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Abstract In most cloud computing platforms, the virtual machine quotas are sel-
dom changed once initialized, although the current allocated resources are not effi-
ciently utilized. The average utilization of cloud servers in most datacenters can be
improved through virtual machine placement optimization. How to dynamically fore-
cast the resource usage becomes a key problem. This paper proposes a scheduling
algorithm called virtual machine dynamic forecast scheduling (VM-DFS) to deploy
virtual machines in a cloud computing environment. In this algorithm, through analysis
of historical memory consumption, the most suitable physical machine can be selected
to place a virtual machine according to future consumption forecast. This paper for-
malizes the virtual machine placement problem as a bin-packing problem, which can
be solved by the first-fit decreasing scheme. Through this method, for specific vir-
tual machine requirements of applications, we can minimize the number of physical
machines. The VM-DFS algorithm is verified through the CloudSim simulator. Our
experiments are carried out on different numbers of virtual machine requests. Through
analysis of the experimental results, we find that VM-DFS can save 17.08 % physical
machines on the average, which outperforms most of the state-of-the-art systems.
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1280 Z. Tang et al.

1 Introduction

Cloud computing is a popular trend in current computing, where people can easily
access computational resources in a cheap way. Compared with the previous para-
digms, cloud computing focuses on treating computational resources as measurable
and billable utilities based on the pay-as-you-go model [1]. From a client point of
view, cloud computing can provide an abstraction of the underlying hardware archi-
tecture, which can reduce the number of middleware and save the cost of datacenter
maintenance. Whereas for cloud providers, they prefer to gain more benefits by host-
ing more virtual machines (VMs). In this way, the technique of infrastructure as a
service (IaaS) focuses on providing a computing infrastructure that leverages system
virtualization to allow multiple virtual machines to be consolidated into one physical
machine (PM) [2,5]. OpenStack and CloudStack, or other cloud platforms, can support
multiple virtualization products such as KVM and Xen [3,4]. For these platforms, the
live migration [6,7] technique can ensure that a virtual machine (VM) process does
not stop when it is migrated from one computing node to another.

At present, there are various studies focusing on resource scheduling and man-
agement, which are often based on load balancing [8,9], dynamic placement [10–
12], energy conservation [13,14], and resource classification [15,16]. Considering
dynamic change of CPU consumption for virtual machines, Bobroff et al. [17] pro-
posed a dynamic forecast model, which can forecast over an interval shorter than the
time scale of demand variability. Those scheduling policies can work well under a
stable system environment, for example, constant user requests and fixed infrastruc-
ture resources. However, few researchers consider the dynamic change of memory
consumption for virtual machines. In most current datacenters, after initialization of
memory quotas for virtual machines, the mapping will not be recomputed for the whole
process. To make full use of cloud server memories, this paper proposes a dynamic
forecast scheduling algorithm called virtual machine dynamic forecast scheduling
(VM-DFS), whose framework is shown in Fig. 1.

The VM-DFS algorithm is designed to deploy virtual machines according to the
over pre-allocated physical machine memory, which can cause the total consumption
of the virtual machines exceeding the physical memory capacity, because the memory
spaces in virtual machines are always changing and overlapped. Before deploying
virtual machines, the historical memory consumption of each virtual machine will be
analyzed, to select the most suitable physical machine to place the running virtual
machine according to the future consumption forecast. The bin-packing model is an
effective way to optimize the placement of virtual resources [18]. In our algorithm, the
virtual machine placement problem is also model a bin-packing problem, and can be
solved by the first-fit decreasing (FFD) scheme [19]. In this model, after estimation and
adjustment through the memory over commitment techniques for physical machines,
such as the VMware ESX Server [22] and KVM virtualization [23], a physical machine
can be powered off or set at lower power when there is no virtual machine placed. As
shown in Fig. 1, the P M3 happens to be in a low power state.

The rest of this paper is organized as follows. Section 2 analyzes the problem of
virtual machine placement. Section 3 proposes a forecast model for the probability
distribution of future memory requirement according to the historical memory usage.
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Dynamic forecast scheduling algorithm for virtual machine placement 1281

Fig. 1 The VM-DFS placement model

Section 4 formalizes this problem as a bin-packing problem, and gives our dynamic
virtual machine placement algorithm VM-DFS. Section 5 presents experiments and
analysis which support our contributions. Section 6 concludes this paper.

2 The virtual machine placement problem

The improvement of server resource utilization is an effective way to achieve high
performance of datacenters. Through virtualization, multiple virtual machines can be
deployed into one physical machine. However, in the current server consolidation
process of most datacenters, the virtual machines’ quota cannot be changed after they
are initialized, despite that the allocated memory resources are not efficiently utilized,
thus causing waste of system resources. On the other hand, once the system resources
are distributed to specific virtual machines, even though they are not fully used, they
are not allowed to be taken advantaged by other virtual machines. Supposing there are
n virtual machines deployed on a physical machine P M j , whose memory capacity is
denoted as Mc

j . Every virtual machine V Mi has initial memory w(i), i = 1, . . . , n,
and the total initial applied memory on P M j can be calculated as

Mem Apply j =
n∑

i=1

w(i).

In this model, the actual memory consumption is denoted as M AC j to quantize the
actual usage of all virtual machines in the current physical machine P M j . At time t , the
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1282 Z. Tang et al.

Fig. 2 Virtual machine memory resource allocation and consumption

actual memory consumption of each virtual machine V Mi is denoted as Ui (t). Thus,
the summation of memory consumption of all virtual machines can be calculated as

M AC j =
n∑

i=1

Ui (t).

As mentioned above, a virtual machine does not always use all pre-allocated mem-
ory. The remainder memory can be recorded as Mem Apply j −M AC j . Let us consider
the virtual machine placement scenario shown in Fig. 2, where P M1, P M2, and P M3
are the physical machines, each has memory capacity Mc

j , j = 1, 2, 3. In this model,
assuming that virtualization itself needs to consume some memory resources, and the
memory reserved by a physical machine is represented as MR. In the initial state,
three virtual machines V M1, V M2, V M3 are deployed on the physical node P M1,
and they have initial memory capacities m1, m2, m3. Similarly, P M2 is deployed with
three other virtual machines V M4, V M5, V M6 with initial memory capacities m4,
m5, m6. P M3 is in a low power state. At certain time, the actual memory resource
consumption of virtual machine V Mi can be denoted as m′

i , i = 1, 2, 3, 4, 5, 6.
To have a more thorough understanding of this issue, we specially consider a single

physical machine with one virtual machine V Mi placed for the sake of simplicity.
Actually, the memory consumption of this virtual machine is dynamically changed.
Figure 3 shows Ui (t), i.e., the memory consumption of a live virtual machine V Mi

(in terms of the percentage of the memory capacity Mc
j of a physical machine P M j )

as a function of time t . For the static allocation policy, the virtual machine’s memory
quota is equal to Lm (in percentage of Mc

j ), as shown in Fig. 3. In dynamic allocation,
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Fig. 3 The change of memory usage by a virtual machine V Mi

the memory size to be allocated for the next interval of length k is predicted at time
t , which is based on the virtual machine’s historical memory consumption record.
Figure 3 shows this whole process clearly. Through an allocation policy with dynamic
forecast, the memory saving is

MemSaving = Lm − Ui (t + k). (1)

In this paper, the memory consumption Ui (t) of a virtual machine V Mi is treated
as a random variable with a probability density function (pdf) ut (x), where 0 ≤ x ≤ 1.
The static memory allocation is denoted as Lm . The predicted pdf is ut+k(x), as shown
in Fig. 4. Therefore, the average memory saving (in percentage) can be calculated as

E[MemSaving] =
1∫

0

(Lm − x) × ut+k(x)dx . (2)

The above equation can be simplified by the following calculation:

E[MemSaving] = Lm −
1∫

0

x × ut+k(x)dx ≈ Lm − E[Ui (t)], (3)

where we notice that
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1284 Z. Tang et al.

Fig. 4 Probability distribution of virtual machine memory consumption

1∫

0

x × ut+k(x)dx ≈
1∫

0

x × ut (x)dx = E[Ui (t)]. (4)

Obviously, the expectation of the prediction value is equal to the mean of the demand
distribution, because the prediction is an unbiased estimation. This analysis result can
provide a basis for our virtual machine dynamic forecast scheduling algorithm.

Typically, the actual load of a system relates to the running applications, and for
virtual machines, the actual memory consumptions are constantly changing. Through
the above analysis, for each virtual machine, the pre-allocated memory resource is
not fully used at all time. Obviously, a static memory allocation policy will lead to
waste of memory resources. If we can take advantage of the idle memory resources
effectively and adequately, the overload of the servers will be alleviated accordingly,
and the performance and efficiency of the cloud datacenters can also be improved
drastically.

This paper proposes a novel virtual machine deployment model. Through employ-
ing the predict theory [20], this model reduces overly pre-allocated memory resource
of physical machines to virtual machines according to the requirements of the users.

To ensure that all virtual machines on a physical node can meet the memory service
level agreement (SLA), the memory of each physical machine will set a threshold
value Lm . The threshold can avoid virtual machine memory consumption occasionally
coming to a peak, which will cause system instability. This paper introduces a scaling
factor to ensure the overload memory consumption as small as possible in the whole-
system life cycle. Section 4 gives the definition of this factor as the percentage of the
extra virtual machine memory forecast that exceeds the Lm of the physical node.

According to the time-dependent virtual machine memory consumptions, a method
is proposed to predict the memory utilization of each virtual machine. The prediction
can reflect the variation of the resource usage, which can provide some valid sug-
gestions for virtual machine deployment. The purpose is to minimize the number of
servers on the premise, such that the user requirements for memory can all be satisfied,

123

Author's personal copy



Dynamic forecast scheduling algorithm for virtual machine placement 1285

and that a datacenter can reduce the number of physical nodes to the largest extent.
The specific predictive model is proposed in the next section.

3 A predictive model

Prediction methods and techniques are widely used for resource allocation and
scheduling in distributed systems, including qualitative forecasting, time series analy-
sis, simulation, etc. Shen and Hellerstein [21] decomposed time series into period
components, such as daily or weekly variation, and forecasted the request arrival rate
of web servers. Bobroff et al. [17] focused on the periodic dynamic change of physical
machine CPU in a cloud computing environment. A similar approach is to use the
prediction mechanism to make a decision. In light of the theory proposed in [20],
through analyzing the historical memory usage, this paper proposes a novel method,
which can forecast the probability distribution of future memory demands.

In a time series tk , k = 1, 2, . . ., the observed value of V Mi ’s memory consumption
is denoted as Ui (tk). Given a time sequence t1, t2, . . . , t j , . . . , tk , we can record the
V Mi ’s observed values as Ui (t1), Ui (t2), . . . , Ui (t j ), . . . , Ui (tk).

The virtual machine memory consumption Ui (tk) is apparently an average value
which is acquired from a specific interval, so the time series prediction in this problem
can be treated as an auto regression model.

The p-AR [24] model with N samples and n independent variables can be denoted
as

xt = ϕ1xt−1 + · · · + ϕpxt−p + at , (5)

which can be formalized alternatively as

Y = Xβ + α, (6)

with

X =

⎛

⎜⎜⎜⎝

x p x p−1 . . . x1
x p+1 x p . . . x2
...

...
. . .

...

xN−1 xN−1 · · · xN−p

⎞

⎟⎟⎟⎠ , (7)

and

β = [ϕ1, ϕ2, . . . , ϕp]T , (8)

and

α = [ap+1, ap+2, . . . , aN ]T , (9)

and

Y = [x p+1, x p+2, . . . , xN ]T , (10)

where, Y and α are (N − p)-vectors, β is a p-vector, X is an (N − p) × p matrix,
and α refers specifically to the error residuals. To resolve this model, we use the least
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1286 Z. Tang et al.

squares method to estimate the AR coefficient [25]. And for the prediction model AR
(2) in this paper, the auto regression can be expressed as

U (t + 1) = ϕ1U (t) + ϕ2U (t − 1) + αt+1. (11)

The parameters ϕ1 and ϕ2 can be estimated from the statistic data. In this paper, the
destination of the least square estimator is to minimize the error residuals, which can
be denoted as

Min(ϕ) =
N−p∑

i=1

(x p+i − ϕ1x p−1+i − ϕ2x p−2+i − · · · − ϕpxi )
2 =

N∑

i=p+1

ai
2. (12)

As shown in Eqs. (2)–(4), the forecast estimates in the AR model are unbiased,
and the residual obeys a Gaussian distribution N (μ, σ 2) [19]. So in this model, the
expectation is E(μ) = 0. Beloglazov et al. [14] indicated that when the forecast
step length is relatively short, such as two steps, the forecast error is acceptable.
Furthermore, the forecast model parameter will be estimated iteratively in the VM-
DFS algorithm. In other words, for every virtual machine deployment, the VM-DFS
algorithm will estimate the model parameter repeatedly, and the total forecast error
will not increase. From the above analysis, in virtual machine deployment, the forecast
errors in our algorithm are in an acceptable scope.

4 A dynamic virtual machine placement algorithm

4.1 The bin-packing model for virtual machine placement

In this section, the virtual machine placement problem is formalized as a bin-packing
problem. Assuming there are N virtual machines V M1, V M2, …, V M N . The initial
pre-allocated memory quota is W1, W2 , …, Wn . Meanwhile, there are M physical
machines P M1, P M2, …, P M M , with memory sizes Mc

1 , Mc
2 , …, Mc

M . The goal is to
place the virtual machines into the appropriate physical machines, with the requirement
that all virtual machines can obtain the required memory as far as possible, and that
the number of used physical machines is minimized. It is well-known that the bin-
packing problem is a typical combinatorial optimization problem, and it is also an NP-
hard problem [18]. Through formalizing virtual machine placement as a bin-packing
problem, we can employ an approximate solution to this problem. For clarity, the
correlated variables are listed in Tables 1 and 2.

In our discussion, we define V Mi ’s memory quota as Wi , and the memory size of
the corresponding physical machine as Mc

j . The objective function of this model is to
minimize the number of used physical machines. The static deployment model can be
described as follows, where the change of memory usage is not considered:

minimize z(y) =
M∑

j=1

yi , (13)
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Table 1 Variable declaration
Variable Description

N Number of virtual machines

M Number of physical machines

W Initial memory allocation: Wi is the initial memory
size of V Mi

Mc Physical memory capacity: Mc
j is the capacity of

P M j

U Actual memory consumption: Ui (tk ) is the actual
memory consumption of V Mi at time tk

X A matrix denoting a mapping of VMs to PMs:
Xi j = 1 iff V Mi is deployed on P M j

Lm A threshold in percentage: the maximum amount of
PM memory allocated to VMs

r The percentage of memory forecast exceeding Lm
of the PM: r = (M F − MSLA)/MSLA

V Mi .rm The required memory size of virtual machine V Mi

fi (t, t + k) Predicted memory consumption at time t + k based
on prior time t with prediction step k

Table 2 List of abbreviations
Abbreviation Description

MR Reserved memory for system itself

MAC Actual memory consumption

MA Available memory in one physical machine

MSLA The allocatable memory satisfying SLA:
MSLA = Lm × M A

MF The forecast value of total memory consumption
in one physical machine

such that ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑M
j=1 Xi j = 1,∀i ∈ {1, 2, . . . , N } ;

∑N
i=1 Wi Xi j ≤ Mc

j y j ,∀ j ∈ {1, 2, . . . , M} ;
Xi, j ∈ {0, 1},∀i ∈ {1, 2, . . . , N } ,∀ j ∈ {1, 2, . . . , M} ;
y j ∈ {0, 1},∀ j ∈ {1, 2, . . . , M} ;

(14)

where Xi j in matrix X is a boolean variable which denotes whether the virtual machine
V Mi is deployed on the physical machine P M j . Similarly, y j indicates whether P M j

is deployed with some virtual machines. The constrains are designed to make sure that
each virtual machine can only be placed into one physical machine, and each physical
machine has a capacity constraint Mc

j to limit the number of virtual machines deployed
on it. The objective is to satisfy the memory requirement of each virtual machine and
to minimize the number of physical machines in a cloud datacenter. Obviously, the
less physical nodes are used, the more energy resources are saved.

To acquire dynamic prediction of memory usage for virtual machine scheduling
and migration, the conditions in the above bin-packing problem should be improved
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1288 Z. Tang et al.

as follows. Since each physical machine has a constraint on maximum memory usage,
the memory consumption of each physical node should not exceed the MSLA. For
each physical machine, the memory consumptions of virtual machines are always
changing dynamically. This paper proposes a novel virtual machine deployment algo-
rithm, which takes the predicted memory consumption M F j into consideration. The
predictor M F j can be calculated as follows:

M F j =
N∑

i=1

Xi j fi (t, t + k), (15)

where fi (t, t + k) represents the memory forecasting value at time t + k for a special
virtual machine V Mi , and the parameter k denotes the step of the forecast process.

This method can predict the virtual machine memory consumption in the next
service cycle, and attempt to make the servers supply the maximal actual memory
usage. Meanwhile, the overload percentage MSLA can be decreased to a minimum.
We consider the following two cases.

– When the actual memory consumption in a physical server exceeds the preset per-
centage, the virtual machine migration service should be launched. The appropriate
virtual machine should be shutdown or be migrated to another physical node, and
the physical server should not be loaded any more virtual machines.

– When the predicted memory consumption for a specific physical server exceeds the
preset percentage, no more virtual machine should be deployed on it.

The deployment model using the dynamic prediction method in this paper can
provide some suggestions to choose a suitable physical machine for the given virtual
machines. This dynamic deployment model based on the bin-packing problem can be
described as follows:

minimize z(y) =
M∑

j=1

yi , (16)

such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑M
j=1 Xi j = 1,∀i ∈ {1, 2, . . . , N } ;

∑n
i=1 Ui (t)Xi, j ≤ Lm Mc

j y j ,∀ j ∈ {1, 2, . . . , M} ;
M AC j = ∑N

i=1 Ui (t)Xi, j ,∀ j ∈ {1, 2, . . . , M} ;
M F j = ∑N

i=1 Xi, j fi (t, t + k),∀ j ∈ {1, 2, . . . , M} ;
V Mi .rm < M SL A j (1 + r) − M AC j ,∀i ∈ {1, 2, . . . , N } ,∀ j ∈ {1, 2, . . . , M} ;
(M F j − M SL A j )/M SL A j < r,∀ j ∈ {1, 2, . . . , M} ;
Xi, j ∈ {0, 1},∀i ∈ {1, 2, . . . , N } ,∀ j ∈ {1, 2, . . . , M} ;
y j ∈ {0, 1},∀ j ∈ {1, 2, . . . , M} ;

(17)
where the Lm value can be preset according to the system context environment, the vari-
able Ui (t) represents the actual memory consumption of the current virtual machine
V Mi , and the variable M F j can be regarded as the predicted memory consumption of
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P M j , which is based on time series. In addition to the constraints in the static deploy-
ment model, the extra constraints in the dynamic deployment model are designed to
make sure that the requested memory of a virtual machine does not cause excessive
memory consumption on a physical machine, and that the predicted memory con-
sumption does not cause the extra memory consumption to exceed r .

4.2 The VM-DFS algorithm

In this paper, we merely consider memory resource consumption for virtual machine
placement. In the VM-DFS algorithm, the first-fit descending (FFD) algorithm [19] is
employed to select the most adaptive physical machines for current virtual machines.
FFD provides a fast but often non-optimal solution, involving placing each item into
the first bin in which it will fit. The algorithm can be made much more effective by
first sorting the list of elements into a decreasing order, although this still does not
guarantee an optimal solution and for longer lists may increase the running time of
the algorithm.

Fig. 5 The architecture for dynamic prediction and VM scheduling
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Figure 5 shows the workflow architecture of the VM-DFS algorithm, which is
outlined as follows.

– System initialization Set the system initial parameters.
– Physical machine selection for each virtual machine request, analyze the monitoring

management service information first, and then call the prediction service, which
can count and analyze the historical virtual machine memory consumption, and
finally predict the future memory usage.

– Virtual machine deployment Collect all the virtual machine actual memory con-
sumption using the system monitoring service periodically through the first-fit
descending algorithm.

The detailed description of VM-DFS is given in Algorithm 1. According to the
FFD algorithm, the physical machines are checked to find the first suitable one to
place the current virtual machine. We notice that a virtual machine V Mi is deployed
on a physical machine P M j if the requested memory V Mi .rm of the virtual machine
does not cause excessive memory consumption on P M j (lines 7–8). Furthermore, the
predicted memory consumption of V Mi does not cause the extra memory consumption
to exceed r (lines 9–15).

Algorithm 1 Virtual machine dynamic forecast scheduling (VM-DFS)
Require:

V M List : The requested virtual machine list to be placed: V M1, V M2, …, V M N ;
P M List : The current physical machine list P M1, P M2, …, P M M ;
Lm : The threshold for the maximum physical machine memory allocated to virtual machines;
r : The percentage of VM memory forecast exceeding Lm of the PM.

Ensure:
X : The matrix denoting the mapping of virtual machines to physical machines.

1: for each V Mi in V M List do
2: for each P M j in P M List do
3: M A j = Mc

j − M R j ; //Calculate the available memory in P M j
4: M SL A j = Lm × M A j ; //Calculate the allocatable memory while satisfying SLA

5: M AC j =
N∑

i=1
Ui (t)Xi j ; //Calculate the actual memory consumption in V M j

6: M F j =
N∑

i=1
Xi j fi (t, t + k); //Forecast the total consumption of all virtual machines in V M j

7: //Determine whether V Mi can be deployed on P M j
8: if V Mi .rm < (M SL A j × (1 + r) − M AC j ) then
9: //Calculate the percentage of forecast memory consumption exceeding M SL A j
10: r ′ = (M F j − M SL A j )/M SL A j
11: //Determine whether the future requirement of V Mi can be satisfied on P M j
12: if r ′ ≤ r then
13: Xi j = 1; //Place V Mi on P M j
14: break; //Continue to place the next V Mi+1
15: end if
16: end if
17: end for
18: end for
19: return
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5 Experimental performance analysis

The experimental environment is based on CloudSim [26], which is an open
source cloud simulation toolkit. We extend the CloudSim platform to implement
the algorithm in this paper. Some components and classes in source codes such
as “datacenter” and “host” have been modified to fit the program running. In
this experiment, the virtual machine list with memory quota is initially defined as
(4, 2, 3, 2, 1, 3, 3, 3, 1, 4, 1, 4, 2, 3, 3, 4, 3, 1, 2, 4), whose dimension is recorded as
Gigabyte. In this list, the total memory size is 53 GB, and for each physical machine,
the inherent memory resource MA is preset as 12 GB, and the reserved memory
resource MR can be set to 2 GB. In [14], the threshold depends on the allocated
resource it is using, and ranges from 0.75 to 0.90. Considering that the threshold
should be set lower if the resource consumption changes frequently, to satisfy the
virtual machine requirement under the memory SLA, the threshold Lm is set to 0.8
in this experiment environment. Meanwhile, for the actual virtual machine memory
consumption, we denote the percentage of extra memory as variable r , and its value
is related to the following specific experimental context.

This paper conducts the experiments in the following aspects.
Scenario 1 Comparison of virtual machine deployment between the algorithm in

this paper and the default VM-static algorithm in CloudSim.
Scenario 2 Comparison of numbers of physical nodes under different numbers of

virtual machines with different memory quota orderings.
Scenario 3 Comparison of the impact of memory over-consumption on the number

of activated physical machines.
In these experiments, the VM-DFS algorithm is compared with other virtual

machine placement policies. For simplicity, in the static algorithms, the actual mem-
ory consumption of each virtual machine is not taken into account. The memory
consumption changes of the virtual machines are generated through the random func-
tion in CloudSim. To improve the accuracy of experimental results, each group of
experiment is run multiple times, and we finally choose the average results.

5.1 Experiment of virtual machine distribution

In this experiment, we set the value r (i.e., the percentage of extra memory consump-
tion) to 0.1. From simulation and experimentation results, we can see that at least 6
physical machines are required when using the static deployment method. However,
by the advantage of dynamic forecast, only 5 physical machines are needed when the
VM-DFS algorithm is employed. The main reason is that the scheduling program will
first forecast the memory consumption before the deployment of each virtual machine,
according to the definition r ′ = (M F − M SL A)/M SL A. Meanwhile, the memory
quota of the virtual machine list in this process can be sorted in a non-increasing order
(4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1).

As shown in Fig. 6, at the beginning of deploying stage, since there is no virtual
machine being deployed on any physical machine, the prediction mechanism has not
yet begun to work. The results indicate that, for the last 3 virtual machines, the VM-
DFS algorithm does not need to start any more physical machine comparing with the
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1292 Z. Tang et al.

Fig. 6 Comparison of virtual machine distribution between DFS and VM-static algorithms

static algorithm. Because at the beginning, the deployment policy prefers to choose
the large memory quota. In this experiment, we can learn that the average number of
the physical machines in demand is 5, and the number is 6 for the static algorithm.
From this experiment, by saving more physical hosts and using the memory resources
more effectively, the VM-DFS algorithm can get better performance than other static
algorithms.

5.2 Experiment for different orders of memory quotas

To verify the stability and scalability of the VM-DFS algorithm, we change the virtual
machine list in the experiment, with different orderings of the virtual machine memory
quota, i.e., ascending order, descending order, and random order. The memory quota
of each virtual machine is generated from a random function, which is in the scope of
{1, 2, 3, 4}.

To improve the accuracy of experimental results, each set of experiments was run
multiple times, finally the average number of all results is counted as the final out-
come.From the experiment results shown in Fig. 7a, we can learn that the VM-DFS
algorithm with a descending order of quota in the virtual machine list can get the
best performance. There is no doubt that the VM-DFS algorithm acquires better per-
formance than the default static scheduling algorithm in CloudSim. With the virtual
machine number increasing, the VM-DFS algorithm can save more physical machines.
Through calculating the results in Fig. 7a, the average percentage of saved physical
machines in each experiment is shown in Fig. 7b. We also calculate the average values
of the 5 experiments in Fig. 7b with different numbers of virtual machines (20, 40, 60,
80, and 100), and get the average percentage of saved physical machines, which can
reach 17.08 %.
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Fig. 7 The saving of PMs using the DFS algorithm

5.3 Experiment on the impact of over-consumed memory

In this experiment, the number of physical machines used by our VM-DFS algorithm
is compared with that of the static virtual machine deployment (VM-static) algorithms
for different memory over-consumption percentages r . Because the pre-allocation of
memory is usually greater than the allocatable memory in a physical machine, in these
experiments, the value of r is larger than zero when the total memory consumption of
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Fig. 8 Number of PMs vs. memory over-consumption percentage

the virtual machines exceeds the MSLA of the physical machine. As shown in Fig. 8,
where the number of the virtual machines is changed to 40, the number of physical
machines reaches 11, if the memory over-consumption percentage in the VM-DFS
algorithm is close to zero. When r ≥ 0.15, the VM-DFS algorithm can save at least
3 physical nodes. When r ≥ 0.2, the VM-DFS algorithm can save at least 4 physical
nodes. But in an actual environment, some other constraints should be considered. For
example, when the memory consumption of some virtual machines come to peak, the
system should migrate some virtual machines to other physical nodes at once or close
some idle virtual machines.

In general, virtual machine migration will degrade the performance of the physical
machines. Therefore, we can learn that if we pre-allocate more memory for the virtual
machines, the physical system performance will be more degraded. Through the VM-
DFS algorithm, some policies of virtual machine placement can be supplied for a
cloud datacenter, which can implement the energy efficiency to some extent.

6 Conclusions

This paper proposes a novel virtual machine deployment algorithm for a cloud com-
puting environment, which is based on the excessive pre-allocated physical machine
memory. In this model, virtual machine placement is formalized as a bin-packing prob-
lem, which can be solved by employing the FFD scheme. Especially, based on dynamic
deployment and time series forecasting theory, the p-AR’s coefficient parameters can
be estimated in our model through least square. Based on the bin-packing model and a
dynamic forecast method, the proposed algorithm can minimize the number of active
physical machines relatively. Furthermore, every virtual machine can conform to the
required memory SLA. In future research, more system resources such as CPU and
storage will be considered in our model, so that our method can be applied to more
realistic situations in a cloud computing environment.
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