layer,
pn ¼ 3, and the corresponding partition size, psps ¼ ½1; 2; 4�.

Output:
1.The optimal partition size for each layer, optPoptP ½1. . .L�.

1: Evaluate the computation and communication overhead
of each micro-batch (partition) in each layer, TTcpcp½1. . .L�
½1. . .pn�; TTcmcm½1. . .L�½1. . .pn�.

2: Initialize parpar½1. . .L�½1. . .pn�; optPoptP ½1. . .L�
3: Initialize fEfEcpcp½1. . .pn�; fEfEcmcm½1. . .pn�½1. . .maxðpspsÞ�
4: Initialize tEtEcpcp½1. . .pn�; tEtEcmcm½1. . .pn�½1. . .maxðpspsÞ�
5: for l ¼ 1 to L do
6: for i ¼ 1 to pn do
7: tEtEcpcp½i�; tEtEcmcm½i� min1�j�pnfCalParEndð

fEfEcpcp½j�; fEfEcmcm½j�; TT cpcp½l�½i�; TT cmcm½l�½i�; psps½i�Þg
8: parpar½l�½i� argmin1�j�pnfCalParEndð

fEfEcpcp½j�; fEfEcmcm½j�; TT cpcp½l�½i�; TT cmcm½l�½i�; psps½i�Þg
9: fEfEcpcp tEtEcpcp

10: fEfEcmcm tEtEcmcm

11: p argmin1�i�pnffEfEcmcm½i�g
12: l L
13: while l > 0 do
14: optPoptP ½l� psps½p�
15: p parpar½l�½p�
16: l l� 1
17: return optPoptP
18:
19: function CALPAREND (preEcp; preEpreEcmcm; tcp; tcm;K)
20: Initialize lastEcp; lastEcm; EEcmcm½1. . .K�
21: preEpreEcmcm SplitOrMerge(preEpreEcmcm;K)
22: lastEcp preEcp

23: lastEcm preEpreEcmcm½K�
24: for i ¼ 1 toK do
25: lastEcp maxðpreEpreEcmcm½i�; lastEcpÞ þ tcp
26: lastEcm maxðlastEcp; lastEcmÞ þ tcm
27: EEcmcm½i� lastEcm

28: return lastEcp; EEcmcm

29:
30: function SPLITORMERGE preEpreEcmcm;K
31: Initialize EEcmcm½1. . .K�
32: Initialize r K=lenðpreEpreEcmcmÞ
33: for i ¼ 1 toK do
34: s di=re
35: EEcmcm½i� preEpreEcmcm½s�
36: return EEcmcm

Overall, fine-grained pipeline execution and hybrid com-
munication compression component will work together to
enable more efficient intra-layer MP training for large-scale
transformer-based DNNs.

Fig. 2. AccTFM overview.

4330 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

4.2 Fine-Grained Pipeline Execution
in Intra-Layer MP

4.2.1 Problem Analysis

The primary intra-layer MP has strong dependencies
between computation and communication. Generally, the
computation of the next layer does not start until the com-
plete output of the current layer is obtained. It means that
the computing resources of each device are idle while All-
Reduce communication operations are performed between
devices. To address this problem, we need to decouple the
computation and communication dependencies between
layers. It is well-known that the operations of different sam-
ples are independent of each other, both in the forward and
backward running phase of DNNs training. Hence, we first
partition the operation of each layer along the batch size
dimension, i.e., splitting a batch of training samples into sev-
eral micro-batches. With the partitioning within a layer, the
All-Reduce communication operation of one micro-batch
can start asynchronously, and the computing resource is
allocated to the next micro-batch. It can be viewed as a fine-
grained pipeline parallelization for intra-layer operations,
significantly different from the previous pipeline-based
inter-layer MP. On the one hand, intra-layer pipelining only
have two pipeline stages for all micro-batches, i.e., computa-
tion and communication stage in the layer. However, in the
pipeline-based inter-layer MP, the number of pipeline stages
equals the number of devices. Generally, the more pipeline
stages are, the higher are the bubble overhead, i.e., the worse
performance of pipeline parallelization. On the other hand,
not only the computation and communication within the
layer can overlap, but the pipelining execution in adjacent
layers can overlap in our partitioning strategy. Hence, there
is almost no bubble overheadwhen using intra-layer pipelin-
ing, and all devices simultaneously participate in computa-
tion and communication.

Furthermore, the partition size of each layer is an impor-
tant factor influencing the performance of intra-layer MP

training [14][25]. There is still room for improvement by
carefully determining the partition size of each layer. Fig. 3
illustrates the execution comparison of intra-layer MP with
different partitioning solutions. From a holistic perspective,
due to the differences in computation density of each layer,
using the same partition size for all layers of the DNN is not
optimal. As shown in Fig. 3a, the 3rd layer of the example
DNN is a computation-intensive layer. Specifying the parti-
tion size with 4 for the 3rd layer in Fig. 3c achieves more
overlap of computation and communication than partition
size with 2 in Fig. 3b, which leaves fewer resources idle.
Therefore, the more computationally intensive layers
should with larger partition sizes. Conversely, the less com-
putationally intensive layers should with smaller partition
sizes to fully populate the resource utilization of the com-
puting device. From the perspective of each layer, small
partition sizes miss some of the potential for hidden com-
munication. Although larger partition sizes seem to overlap
computation and communication considerably, they gener-
ate severe communication startup time and underutilization
of computing resources. Moreover, the completion time of
the current layer depends not only on partitioning by itself
but also on the previous layer. For example, suppose the
previous layer and the current layer take 4 and 2 partitions,
respectively. In this case, the computation of the current
layer cannot start until the communication operation of the
first two partitions is completed in the previous layer, even
if the computing resources are idle.

For simplicity, we only consider partition sizes with 1, 2,
and 4 for each layer. In this case, there are still a total of 3L

partitioning schemes for a DNN with L layers, and brute
force search is obviously not a practical solution.

4.2.2 Optimal Partitioning Strategy

Generally, a micro-batch finishes the computation task of a
layer and then communicates with other computing devices
to aggregate the complete output of that layer. The

Fig. 3. Three cases of intra-layer MP procedure with different execution approaches.

ZENG ETAL.: ACCTFM: AN EFFECTIVE INTRA-LAYER MODEL PARALLELIZATION STRATEGY FOR TRAINING LARGE-SCALE 4331

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

computation task of the next layer will not perform until the
communication task is completed. There exist inherent
dependencies between computation and communication
for each micro-batch in intra-layer MP. Moreover, the com-
putation and communication tasks of different micro-
batches, both intra-layer and inter-layer, can be executed
concurrently. To maximize the overlap of computation and
communication and improve intra-layer MP training perfor-
mance, we explore a dynamic programming algorithm to
determine the partitioning scheme of each layer. Consider-
ing intra-layer MP training in the N-node cluster environ-
ment with network bandwidth B, we can evaluate the All-
Reduce communication cost of each micro-batch in each
layer according to the communication model in Section 2.
For the computation task of each micro-batch in each layer,
we can also evaluate the actual time overhead by running
on a specific computing device. In addition, we also assume
that the execution time (computation or communication
cost) of different micro-batches within the layer is the same.
Typically, the evaluation for costs of computation and com-
munication occurs before training.

Let’s first consider the completion time of forward prop-
agation when using intra-layer MP for distributed training.
Algorithm 1 describes the proposed dynamic programming
partitioning algorithm in detail. The algorithm first evalu-
ates the computation and communication overhead of each
micro-batch (partition) in each layer. Then (lines 5-10) the
layer-wise minimum completion time is calculated. Here,
the array optP records the corresponding optimal partition-
ing scheme of the previous layer when minimizing the com-
pletion time for each layer based on the different partition
sizes. Specifically, the ”CalParEnd ” function (lines 19-28) is
responsible for deriving the computation and communica-
tion end time of each micro-batch in the next layer based on
the dependencies of adjacent layers. Its required inputs are
the computation end time of the last micro-batch and the
communication end time of each micro-batch in the previ-
ous layer, i.e., preEcp and preEcm, the computation and com-
munication execution time of each micro-batch in the next
layer, i.e., tcp and tcm, and the partition size of the next layer,
i.e., K. Since the partition sizes of different layers may vary,
it is necessary to split and merge micro-batches dynamically
between layers. The ”SplitOrMerge” function (lines 30-36)
obtains the end time of the communication operations that
the computation task of each micro-batch depends on in the
next layer. Its required inputs are the communication end
time of each micro-batch in the previous layer, i.e., preEcm,
and the partition size of the next layer, i.e., K. Finally, the
optimal partitioning scheme for each layer is determined by
backtracking (lines 11-17).

The development above can also be applied to determine
the optimal partitioning scheme in backward propagation.
Although each layer contains two computation operations
in backward propagation, i.e., computing loss and gradient,
it can be treated as a whole. When considering backward
propagation alone, its optimal partitioning scheme can be
determined by layer-wise dynamic programming partition-
ing algorithm in reverse order, which is essentially the same
as Algorithm 1. Hence, the overall partitioning scheme is
obtained by performing Algorithm 1 twice when using
intra-layer MP for distributed training. Noticeably, the

search complexity of the proposed partitioning algorithm is
OðLÞ for a DNN with L weighted layers, which is signifi-
cantly smaller than the Oð3LÞ complexity brought by brute
force search.

4.3 Hybrid Communication Compression
for Intra-Layer MP

Our communication compression module aims to clear
meaningless consumption of network bandwidth resources
during intra-layer MP training. To minimize communica-
tion costs, we jointly exploit token-level top-k sparsification
and piecewise quantization methods while also considering
the convergence and accuracy of intra-layer MP training.

4.3.1 Token-Level Top-k Sparsification

Top-k communication sparsification is designed to reduce
the number of transmitted values. The element-level (fine-
grained) top-k sparsification method plays a significant role
in communication optimization of DP. When developing
communication compression for intra-layer MP, the naive
idea is to apply element-level top-k sparsification directly.
However, the inherent drawback hinders its transplant to
intra-layer MP. Rather than All-Reduce collective communi-
cation operation, element-level sparse communication in DP
is usually implemented by the All-Gather operation due to
differences in the index of top-k elements between comput-
ing devices. However, the communication traffic is increas-
ing double and redouble with each iteration in the All-
Gather operation. It is unfriendly for the intra-layer MP due
to the poor sparsity of communication data. Thus, we
should identify the global top-k index in advance so that
sparse communication can still be implemented efficiently
by the All-Reduce operation.

For transformer-based DNNs, there is a degree of token-
level redundancy in processing NLP tasks. On the one
hand, part of the redundancy comes from meaningless
tokens such as articles, prepositions, and adverbs. On the
other hand, the actual length of each sequence in a mini-
batch of training samples is usually different, which results
in meaningless computation and communication in batch
processing. Therefore, rather than element-level, we reduce
the communication overhead by token-level top-k (coarse-
grained) sparsification during intra-layer MP training. The
key idea of token-level top-k sparsification is that only sig-
nificant tokens are transmitted in the All-Reduce operation,
and meaningless tokens are pruned.

Specifically, we evaluated the importance of tokens
based on the attention scores. For each layer of the trans-
former-based DNN, the attention score of each sequence is
a three-dimensional tensor (i.e., the number of attention
heads, the length of the input sequence, and the length of
the encoded sequence or output sequence). During intra-
layer MP training, each computing device stores only the
part of attention heads. First, we aggregate the information
of attention heads within each computing device to obtain
the attention matrice. Then, the array An is generated by
summing up each column of the attention matrice. Each ele-
ment of the array An represents the attention score of the
input token relative to the entire sequence instead of a sin-
gle token. Since array An generated by each computing

4332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

device contains only local information, it is necessary to
communicate array An by the All-Reduce operation to
obtain the global attention score of all tokens. Considering a
mini-batch of sequence, the communication traffic of this
All-Reduce operation is batch size multiplied by sequence
length, which is negligible compared to the output tensor of
each layer. After that, all computing devices perform the
top-k operation for the array An in parallel to select signifi-
cant tokens and generate the mask. Finally, the All-Reduce
operation is performed again to aggregate the sparse output
tensor (i.e., the output values of selected tokens) in the for-
ward propagation. Noticeably, the communication for the
index of tokens is omitted because the token-level masks
generated by all computing devices are consistent. For the
communication of loss tensors in the backward propaga-
tion, each layer uses directly the same token-level mask as
the forward propagation without recomputing the impor-
tance of tokens.

Assume that the dimensions of the intermediate output
tensor of the transformer-based DNN are batch size Bs,
sequence length l, hidden dimension h, then the search com-
plexity of the token-level top-k sparsification method is
OðBs� l� log 2 kÞ. It is far smaller than OðBs� l� h�
log 2 k0Þ brought by element-level top-k execution. Here, k
represents the number of tokens selected, and k0 is the num-
ber of elements to be transmitted.

4.3.2 Piecewise Quantization

Quantization is another communication compression
method that can combine effectively with the top-k commu-
nication sparsification method. The communication traffic
will be further reduced when using fewer bits to represent
data transmitted. The generalized linear quantization is
applied according to

step ¼ maxðjRRjÞ
2bit�1 � 1

; (4)

and

Qval ¼ round
val

step

� �
� step: (5)

It divides the numerical space of the output tensor or loss
tensor RR of each layer into multiple equidistant intervals,
and each interval is mapped into a boundary value. Here,
val is the original value of elements in the tensor RR, and
Qval is the interval’s boundary value (quantized value) clos-
est to val. Obviously, the larger the distance between Qval
and val, the more serious the accuracy loss for the model.
The linear quantization can achieve the slightest mean
square error with the original tensor RR if its elements follow
the uniform distribution approximately. However, the ele-
ments in the tensor, both output tensor in the forward prop-
agation and loss tensor in the backward propagation, follow
the Gaussian distribution roughly. The closer the interval is
to 0, the more is its number of elements, and the less it is on
the contrary.

Motivated by this, we exploit a piecewise quantization
method, which aims to reduce MSE with the original tensor
when the same compression rate is practised as the linear
quantization. Instead of applying equidistant intervals, the

fundamental idea of piecewise quantization is that the
closer the interval is to 0, the smaller is the interval range so
that most of the quantized value does not deviate much
from the original value. Fig. 4 shows the piecewise quanti-
zation scheme. Here, the red dots on the top number axis
are the original values, and the red dots on the bottom num-
ber axis represent the quantized values. The original values
between the dashed lines are mapped to the same value.
The segment between two short lines represents a cluster
that contains multiple equidistant intervals. Different clus-
ters hold the same size numerical space but with a different
number of intervals. Let’s first consider the positive interval.
Specifically, for the output tensor or error tensor to be com-
municated in each layer, we divide its numerical space
evenly into several clusters. Moreover, each cluster contains
multiple equidistant intervals. Assuming the range of inter-
val in the kth cluster is Uk, then it is 2Uk in the next cluster
(i.e., Ukþ1 ¼ 2Uk). For a given data bit widthN and tensor RR,
the piecewise quantization is applied according to

Qval ¼ Ck þ round
val� Ck

Uk

� �
� Uk; (6)

where

Ck ¼ maxðjRRjÞ
N

� k; (7)

and

Uk ¼ U0 � 2k; (8)

and

k ¼ floor val� N

maxðjRRjÞ
� �

: (9)

The number of clusters is also set as N , k 2 f0; . . .; N � 1g is
the index of the cluster that contains val, and Ck represents
the left boundary of the kth cluster. The range of intervals
U0 can be derived from the number of clusters and the total
number of intervals. Define p denote the number of inter-
vals in the first cluster, and we have

p ¼ maxðjRRjÞ
N � U0

; (10)

and

XN�1
i¼0

p

2i
¼ 2N � 1: (11)

Thus we can obtain

U0 ¼ maxðjRRjÞ
N � 2N�1

: (12)

Fig. 4. Piecewise quantization.

ZENG ETAL.: ACCTFM: AN EFFECTIVE INTRA-LAYER MODEL PARALLELIZATION STRATEGY FOR TRAINING LARGE-SCALE 4333

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

Overall, the data bit width that the numerical space of ten-
sor RR required is N þ 1 because the negative intervals are
symmetric with positive.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of the AccTFM
approach for the distributed training acceleration of trans-
former-based DNNs. As AccTFM adopts multi-level commu-
nication optimization, we present the overall performance
improvement ofAccTFMat first. Further, we conduct an abla-
tion study to analyze the performance gains provided by fine-
grained pipeline execution and hybrid communication com-
pression for intra-layerMP, respectively.

5.1 Experimental Settings

Testbed. We conduct simulations for a 4-node cluster con-
nected with 10-Gbps Ethernet, and each node is equipped
with an Nvidia TITAN RTX GPU with 24 GB of memory.
The nodes run Ubuntu 16.04 with Linux Kernel 4.4.0 and
are installed with the Nvidia GPU driver at version 450.51
and CUDA-10.2. We use Python 3.8.5 and PyTorch 1.8.1
with cuDNN 7.6.5 as the deep learning toolkit. As to collec-
tive communication operations, we experiment with the
recursive doubling All-Reduce algorithm because it con-
sumes fewer communication iterations than other All-
Reduce implementations, and consequently, less communi-
cation startup time.

Models and Hyper-Parameters. We focus on the Natural
Language Processing tasks where transformer-based DNNs
are most successfully applied. We choose four transformer-
based DNN models from [24] and name TF8, TF16, TF32,
and TF64, respectively. All models are trained on the
WMT16 dataset, and the initial learning is set to 0.1. The
details of other hyper-parameters are shown in Table 2. As
the larger hidden layers and number of attention heads
result in more powerful learning ability, fewer training iter-
ations are required to reach convergence for the larger
models.

Baseline. We compare AccTFM to Megatron-LM, which is
the state-of-the-art intra-layer MP training method for trans-
former-based DNNs. For the multi-head attention blocks,
Megatron-LM partitions the linear layer associated with
queries (Q), keys (K), and values (V) in a column-parallel
fashion, and the subsequent output linear layer is parti-
tioned in a row-parallel. Similarly, the column-parallel fol-
lowed by row-parallel fashion is applied for two linear
layers in the feed-forward blocks. The column-parallel
means weight parameters of the linear layer are divided
along the output dimension, and the row-parallel is along
the input dimension. For more efficient comparison, we use

the same weight parameters partitioning way as Megatron-
LM. In practice, although this layer-wise alternately parti-
tioning way requires fewer synchronization points (commu-
nication operations), the AccTFM approach retains
generality, which is not limited to any weight parameters
partitioning way for intra-layer MP.

5.2 Performance Analysis

To evaluate the effectiveness of our proposed scheme
AccTFM, we compare the training efficiency with Mega-
tron-LM and the data parallelism solution, and data paral-
lelism is implemented via PyTorch DDP [25]. Compared to
baseline, the accuracy variation caused by AccTFM mainly
comes from the hybrid communication compression mod-
ule, which usually needs to consider the trade-off between
compression ratio and accuracy loss. We take 50% sparsity
(i.e., 50% of tokens will be pruned when performing an All-
Reduce communication operation) for TF16 and TF32, while
60% for TF8 and TF64. The elements of transferred tokens
are quantified to 4 bits for all models. This setting signifi-
cantly reduces the communication traffic with negligible
accuracy loss. We will analyze the impact of different com-
pression ratios on accuracy and convergence in the follow-
ing section. The fine-grained pipeline execution improves
efficiency without accuracy loss because it maintains the
strictly synchronous distributed training mode. Table 3
exhibits the training accuracy comparison between baseline
and AccTFM based on the same model initialization and
hyper-parameters.

We normalize the performance of AccTFM with respect
to that obtained using Megatron-LM. As shown in Fig. 5,
we achieve 2.08x, 1.82x, 1.49x, and 1.24x training perfor-
mance improvements on TF8, TF16, TF32, and TF64 models,
respectively. Since the baseline method serially executes all
computation and communication operations and transfers

TABLE 2
Transformer-Based DNN Models for Training

Model dff heads dk; dv Parameters (Billions) Batch size Epochs

TF8 4096 8 128 0.24 128 200
TF16 8192 16 128 0.42 128 200
TF32 16384 32 128 0.77 128 200
TF64 32768 64 128 1.48 64 100

TABLE 3
The Accuracy (%) of AccTFM and Baseline

Methods Models

TF8 TF16 TF32 TF64

Baseline 67.27 65.82 66.08 65.57
AccTFM 66.93 65.15 65.67 65.92

Fig. 5. The performance comparison of AccTFM with baseline and DP.

4334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

the whole tensor during All-Reduce communication, its
training performance is susceptible to communication costs.
AccTFM overcomes the communication bottleneck by maxi-
mizing the overlap between computation and communica-
tion, combined with hybrid communication compression.
Compared to data parallelism, AccTFM provides 1.34x,
1.74x, and 1.97x speedups on TF8, TF16, and TF32 models,
respectively. However, data parallelism can not work for
the TF64 model training due to the GPU memory constraint.
By tracking the start and end timestamps of each operation
in the model, we estimated the idle rate of each GPU, i.e.,
the waiting time for synchronization divided by the overall
training duration. Without any communication optimiza-
tion technique, i.e., using baseline, the time spent waiting
for data synchronization during distributed training is as
high as 59.15%, 50.46%, 37.55%, and 24.15% for TF8, TF16,
TF32, and TF64 models, respectively, as shown in Fig. 6.
The reason is that the training performance is dominated by
communication overhead when using the baseline method,
and GPUs are frequently left idle to wait for data synchroni-
zation. For data parallelism method, the statistics are
48.83%, 50.89%, and 50.85% on TF8, TF16, and TF32 models,
respectively. Although Pytorch DDP optimizes the back-
ward pass of training by bucketing gradients and overlap-
ping computation with communication, there are still
significant gradient synchronization overheads when proc-
essing transformer-based models. In contrast, this percent-
age is diminished to only 14.87%, 8.19%, 4.54%, and 4.73%
when using AccTFM for distributed training. In AccTFM,
when a micro-batch is performing an All-Reduce communi-
cation process, its neighboring micro-batch concurrently
executes computation operation. Furthermore, hybrid com-
munication compression makes communication cost
accounts for a reduced fraction of the whole distributed
training process. Therefore, AccTFM achieves a higher GPU
utilization, i.e., a lower GPU idle rate.

5.3 Ablation Study

To analyze the performance of our AccTFM approach in-
depth, we investigate the performance improvements pro-
vided by different components. The fine-grained pipeline
execution improves intra-layer MP training performance by
maximizing the overlap of layer-wise computation and com-
munication time. The hybrid communication compression

achieves training acceleration by reducing communication
traffic directly.

5.3.1 Performance Gains From Fine-Grained

Pipeline Execution

We normalize the performance of different partitioning
strategies with respect to that obtained using baseline. As
shown in Fig. 7, none of the partitioning schemes, which
take partition sizes with 1, 2, and 4 for all layers uniformly,
is optimal due to the layer-wise difference in computational
density. We consider the extra waiting overhead of opera-
tion partitioning and merging for each layer and determine
layer-wise partition size by dynamic programming, show-
ing the best performance. Compared to baseline, we achieve
1.11x, 1.22x, 1.32x, and 1.18x training performance gains on
TF8, TF16, TF32, and TF64 models, respectively. Unexpect-
edly, while specifying a partition size with 4 for each layer
may seem to contribute more overlapping time, it performs
sometimes even worse than without operation partitioning.
In fact, partitioned too tiny increases overall communication
startup time and underutilizes the computing resources of
GPU when processing each micro-batch, especially for net-
work layers that are non-computation-intensive or have low
communication traffic.

To show the generality of our fine-grained pipeline strat-
egy, we also conduct experiments on commonly used 2D
and 3D CNN models, including AlexNet [29], VggNet [34],

Fig. 6. The GPU idle rate when using baseline, DP, and AccTFM for dis-
tributed training.

Fig. 7. The performance comparison between different partition sizes on
transformer-based models.

Fig. 8. The performance comparison between different partition sizes on
CNN models.

ZENG ETAL.: ACCTFM: AN EFFECTIVE INTRA-LAYER MODEL PARALLELIZATION STRATEGY FOR TRAINING LARGE-SCALE 4335

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

and C3D [35]. The ImageNet [36] dataset is used to train
AlexNet and VggNet models, and the UCF101 [37] dataset
is used for the training of C3D. The batch size is set to 64 for
all CNN models. As shown in Fig. 8, the layer-wise parti-
tioning strategy based on dynamic programming yields
1.15x mean performance increases on three CNN models. It
also performs the best compared to partitioning schemes
with the identical partition size for each layer. Furthermore,
the performance specifying a partition size with 4 for all
layers occasionally outperforms the partition size with 2 in
CNN models, which indicates the execution efficiency of a
particular partitioning scheme is connected to the model
architecture. Larger partition sizes adapt to more computa-
tionally intensive layers and vice versa. Overall, our layer-
wise partitioning strategy can cope successfully with the
diversity of future DNN model architecture while still pro-
viding efficient execution.

5.3.2 Performance Gains From Hybrid Communication

Compression

We first show the impact of different compression rates,
including varying top-k sparsity and number of quantiza-
tion bits, on accuracy and convergence. On the one hand, as
shown in Fig. 9, specifying 50% and 60% sparsity during

All-Reduce communication maintains essentially the same
convergence speed as the baseline, while taking 40% spar-
sity impairs the validation accuracy of models slightly. On
the other hand, although there is no drop of accuracy with
4-bit quantization, as shown in Fig. 10, further reducing the
number of bits for transmitted elements (i.e., 3-bit quantiza-
tion) has a significant impact on model convergence. There-
fore, with a lower bound of 50% tokens sparsity and 4-bit
quantization, we experiment with different sparsity and
quantization bits combinations. As shown in Fig. 11, there
has negligible accuracy loss when providing 16x communi-
cation compression rate (i.e., a combination of 50% tokens
sparsity and 4-bit quantization) for TF16 and TF32 models,
13.3x compression rate (i.e., combine 60% tokens sparsity
with 4-bit quantization) for TF8 and TF64 models. Fig. 12
indicates the training performance gains provided by this
communication compression (CommC) configuration. Com-
pared to baseline, it achieves 1.89x, 1.69x, 1.44x, and 1.21x
speedup for the TF8, TF16, TF32, and TF64 models, respec-
tively. Among these models, the TF8 model has the highest
communication-to-computation ratio during distributed
intra-layer MP training, followed by TF16, TF32, and TF64
models in descending order. Since our hybrid compression
strategy focuses solely on the communication operation,
according to Amdahl’s law, a lower communication-to-

Fig. 9. The convergence of transformer-based models when using token-level top-k sparsification during All-Reduce communication.

Fig. 10. The convergence of transformer-based models when using piecewise quantization during All-Reduce communication.

Fig. 11. The convergence of transformer-based models when using a combination of sparsification and quantization during All-Reduce
communication.

4336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

computation ratio indicates less room for training perfor-
mance improvement. Consequently, there are gradually
reduced speedups for the TF16, TF32, and TF64 models
compared to the TF8 model.

6 CONCLUSION AND FUTURE WORK

In this research, we propose AccTFM, an efficient intra-layer
MP optimization strategy for training large-scale trans-
former-basedmodels. It integrates fine-grained pipeline exe-
cution and hybrid communication compression strategy to
overcome the synchronous bottleneck of intra-layer MP. In
fine-grained pipeline execution, computation and communi-
cation tasks of each layer are separated into smaller opera-
tions, and a dynamic programming partitioning algorithm is
introduced to facilitate the maximum overlapping between
computation and data transmission overhead. The hybrid
communication compression module, which consists of
token-level top-k sparsification and piecewise quantization
methods, is designed to accelerate the synchronization pro-
cess between workers. We choice four large-scale trans-
former-based DNNs to evaluate the effectiveness of
AccTFM. Compared to existing intra-layer MP technology
Megatron-LM, our approach can achieve 2.08x performance
gainswith negligible accuracy loss. Notably, we also conduct
an ablation study to show the respective contributions of
each component in AccTFM. The fine-grained pipeline exe-
cution with optimal partitioning can achieve speedup up to
1.32x when it serves independently. Under comparable con-
vergence to the original intra-layer MP training, the hybrid
communication compression scheme may reach a 16x com-
pression ratio, resulting in a 1.89x training performance
increase. Our AccTFM, we believe, is also a highly appealing
training strategy for larger DNNs that are currently being
developed.

In the future, we will improve AccTFM further on the
large-scale distributed platform with heterogeneous devices
to provide high-performance training services.

REFERENCES

[1] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 6000–6010.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” 2018, arXiv:1810.04805.

[3] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[4] K. Cho et al., “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” in Proc. Conf.
Empir. Methods Natural Lang. Process., 2014, pp. 1724–1734.

[5] A. Dosovitskiy et al., “An image is worth 16x16 words: Transform-
ers for image recognition at scale,” in Proc. Int. Conf. Learn. Repre-
sentations, 2021, pp. 1–21.

[6] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lu�ci�c, and
C. Schmid, “ViViT: A video vision transformer,” in Proc. IEEE/
CVF Int. Conf. Comput. Vis., 2021, pp. 6816–6826.

[7] T. B. Brown et al., “Language models are few-shot learners,” in
Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 1877–1901.

[8] X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? A
case study for decentralized parallel stochastic gradient descent,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 5330–5340.

[9] J. Chen, K. Li, K. Bilal, X. K. zhouLi, and P. S. Yu, “A Bi-layered
parallel training architecture for large-scale convolutional neural
networks,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 5,
pp. 965–976, May 2019.

[10] Y. Huang et al., “Gpipe: Efficient training of giant neural networks
using pipeline parallelism,” in Proc. Adv. Neural Inf. Process. Syst.,
2019, pp. 103–112.

[11] S. Shi, X. Chu, and B. Li, “MG-WFBP:Merging gradients wisely for
efficient communication in distributed deep learning,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 8, pp. 1903–1917, Aug. 2021.

[12] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed dnn train-
ing,” in Proc. Mach. Learn. Syst., 2019, pp. 132–145.

[13] S. H. Hashemi, S. Abdu Jyothi, and R. Campbell, “TicTac: Acceler-
ating distributed deep learning with communication scheduling,”
in Proc. Mach. Learn. Syst., 2019, pp. 418–430.

[14] Y. Peng et al., “A generic communication scheduler for distributed
DNN training acceleration,” in Proc. ACM Symp. Operating Syst.
Princ., 2019, pp. 16–29.

[15] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce
scheduling for expediting distributed DNN training,” in Proc.
IEEE Conf. Comput. Commun., 2020, pp. 626–635.

[16] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proc. Conf. Empir. Methods Natural Lang. Pro-
cess., 2017, pp. 440–445.

[17] C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh, and T.
Hoefler, “SparCML: High-performance sparse communication for
machine learning,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., 2019, pp. 11:1–11:15.

[18] S. Shi et al., “A distributed synchronous SGD algorithm with
global top-k sparsification for low bandwidth networks,” in Proc.
IEEE Int. Conf. Distrib. Comput. Syst., 2019, pp. 2238–2247.

[19] H. Wang, S. Guo, Z. Qu, R. Li, and Z. Liu, “Error-compensated
sparsification for communication-efficient decentralized training
in edge environment,” IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 1, pp. 14–25, Jan. 2022.

[20] D. Narayanan et al., “Pipedream: Generalized pipeline parallelism
for DNN training,” in Proc. ACM Symp. Operating Syst. Princ.,
2019, pp. 1–15.

[21] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B.
Catanzaro, “Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism,” 2019, arXiv:1909.08053.

[22] L. Guan, W. Yin, D. Li, and X. Lu, “XPipe: Efficient pipeline model
parallelism formulti-GPUDNN training,” 2019, arXiv:1911.04610.

[23] B. Yang, J. Zhang, J. Li, C. Re, C. Aberger, and C. De Sa,
“PipeMare: Asynchronous pipeline parallel DNN training,” in
Proc. Mach. Learn. Syst., 2021, pp. 269–296.

[24] N. Shazeer et al., “Mesh-TensorFlow: Deep learning for super-
computers,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 10435–10444.

[25] S. Li et al., “Pytorch distributed: Experiences on accelerating data
parallel training,” Proc. VLDB Endowment, vol. 13, no. 12,
pp. 3005–3018, 2020.

[26] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, “S-
caffe: Co-designing MPI runtimes and caffe for scalable deep
learning on modern GPU clusters,” in Proc. ACM SIGPLAN Symp.
Princ. Pract. Parallel Program., 2017, pp. 193–205.

[27] H. Zhang et al., “Poseidon: An efficient communication architec-
ture for distributed deep learning on GPU clusters,” in Proc. USE-
NIX Annu. Tech. Conf., 2017, pp. 181–193.

Fig. 12. The performance comparison of communication compression
module with baseline.

ZENG ETAL.: ACCTFM: AN EFFECTIVE INTRA-LAYER MODEL PARALLELIZATION STRATEGY FOR TRAINING LARGE-SCALE 4337

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

[28] A. Kosson, V. Chiley, A. Venigalla, J. Hestness, and U. Koster,
“Pipelined backpropagation at scale: Training large models with-
out batches,” in Proc. Mach. Learn. Syst., 2021, pp. 479–501.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1106–1114.

[30] J. Dean et al., “Large scale distributed deep networks,” in Proc.
Adv. Neural Inf. Process. Syst., 2012, pp. 1232–1240.

[31] N. Dryden, N. Maruyama, T. Moon, T. Benson, M. Snir, and B. V.
Essen, “Channel and filter parallelism for large-scale CNN train-
ing,” in Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal.,
2019, pp. 10:1–10:20.

[32] J. Chen, K. Li, Q. Deng, K. Li, and P. S. Yu, “Distributed deep
learning model for intelligent video surveillance systems with
edge computing,” IEEE Trans. Ind. Informat., to be published,
doi: 10.1109/TII.2019.2909473.

[33] Z. Zeng, C. Liu, Z. Tang, W. Chang, and K. Li, “Training accelera-
tion for deep neural networks: A hybrid parallelization strategy,”
in Proc. 58th ACM/IEEE Des. Automat. Conf., 2021, pp. 1165–1170.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, arXiv:1409.1556.

[35] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3D convolutional
networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 4489–
4497.

[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[37] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” 2012,
arXiv:1212.0402.

Zihao Zeng received the bachelor’s degree in
computer science and technology from Jilin Agri-
cultural University, in 2017, and the master’s
degree in computer technology from Hunan Uni-
versity, China, in 2019. He is currently working
toward the PhD degree with Hunan University,
China. His research interests include machine
learning, parallel computing, and computer archi-
tecture. He has published three papers, including
the 58th ACM/IEEE Design Automation Confer-
ence (DAC 2021), the 57th ACM/IEEE Design

Automation Conference (DAC 2020), and the 21st IEEE International
Conference on High Performance Computing and Communications
(HPCC 2019).

Chubo Liu (Member, IEEE) received the BS and
PhD degrees in computer science and technology
from Hunan University, China, in 2011 and 2016,
respectively. He is currently a professor of computer
science and technology with Hunan University. His
research interests are mainly in game theory,
approximation and randomized algorithms, cloud
and edge computing. He has published more than
20 papers in journals and conferences such as the
IEEE Transactions on Parallel and Distributed Sys-
tems, IEEE Transactions on Cloud Computing,

IEEE Transactions on Mobile Computing, IEEE Transactions on Industrial
Informatics, IEEE Internet of Things Journal, ACM Transactions on Model-
ing and Performance Evaluation of Computing Systems, Theoretical Com-
puter Science, ICPADS, HPCC, and NPC. He won the Best Paper Award in
IFIP NPC 2019 and the IEEE TCSC Early Career Researcher (ECR)
Award, in 2019. He is amember of CCF.

Zhuo Tang (Member, IEEE) received the PhD
degree in computer science from the Huazhong
University of Science and Technology, China, in
2008. He is currently a professor with the College
of Computer Science and Electronic Engineering,
Hunan University. He is also the chief engineer
with the National Supercomputing Center, in
Changsha. His majors are distributed computing
system, cloud computing, and parallel processing
for Big Data, including distributed machine learn-
ing, security model, parallel algorithms, and

resources scheduling and management in these areas. He has pub-
lished almost 50 journal articles and book chapters. He is a member of
ACM and CCF.

Kenli Li (Senior Member, IEEE) received the PhD
degree in computer science from the Huazhong
University of Science and Technology, China, in
2003. He was a visiting scholar with the University
of Illinois, Urbana-Champaign, from 2004 to 2005.
He is currently a full professor of computer science
and technology with Hunan University, the dean
with the College of Information Sciences and Engi-
neering of Hunan University, and the director in the
National Supercomputing Center in Changsha.
His major research areas include parallel comput-

ing, high-performance computing, and grid and cloud computing. He has
published more than 160 research papers in international conferences
and journals such as IEEE Transactions on Computers, IEEE Transac-
tions on Parallel and Distributed Systems, Journal of Parallel and Distrib-
uted Computing, ICPP, ICDCS, etc. He serves on the editorial board of the
IEEE Transactions onComputers. He is an outstandingmember of CCF.

Keqin Li (Fellow, IEEE) is a SUNY distinguished
professor of computer science with the State Uni-
versity of New York. He is also a national distin-
guished professor with Hunan University, China.
His current research interests include cloud com-
puting, fog computing andmobile edge computing,
energy-efficient computing and communication,
embedded systems and cyber-physical systems,
heterogeneous computing systems, Big Data
computing, high-performance computing, CPU-
GPU hybrid and cooperative computing, computer

architectures and systems, computer networking, machine learning, intel-
ligent and soft computing. He has authored or coauthored more than 840
journal articles, book chapters, and refereed conference papers, and has
received several best paper awards. He holds more than 70 patents
announced or authorized by the Chinese National Intellectual Property
Administration. He is among the world’s top 5 most influential scientists in
parallel and distributed computing based on a composite indicator of Sco-
pus citation database. He has chaired many international conferences.
He is currently an associate editor of the ACM Computing Surveys and
the CCF Transactions on High Performance Computing. He has served
on the editorial boards of the IEEE Transactions on Parallel and Distrib-
uted Systems, IEEE Transactions on Computers, IEEE Transactions on
Cloud Computing, IEEE Transactions on Services Computing, and IEEE
Transactions on Sustainable Computing. He is a Member of Academia
Europaea (The Academy of Europe).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

4338 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on April 18,2023 at 00:45:58 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TII.2019.2909473

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

