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Abstract The MapReduce framework is considered to be an effective resolution for
huge and parallel data processing. This paper treats a massive data processing work-
flow as a DAG graph consisting of MapReduce jobs. In a heterogeneous computing
environment, the computation speed can be different even on the same slot depend-
ing on various jobs. For this problem, this paper proposes an optimized MapReduce
workflow scheduling algorithm. This algorithm comprises a job prioritizing phase
and a task assignment phase. First, the jobs can be classified as I/O-intensive and
computing-intensive, and the priorities of all jobs are computed according to their
corresponding types. Then, the suitable slots are allocated for each block, and the
MapReduce tasks in the workflow are scheduled with respect to data locality. The
experimental results show that the optimized MapReduce workflow scheduling algo-
rithm can improve the performance of task scheduling and the rationality of resources
allocation in heterogeneous computing.

Keywords Hadoop · Heterogeneous cluster · MapReduce · Scheduling · Workflow

1 Introduction

As data collection volumes grow rapidly, some complex computations are beyond
the ability of our classical processing methods. This challenge requires that scientific
computings have the abilities to handle massive amounts of data. One of the most suc-
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cessful frameworks for this propose is MapReduce [9], which has been implemented
on some platforms such as GFS and Hadoop that process massive datasets in parallel
ways. For data-intensive applications, MapReduce has increasingly attracted attention
in many areas (e.g., energy mining [24], image processing [15], and meteorological
analysis [5], etc). Unfortunately, some projects are composed of a set of MapReduce
jobs with priority constraints, and there is lack of an efficient mechanism to sched-
ule such projects, which is not a simple problem for MapReduce platforms such as
Hadoop.

In order to solve these problems, researchers are trying to integrate MapReduce
into workflow. Through this integration, not only can the whole parallelism be fully
extended, but also the HDFS of Hadoop can lend the workflow a helpful hand to
avoid the bottlenecks when processing mass datasets [25]. For example, the studies
in [8,12,21,27] advanced the workflow processing capability of Map/Reduce, and
provided support for the workflow level developers.

With the rapid development of information technology, the concept of workflow
has been applied to automate large-scale science, and usually, a workflow is repre-
sented by a directed cyclic graph (DAG) [30]. It is worth mentioning that scheduling
a DAG application is NP-hard in general [14], which is a challenge for researchers.
In early stage, a few studies [7,19] proposed a MapReduce-enabled workflow system
for special applications combined with other areas with exclusive requirements, but
these researches proposed this system for a homogeneous cluster.

Recently, with the increasing demand on computing performance, CPU cannot sat-
isfy it anymore. Therefore, the high-performance computing (HPC) industry’s devel-
opment turns to constituting between GPU and CPU to work together for addressing
common tasks in heterogeneous clusters [1]. In this field, [6,22,23] introduced an
adaptive scheduler providing dynamic resource allocation across jobs and hardware
affinity in a heterogeneous cluster. In these works, the computing resources in the
heterogeneous cluster are simply divided into the generic and accelerated pools, and
the scheduling policy used for MapReduce tasks is based on the plain FIFO policy
[29], which is a valuable enhancement.

Through the analysis of the MapReduce-enabled workflow system, we come up
with an important observation, i.e., for one workflow model, the whole project can
be considered as a DAG consisting of various jobs, and the DAG can be expanded
into a bigger graph which refines each job into a set of tasks. Currently, there are few
scheduling policies considering the composition of DAG scheduling and MapReduce
scheduling.

In this paper, our contribution is to integrate MapReduce into a workflow, addi-
tionally to enrich a heterogeneous cluster by considering different combinations of
performance and configuration of processors and constructing different computing
resource pools.

We propose an optimized scheduling policy—MRWS (MapReduce-enabled work-
flow scheduler). MRWS adopts some ideas from heuristic algorithms [26] (e.g., HEFT
(heterogeneous earliest-finish-time)), and realizes the schedule of the jobs in a MapRe-
duce workflow through splitting a job into basic tasks which can be distributed to
appropriate slots.
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For a general DAG which consists of indivisible tasks, HEFT is better than other
classical heuristic scheduling algorithms in most situations, and in particular, gives
the best performance and speedup results for DAGs with high parallelism. Since this
model is designed for processing massive data-intensive jobs, adopting the idea of
HEFT is a good choice for MRWS. In this paper, jobs that can get benefit from
accelerated machines are defined as CPU-intensive jobs, and the others are defined as
I/O-intensive jobs. For the advantage of this model, each job of a DAG can be split
into a number of tasks, and part of them can be scheduled on the idle time slots even if
it is smaller than the demand time of a total job. Through this process, we can achieve
higher efficiency and shorter makespan.

In coordinating a cluster, scheduling I/O-intensive jobs in the accelerated pool
Poolacc may bring no benefit and result in competition with the CPU-intensive jobs
which in fact could take advantage of them. A heterogeneous environment consists of
computing, storage, and network resources with different capability and availability.
But we only consider the computing power and the network bandwidth properties.
In order to add awareness of the hardware heterogeneity into a scheduler, in a het-
erogeneous cluster, we need to group pools, with accelerated machines into Poolacc

and regular machines into Poolreg . Comparing to the references [22,23], these two
pools are subdivided into more levels according to computing performance. Through
this method, the resources can be used more effectively, and it is also more adapted
to the characteristics of the HEFT algorithm. In an initial phase, by comparing the
observed average task time (Treg) on Poolreg with that (Tacc) obtained on Poolacc,
we can get a conclusion that if Treg/Tacc reaches certain numerical value, then the
job type is I/O-intensive; otherwise, it is CPU-intensive [22]. For a CPU-intensive job,
its parameter T is marked as CPU; similarly, for an I/O-intensive job, its parameter T
is marked as I/O. Hence, a job’s parameter T is in favor of scheduling the job in the
appropriate pool, thus improving the overall efficiency.

The remainder of the paper is organized as follows: section 2 reviews the related
work. Then, Sect. 3 introduces the MapReduce-enabled workflow model and espe-
cially describes the MRWS algorithm. Experiments and analysis which support our
contributions are presented in Sect. 4. Finally, Sect. 5 concludes this paper and
describes the future work.

2 Related work

There are two main architectural approaches to implementing workflow, i.e., service
orchestration and service choreography [3]. In orchestration, during part or the whole
process, information or tasks are passed through a central engine from one partic-
ipant (a machine, human, or resource) to another for an action, according to a set
of procedural rules. Based on their functions, workflows can be classified into two
types, i.e., business workflows and scientific workflows. Business workflows have
been around for many years, which aim to automate and optimize an organization’s
processes accomplished by human or computer agents in a management system [17].
Especially in large organization, its processes often refer to various systems, roles,
objects and the partial order or coordination among different activities. In addition,
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the data structure, computing infrastructure are often heterogeneous. When workflows
move from business sectors to scientific laboratories, the need to support large-scale,
complex, fault-tolerant, and maintainable scientific processes and scientific workflows
arise.

In this paper, we adopt orchestration, because it can span multiple applications
and/or organizations. In addition, we choose a scientific workflow as composition of
framework, because a scientific workflow tends to have a dataflow-oriented model
and can abstract the details of a business process, while a business workflow places an
emphasis on control-flow patterns and events [3]. A scientific workflow has recently
become an enabling technology to automate and speed up the scientific discovery
process, and there are much recent research interests in it, e.g., [11,18,28]. However,
in orchestration, the engine can cause a bandwidth bottleneck when the workflow
processes a huge dataset [4].

Currently, as HPC is widely and deeply used in various fields, the processing of
some special application scenarios gets more complex [22,23]. This complexity is
generally manifested by having more MapReduce jobs with priority restrictions among
them, rather than having more complex map and reduce functions. In order to resolve
this problem, researchers tried to translate it into a MapReduce workflow [7,19].
Thus, there are a few studies focusing on constructing MapReduce-enabled workflow
systems in which a huge project, especially a data-intensive one, can be expressed
as a DAG consisting of a set of MapReduce jobs. These systems can provide high
parallelism for MapReduce-based workflows.

Now scientific workflow is becoming an efficient computational model. Some sci-
entific workflow applications make contribution to the scientific researches, such as
Kepler [27], Taverna [20], VIEW [16], Pegasus [10], and so on. Kepler is one of
the globally fastest and most efficient HPC frameworks, which is designed to help
scientists, analysts, and computer programmers to create, execute, and share models
and analyses across a broad range of scientific and engineering disciplines. However,
the workflow application is attached on top of Hadoop and scheduling of this pack-
aged Hadoop is separated from the workflow management system, which unavoid-
ably causes some performance overheads. Therefore, in some way, the performance
of Kepler system can be more advanced in the future.

Oozie [2] is a server based workflow engine specialized in running workflow jobs
with actions that execute Map/Reduce and Pig jobs on Hadoop. Oozie workflow defi-
nitions are written in hPDL (a XML Process Definition Language). In Oozie, actions
of the workflow are also arranged in a DAG. However, it does not provide an opti-
mization mechanism to schedule workflows considering scheduling issues, because
“control dependency” from one action to another means that in the queue the second
action cannot run until the first action has completed, and the XML Language cannot
optimize the parallelism of actions [2].

There are some practical examples of carrying out some applications for many spe-
cific domains in the MapReduce-enabled workflow systems [7,19]. In homogeneous
platforms, [7] proposed a high-performance system MRGIS (MapReduce Geographi-
cal Information System), which is a parallel and distributed computing model based on
MapReduce clusters and can significantly improve the performance of GIS. Similarly,
[19] introduced a model to perform intensive processing on climate satellite data with
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high performance. However, their schedulers are simple and cannot support complex
workflows.

Merging the GPU together with CPU into a heterogeneous cluster is the inevitable
trend of future HPC. Additionally the workloads demand heterogeneous resources
to get higher performance, because some workloads may be CPU-intensive whereas
others are I/O-intensive. With hardware awareness of the superior performance and
energy efficiency of the heterogeneous resources, these specialized workloads are
assigned to their preferred slots, so that each slot can play its respective advantages
and gain high performance especially when the set of jobs of a project share the
resources.

Considering the defects in workflow scheduling in a heterogeneous cluster environ-
ment, this paper aims to construct a MapReduce-enabled scientific workflow model
with static optimization scheduling policy in heterogeneous clusters to get good per-
formance.

3 The MapReduce-enabled workflow model

3.1 Formation of the model

In this paper, we presume that a small-scale heterogeneous cluster may be private
or rented from a public business cloud services for a single user only [29,30]. We
further assume that the heterogeneous cluster is made up of several different pools.
The pools, respectively, represent different combinations of homogeneous machines.
Heterogeneous hardware (such as CPU, GPU, or SPUs in the Cell/BE processor,
etc.) may include several different platforms. There are some popular programming
framework for heterogeneous platform (i.e., OpenCL [13]) which can support different
parallel platforms, while we can also emulate such behavior by implementing the
specific jobs with multiple versions of their programming codes.

Table 1 shows that during the resource allocation and DAG analysis phases, we
can just use JAVA as our programming language. However, in task scheduling and
distribution phase, due to the heterogeneous computing evironments, after reading the
input datas from a uniform distributed storage HDFS, the task processes will be finally
compiled and converted as the processor execution languages. In this way, tasks can be
executed on the appropriate node according to its own special features and character.

This paper proposes an improved algorithm which consists of two major phases
shown in Fig. 1, i.e., a job prioritizing phase for generating the scheduling priority
queue among all jobs on the workflow level, and a processor selection phase for

Table 1 Codes of different
levels

Layered structure Programming Framework

Workflow-level DAG analysis JAVA

Resource location JAVA

MapReduce-level Task scheduling OpenCL, Brook + CBE,

CUDA, Cell-accelerated
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Fig. 1 The MapReduce-enabled scientific workflow model

selecting the jobs in the priority queue and allocating each block of the job on its
best slot. The purpose is to be prepared to schedule tasks on the corresponding slots,
and try to realize data locality on the MapReduce level. By effective combination of
the features of the two phases, we aim to minimize the makespan and achieve high
performance.

In the heterogeneous cluster as shown in Fig. 1, we define the small cluster composed
of CPU devices as S_cluster of CPU and the small cluster composed of GPU devices
as S_cluster of GPU. The small clusters are divided into resource pools and named as
Pool_n (shortly P_n), and in each pool the slots have the same performance. While the
devices in the same pool may not actually have exactly the same performance, in this
paper, we do not emphasize on the detailed analysis of the mechanism to deal with
this condition.
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Without loss of generality, we consider MapReduce jobs to be the basic components
of the workflow. Therefore, this special workflow model is denoted as

W = (J, E, D, T ), (1)

where the components are explained as follows:

– W denotes the workflow.
– J is a set of jobs, some of which are MapReduce jobs, and therefor, each of them

can be split into a number of tasks. For other indivisible jobs, each one is just
regarded as a task.

– E is a set of edges between job nodes, each has a value denoting the communicate
cost.

– D is a set of data, in which each unit Dt is a two-tuple (Dtin , Dtout ), which denotes
the input data set and the output data set in the workflow process respectively.

– T is a set of properties of the tasks which are used to mark the jobs with the types
(e.g., I/O- or CPU-intensive), which help in giving attributions to scheduling the
tasks of special jobs on the applicable slots.

3.2 Scheduling algorithm in workflow

As mentioned above, a parallel MapReduce-enabled workflow can be represented by
a DAG W = (J, E, D, T ), in which each node indicates a job, and each one can be
completed with the MapReduce parallel computing model. A sample DAG is presented
in Fig. 2, in which the job without parent is called an entry task and the job without
child is called an exit task.

On the one hand, a job’s execute time can be estimated as

W ( j, D jin , D jout ) = Size(max(D jin , D jout ))/Vpn ( j), (2)

where D jin and D jout are the input and output data sets of the job j , and Vpn ( j) is
defined as the processing speed of the node in the processor of type Pn . In this paper,
the type of the processors in Pool(n) is defined as Pn . The communication time Ci, j

between jobs can be calculated as

Ci, j = Size(D jin )/Vtr ( j), (3)

where Vtr ( j) is the transmission rate of the task j , which is different on different racks
and different data centers. In classical heuristic algorithms, Ci, j is the communication
time from the node executing ni to the node executing n j . But in MRWS, it is the time
from HDFS receives the output of ni to HDFS finishes the allocation of the split data
sets onto slots and ready for n j . For simple understanding, in this paper, we describe
Ci, j as the communication time from job ni to n j .

For the computing time and communication time, in an initial phase, we can work
out Vpn ( j) and Vtr ( j) by testing on different pools and then calculating them with the
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Fig. 2 A sample project graph
with 12 MapReduce jobs

Table 2 Computation costs of jobs in each pool

Job_ID Type of CPU intensity or I/O intensity The cost of a job on each pool (in sec)

S_cluster of CPU S_cluster of GPU

P_1 P_2 P_3 P_4 P_5 P_6

j0 CPU 140 120 100 60 40 20

j1 I/O 98 84 70 70 70 70

j2 CPU 210 180 150 90 60 30

j3 I/O 182 156 130 130 130 130

j4 I/O 280 240 200 120 80 40

... ... ... ... ... ... ... ...

corresponding formulas. Furthermore, we can directly estimate them by processing
small sets of jobs on the cluster in advance.

Accordingly to the DAG of workflow shown in Fig. 2, the jobs’ computation cost in
each pool and their types are shown in Table 2. The computation cost can be obtained
through the estimate methods described above.

In this paper, jobs in the workflow are scheduled by MRWS, which extends the
classic heuristic algorithm HEFT [26]. In the algorithm, jobs are explicitly sorted by
their scheduling priorities which are based on the upward and downward rankings.
The upward rank and the downward rank are defined as follows:

ranku( ji ) = wi + max
j j ∈succ( ji )

(ci, j + ranku( j j )), (4)

ranku( jexi t ) = wexi t , (5)

rankd( ji ) = max
j j ∈pred( ji )

(rankd( j j ) + wi + ci, j ), (6)

where wi is the average computation cost of job ji , ci, j is the average communica-
tion cost from job i to j , succ( ji ) is the set of immediate successors of job ji , and
pred( ji ) is the set of immediate predecessors of job ji . The upward rank starts from
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Table 3 Values of attributes
used in the scheduling
algorithms for DAG in Fig. 2

Job_ID Ranku Rankd Ranks

j0 740 0 570

j1 328 112 240

j2 376 110 240

j3 404 100 240

j4 415 95 240

j5 457 84 240

j6 338 90 240

j7 582 122 240

j8 405 88 240

j9 522 86 240

j10 393 92 240

j11 240 464 0

the exit job and computed recursively by traversing the task graph upward. Similarly,
the downward rank is computed recursively by traversing the task graph downward
starting from the entry job, but the downward rank value of the entry job jentr y is zero.

As proposed in reference [7], let c( j i , D ji
in
, D ji

out
) denote the execution cost of

a task j i , where D ji
in

and D ji
out

denote the input dataset and output dataset of j i ,
respectively. In other words, the execution cost of a task is related to what operation
it performs and the sizes of input and output datasets. For a task j i , its finishing cost
is defined by the following equation:

ranks( ji ) =
∑

j i ∈{depd−descendantw( j)}
c( j i , D ji

in
, D ji

out
), (7)

where c( j i , D ji
in
, D ji

out
) denotes the average computation cost, and

depd − descendantw( j) is the descendant set of job j . The value of ranks is used
to produce the scheduling sequence in [7].

The corresponding estimated rank values are illustrated in Table 3. With the upward
rank policy, by non-increasing order of ranku , the scheduling order of the jobs is ( j0,
j7, j9, j5, j4, j8, j3, j10, j2, j6, j1, j11). In the same way, with the downward rank
policy, sorting the jobs by non-decreasing the order of rankd , the scheduling sequence
is ( j0, j5, j9, j8, j6, j10, j4, j3, j2, j1, j7, j11). More easily we can simply sort the
finish time of the jobs by non-increasing order of ranks , and the scheduling sequence
is ( j0, j1, j2, j3, j4, j5, j6, j7, j8, j9, j10, j11).

3.3 Resource allocation in MapReduce

In a heterogeneous cluster, slots differ from one to another. For a heterogeneous hard-
ware structure, the processing time can also be different even on the same slot depend-
ing on various jobs. Hence, for all jobs in the DAG, the corresponding computing time
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Table 4 Computation costs of tasks on each type slot (job 0’s corresponding task is described as ai .)

Tasks of jobs Type of jobs Number of map tasks The processing time of a task on a slot

S_cluster of CPU S_cluster of GPU

P_1 P_2 P_3 P_4 P_5 P_6

0(ai ) CPU 20 7 6 5 3 2 1

1(bi ) I/O 14 7 6 5 5 5 5

2(ci ) CPU 30 7 6 5 3 2 1

3(di ) I/O 26 7 6 5 5 5 5

... ... ... ... ... ... ... ... ...

of tasks on a slot in each variable pool is known as shown in Table 4. The comput-
ing time can be obtained in the initial stage. After several map tasks of each job are
executed in each pool, the computing time can be estimated in the initial stage.

Hadoop runs the input job by dividing it into tasks, which makes the processing to
become better load-balanced. The computing speed and transfer speed can affect the
task by determining the split size. For most jobs, a good split size tends to be the size
of the HDFS block (64 MB by default), so the number of tasks can be defined as

N_m = Size of job j/Size of block. (8)

The resource allocation policy is as follows: TSD(TaskID, Proc, StartT, EndT)
records the detailed information of the scheduling results, where TaskID is the mark
of the task; Proc is the mark of the slot on which the task is assigned, and StartT and
EndT are the start time and end time of the task. Additional variables are listed as
follows:

– t_E ST [ti , si ] and t_E FT [ti , si ]: respectively, represent the slot si that can afford
the earliest execution start time and finish time for task ti .

– t_AST [ti ] and t_AFT [ti ]: respectively, represent the actual execution start time
and finish time of task ti .

– AST [ ji ] and AFT [ ji ]: respectively, represent the actual execution start time and
finish time of job ji .

For the first entry job jentr y in a DAG, AST [ jentr y] = t_E ST [tentr y, si ] = 0. The
scheduling starts from the task tentr y which belongs to the entry job jentr y . As shown
in (9) and (10), the values t_E ST and t_E FT are worked out through a recursive
method:

t_E ST [ni , si ] = max{readyT ime( ji ), slotavailT ime(si )}. (9)

t_E FT [ni , si ] = t_E ST [ni , si ] + w(ti , si ). (10)

readyT ime( ji ) = max
nm∈pred(ni )

(AFT (nm) + Cm,i ). (11)
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In order to compute the t_E ST of a task ti split from job ji , all immediate predecessor
jobs of ji must be scheduled, where pred(ni ) is the set of immediate predecessor jobs
of job ji .

Then readyT ime( ji ) is the time point stamp at which all the data needed by job ji
are ready for it. For the scheduling policy is noninsertion-based, slotavailT ime(si )

is the time stamp when the slot si completes the former allocated tasks and is ready
to execute another task. w(ti , si ) gives the estimated execution cost to complete task
ti on slot si .

When a circulate computing of the task ti on each slot is done, by selecting the
previous complete time t_E FT [ni , sm] as the actual finish time t_AFT [ti ], we can
get the actual start time t_AST [ti ] = t_AFT [ti ] − w(ti , si ). When all tasks of job ji
are scheduled, the last finish time of these tasks can be regarded as the job ji ’s actual
finish time: AFT [ ji ].

3.4 Combination algorithm description

The combination algorithm is described in Algorithm 1, which contains three sub-
processes. These are all the subprocesses of the model MRWS:

Algorithm 1 MRWS (MapReduce-Enabled Workflow Scheduler)
Require:

Workflow DAG W = (J, E, D, T ) and a set of predict parameters.
Ensure:

The solutions.
1: Prior_order();
2: P_scheduling();
3: E_scheduling().

Algorithm 2 Priority Ranking (which ranks the priority of jobs in a DAG)
Require:

Workflow DAG W = (J, E, D, T ) and some information like Table 4 and so on.
Ensure:

The solutions.
1: Prior_order() {
2: Comp_Ranku ();
3: Sort_Ranku ();
4: }

The first subprocess is shown in Algorithm 2, in which the function Prior_order()
aims to sort the priority queue of the jobs of the DAG to satisfy the precedence
constraints. While the step Compute_Ranku() works out ranku for all the jobs, which
is shown in the first column of Table 3 by traversing the DAG upward and starting
from the exit job, and function Sort_Ranku() sorts the job_priori t y_queue in non-
increasing order according to the ranku values.
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Algorithm 3 Preceding Analog Scheduling (which distributes tasks of each job onto
the ideal slots)
Require:

Workflow DAG W = (J, E, D, T ), job_priori t y_queue, ji _tasklist , slot_set ();
Ensure:

The solutions:
1: P_scheduling() {
2: while there are unscheduled jobs in the job_priori t y_queue do
3: select the first job ji , from the queue for scheduling;
4: for each task ti (split from job ji ) in ji _tasklist do
5: for each slot si in the slot_set () do
6: compute the value of t_E ST [ni , si ] and t_E FT [ni , si ].
7: end for
8: Assign tasks ti to the slot sm which minimizes t_E FT of task ti ;
9: save the minimum time in t_E FT ;
10: save the corresponding detail TSD(TaskID,Proc, StartT, EndT) in T SD_list ;
11: delete the task ti from ji _tasklist ;
12: end for
13: delete the job ji from the job_priori t y_queue;
14: Save AFT [ ji ] equals the last t_E FT of the tasks split from job ji ;
15: end while
16: }

Algorithm 4 Actual Scheduling (which is the implementation of Preceding Analog
Scheduling with the control of HDFS)
Require:

job_priori t y_queue, ji _tasklist , T SD_list ;
Ensure:

The solutions:
1: E_scheduling() {
2: while there are unexecuted jobs in job_priori t y_queue do
3: select the first job ji , from the queue for scheduling;
4: for each task ti (split from job ji ) in ji _tasklist do
5: Split_block();
6: scheduling();
7: delete the task ti from ji _tasklist ;
8: delete the information of task ti in T SD_list ;
9: end for
10: delete the job ji from the job_priori t y_queue.
11: end while
12: }

Second, as shown in Algorithm 3, Preceding Analog Scheduling is based on the
front of job_priori t y_queue. This algorithm is designed to submit the tasks which
are split from each job while the whole jobs are not all distributed to the ideal slots.
Specially, the function P_scheduling() is working in initial/pretreatment phrase,
which combines with MapReduce polices.

In Step 4, the corresponding ji _tasklist (values can be obtained from tasks of job
ji ), and each value of the same job is on the same level. In Step 5, the slot_set is the
set of all available slots. Between Step 4 and Step 12 , it acquires each t_E ST [ni , si ]
and t_E FT [ni , si ], which are the earliest execution start time and finish time of task
ti on slot si through the two layer nesting loop. The parameters in this algorithm can
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be worked out though (9)(10)(11). Step 8 is to choose the minimal t_E ST [ni , si ] of
task ti , and to save the corresponding detailed TSD in T SD_list . Finally, in Step 14,
AFT [ ji ] is the time point when all the tasks of job ji have been executed. If all the
jobs in the DAG graph are scheduled, then the schedule length of the graph is the
actual finish time of the last task of the exit job.

Due to the combination with the MapReduce policy, the smallest scheduling unit
is a task not a job. In general, the task unit’s execution time is obviously much shorter
than the job unit. So, with the priority constraint, one of the special features of the
MRWS is to enable these task units to insert into the idle slots in a flexible way, and
the efficiency of the scheduler will obviously be advanced, even if the idle period of
the slot is not long for the whole job.

Finally, as shown in Algorithm 4, the subprocess is the actual implementation
of MRWS. MapReduce is the important data process framework of Hadoop, while
Hadoop’s another pivotal component is HDFS (Hadoop distributed file system). In
this paper, the combination model also adopts HDFS to manage the bottom data.

In Step 5, HDFS splits the input data files of job ji into blocks though equation (8).
While in Step 6, according to T SD_list , HDFS schedules the corresponding tasks and
executable codes onto the slots and then waits for execution. This policy has realized
data locality optimization, without considering the error tolerance copies.

Figure 3 presents the details of the scheduling procedure for the DAG shown in Fig.
2 with an example, which is obtained by the MRWS policy. As shown in Fig. 3, in the
experiment of this paper, the heterogeneous cluster is supposed to consist of 18 slots
(c1–c18). Each pool contains 3 slots, for example, P_1 consists of c1–c3 which have
the same computing capability. In the heterogeneous cluster, the computing cost of
tasks on each type slot, which is denoted as S_cluster , are defined in Table 4. In Fig.
3, as the description of MRWS, the basic lattice of the vertical coordinate represents
one unit time, and the priority queue is on the right of the figure.

The numbers in each small rectangle means that this slot duration belongs to the
corresponding task and job.According to the task priority queue, as Fig. 3 shows, the
job 0 is the first scheduled task. After job 0 finished, based on its task executing time
and the data transfer duration, we can acquire the start time of the job 7, and schedule
it as job 0. Then, job 9 is scheduled to be inserted into the space between job 0 and
job 7 according to the schedule method in Algorithm 3. In the same way, job 5 will
be scheduled to the idle duration between job 0 and job 9. Because this gap is too
small to place the whole job, only part of the job 5 can be scheduled into this duration,
and the remainders can be inserted into the idle duration between job 9 and job 7. All
the DAG jobs in the example are scheduled by this mean. In the scheduling algorithm
facing to the workflow, the job will be blocked if it is not scheduled suitably, and it will
also affect other jobs to be distributed to the suitable slots. Through the scheduling
mechanism in this paper, the jobs can be assigned to the right nodes according to the
types of processing tasks. And based on the method “insert into the idle duration”,
comparing to the other schedule algorithms, the shortened makespan and the improved
resource utilization are illustrated in the experiments.

Following the priority queue, the scheduling starts from job 0. Figure 4 presents
the details of scheduling, in MRWS algorithm, for splitting the tasks of job 0 on slots.
From Table 4 we can know that the job 0 is a CPU (compute-intensive) job, and it can
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Fig. 3 Detailed resource allocation of the sample DAG

be split into 20 small map tasks to execute and these tasks’ required unit execution time
on the slot from pool P_1 to P_6, respectively, are (7, 6, 5, 3, 2, 1). The scheduling
detailed process is described as follows: at first, we select task 0 from the task_list and
according to Algorithm 3 of MRWS and find those slots (C16, C17, and C18) which
can afford the earliest finishing time (t_E ST ). Because the three slots are beyond
P_6, they have the same performance.

Thus, in this paper, due to the sequencing of the slot_set(), we select C16 to execute
task 0 of job 0, which takes up to one unit of time on this slot. And then, the next tasks
of job 0 also use the similar methods to choose their optimal slots.
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Fig. 4 The scheduling process in algorithm MRWS

Specifically, during the scheduling process, assigning a job to improper slots will
not only make the work process slow, but may also prevent other jobs that prefer the
slot from executing on it. Hence, when t_E ST of a task on several slots have the same
values, if the corresponding job is an I/O job, it will be scheduled to S_cluster of CPU,
leaving the GPU cluster for later use by computation-intensive jobs.

After scheduling job 0, through Algorithm 3 we can determine job 7’s start time
which is the maximum value of the sum of the father node’s finish time and the
transmission time of job 7’s required data. By scheduling job 9 after job 0 and 7, we
can find an appropriate period of idle time between job 0 and job 7. Because the period
is enough to insert all tasks of job 9, the job 9 is plugged in this time. For the job 5, we
can find that part of job 5 can be scheduled in the period between job 0 and job 9, and
the other parts have to be inserted in the period between job 9 and job 7. In the same
way, we can process the remaining jobs in Fig. 3. As a result, the schedule length is
shorter than other related policies.

In the next section, through the experiments, it can be illustrated that Algorithm
MRWS can shorten the makespan, improve the jobs’ efficiency, and reduce energy
wastage.

4 Experiments and analysis

4.1 Randomly generated application DAGs

4.1.1 Performance results

In the following experiments, we compare the average metrics values of 3,000 different
graphs which are generated randomly with the following initial parameters.

– N_jobs: It denotes the number of jobs.
– N_tasks: It denotes the number of tasks.
– CCR: It denotes the ratio of the average communication cost to the average com-

putation cost. If a graph’s CCR value is very low, it can be considered as a
computation-intensive application.
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– ∂: It is the shape parameter of the DAG graph. If ∂ >> 1.0, it will generate a high
parallelism graph; if ∂ << 1.0, it will generate a long graph with low parallelism
degree.

In the experiments, the compared scheduling policies are listed as follows:

– MRWS_NPI: A MRWS without “plugging in idle duration” policy. It is a compared
algorithm in this experiment.

– SWS: A simple workflow scheduling algorithm proposed in [7]. In this method,
the rank queue is generated according to latest finish time of the jobs. When it
schedules a job based on the priority queue, it will wait until the former is finished
and then schedule the next. Obviously, this algorithm does not have the character
of parallelism on workflow level. This algorithm is similar to the simple algorithm
of Oozie.

– WS_NWH: A general workflow scheduling algorithm for a homogeneous envi-
ronment without awareness of hardware. In this policy, all the slots are considered
the same, so during the execution, the quick slots should often wait until the slow
slots get finished so as to finish a job.

The performance of the algorithms are compared with respect to various graph sizes
in Fig. 5 and various CCR in Fig. 6.

4.1.2 Performance analysis

To compare the performance of these scheduling policies, the comparison metrics,
i.e., makespan, SLR, speedup, efficiency are defined similar to [26], while the only
difference is that in our definition, the calculation factor is for the scenario of assigning
tasks, instead of single jobs to a processor.

– SLR (Schedule Length Ratio): It normalizes the schedule length to a lower bound.
In general, the scheduling algorithm which gives the lowest SLR of a graph is the
best algorithm.

– Speedup: It denotes the effect of parallelization. It is computed by dividing the
sequential execution time (i.e., cumulative computation costs of the tasks in the
graph) by the parallel execution time (i.e., the makespan of the schedule).

– Efficiency: It is the ratio of the speedup value to the number of processors used.

The performance of these policies are compared with respect to various graph
characteristics. Through numerous experiments, we find that when the CCR is fixed
and only ∂ changes, the SLR will change rarely. Here we only consider the DAG with
high parallelism, so ∂ is set with a big value, with CC R ≈ 1.24 and ∂ > 15. Fig.
5a, b, c shows the performance of the policies with respect to various graph sizes.
Apparently, the average SLR and speedup values increase as the size of the DAG
graph increases. These results demonstrate that the MRWS algorithm has obvious
superiority in dealing with large workflows which can be denoted as complex DAGs.

Next, the quality of the schedules for various CCR values are compared. When
the node number of DAG is equal to 50, except of MRWS, the SLR of the poli-
cies with respect to various CCR values are compared in Fig. 6a. For the SLR
ratio, for example, the ratio of MRWS_NPI is defined as (SL RM RW S_N P I −
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(a) Average SLR (b) Average speedup

(c) Average efficiency

Fig. 5 The performance of the policies with respect to various graph sizes

(a) SLR compare ratio for various CCR (b) Average SLR for various CCR

Fig. 6 The performance of the policies with respect to various CCR

SL RM RW S)/SL RM RW S_N P I . When the node number is equal to 100, from Fig. 6b,
we can see the difference between the SLR of various scheduling policies with respect
to CCR values.
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Fig. 7 Montage use-case scenario

(a) Average makespan (b) Average SLR

(c) Averag eefficiency

Fig. 8 The performance of the policies with respect to various graph sizes

Based on these experiments, we observe that the MRWS policy outperforms the
other policies for any graph size in terms of SLR, speedup, and efficiency. In addition
to HEFT, the purpose of the MRWS algorithm is to find the appropriate processor
and its periods for the jobs. So huge scale projects with high parallelism can generate
more opportunity for plugging in, and it is more likely to realize the advantage of the
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MRWS. In conclusion, the MRWS policy is a better choice for MapReduce-enabled
workflows, especially for those with huge scale and high parallelism in heterogeneous
systems.

4.2 Application DAGs of real word problems

Efficiently executing large-scale, data-intensive workflows common to scientific appli-
cations must take into account the volume and pattern of communication. For exam-
ple, in Montage an all-sky mosaic computation can require at least 2 TB of data
movement [31]. A typical montage workflow consists of 6 components: mProject,
mDiff/mFitPlane, mConcatFit, mBgModel, mBackground, mAdd. Montage has some
features of data-intensive scientific workflows [4]. First, it may result in huge data flow
requirements. Second, its workflow pattern is common to many scientific applications.
For the large-scale data-intensive scientific workflows, some researches manage to
reduce the cost of communication on the orchestrations.

For the workflow shown in Fig. 7, we construct the corresponding DAG of the
Montage scenario, and each node is a job which can be split into map and reduce
tasks. For the experiments of Montage, the same CCR value was used.

Figure 8, respectively, gives the average SLR and efficiency of the policies when
the number of nodes are varied from 25 to 100 with an increment of 25. It is also
observed that MRWS is a practical and efficient policy for this application. Although
the comparison objects are average performance values of policies, by this experiment,
we can find that, for a special DAG graph, the larger difference in communication
values and the higher performance will be obtained.

5 Conclusions

As the data collection volumes grow rapidly, some complex computation are beyond
the ability of our classical processing methods. Considering the parallel processing for
large-scale systems, a model combining MapReduce with workflows will bring a good
solution to this problem. Currently, there are many researches on the scheduling policy
for this combination model in homogeneous clusters or simple heterogeneous clusters.
Through analyzing the defects in workflow schedule in the heterogeneous cluster
environment, this paper proposes an optimization workflow scheduling algorithm. In
this method, we treat a massive data processing workflow as a DAG graph consisting of
MapReduce jobs and realize the schedule of the jobs in MapReduce-enabled workflows
through splitting the job into basic tasks which can be distributed to the appropriate
slots. In this paper, we propose an algorithm MRWS to optimize the scheduling to
improve the performance and the experiments show the superiority of improving the
schedule length and the parallel speedup for the workflow task in a heterogeneous
environment.
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