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Abstract As one of the famous probabilistic graph
models in machine learning, the conditional random
fields (CRFs) can merge different types of features,
and encode known relationships between observa-
tions and construct consistent interpretations, which
have been widely applied in many areas of the Natu-
ral Language Processing (NLP). With the high-speed
development of the internet and information systems,
some performance issues are certain to arise when
the traditional CRFs deals with such massive data.
This paper proposes SCRFs, which is a parallel opti-
mization of CRFs based on the Resilient Distributed
Datasets (RDD) in the Spark computing framework.
SCRFs optimizes the traditional CRFs from these
stages: First, with all features are generated in parallel,
the intermediate data which will be used frequently are
all cached into the memory to speed up the iteration
efficiency. By removing the low-frequency features
of the model, SCRFs can also prevent the overfitting
of the model to improve the prediction effect. Sec-
ond, some specific features are dynamically added
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in parallel to correct the model in the training pro-
cess. And for implementing the efficient prediction,
a max-sum algorithm is proposed to infer the most
likely state sequence by extending the belief propa-
gation algorithm. Finally, we implement SCRFs base
on the version of Spark 1.6.0, and evaluate its per-
formance using two widely used benchmarks: Named
Entity Recognition and Chinese Word Segmentation.
Compared with the traditional CRFs models running
on the Hadoop and Spark platforms respectively, the
experimental results illustrate that SCRFs has obvi-
ous advantages in terms of the model accuracy and the
iteration performance.

Keywords Conditional random fields · Feature
selection · Machine learning · Parallel computing ·
Spark

1 Introduction

With the rapid development of information society,
the data which generated from the internet is rapidly
growing with the index grade, which usually have the
following characteristics: large amount, high dimen-
sion, complex structure and containing much noises,
but also have a widespread application prospect [1].
The traditional sequential data processing algorithms
are not good enough to analyze this large volume of
data especially for the machine learning model with
high iterative calculation [2].
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Conditional random fields (CRFs) is precisely this
kind of model: a type of conditional probability model
with large amount of calculation for the parameters
evaluation [3]. It has been widely applied in many
applications, such as classifying regions of an image
[5, 6], biomedical named entity [7, 8], and text annota-
tion [9, 10] with satisfactory results. The advantage of
the CRFs model is the ability to express long-distance-
dependent and overlapping features, which is a sig-
nificant superiority compared with the generative sta-
tistical model. As another probabilistic graph model,
Hidden Markov Models (HMMs) [11, 12] is unable
to use the complex features for its strict assumption
of independence. Furthermore, CRFs can overcome
the label bias question which exists in other discrimi-
nate model, such as maximum entropy Markov model
(MEMMs) [13], etc.

However, for the model which complicated with
many more parameters, the training time of CRFs is
usually longer than other models. When facing large-
scale data, the time efficiency of the CRFs model with
the traditional stand-alone processing algorithm is
often unsatisfied. For example, classical CRFs model
needs approximately 45 hours to train only 400k train-
ing examples (3.0GHz CPU, 1.0G memory, and 400
iterations) [14]. It is caused by the problem that the
model parameter estimation cycle is long, because it
needs to compute the global gradient for all features.
The time and space complexities of the algorithm
show non-linear growth with the growth of the train-
ing data, number of kinds of labels and the number
of features. The expensive training cost is one of very
important issues, which make CRFs cannot be effec-
tively applied to the applications with massive data. To
overcome this bottleneck, faster processing and opti-
mization algorithms in parallel computing platforms
have been becoming a very active research area.

For most machine learning algorithms, the high
iterations needs frequent I/O operations for intermedi-
ate data which stored in disk. In current popular data
processing frameworks, compared with Hadoop [15],
Spark platform [16] supports a Resilient Distributed
Datasets (RDD) model which is built on a memory
computing framework. It allows users to store data
cache in memory, and to do computation and iteration
for the same data directly from the memory. Based
on the computing in memory mode, Spark platform
can save huge amounts of disk I/O operations time.
Therefore, it is more suitable for machine learning

algorithms with iterative computation compared with
the traditional computation methods.

Traditional CRFs needs to consider three key
steps, i.e., feature selection, parameter estimation, and
model inference. For the features selection is the key
problem that exert great effects on the training results,
it can determine the performance of the model largely.
In theory, CRFs model has a great flexibility to use
a wide range of features, and the more features used
in the model, the more accurate the results can be
obtained in implementations [17]. However, for not all
features are decisive to the results of mode inference,
as the number of complicated features increases, the
difficulty and importance of constructing the useful
features grows.

Moreover, the parameter estimation becomes the
most important reason that degrades the performance
of the CRFs model, especially when the training
datasets is large. In actual implementation, Lim-
ited Memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) is a popular method that has been used to do
parameter estimation of CRFs [10, 18]. However, for
the execution of likelihood function is a batch process,
the model parameters are usually not revised until the
overall training set has been scanned. Gradient descent
is the main step in L-BFGS, as a specific improved
method, Mini-batch gradient descent (Minibatch-GD)
[19–21] can updates the parameters only after scan-
ning part of the training data. However, for improving
the performance of this algorithm to handle large-scale
data efficiently, it is still a challenge to parallelize such
a dependent iterative process.

In this paper, we solve such an inter-dependent
problem with an efficient strategy based on the Spark
platform. Most of the ways to improve the time effi-
ciency of the CRFs model often focus on how to
reduce the model parameter estimation time. However,
the complexity of the model inference step increases
quickly with the growth of constraint length of train-
ing datasets as well, and the model inference can be
formerly performed using a modified specific belief
propagation algorithm [22, 23], which is improved
within the Spark platform to parallelize the model
inference with a simple strategy in our works.

This paper proposes an improved conditional random
fields algorithm based on the parallel computing
model based on the Spark platform (SCRFs), which
focuses on both the accuracy and performance for
massive unstructured data. By reducing the low-
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-frequency features of the model, SCRFs can avoid
the overfitting of the model, which can improve the
F1 value of the model prediction [24]. Moreover,
SCRFs can caches the intermediate data which are
used frequently into the memory to speed up the model
iteration. All of these are designed to improve the
effect and performance of SCRFs for the large and
complicated input data. From the experimental results
in the Spark environment, it has been proved that with
F1 value increasing on the test data, the algorithm
achieves significant speed-up ratio compared with the
original CRFs algorithm implemented on Hadoop and
Spark platforms. The major contributions of this paper
are summarized as follows:

– We propose an efficient and fast method to gen-
erate features on the Spark platform. The features
can be chosen in parallel and adjusted dynam-
ically through excluding the unused-features to
correct the model in the training procedure.

– A Parallel training and prediction mechanism
of SCRFs model is proposed based on the dis-
tributed memory management architecture, which
can cache the generated intermediate data into
memory timely. For the iteration in training pro-
cedure is executed in memory, this way can speed
up the traditional solution procedure of CRFs
significantly.

– We implement SCRFs based on Spark 1.6.0 plat-
form and evaluate its performance using some
of the most common benchmarks. Experimental
results verify the effectiveness and correctness of
the proposed algorithms.

The rest of the paper is organized as follows:
Section 2 reviews the background of traditional con-
ditional random fields. Section 3 proposes the paral-
lel implementation of SCRFs based on Spark RDD.
Experimental results and evaluations are showed in
Section 4 with respect to the accuracy and perfor-
mance. Section 5 surveys related works on accelerat-
ing CRFs. Finally, Section 6 concludes the paper.

2 Background

2.1 Conditional Random Fields

Conditional Random Fields (CRFs) was first intro-
duced by Lafferty et al. [3] in 2001 as a sequence

data labeling recognition model based on statistical
approaches, and it is regarded as an undirected graph
model or Markov Random Field as Fig. 1.

A linear-chain CRFs defines the conditional prob-
ability of the state sequence Y for a given input
sequence X, which can be formalized as (1):

P(y|x) = 1

Z(x)
exp

(
T∑

t=1

K∑
k=1

λkfk(yt−1, yt , xt )

)
(1)

where Z(x) is a normalization factor, which is used
to ensure that p(y|x) meets the classical probability
distribution

∑
yp(y|x) = 1:

Z(x) =
∑
y

exp

(
T∑

t=1

K∑
k=1

λkfk(yt−1, yt , xt )

)
(2)

where fk(yt−1, yt , xt ) is a feature function which
can only have a value of 1 or 0 in general cases.
Many linear-chain CRFs use richer features of the
input, such as the previous and the next one of cur-
rent word, the identities of surrounding words, and so
on. In Fig. 1, X = {x1, x2, · · · , xT } is treated as a
single large observed node on which all of the fac-
tors depend, rather than each of the x1, x2, · · · , xT

is treated as an individual node. In the linear-chain
CRFs, each feature function can rely on the observa-
tions from any state and any point in time, and the
observation argument to fk is shown as a vector xt ,
which should be understood as containing all the com-
ponents of the global observations x that are needed
for computing the features at time t . For example, if
CRFs uses the next word xt+1 as a feature, then the
feature vector xt is assumed to include the identity of
word xt+1.

Fig. 1 Linear-chain CRFs model

Author's personal copy



Z. Tang et al.

The corresponding weights of feature functions
λ = {λ1, λ2, · · · , λT } are obtained in the training
procedure of the model, which is the key problem of
CRFs. A higher λk weight means the corresponding
feature appears more frequently, which is more likely
to occur in the model.

D = {(xi, yi)}Ni=1 are the examples of the train-
ing data, where each xi = {xi

1, x
i
2, · · · , xi

T } denotes
the input sequence, and yi = {yi

1, y
i
2, · · · , yi

T } is
the known output sequence. In the CRFs, parameter
estimation is the procedure to find a set of appropri-
ate parameters {λk} to make the conditional proba-
bility P(y|x, λ) which obtained from the model fit
the training data as much as possible. For example,
given an arbitrary training instance xi , the conditional
distribution P(y|xi, λ) of model should be as close
as possible to the true output yi from the training
data.

In linear-chain CRFs, for each feature fk(yt−1, yt ,

xt ), the total values of fk that occurs in the training
should be as close as possible to the total values of fk

from the conditional distribution P(y|x, λ):

N∑
i=1

T∑
t=1

fk(y
i
t−1, y

i
t , x

i
t )=

N∑
i=1

T∑
t=1

∑
y′y

fk(y
′, y, xi

t )p(y′, y|xi
t )

(3)

And the log-likelihood function of the training data D

is shown below:

L(λ) =
N∑

i=1

log P(yi |xi, λ) (4)

From (1) and (4), the log-likelihood function can be
formalized as (5):

L(λ) =
N∑

i=1

log

(
1

Z(xi)
exp

(
T∑

t=1

K∑
k=1

λkfk(y
i
t−1, y

i
t , x

i
t )

))

=
N∑

i=1

T∑
t=1

K∑
k=1

λkfk(y
i
t−1, y

i
t , x

i
t ) −

N∑
i=1

log Z(xi) (5)

To find the appropriate value for each item in the
parameter λ to minimize the convex function L(λ), the

partial derivative of the parameter λk can be calculated
as (6):

∂L(λ)

∂λk

=
N∑

i=1

T∑
t=1

fk(y
i
t−1, y

i
t , x

i
t ) − 1

Z(x)

∂Z(x)

∂λk

=
N∑

i=1

T∑
t=1

fk(y
i
t−1, y

i
t , x

i
t )

−
N∑

i=1

T∑
t=1

∑
y′y

fk(y
′, y, xi

t )p(y′, y|xi) (6)

From (3), the gradient of the log-likelihood func-
tion just equals to these constraint equations. Unfortu-
nately, there is no closed-form solution for searching
the target parameter λ by making the above equa-
tion to be zero. As a result, the parameter selection
procedure needs to use some numerical iteration tech-
niques, such as GIS (Generalized Iterative Scaling
Algorithm), IIS (Improved Iterative Scaling Algo-
rithm), L-BFGS (Limited-memory Broyden-Fletcher-
Goldfarb-Shanno Algorithm) [25], and so on.

Parameter estimation requires computing the con-
ditional distribution P(y|x, λ). This is the task of
probabilistic inference, which is a very challenging
problem and is NP hard [3, 4]. In arbitrarily-structured
CRFs, exactly calculating the problem is intractable,
thus we would use some approximation methods
such as loopy Belief Propagation (BP) [26] and
Gibbs sampling [27]. There are two specific inference
problems:

(1) Computing marginal distributions p(ys |x, λ)

over a subset Ys . The set of Ys of the marginal distribu-
tions usually contains either of adjacent variables or a
single variable. The BP algorithm can be used to solve
the problem.

(2) Computing the y∗ = argmaxyp(y|x, λ). Based
on this, when given a input sequence x, we can find
out the most likely output sequence y.

2.2 The Model Inference in CRFs

Efficient inference is critical for CRFs, which is the
key procedure during data training and label predict-
ing on new inputs. The two inference problems are
intractable for general graphs where we could only
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use approximation algorithms. In the case of linear-
chain CRFs, both of the above inference tasks can be
accomplished efficiently and exactly by extending BP
algorithm.

The inference algorithm is usually called repeat-
edly in overall training procedure of parameters.
For its expensive computation with massive data,
how to improve the efficiency is increasingly urgent.
Although the marginal can just be obtained by the
brute force inference, it is unable to handle anything
larger than a tiny graph. The time required for force
inference is proportional to the length of sequence. Let
the length of sequence y be D, and y has N differ-
ent labels, thus the time complexity of an brute force
inference is O(ND), which is intolerable.

The structure of cliques in the linear-chain CRFs
is a line, in which each of clique contains only pairs
of adjacent states: (yt−1, yt ). Hence, we can establish
clique tree for each instance in the training data. Let
�t(Ct ) be the t th clique in the line, and Ct represents
the contained variables, which contains the pairs of
adjacent variables: (yt−1, yt ). The value of �t(Ct ) is
determined by an exponentiated weighted sum over
the features of the clique as (7):

�t(yt−1, yt , xt ) = exp(

K∑
k=1

λkfk(yt−1, yt , xt )) (7)

Let δi→j (si,j ) be the message passed from �i to
�j , and si,j is the shared variables both �i and �j all
contain. The value of δi→j (si,j ) can be calculated by
(8):

δi→j (si,j ) =
∑

Ci−Sij

�i ×
∏

k∈(Ni−j)

δk→i (8)

where Ni denotes all its neighbors. After all messages
have been passed, the marginal distributions of Ci can
be calculated by (9):

p(Ct |x) = 1

Z(x)
× �t ×

∏
k∈(Nt )

δk→t (9)

For the message passing in the clique tree is a sum-
product, the pseudo code to compute the marginal
distributions for sum-product belief propagation is as
described in Algorithm 1.

Algorithm 1 consists of four steps:
Step 1. Initialization (lines 1-3): Add each related

features fk to its corresponding cliques, and construct
the initial potentials according to the (7).

Step 2. Repeatedly calculate forward propagation
messages (lines 4-7): Forward calculate the massage
passed from the first clique to the last clique according
to (8).

Step 3. Repeatedly calculate backward propagation
messages (lines 8-11): Backward calculate the mas-
sage passed from the last clique to the first clique
according to (8).
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Step 4. Calculate the marginal distributions accord-
ing to (9) (lines 12-15).

In this model, we need to output the most likely
label sequence Y corresponding to a set of input
X, instead of calculating marginal probabilities over
individual characters. This can be attained by using
max-sum message passing [26] to calculate y∗ =
argmaxyp(y|x, λ). Let γi→j (si,j ) be the max-sum
message, and its value can be calculated as (10):

γi→j (si,j ) = max
Ci−Si,j

⎛
⎝θi +

∑
k∈(Ni−j)

γk→i

⎞
⎠ (10)

2.3 Batch-GD Algorithm in CRFs

CRFs tends to have more parameters and more com-
plex structure than a simple classifier, e.g., there
maybe several hundred thousand parameters. It is
necessary to use some regularization penalty on the
parameter values to avoid the overfitting. A common
choice of penalty is the L2-regularization based on
a regularization parameter 1/2σ 2 that determines the
strength of the penalty. The regularization can also be
viewed as performing maximum a posteriori (MAP)
estimation of λ, and the best value of parameter σ 2

depends on specific training data. The regularized log
likelihood function we seek to minimize is as (11):

L(λ) =
N∑

i=1

T∑
t=1

K∑
k=1

λkfk(y
i
t−1, y

i
t , x

i
t )

−
N∑

i=1

log Z(xi) −
K∑

k=1

λ2
k

2σ 2
(11)

Parameters estimation in CRFs needs an itera-
tive process with high time complexity, but some
quasi-Newton methods, such as L-BFGS, are still
showed significantly more efficient [3]. This method
requires computing the average gradient over the
entire datasets before making a single parameter
update. If the training set has a very large size and
contains a large number of independent and identi-
cal distributed (i. i. d) samples, then this may seem
wasteful. Thus it should be more efficient to update
the parameters after computing only a few examples,
rather than sweeping through all of them.

Batch Gradient descent (Batch-GD) is such a sim-
ple optimization method that conforms to this insight.
Although directions of the individual steps may be

much better in L-BFGS, Batch-GD directions can be
worked out much faster which can get reasonable
results after only a few passes through the overall
datasets.

With the size of mini-batch is set as m, Batch-GD
algorithm consists of three steps in each iteration and
the process in each iteration is as follows.

Step 1. Select m samples from the training data.
Step 2. Calculate the gradient vector ∇L as (12):

∇L =
(

∂L(λ)

∂λ1
,
∂L(λ)

∂λ2
, · · · ,

∂L(λ)

∂λK

)
(12)

Obviously, ∇L can be obtained by calculating the
partial derivative of each λk:

∂L(λ)

∂λk

=
m∑

i=1

T∑
t=1

fk(y
i
t−1, y

i
t , x

i
t )

−
m∑

i=1

T∑
t=1

∑
y′y

fk(y
′,y,xi

t )p(y′,y|xi)− λk

σ 2
(13)

Step 3. Calculate the step size at in the t th iteration as
(14):

at = a√
t

(14)

where the input parameter a is the initial step-size.
Note that selecting the best step-size for Batch-GD
methods can often be delicate in practice, which is
needed to update the estimated parameters of the λ in
each iterative step.

3 The Parallel CRFs Model Based on Spark

Apache Spark has an advanced DAG execution engine
that supports cyclic data flow and in-memory computing,
which can run programs up to 100× faster than
Hadoop MapReduce in memory, or 10× on disk [16].
Based on the parallel computing and distributed memory
management mechanism in Spark platform, the perfor-
mance of the SCRFs algorithm can be improved through
three optimized parallel processes: features genera-
tion, parameters training, and the prediction process.

3.1 Parallel Feature Generation

Traditional procedure of features generation in CRFs
model is usually in a serial way. Because the fea-
tures based on each instance are constructed in order,
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it will cause a considerable waste of computation for
some useless features. In order to improve efficiency,
SCRFs proposed a new way to generate all features
which can be selected in parallel based on the Spark
platform.

For CRFs model is log-linear, one way to improve
the precision and complexity is to introduce more
features. Based on the identity of words in natural lan-
guage texts, there can easily be thousands of simple
features, and ten or more complicated features would
result in several million features. Large amounts of
features consume large resources of memory and com-
putation. However, most of these features are not be
useful, and they may occur only once in the training
data, or even never occur. For example, the feature
”word xt is from and label yt is person” should never
occur in the training data, and it is impossible to get
a value of 1. These features are usually classified
into unused-features. But when they are assigned a
negative value, the possibility of incorrect label can
be decreased. The more negative the assigned value
is, the less likely the label is. (The training proce-
dure of the parameters does in fact assign negative
values to these features). In general, unused-features
can slightly improve the accuracy of the model at the
expense of greatly increasing the complexity.

The model still can make correct decisions without
these unused-features. For example, the feature ”word
xt is from and label yt is person” is impossible to be
useful, while ”from” is a common word and will be
assigned high probability to other (not a person) label.
To reduce the complexity of the model and ensure its
accuracy, only these unused-features which will likely
correct the model can be included into the model. In
many tasks, even in the early training procedure, many
of properties are correctly labeled. For example, for
the word ”from” occurs with high frequency, it will not
be labeled as person. The model can learn this so quick
that there is no need to include this feature ”word xt is
from and label yt is person”.

Only these unused-features which contribute to the
model will be included. In the phase of feature genera-
tion, all features will be generated but only these ones
appears in will be added to the model at first. But as
the model entering into the training procedure, if some
used-features will do good to the model, these features
will also be checked and included.

First of all, the collected training data in a particular
format should be loaded into the Spark platform. The

big data should be stored as a type of RDD object in
the Spark platform.

RDD(TrainData)=SparkContext.textFile(T rainData);

Each instance of RDDoriginal contains the input
sequence X = {x1, x2, · · · , xi, · · · , xn} and cor-
responding output sequence Y = {y1, y2, · · · ,

yj , · · · , ym}. Because the feature template depends on
xt , in order to generate all features, we need to scan
all of the training data. Without a parallel processing
framework based on computing cluster, this procedure
will be time-consuming in serial way. The algorithm
of the parallel generating features procedure of SCRFs
Model is shown in Algorithm 2.

In the transformation stage, the xi
t in each train-

ing instance is converted to some key-value pairs. The
keys contains all features generated by xi

t according
to the feature template, and corresponding value in the
Map can only get a value of 1 or 0 representing the
presence or absence of this feature.
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In the Reduce stage, the same features will be com-
bined and their value will be accumulated. The result
will be used to initialize parameters vector, which is
a sparse vector to reduce computational cost. The fea-
tures with total counts equal to zero will be set to
the unused-features while the others will be set to the
used-features. The unused-features will not be added
to the model naturally, but their parameters may be
updated during the training procedure.

3.2 The Transformation & Caching for the Train Data

For the inference algorithm are called frequently in the
training procedure, the training data need to be trans-
formed into corresponding features many times. This
transforming procedure can also be implemented in
parallel on the Spark platform to improve the perfor-
mance. Based on the distributed memory management
mechanism of the Spark platform, we can cache the
intermediate results into the memory on the Spark
platform, which supports frequently reuse in the next
procedure.

Specifically, the xi
t in each training instance will be

converted to a vector which contains the indexes of
all features generated by xi

t in the RDD(f eature).
In (15), we assume RDD(f eature) has K fea-
tures, and FI (xi

t ) represents the index feature vector
of xi

t :

FI (xi
t ) = {k | fk(y

′, y, xi
t ) = 1} (15)

In SCRFs, (yi
t−1, y

i
t , x

i
t ) in each training instance

is converted to a scalar, which means the index of
feature f (yi

t−1, y
i
t , x

i
t ) in the RDD(f eature). And

the scalar can be formalized as EI (yi
t−1, y

i
t , x

i
t ) as

(16):

EI (yi
t−1, y

i
t , x

i
t ) = {k | fk(y

i
t−1, y

i
t , x

i
t ) = 1} (16)

In the implementation of SCRFs, the intermediate
results will be cached into the memory on the Spark
framework instead of being saved on the HDFS, which
will be directly reused in the next iteration of the

training procedure. The specified steps of the parallel
transforming for training data are shown in Algo-
rithm 3. In this way, each training instance is trans-
formed into the feature vector and the empirical fea-
ture factor, and then these intermediate results will be
cached into memory to improve the efficiency of data
I/O.

3.3 Parallel Training Procedure

The parameter estimation is the crucial component
of model training. It is clear that there will certainly
be considerable time consumption for data training
and machine learning for large-scale training data.
Especially with a large number of i. i. d samples,
the traditional ways of batch training will be very
time consuming. Equation (17) shows the calculating
process for parameter λ:

∂L(λ)

∂λk

=
m∑

i=1

(
T∑

t=1

fk(y
i
t−1, y

i
t , x

i
t )

−
T∑

t=1

∑
y′y

fk(y
′, y, xi

t )p(y′, y|xi)

⎞
⎠ − λk

σ 2
(17)
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Note that the first part is the expectation of feature
values fk under the empirical distribution with a given
instance, which can be described as (18).

EiD[fk] =
T∑

t=1

fk(y
i
t−1, y

i
t , x

i
t ) (18)

The second part is the expectation of feature values
fk , which can be described as (19):

Eiλ[fk] =
T∑

t=1

∑
y′y

fk(y
′, y, xi

t )p(y′, y|xi) (19)

After simple replacements, Equation (17) can be
written as:

∂L(λ)

∂λk

=
m∑

i=1

(EiD[fk] − Eiλ[fk]) − λk

σ 2
(20)

In the implementation of SCRFs based on Spark
platform, EiD[fk] can be directly obtained by
RDD(EI). However, Eiλ[fk] need inference algo-
rithm to calculate the marginals. RDD(FI) are used
to establish the clique tree, and unused-features among
them are filtered out and will not be added to the
cliques to reduce computational cost. After same itera-
tions while the model has not been fully trained, these
unused-features which may correct the mistake of cur-
rent model will be changed to used-features and will
be trained in the rest training procedure.

When computing the marginal distributions, if the
probability of an unused-feature is larger than a cer-
tain value which means the model may make mis-
takes without this feature, hence the feature would be
included and be trained to modify the model. he steps
of the parallel training procedure of SCRFs model is
shown in Algorithm 4, we can easily work out that the
time complexity of the parallel training procedure is
O(G × m × L × D2), where G is the iteration times,

m is the number of training samples, L is the length of
sentence, D is the number of labels.
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3.4 Parallel Prediction Procedure

In most model implementations of machine learning, the
obtained trained parameters of model are used to predict
test data, and each test data will be inferred and predicted
by serial. In order to improve the prediction speed of
SCRFs with massive data, this paper proposes a paral-
lel prediction based on the Spark framework. We adopt
max-sum belief propagation algorithm to implement
the prediction procedure for single instance, and the
pseudo code is described as Algorithm 5.

In order to prevent underflow, Algorithm 5 performs
computations in the logarithmic domain. The aim is to
output the most probable instantiation of the variables in
the network instead of solving the marginal distributions
for each of them. Note that this algorithm is nearly
identical to Algorithm 1, with the sum replaced by
max and the products replaced by sum in the definitions.

Based on Algorithm 5, Algorithm 6 shows the
implementation steps of the parallel predict algorithm.
First, we need to load the test datasets into the Spark
as the type of RDD objects while the global variables
are needed to be broadcasted to all worker nodes. Then
transform the test data into the used-features and fur-
ther transform it into the clique tree. Finally, calculate
the output by using the max-sum belief propagation
algorithm. The number of partitions in the RDD deter-
mines the concurrent tasks number, and each map
function optimizes a partition in parallel. In the case
of the predict algorithm, the output of each map func-
tion is a partial state sequence for the local partition.
In this way, without combined output, the reduce stage
is unnecessary.

4 Evaluation

In this section, SCRFs is validated under two natural
language processing tasks: Named Entity Recognition
and Chinese Word Segmentation. In order to evaluate
the performance in various conditions, the experimen-
tal codes are run on different numbers of computing
nodes with various sizes of datasets.

4.1 Experimental Settings

SCRFs has been evaluated on a practical test clus-
ter, which includes 6 slave nodes and 1 master node
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Table 1 The software and hardware configurations in the Spark cluster

The node type Master Slave

Software environment Ubuntu 12.04, JDK 1.7, Hadoop 2.6.0, Spark 1.6.0 Ubuntu 12.04, JDK 1.7, Hadoop 2.6.0, Spark 1.6.0

CPU 4 cores, 2.7 GHz 4 cores, 2.7 GHz

Memory 8G 8G

Quantity 1 6

connected by 1 Gb Ethernet switch. The experimen-
tal environment is based on Hadoop 2. 6. 0 and Spark
1. 6. 0. The hardware and software configurations are
shown in Table 1. All experiments use the default
configurations in Hadoop and Spark for HDFS.

4.2 The Benchmark of Named Entity Recognition

Named Entity Recognition is a critical task for auto-
matically mining knowledge from biological literature
[28], we implement this benchmark based on JNLPBA
2004 datasets [29], and the training set is GENIA
corpus v.3.02 [30], which consists of 2000 abstracts
that are searched out by MEDLINE database with
using MeSH terms human, blood cells and transcrip-
tion factors as the keywords. 404 abstracts of the test
set are also from MEDLINE database. Half of them
are obtained by the same way as the training set,
and the other half are searched out by using MeSH
terms blood cells and transcription factors as the key-
words. Tables 2 and 3 shows the basic and category
information about JNLPBA 2004 datasets.

In our experiments, we only use the five classes: pro-
tein, DNA, RNA, cell line, and cell type. In these exper-
iments, we increase the datasets to different sizes by
transforming or copying in a random sampling way to
see the accuracies and performance of this algorithm.

4.2.1 Accuracy Evaluation

In this section, the indicators recall, precision, and
F1 values are used to evaluate the performance and

Table 2 JNLPBA 2004 datasets basic information

Datasets Num of Num of Num of

abstracts sentences words

Training set 2000 18546 472006

Test set 404 3856 96780

effectiveness of SCRFs, by comparing them with the
following algorithms and their implementations:

CRFs: the implementation of the basic original con-
ditional random fields algorithm in single machine;

SOCRFs: the implementation of original condi-
tional random fields algorithm in Spark platform;

MRCRF: the basic original conditional random
fields algorithm based on ordinary MapReduce imple-
mentation in Hadoop platform [31];

Recall (also known as sensitivity) is defined as (21),
which is the fraction of relevant instances that are
retrieved:

Recall = Ncorrect c

NC all

(21)

where Ncorrect c denotes the number of identified
named entities which are correctly classified into class
C, and NC all represents the number of all identified
named entities in class C.

Precision is the fraction of retrieved instances that
are relevant, which is defined as (22):

Precision = Ncorrect c

NC reality

(22)

where NC reality denotes the number of identified
named entities which are actually classified into class
C.

F1 value takes the accuracy and precision into
account comprehensively, which can be calculated as
(23):

F1 = 2 × Recall × Precision

Recall + Precision
(23)

Table 3 JNLPBA 2004 datasets category information

Datasets Protein DNA RNA Cell type Cell line

Training set 30269 9533 951 6718 3830

Test set 5067 1056 118 1921 500
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Table 4 SCRFs of Biomedical named entity recognition

Features Class Precision Recall F1 Score

charngram 1:6+ en-01-18 Protein DNA
RNA Cell line
Cell type All

74.43 71.34
62.33 59.83
73.24 69.77

80.64 77.47
83.68 71.03
78.92 82.86

77.41 74.28
71.44 64.95
75.97 75.75

Table 4 summarizes the results of SCRFs of named
entity recognition:

We tried to choose more common features to con-
stitute a combination of features in this experiments.
Figure 2 illustrates the comparisons of the precision,
recall, and F1 value between our algorithm and the
other algorithms on the JNLPBA 2004. The results
show that MRCRF and CRFs are approximately the
same due to the inherent similarity of the two imple-
mentations. As a matter of fact, these three indicators
are only depend on the specific algorithm processes,
and no matter whether they are running on a paral-
lel computing environment or not. Hence, in Fig. 2,
the experimental results of CRFs and SOCRFs are the
same for these indicators. For the sake of simplicity,
we do not show the squares of SOCRFs in Fig. 2, and
the same reason can be used to explain the results in
Fig. 11.

Owing to features selection, the indicators preci-
sion of SCRFs is a little bit lower than the other two
algorithms, and this is because that in the training pro-
cedure of SCRFs, it requires checking and excluding
the unused-features dynamically. For the above step
is inexistent in the other algorithms, the precision of

Fig. 2 The precision, recall, and F1 of different algorithm

SCRFs would decrease slightly. And for the mecha-
nism of used-features selection, the SCRFs algorithm
can prevent over-fitting for the model, and it also can
increase the recall and F1 value compared with other
algorithms.

4.2.2 Running Time with Different Data Sizes

Figure 3 represents the variation of job execution
time when the data size ranges among {5MB, 10MB,
20MB, 30MB}. It is obvious that the processing time
increases progressively with the data size. There is no
much difference between the run time of the CRFs
and the MRCRF, which is mainly due to the commu-
nication procedure. Although the iterative calculation
in Spark framework can be optimized based on mem-
ory, the SCRFs algorithm performs badly on the small
data size. This is principally because SCRFs uses the
Mini-batch GD method to train the model parameters.
Mini-batch GD method is not useful in relational set-
tings in which the training data are not independent
identically distributed, or on small datasets. SCRFs is
a little bit better than the SOCRFs. This is because
there are not many features reduced by the SCRFs on

Fig. 3 Running time on small training data
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the small data, and in the training procedure of SCRFs,
it requires checking and excluding the unused-features
dynamically.

Figure 4 reflects the algorithm performance with
large training data, which ranges among {1GB, 2GB,
5GB, 10GB}. The time of the sequential method keeps
growing, and the extent of growth is more and more
significant. When the data size reaches 5GB, the time
of sequential method is so huge that we no longer
record. There is significant difference between the run
times of the CRF method and the MRCRF method due
to the parallel method based on the Hadoop platform.
The time of the SCRFs method has modest growth and
outperform the MRCRF and SOCRFs method espe-
cially for large-scale samples due to the transforming,
caching the intermediate results and the used features.

4.2.3 Speedup with Different Data Sizes

In order to better demonstrate the performance benefit
of the SCRFs algorithm over the other algorithms, we
calculate the parallel speedup and make comparison
between them. The Speedup is defined as the ratio of
the sequential processing time to the parallel process-
ing time, which is measured in the cluster environment
with 7 computing nodes.

Figure 5 shows that the speedup of SCRFs on par-
ticularly small data is even lower than 1. On one
hand, the reasons that Spark platform needs to start
a driver program for each job, includes schedulers
and some resources manager modules, etc. And the
time consumptions of these processes would high-
proportioned with relatively small datasets. On the

Fig. 4 Running time on large training data

Fig. 5 Speed-up on small training data

other hand, for the execution time of jobs, the time of
map phase decrease because of the smaller input data,
but the time of reduce phase would increase because
that the iterations is raised markedly even though the
time for each iteration decreases. Hence, we can know
that the Batch-GD algorithm in CRFs on Spark plat-
form is not good enough to handle the small training
data. From the experimental results, we can observe
that the speedup effect only raise when the input data
sizes exceed 30MB, which means that the traditional
resolution procedure would get the better effect with
the small size of datasets on the contrary.

From Fig. 6, it can be seen that when facing a large
amount of data, SCRFs can bring a better speedup.
The performance of SCRFs on the Spark platform is
obviously better than SOCRFs and MRCRF on the
Hadoop platform. On large datasets, Mini-batch GD

Fig. 6 Speed-up on large training data
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method can offer considerable speedups and signifi-
cantly reduce the training time. And in specific SCRFs
implementation, the features is generated and reduced
in parallel and the frequently used intermediate data
is cached to memory. The overhead involved in trans-
ferring large parameter vectors across the network
is decreased by using sparse vectors on the Spark
platform. All these improvements make our SCRFs
algorithm performs better.

4.2.4 Running Time with Different Node Scales

For the experiments in this section, the data size are
set as 30M for the small training data and 10G for the
large training data. Figure 7 shows the changes in the
job execution time under different numbers of slave
nodes with small training data. From these results, we
can find that the descending trend of execution time
is increasingly slow with the nodes increase. This is
because the Spark computing framework is based on
memory computing. In our cluster environment, each
node has 8G memory. When a few computing nodes
can load all datasets and finish the iterative calcula-
tion in memory, the growth of number of nodes merely
increase some communication consumptions among
the computing cluster.

Compared to Fig. 7, Fig. 8 illustrates the algorithm
running results with large training data. It is obvious
that the downward trends of execution time with the
increasing nodes are faster than using small training
data. This is because few data nodes cannot hold all
input data, and it would be loaded into all nodes, the

Fig. 7 Running time with different node scales on small train-
ing data

Fig. 8 Running time with different node scales on large train-
ing data

scale effect of the computing cluster is more obvi-
ous than the above group of experiments. Because
of more features used in SOCRFs than SCRFs, the
gap between the execution time of SCRFs and the
SOCRFs reduce with the nodes increase.

Figures 9 and 10 show the comparison of Speed-up
ratio among MRCRF, SOCRFs and SCRFs respec-
tively. Because when dealing with a small set of data,
the iterative process in the Minibatch-GD would cost
more resources and produce more computing time
than the LBFGS algorithm, which used in MRCRF.
Moreover, because the generated intermediate data are
cached into memory timely, SCRFs can speed the
iterative calculation effectively. As shown in Fig. 10,
the performance of SCRFs is better than MRCRF

Fig. 9 Speed-up with different node scales on small training
data
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Fig. 10 Speed-up with different node scales on large training
data

for Minibatch-GD algorithm which used in parameter
estimation usually outperform LBFGS algorithm with
large training datasets.

4.3 The Benchmark of Chinese Word Segmentation

Chinese word segmentation is a fundamental issue
in the field of natural language processing [32], we
experiment this benchmark based on the second Inter-
national Chinese Word Segmentation Bakeoff datasets
[33], which contains three corpora from different
source: Microsoft Research Asia (MSR), City Uni-
versity of Hong Kong (CU), and Peking University
(PKU). Table 5 shows the detail properties of the
three datasets. For simplicity’s sake, classical unigram
(C0, C1, C−1) and bigram (C−1C0, C0C1,C−1C1) are
used as feature templates in this experiments.

4.3.1 Accuracy Evaluation

Figures 11, 12 and 13 show the comparison results
about the performance of algorithms CRFs, MRCRF,
and SCRFs. The results are based on convergence of
batch training. In our expectation, the performance of
SCRFs is consistent on the three different datasets. In
Fig. 11, the accuracy effects of MRCRF and CRFs
are basically in line, although the precision of SCRFs
algorithm is a little bit lower than the two algorithms,
a higher F1 value is obtained. The reasons for the
performance improvements are given in Subsection
4.2.1, we can see that CRFs receive relatively high pre-
cision, recall, and F1 on those three different datasets.
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Fig. 11 The precision, recall, and F1 of different algorithms on
MSR datasets

For simplicity, we don’t show the squares of SOCRFs
in figures because it’s the same as CRFs.

4.3.2 Accelerated Training

Here, we perform the experiments on optimizing
functions of different algorithms on the three differ-
ent datasets. The experiments mainly compares the
convergence speed of different training methods in
different algorithms, such as L-BFGS, we used the
Batch-GD algorithm in SCRFs.

The curves of the objective functions by varying
training iterations are shown in Figs. 14, 15 and 16.
As we can see that in all cases compared with the

Fig. 12 The precision, recall, and F1 of different algorithms on
CU datasets

Fig. 13 The precision, recall, and F1 of different algorithms on
PKU datasets

other training methods in different algorithms, the
SCRFs algorithm achieved the same level of objective
values on convergence. Most importantly, the SCRFs
algorithm converges much faster than the all other
algorithms. That is because the training procedure
is accelerated by task parallelism on Spark platform
and the in-memory computation for the calculation
and iteration on training data. These reasons can also
explain the reduction of the training time of SOCRFs.
In Fig. 14, the objective functions under SCRFs and
SOCRFs algorithm converge dramatically during the
beginning of a short period of time, and continue con-
verge slightly until ending. However, the convergence

Fig. 14 Convergence speed of different training algorithms on
MSR datasets
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Fig. 15 Convergence speed of different training algorithms on
CU datasets

process under CRFs and MRCRF algorithm are very
slow and gentle, the training time of CRFs even more
than 5 hours, while SCRFs and SOCRFs are less
than 1.6 hours. Obviously, the training procedure of
SCRFs can be accelerated significantly because of the
optimization for the Batch-GD training method.

In Figs. 15, and 16, we can see that the reducing
of training time of SCRFs and SOCRFs are unobvious
compared to in Fig. 14, that is because the acceler-
ated effect of SCRFs becoming more worse as the
decrease of training data size, and we illustrated the
reasons in detail in Subsection 4.2.3. Finally, we can
take the conclusion that SCRFs algorithm can speed

Fig. 16 Convergence speed of different training algorithms on
PKU datasets

up the rate of iterations greatly, thus decrease the train-
ing time significantly, especially on large-scale data.
At the same time, a high level of precision, recall and
F1 score are also can obtained.

5 Related Works

The MapReduce framework has become the de facto
standard for big data processing due to its attractive
features and abilities [34]. As an open source imple-
mentation of MapReduce, Hadoop has been developed
as a solution for performing large-scale data-parallel
applications in Cloud computing, which is widely
used in data mining, especially for social media, text
and unstructured data (such as video and image) [35].
Apache Mahout [36] has developed many parallel
algorithms in the field of machine learning based
on MapReduce programming model [37]. Moreover,
some machine learning algorithms based on MapRe-
duce model are proposed [38–40], and their perfor-
mance are verified on Hadoop platform. However,
academia and industry have started to recognize the
limitations of the Hadoop framework in several appli-
cation domains and big data processing scenarios [41].
Since MapReduce is designed as a shared-nothing
architecture such that each job is isolated from each
other, and all jobs can only interact through the HDFS.
Indeed, almost all of the machine learning algo-
rithms need to do some iteration operations. For those
machine learning algorithms based on the MapRe-
duce, the intermediate results between each iteration
operations will be stored to the HDFS, and it will cost
a large amount of the disk I/O operations time.

Apache Spark [16] is another excellent cloud plat-
form based on parallel computing and cluster com-
puting, which is suitable for data mining and machine
learning. Comprising with the MapReduce of Hadoop
which based on the HDFS framework, Spark platform
supports the Resilient Distributed Datasets (RDD)
algorithm model based on the memory computing
framework. It allows storing a data cache in memory,
and doing the computation and iteration for the same
data directly from memory. Spark platform saves large
amounts of disk IO operations time. Therefore, Spark
is more suitable for the machine learning and data
mining that has more iterative computation.

There has been some excellent research works pro-
posed for accelerating CRFs. Pal et al. proposed a
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Sparse Forward Backward (SFB) algorithm, in which
marginal distribution is compressed by approximat-
ing the true marginal using Kullback-Leibler (KL)
divergence [42]. Cohn proposed a Tied Potential
(TP) algorithm which constrains the labeling con-
sidered in each feature function, such that the func-
tions can only detect a relatively small set of labels
[43]. Both of these techniques efficiently compute the
marginal with significantly reduced runtime, result-
ing in faster training and decoding of CRFs. How-
ever, these methods could reduce computational time
significantly, which trained CRFs only on a small
datasets.

In order to handle large data, Jeong et al. proposed
an efficient inference algorithm of CRFs for large-
scale natural language data which unified the SFB
and TP approaches [44]. Lavergne et al. addressed
the issue of training large CRFs, containing up to
hundreds output labels and several billion features.
Efficiency stems here from the sparsity induced by
the use of penalty term [45]. However, none of these
works described so far explore the idea of speed-
ing up CRFs in multiple processors and thus their
performance is limited by the resources of a single
computing node.

Data analysis and mining based on machine learn-
ing technologies has been becoming one of hot fields.
The researches in distributed and parallel data min-
ing based on cloud computing platform have achieved
a lot of outstanding achievements. There are three
effective parallel implementations for CRFs currently.
In [46], a novel distributed training method of CRFs
based on Message Passing Interface (MPI) improved
the time performance on large datasets. In [47], an
efficient parallel inference on structured data with
CRFs based on GPU has been proposed, and it has
been testified that the approach is both practical
and economical on large datasets. However, for the
communication cost caused by this model is usually
higher, they are not suitable for a distributed cloud
environment. Li and Tang et al. [31, 48] improved
the original CRFs based on the MapReduce frame-
work and reduce the training time greatly for large-
scale training corpus. Due to the bandwidth and disk
I/O bottleneck, they are not suitable for an iterative
machine learning algorithm. In the proposed SCRFs,
we overcome these limitations by a parallel implemen-
tation of CRFs based on Spark, which is suitable for
huge datasets.

6 Conclusion

This paper proposed an improved SCRFs model based
on Spark RDD for massive text data. We optimize
the conditional random fields algorithm by two ways:
1) Features reduction: an efficient and fast method
to generate features in parallel. The features can be
adjusted dynamically through excluding the unused-
features to correct the model in the training procedure.
And 2) Intermediate data caching: a parallel training
and prediction of SCRFs model based on the dis-
tributed memory management mechanism, which can
make the generated intermediate data be cached into
memory timely. In this way, the iterations in the train-
ing procedure are also executed in memory. Moreover,
in the implementation of SCRFs algorithm on the
Spark framework, we parallelize the model in three
phases: the generating features process, the training
procedure and the prediction process. The experi-
mental results indicate that the SCRFs algorithm has
obvious advantages compared with the original con-
ditional random fields algorithm and other improved
conditional random fields algorithms in terms of the
accuracy and performance in model training.
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