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Abstract The growth of energy consumption has
been explosive in current data centers, super comput-
ers, and public cloud systems. This explosion has led
to greater advocacy of green computing, and many
efforts and works focus on the task scheduling in order
to reduce energy dissipation. In order to obtain more
energy reduction as well as maintain the quality of
service by meeting the deadlines, this paper proposes
a DVFS-enabled Energy-efficient Workflow Task
Scheduling algorithm: DEWTS. Through merging the
relatively inefficient processors by reclaiming the
slack time, DEWTS can leverage the useful slack time
recurrently after severs are merged. DEWTS firstly
calculates the initial scheduling order of all tasks,
and obtains the whole makespan and deadline based
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on Heterogeneous-Earliest-Finish-Time (HEFT) algo-
rithm. Through resorting the processors with their
running task number and energy utilization, the under-
utilized processors can be merged by closing the
last node and redistributing the assigned tasks on it.
Finally, in the task slacking phase, the tasks can be
distributed in the idle slots under a lower voltage and
frequency using DVFS technique, without violating
the dependency constraints and increasing the slacked
makespan. Based on the amount of randomly gener-
ated DAGs workflows, the experimental results show
that DEWTS can reduce the total power consumption
by up to 46.5 % for various parallel applications as
well as balance the scheduling performance.

Keywords Cloud computing · DVFS · Energy saving
scheduling · Heterogeneous · Heuristic algorithm

1 Introduction

Large-scale businesses and scientific applications,
which are usually composed of big-data, multitask-
ing, time-variant, and fluctuating workloads [1, 2],
have become the mainstream of current technolo-
gies. For instance, Hadoop has been combined by
Amazon with cloud computing called Amazon EMR,
which provides cloud service for people that allows
users quickly and easily handle large amounts of data.
With the rapid growth of data scale, using the cloud
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computing technology to deal with diverse applica-
tions has become increasingly important. Cloud com-
puting [3], with virtualization [4] as the key enabling
technology, provides an elastic scaling-up and scaling-
down provisioning mechanism. Realization of these
techniques are based on the large scale of cloud data
centers. And the high price of energy consumption has
become a critical issue for these data centers.

During the last few years, the high price of energy
consumption has become a critical issue [5]. One of
the research estimates that a data center with 50,000
computing nodes may use more than one hundred
million kwh/year [6], equivalent to the electricity con-
sumption for a 100,000 population urban in one year.
The energy consumption in data centers will still
increase quickly in the next ten years [7]. On the other
hand, the CPU utilization for severs is comparatively
not high. The work in [8] shows that the average CPU
utilization of more than 5,000 servers during a six-
month period is between 10 and 50 percent of their
maximum utilization levels. These researches illus-
trate the PUE (Power Usage Effectiveness: all energy
use of data center and IT load consumption ratio)
of most datacenters are unsatisfactory. Obviously, the
criterion to evaluate mechanisms for parallel applica-
tions only focus on minimizing the schedule length,
but rarely meeting the growing advocacy for green
computing system. This paper considers that efficient
task scheduling in cloud environment should not only
try to obtain a minimal completion time but also
increase the system resource utilization as well as
reduce the energy consumptions.

Based on the green computing concept, developing
energy-efficient mechanisms for parallel applications
becomes increasingly attractive. The problems of par-
allel application scheduling are NP-hard in the general
case. Most of the static scheduling problems can
be solved by an application represented as Directed
Acyclic Graph (DAG) scheduling, similar to the work
of Braun [9], in which nodes stand for application
tasks and edges represent intertask data dependencies.
Moreover, various other mechanisms for reducing the
energy consumption have been investigated in the ear-
lier works, such as Dynamic Voltage/Frequency Scal-
ing (DVFS) [10] and Dynamic Power Management
(DPM) [11]. DPM turns the idle components off lead-
ing the resources to the hibernate mode to reduce the
power consumption.While it only works when the idle

time is long enough, DVFS has been proven to be a
very promising technique with its demonstrated capa-
bility for energy savings [12–15]. It is based on the
fact that energy consumption in CMOS circuits has a
direct relationship with the square of the supplied volt-
age and frequency [16, 17], a large reduction in power
consumption can be achieved by switching between
processor’s voltages/frequencies during task execution
while guaranteeing some performance. However, most
of these approaches are confronted with the fact that
combining optimum to each sub-problem may ignore
the global optimality for the crucial system perfor-
mance. In addition to DVFS technique, if applications
are not time-critical, we can consider minimizing the
number of used processors by taking advantage of the
idle processor time among the running tasks in par-
allel to increase the resource utilization. In this way,
users may need to tolerate a little delay of execu-
tion for decreasing system energy consumption. Thus,
finding the inefficient processors and turning them off
combining the DVFS technique may be a promising
approach to reducing energy dissipation as well as
guaranteeing the performance.

In this paper, based on meeting the performance-
based service level agreement, we propose a new
energy aware scheduling algorithm named DVFS-
enabled Efficient-energy Workflow Task Scheduling
(DEWTS) to optimize the energy savings through
DVFS technique for parallel applications in the het-
erogeneous distributed computing systems. In this
paper, the effect and performance of DEWTS are esti-
mated through comprehensive experiments, under the
maximum performance conditions, different number
of processors, various extension ratios, different val-
ues of CCR, and different degree of parallelism. And
the evaluating indexes are four performance metrics:
energy consumption ratio (ECR), system resource uti-
lization ratio, average execution time, and energy
saving ratio. The main contributions of this paper are
summarized below.

1. This paper proposes an energy-aware task
scheduling algorithm. Within a given deadline,
this algorithm can distribute the parallel applica-
tions in workflows to appropriate processors, and
deals with them at the appropriate time slots to
reduce energy consumption as well as meeting the
required performance.
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2. Numerical experiments are given to verify that
DEWTS can increase the CPU utilization of pro-
cessors and reduce significant amount of energy
consumption in a wide range of workflow struc-
tures compared with other researches.

3. We analyze the factors which are affecting the
performance of our algorithm.

The remainder of this paper is organized as follows.
We compare our work with related research effort
in Section 2, including several different scheduling
heuristics on heterogeneous systems, power estima-
tion and optimization techniques, and some energy
aware scheduling algorithms. Section 3 describes the
energy models, cloud application, and system used
in this paper. In Section 4, we present the details of
our scheduling algorithm DEWTS, and illustrates a
simple case to explain this algorithm better. The exper-
imental results and evaluation analyses are presented
in Section 5. Finally, Section 6 concludes the whole
paper.

2 Related Works

2.1 Task Scheduling in Heterogeneous Environment

Due to the NP-complete nature of the parallel task
scheduling problem in general cases [18, 19], many
heuristics have been proposed in recent researches
[15] to deal with this problem, and most of them
achieve good performance in polynomial time. Static
task-scheduling algorithms can be classified into two

main groups (see Fig. 1), heuristic-based and guided
random-search-based algorithms.

In the previous works, the heuristic-based algo-
rithms can be classified into a variety of categories,
such as list scheduling algorithms, clustering heuris-
tics, and duplication-based algorithms. Among them,
the list scheduling algorithms are generally more prac-
tical, and their performances are better at a lower
time complexity. A list scheduling algorithm main-
tains a list of all tasks of a given graph according
to their priorities. It has two typical phases: task pri-
ority phase for selecting the highest-priority ready
task, and processor selection phase for deciding suit-
able processors to minimize the predefined cost func-
tion (which can be the execution start time). Some
notable achievements are obtained in recent years
[20–23]. Among these algorithms, Heterogeneous-
Earliest-Finish-Time (HEFT) algorithm [21] is a well-
known heuristic list-scheduling which has an O(e ×
q) time complexity for e edges and q processors.
It has two major processes: task prioritization and
processor selection with insertion-based scheduling
policies.

Clustering heuristics are researched to select the
tasks among which there are relatively large traffic
into a group in distributed environment [33]. In these
algorithms, the tasks in same group will be distributed
to the same processor to decrease the inner communi-
cations among the computing nodes. A typical cluster-
ing heuristics algorithm is DSC (Dominant Sequence
Clustering) [24], whose basic idea is to put critical
path scheduling tasks to the same processor, and start
them at the earliest time. Analogously, for decreasing

Fig. 1 Classification of
Static task-scheduling
algorithms

Guided Random Search BasedHeuristic Based

List Scheduling Algorithms 

Duplication-based Algorithms

Clustering Heuristics 

Static Task-Scheduling Algorithms 
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the overall makespan, duplication-based algorithms
are proposed to replicate the forerunners using the idle
slots in processors, which can reduce the interprocess
communication distinctly. HLD (Heterogenous Lim-
ited Duplication) [25] is a typical duplication-based
algorithm, which provides a way to make appropriate
choices in heterogeneous environments when copying
the predecessor tasks.

2.2 Energy-Saving Optimization

In recent yeas, much attention has focused on energy
aware scheduling for single processor[26], homoge-
neous system [27, 28], and heterogeneous resources
[15, 17, 29, 30]. Many efficient techniques have been
researched for reducing the energy consumption, such
as DVFS mentioned in Section 1, based on which,
there have been a significant amount of task schedul-
ing works. In DAG scheduling model, each task has
an earliest start time (EST) and an earliest finish
time (EFT) respectively. For specific tasks, the range
between EST and EFT usually larger than the actual
execution time, and we call the difference between
them as slack time. For the running process of a sys-
tem, amount of slack time are usually produced while
waiting the output of predecessor tasks, or execut-
ing a task with earlier completion before its deadline.
Slack time reclamation technique is adopted in much
of recent researches. Kim et al. [14] proposed a power
aware scheduling algorithm of bag-of-tasks applica-
tions with deadline constraints on DVFS-enabled clus-
ter systems. In [31], for reclaiming the slack time slots
to save energy, Kimura et al. provided a slacking algo-
rithm for adjusting the frequency of CPU dynamically
to extended the task execution time.

Lee et al. [22] presented two energy-conscious
scheduling (ECS and ECS + idle) heuristics which
took account into the balance between makespan and
energy consumption for parallel tasks in heteroge-
neous distributed computing systems. In [17], Huang
et al. designed a way to lower the frequency of non-
critical tasks for parallel applications in heterogeneous
distributed computing systems, and reassigned the
tasks to appropriate time slots to low power consump-
tion, named Enhanced Energy-efficient Scheduling
(EES) algorithm. The goals of these above works

are to minimize the energy consumption of the tasks
while still meeting the performance based on the
determined service level agreement (SLA). Neverthe-
less, this approach may not perform well in dealing
with communication intensive applications, and most
of them do not lead to global optima with energy
consumption and time cost.

Except for the above works, most other researches
only focus on either lessening the completion time
or reducing the energy consumption. The objectives
of most existing scheduling algorithms are to shorten
the schedule length without caring about the energy
consumption. Different from the researches afore-
mentioned, our scheduling algorithm aims at reduc-
ing the energy consumption by decreasing the number
of inefficiently processors. Meanwhile, through com-
bining DVFS technique with list-based task schedul-
ing polices, this algorithm can retain the quality
of service by meeting the deadlines given by the
providers.

3 Models

3.1 System Model

In this work, we assume that the target system consists
of a set heterogeneous processors: P = {pi}, each
one is connected in a fully interconnected topology.
We presume that the set of task graphs is N = {ni}.
We also presume that computation can be overlapped
with communication, which means data can be trans-
mitted from one processor to another while a task is
being executed on the recipient processor. Each pro-
cessor pj ∈ P is DVFS enabled which means that it
can be operated at different voltage levels and clock
frequencies. For each processor pj ∈ P , we define
the supply voltage sequence set as V = {vs}, and the
clock frequency set as F = {fs}. While the supply
voltage operates at level v1, the clock frequency will
operate in level f1. Since the machine still consumes
energy while under the idle state, it will stay at its low-
est voltage state vlowest for maximum energy saving.
In this paper, we will ignore the overheads of the fre-
quency transitions for they take a negligible amount of
time (e.g., 10us-150us [15]).
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3.2 Cloud Application Model

Generally, parallel workflow applications can be rep-
resented by a directed acyclic graph (DAG) as shown
in Fig. 2. The task graph G = (N, E) consists of a
set of vertices N and a set of edges E, where N is
the set of n tasks partitioned from an application, and
E is the set of edges between the tasks which repre-
sents the precedence constraints. Each edge(i, j) ∈ E

between task ni and nj also represents inter-task com-
munication. Namely, task nj can not start until task ni

has transmitted its output.
A task without predecessors is called an entry task

nentry (such as n0 in Fig. 2a), and a task without suc-
cessors is called an exit task nexit (such as n5 in Fig.
2a). If there are more than one entry tasks (such as n0,
n1, n2 in Fig. 2b), more than one exit tasks (such as n3,
n5 in Fig. 2b), then it needs to introduce a virtual entry
task (such as n00 in Fig. 2c) or a virtual exit task (such
as n6 in Fig. 2c), which will connect multiple entrance
tasks or exit tasks. This process makes the DAG graph
has one and only one entrance or exit task. The virtual
entry (exit) task is a zero-cost node which is connected
to all the real tasks with zero-cost edges, that does not
affect the tasks schedule.

The weight on a task ni labeled aswj represents the
computation cost. In a heterogeneous computing envi-
ronment, the computing time may be different even
on the same processor due to various jobs. If a task ni

runs on the processor pj , we denote its computation

cost as wi,j . In this way, the average executioncost of
a task ni on all available processors is defined as (1):

wi =
∑p

j=1 wi,j

p
(1)

We denote the weight on an edge as ci,j , which
represents the communication cost between task ni

and nj . When both tasks ni and nj are allocated
to the same processor, ci,j becomes zero for we
assume that the intra-processor communication cost
can be ignored. The data transfer rates between pro-
cessors are stored in matrix B with size p × p. The
communication costs of processors are given in a p-
dimensional vector S. In addition, task executions of
a given application are assumed to be non-preemptive
which is possible in many systems. And datai,j rep-
resents the data size transferred from task ni to nj .
The communication cost between task ni (scheduled
on pm) and nj (scheduled on pk) is defined as (2):

ci,j = Sm + datai,j

Bm,k

(2)

Before scheduling, average communication costs
are used to label the edges. The average communi-
cation cost between task ni and nj is defined as (3):

ci,j = S + datai,j

B
(3)

where B is the average transfer rate among the pro-
cessors, S is the average time cost of communication

Fig. 2 A simple task graph
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startup. Tasks are ordered in our algorithm by their
scheduling priorities which are based on upward rank-
ing [21]. The upward rank of a task ni is recursively
defined as (4):

ranku(ni) = wi + maxnj⊂succ(ni)

(
ci,j + ranku(nj )

)

(4)

Without loss of generality, we use EST (ni, pj )

and EFT (ni, pj ) to denote the earliest start time

and the earliest finish time of task ni which been
scheduled on processor pj respectively. For the
entry task nentry , the EST can be calculated as
(5):

EST (nentry, pj ) = 0 (5)

For the other tasks in the graph, starting from the
entry task, the EST and EFT values can be calcula-
ted as (6) and (7):

EST (ni, pj ) =
{
0, if ni = nentry

max
{
avil[pj ],maxnm⊂pred(ni)

(
AFT (nm) + cm,i

)}
, otherwise

(6)

EFT (ni, pj ) = EST (ni, pj ) + wi,j (7)

where avil[pj ] is the earliest finish time of the last
assigned task nk of processor pj . pred(ni) is the
immediate predecessors set of task ni , pred(ni) =
{∀j |∃(j → i), i ∈ N, j ∈ N}. And AFT (nm)

represents the actual finish time of task(nm).
max

{
avil[pj ], maxnm⊂pred(ni)

(
AFT (nm) + cm,i

)}

returns the time when all data needed by ni has
arrived at processor pj . AST (nm) presents the
actual start time of task(nm). If nm = nentry , the
AST (nm) = EST (nm) = EST (nentry) = 0,
then we can get AFT (nm) by calculating
AFT (nm) = AST (nm) + tm recursively.

After all tasks in a graph are scheduled, the sched-
ule length will be the actual finish time of the exit task
nexit . We call the longest path of the scheduled task
graph as the critical path (CP) and the finish time of
the latest task as the schedule length or makespan. If
there are more than one exit tasks, the makespan MS

of the latest task can be defined as (8):

MS = max {AFT (nexit )} (8)

3.3 Energy Model

The power consumption of CMOS logic circuits
for an application are composed of dynamic and
static energy consumption: Edynamic and Estatic.
Because the most expensive and time-consuming
part is the dynamic power dissipation [11], static
energyconsumptions are ignored in this paper.

Dynamic power dissipation Pdynamic can be defined
as (9):

Pdynamic = K × v2j,s × fs (9)

where K is a constant parameter related to dynamic
power, depending on the capacities of devices. vj,s

denotes the supplied voltage at level s on the processor
pj , and fs denotes the frequency with the matching
vj,s . Based on this, the total energy consumption when
machines working can be defined as (10):

Ebusy=
n∑

i=1

K×v2i,pj,s
×fpj,s×ti,j=

n∑

i=1

Pdynamic,i×ti,j

(10)

where ti,j is the execution time of task ni on proces-
sor pj , and v(i,pj,s) represents that task ni is scheduled
on the processor pj under voltage s. Moreover, fpj,s

denotes the frequency of processor pj with voltage
level s. For the supplied voltages and frequencies can-
not be adjusted to zero during the idle periods of
processors, the voltage has to be at the lowest state
vlowest to save the most energy, the energy consump-
tion of idle periods for all available processors can be
defined as (11):

Eidle=
p∑

j=1

k×v2jlowest
×fjlowest ×tjidle=

p∑

j=1

pjidle ×tjidle

(11)
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where vjlowest and fjlowest are the voltage and fre-
quency of the processor pj under the lowest voltage
respectively, and tjidle denotes the idle time of pj .

Based on the above formulations, total energy con-
sumption of a DAG application can be defined as (12):

Etotal = Ebusy + Eidle (12)

4 Efficient Energy Scheduling Algorithm

As the overall scheduling processes in DEWTS, Algo-
rithm 1 aims at minimizing the schedule length and
energy consumption as much as possible. DEWTS
has three major phases: initial task mapping phase,
processors merging phase, and task drawing phase.
To reduce the number of processors being used, the
appropriate time slots are firstly picked out to place
the tasks which come from other low-utilized pro-
cessors. And then the ready tasks can be scheduled
on DVFS-enabled processors to reduce energy con-
sumption whenever the tasks have slack time. In this
section, each phase is illustrated and analyzed in
detail.

Initial Task Mapping Phase This phase requires to
obtain the priorities of all tasks in descending order
according to ranku through traversing a DAG upward
by starting from the exit task to the entry task. Some
researches call it b-level sorting [15]. In this process,

we firstly just need sorting one time for we just need
to get a simple scheduling order without violating the
dependency constraints among tasks. And then, the
well-known heuristic list-scheduling algorithm HEFT
is used to calculate the initial makespanMS of the lat-
est task on the list. Finally, based on MS, meanwhile
according to a user given extension ratio α, α ≥ 0,
we can calculate the overall allowed time D of the all
tasks according to (13):

D = MS × (1 + α) (13)

Our objective is to reduce energy consumption as
much as possible in accomplishing all the tasks under
the condition of maintaining deadline D. Algorithm
2 shows the implementation details of calculating the
initial makespan MS.

Processors Merging Phase As shown in Algorithm 3,
we firstly calculate the number of assigned tasks for
each turn-on processors, and then sort the processors
in descending order according to {p1, p2, . . . , pn}
based on rankm. If rankm values of two different pro-
cessors are equal, the processors with smaller energy
utilization(peu) should be placed behind. The calcula-
tive process peu of corresponding processors is shown
as (14):

pjeu =
(∑rankm(pj )

i=1 wi,j

)
×pjmax

(∑rankm(pj )

i=1 wi,j

)
×pjmax +

(
MS − ∑rankm(pj )

i=1 wi,j

)
×pjidle

(14)
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where pjmax denotes the maximum power dissipa-
tion of processor j , and pjidle denotes the power
dissipation when processor j is idle.

Algorithm 3 Processors_Merging
Input:

A DAG: G N E ;

A set of DVFS-enabled processors: P;

The b-level;

The MS and D obtained from Algorithm2.

Output:

Get the optimized turn-on processors list.

1: Set MS
MS

= MS;//record the initial scheduling

length as  length asMS  ;
2: // Merge the processors until the scheduling length

     larger than the deadline;

3: //initialize sequence;

4: for each i 1 n do

5: Do ranki 0;

6: end for

7: while MS D do

8: Calculate the number of tasks each turn-on

          processor has been assigned, denoted as rank ;

9: for each j 1 n do

10: for each i 1 n do

11: if task ni is scheduled on processor j then
12: Do tp_ j wi j ;
13: rankj++;

14: end if

15: end for

16: end for

17: For tie-breaking rankm , caculate the energy

utilization of corresponding processor pjeu as:

pjeu
tp_ j p jmax

tp_ j p jmax MS tp_ j p jidle
;

18: Assumes that the processor’s rankm is lower

when peu is smaller;

19: Sort the processors in

descending order of rankm;

20: Set k as the number of the processors which have

            been assigned tasks;

21: Run tasks list on processors based

on HEFT algorithm and gain the new value of MS;  
22: // The unused processors can be shutdown only

            if the scheduling length is not longer than the deadline;

23: if MS D then

24: Turn off the processor pk from P;

25:

26:

27:

28: MS = MS;// Save the scheduling length in MS
temporarily;

29: Mark the DAG as unexecuted;

30: end if

31: end while

//Obtain the effective processors set as P ;

32: return P .

p = k ;//There new number of available processors

is k;

This algorithm will repeat scheduling the tasks on the
first k − 1 processors until the total scheduling length
is larger than D, where k is the number of processors

with initial arrangement tasks on the first phase. After
completing a circuit, if the scheduling length is still
no larger than D, shutdown the processor which has
not been assigned jobs, and the value k minus 1. After
these steps, we can store the last scheduling results as
our final processors selection, and mark the surviving
processors as a set of P ′. When finishing this step,
for dealing with a group of given tasks in a workflow,
the relatively efficient processors can be reserved to
reduce the waste of energy consumption.

Time Slacking Phase In this phase, the idle time slots
can be slacked and reassigned using DVFS technique
without violating precedence constrains. As shown in
Algorithm 4, for a specific task, the latest allowable
finish time LFT should be calculated as (15):

LFT (ni)=
{

D, ifni = nexit

minnj ∈succ(ni )

(
LFT (nj ) − tj − ci,j

)
, otherwise

(15)

where succ(ni) = {∀j |∃(j → i), i ∈ N, j ∈ N}
formalizes the direct successor node of task ni , which
tj denotes its execution time. The allowable slack time
of task ni can be calculated as (16):

Slack(ni) = LFT (ni) − EST (ni) − ti (16)

The next is to lower and optimize the clock fre-
quency of task ni . Similarly to the EES algorithm [17],
we first choice the job ni with the largest LFT . If
Slack(ni) > 0, compare the EST of task ni with
the LFT of the previous task on the same proces-
sor. If LFT (ni) > EST (nx), it shows that there are
overlaps of the slack times between these two tasks,
repeat this step forward until finding a task nm which
has no slack overlapping time slots with subsequent
task nm−1. Equation (17) calculates the total execution
time from task ni to nm on processor pj :

Trun = ti + tx + · · · + tm (17)

And (18) calculates the total idle time on processor pj

from ni to nm:

Ttotal = AFT (ni) − EST (nm) (18)

Then, the ideal smallest operating frequency f ′
ni,pj

for
task ni can be calculated by (19):

f ′
ni,pj

= fpj ,0 × max

(
ti

ti + Slack(ni)
,

Trun

Ttotal

)

(19)
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Through the comparing between f ′
ni,pj

and the set
of voltage/frequency levels of processor pj , we can
pick out the nearest value fpj,s as the actual oper-
ating frequency of task ni , fpj,s ≥ f ′

ni,pj
. Then

we can set the actual operating frequency to fni,pj ,
fni,pj = fpj,s , and update task ni’s execution time to
t ′i according to (20):

t ′i = ti × fpj,0

fni,pj

(20)

Through the above processes, execution time slot
of task ni on processor pj can be changed on the
range of [LFT (ni) − t ′i , LFT (ni)]. In this way, after
completing scaling the frequencies, we can calculate
the specific scheduled time of task ni , and update the
LFT for both task nx and its predecessor which exe-
cuting just before ni on pj , if it exists. The same
process is repeated until all tasks are optimized.

Comparing to EES [17], our algorithm ignores the
step of distributing the slack time between the origi-
nal makespan and the deadline to each task evenly, it
only shifts time slots in the scaling slack time. This
is because after the processors merging phase, the
makespan MS ′ is near upon the deadline D, may even
equal to D. On the other hand, the ideal frequency
f ′

ni,pj
may not precisely equal to the presetting volt-

age/frequency levels, so we should pick out the nearest
fpj ,s to replace f ′

ni,pj
without violating the initial

condition: fpj,l ≥ f ′
ni,pj

.
In DEWTS algorithm, while holding the overall

performance of the task scheduler in the deadline
given by the user, the total energy consumptions of
the system are also reduced. The main idea is to opti-
mize the number of processors used firstly, reassigned
tasks on the light load processors to others, achieve
the goal of reducing the number of running proces-
sors. To take advantage of residual idle slot between
tasks on processors, we further use DVFS technology
to reduce voltage and clock frequency of processors,
and effectively extend the task execution time. The
ultimate goal is to reduce the processors energy costs.
The following is an example to verify the advantage
of DEWTS Algorithm over HEFT, DVFS and EES.

A Simple Example To illustrate that decreasing the
number of processors in conjunction with DVFS tech-
nology can improve resource utilization, and reduce
total energy consumption of systems more effectively,
an simple example is provided to verify the feasibility
of DEWTS. To simplify the description, the example
assumes that there are five isomorphic processors with
DVFS function. The five processors can run in the
following voltage levels {1.2v, 1.1v, 1.0v, 0.9v, 0.8v,
0.7v} within the frequency levels {1.0Ghz, 0.8Ghz,
0.6Ghz, 0.5Ghz, 0.4Ghz, 0.3Ghz}.

Firstly, we sort the tasks through b-level sorting.
For the sample DAG of Fig. 3, Table 1 shows the
computation costs of the ten tasks on processors. For

Fig. 3 A simple task graph with 10 tasks.

Author's personal copy



Z. Tang et al.

Table 1 The tasks list in the DAG of Fig. 3

Task 0 1 2 3 4

ti 8 16 10 12 10

Task 5 6 7 8 9

ti 6 7 6 12 5

simplicity, we suppose that all these five processors
have no difference with their performance. That is to
say the same task have the same execution time on all
of the processors.

Table 2 Task priorities in the DAG of Fig. 3

ni 0 1 2 3 4

b-level 97 62 73 43 58

ni 5 6 7 8 9

b-level 62 58 31 33 5

Table 2 gives the upward ranks calculated by using
(4) for the given DAG. By comparing the values, we
can get the order of the tasks is: {n0, n2, n1, n5, n4, n6,
n3, n8, n7, n9}.

Fig. 4 An example of DEWTS compared with EES and HEFT
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As an illustration, Fig. 4a shows the initial sched-
ules obtained by the HEFT algorithm for the DAG in
Fig. 3, and Fig. 4b presents the results without proces-
sor merging using EES algorithm. Through Algorithm
Processors Merging, we can decide which proces-
sors can be turned off. Figure 4c shows the process
and result of processor merging. In this example, the
processor p3 and p2 are turned off in turn not only
without violating precedence constrains but also with-
out increasing the schedule length. And the tasks 4 and
6 in p2 and p3 are all scheduled to the processor p4.
As shown in Fig. 4d, these task executing time are all
slacked under lower voltages to decrease the energy
consumption. It is the final scheduling result obtained
by DEWTS algorithm. For simpleness and easy anal-
ysis, in this example, we assume that there are five
homogeneous processors and α = 0, in other words,
the deadline D equals to MS.

According to Fig. 4a, we can see the MS with
HEFT algorithm is 80, we also can easily calculate
that the busy time is 92, the idle period is 308, so the
utilization ratio of CPU is only 23 %, and the Etotal is
177.756 which consists of 132.48 dynamic and 45.276
idle energy consumption. Likewise, the utilization
ratioes of CPU with EES and DEWTS are 34.875 %
and 54.875 % respectively, meanwhile the energy
saving ratioes are 22.6 % and 29.5 % respectively.
This example demonstrates that we can benefit from
combining processor merging technique with DVFS
technique to reduce processor energy consumption
more efficiently while still meeting the performance
requirement.

5 Experiments and Analysis

In this section, to evaluate the performance of our pro-
posed approaches, we present the comparative evalua-
tion of DEWTS with two heuristics algorithms: HEFT
[15] and EES [17]. HEFT is a well-known algorithm
without considering energy cost, yet proven perform-
ing well for task scheduling. EES is an enhanced
energy-efficient scheduling based on DVFS tech-
nique, which can be used to decrease the frequencies
of non-critical jobs in a global manner, and reas-
sign the tasks to appropriate time slots to get low
power consumption. With HEFT and EES are as the
benchmarks in this paper, we choose CloudSim sim-
ulator as our experiment platform. CloudSim is a
widely used framework for modeling. It can be used
to simulate the cloud computing infrastructures and
services, which can offer a repeatable and control-
lable experimental environment, as well as do not
need to pay much attention to the hardware details
[32].

The experiment comparisons of the algorithm are
based on the following four performance metrics:

Energy Consumption Ratio (ECR) In this paper, the
main performance measure of the algorithms is ECR.
ECR refers to the ratio of the total energy consumed
by the task execution DAG and consumption of tasks
executing in the fastest finished processor on the criti-
cal path. For a specific task, the ECR can be calculated
based on (21):

ECR = Etotal

K × ∑
ni∈CP minpj ∈P {wi,j } × maxvj,k∈Vj {vj,k}2 × maxfj,k∈Fj {fj,k} (21)

System Resource Utilization Ratio The system
resource utilization ratio is the percentage of used
resources compared with total resources. This metric
is the basic feature that we need to considered in this
paper as it can direct reflect the resource utilization
efficiency of an algorithm.

Average Execution Time The execution time of an
algorithm is its running time for obtaining the output

schedule of a given task graph. Among all the three
algorithms, the one who get the minimization average
execution time is the one most practical implementa-
tion.

Energy Saving Ratio In this paper, the total energy
consumption can be measured during the whole
period, which involves the task execution time and
the idle periods. Energy saving ratio means the energy
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saved of all the algorithms compared with Ebase. In
order to facilitate comparison, we use the energy con-
sumption of HEFT schedule as the base line Ebase,
which adjusts the frequency to the lowest level when
the processor is in idle. The performances of all the
algorithms are measured in terms of the normalized
total consumption.

5.1 Experimental Settings

Four groups of DVFS-enabled heterogeneous proces-
sors are simulated for our studies. Table 3 shows their
voltage/frequency pairs and types of chosen proces-
sors.

In this experiment, we take the randomly gener-
ated DAG graphes as the tasks set for our experiments.
The simulation parameters [21] depending on several
characteristics are given as below.

– The number of random DAG tasks: {20, 40, 80,
160, 320, 400}.

– The set of parallelism factor β: {0.2, 0.5, 1.0, 2.0,
5.0}. A high β will lead to a DAG with shorter
length but high parallelism.

– The communication to computation ratio (CCR)
set: {0.1, 0.5, 1.0, 2.0, 5.0}. if CCR value is
very low, it can be considered as a computation-
intensive application, otherwise, it can be consid-
ered as communication-intensive application.

– The set of processors available to use is from 2 to
32, incrementing by the power of 2.

– The extension ratio α in our experiments ranges
from 0 to 180 %.

To avoid biasing toward a particular algorithm,
we assign several input parameters, and choose each
parameter from a wide set to generate diverse DAGs
with various characteristics. The experimental results
are the average of the values obtained from 600 differ-
ent graphs for each set of the above parameters.

5.2 Results and Analysis

This paper designs five experiments to provide the
performance comparisons in different number of pro-
cessors, various extension ratio, different CCR, and
different degree of parallelism. The following experi-
ments provide a detailed analysis for each group.

5.2.1 Estimate in the Maximum Performance
Conditions

In the first set of experiments, to evaluate the method
that combines the merging processors with the DVFS
technique can perform better than the HEFT while
considering energy consumption, we just set the
extension ratio α = 0 (see Fig. 5), namely without
extending the schedule length, and other parameters
are randomly selected. For each number of tasks,
we iterate the experiment for 25 times, and the final
results are averaged. The number of processors in this
experiment is 32, and there are 8 processors for each
type.

Figure 5a shows the average resource utilization for
all algorithms. Obviously, we can observe that both
EES and DEWTS can increase the system utiliza-
tion on different levels, but DEWTS performs more

Table 3 The voltage/frequency pairs

Level AMD Athlon-64 Intel Pentium M AMD Opteron 2218 AMD Turion MT-34

Voltage Frequency Voltage Frequency Voltage Frequency Voltage Frequency

(V) (GHz) (V) (GHz) (V) (GHz) (V) (GHz)

0 1.5 2.0 1.484 1.4 1.30 2.6 1.20 1.8

1 1.4 1.8 1.463 1.2 1.25 2.4 1.15 1.6

2 1.3 1.6 1.308 1.0 1.20 2.2 1.10 1.4

3 1.2 1.4 1.180 0.8 1.15 2.0 1.05 1.2

4 1.1 1.2 0.956 0.6 1.10 1.8 1.00 1.0

5 1.0 1.0 1.05 1.0 0.90 0.8

6 0.9 0.8
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(a) Average resource utilization. (b) Average ECR.

(c) Average running time. (d) The energy saving ratio.

Fig. 5 Evaluation of random DAG without extension schedule length

competitively. The max utilization ratio even reaches
to 80 %.

The average ECR is given in Fig. 5b. As we know
from the definition of ECR, the lower ECR and the
better scheduling algorithm. Figure 5b demonstrates
that DEWTS has more advantages in energy saving
visually, and the proportional reduction of ECR val-
ues in DEWTS is much more steadily than that in EES
because of EES just considering the DVFS mecha-
nism. From Fig. 5b, we can reach a conclusion that
both DEWTS and EES perform better in large scale of
workloads.

Figure 5c depicts the three algorithms for the aver-
age execution time of the task sets. The average exe-
cution time is calculated from the total execution time
divided by the number of tasks. With the increasing
number of tasks, the average execution time of three
basic scheduling algorithms all tended to decrease.
This is because with the increase number of the tasks,
the scale of the random pattern DAG is also increased.

It can be seen from the HEFT curve that the average
execution time for a single task tends to be more sta-
ble, and gradually achieve a balance. And the average
time of EES and DEWTS algorithms are significantly
higher than HEFT, because the first two algorithms
aim at saving energy, and both of them have vary-
ing degrees of task execution time stretching. Because
DEWTS algorithm completes the processor number
optimization before using DVFS technique to reduce
the generation of luxury consumption, the average task
execution time of DEWTS algorithm is lower than
EES. Actually, EES only focuses on the energy con-
sumption optimization, and it relatively ignores the
impacts of some other conditions on performance.

Figure 5d gives the energy saving ratio for the other
two algorithms compared with HEFT algorithm. From
the results we can know that DEWTS algorithm saves
more energy than EES as compared with EES, for
DEWTS holds the step of processors merging. While
increasing the number of tasks, the performance of
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DEWTS becomes much more better, and the highest
energy saving ratio nearly reaches up to 47.5 %. But
once the number of tasks exceeds a threshold value,
the energy saving ratio of these two algorithms will
decrease and become equal finally. On average, the
DEWTS can achieve higher energy saving ratio than
EES up to 7 % from our experimental results.

From the above four figures, we can draw such
conclusion: at the highest performance conditions,
DEWTS and EES algorithm have shown a good
energy saving effect when working set is relatively
on a large scale, the energy optimization efficiency of
DEWTS is slightly more obvious.

5.2.2 Estimate in Different Number of Processors

For the efficiency comparison, the number of proces-
sors used in our experiments varied from 2 to 32,
incrementing by the power of 2. In this application the
number of tasks is fixed, as large-scale task is more
meaningful and typical than small-scale task in a dis-
tributed system, so we set the size of task as 400. Other
parameters are the same as in the above experiments.

Figure 6a shows the data of average resource uti-
lization in different number of processors for the three
algorithms. The trend of data reveals that the change
of processors number has less effect on HEFT, as
this algorithm only focuses on reducing the schedul-
ing time. With the increase number of processors,
the running time decreases but more resources are
wasted because some processors remain empty wait-
ing, it leads to a degree of wastage. EES and DEWTS
perform much better than HEFT, because they all
have the step of task slacking by using DVFS tech-
nique. By comparing all the performances of the three
algorithms, DEWTS has the highest resource utiliza-
tion. With the increasing of processors number, this
advantage becomes more obvious (the biggest gap is
0.25 compared with HEFT) as the processors merging
played a crucial role.

Comparisons of average ECR under different pro-
cessors are given in Fig. 6b. From this figure we
know that when processor number is 2, all of the
three algorithms meet their lowest ECR. Based on our
experiments, their lowest average ECR values are 6.5,
6.17 and 6.1. These values are increased slowly when
the number of processors is less than 8 as the total con-
sumptions of energy increased not so fast, compared
with the situation when the number of processors is

larger than this value. But value of ECR in our algo-
rithm increased much slower than others as the energy
consumption is much lower.

Comparisons of average running time are given
in Fig. 6c. Obviously, with the increasing of proces-
sor numbers, the average running time will decrease.
When the number of processors is 8, we meet the first
and the last turning point. The executing time of all the
three algorithms tend to be stabilized with the increas-
ing of processors number. The average executing time
of both EES and DEWTS are higher than HEFT,
because EES and DEWTS all aim at saving energy,
and both of them have different degrees of stretch-
ing the execution time of a single task. Comparing
these two algorithms, EES only focuses on reducing
energy consumption, but DEWTS finishes processor
number optimization before using DVFS technique.
Hence, the average task execution time of DEWTS is
naturally lower than EES.

Figure 6d shows the energy saving ratio of EES and
DEWTS comparing to HEFT algorithm. Although the
resource utilizations of all the three algorithms are rel-
atively high, DEWTS seems the best algorithm. From
the results, we can conclude that the energy saving
ratio is small when the number of processors is less
than 8. With continuously increasing the number of
processors, the energy saving ratio is obviously higher.
From the figure we know that the highest saving ratio
of the two algorithms are up to 48 % and 62 %.

By analysing all the four experiment results, it can
be concluded that increasing the number of proces-
sors can cut down the running time, which will bring
the waste of resources. Therefore, in practice we can-
not blindly increase the number of processors. In this
experiment case, 8 processors is the best choice.

5.2.3 Estimate in Various Extension Ratios

In this experiment, we compare the performance with
respect to various extension ratios. Because in a dis-
tributed system environment, large-scale task is more
meaningful, so in this set of experiments we select
400 tasks with 48 available processors, namely 12
processors for each type. Other parameter values are
randomly selected from the set of parameters.

Figure 7a shows the resource utilization of the
three algorithms under different extension ratios. This
figure depicts that both EES and DEWTS can increase
the resource utilization on different levels but HEFT
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(a) Average resource utilization. (b) Average ECR.

(c) Average running time. (d) The energy saving ratio.

Fig. 6 Evaluation of random DAG with different number of processors

doesn’t. The change of extension ratio has no effect on
the performance of HEFT, for HEFT algorithm itself
only focuses on how to deal with the tasks within
their earliest finish time. For increasing deadline will
not affect the HEFT scheduling policies, the value
remains unchanged. In contrast, the extension ratio
makes more effect on both EES and DEWTS. For
EES, the value of resource utilization increases from
53 % to 70 % while α increases from 15 % to 90 %.
In addition, the resource utilization will be decreased
with the further increasing of α, because the slacking
time reaches to its finite value. For DEWTS, the criti-
cal value of α is 135 %, this value comes later because
of processors merging. The resource utilization value
of DEWTS varied from 54 % to 83 %, increased much
rapidly than EES. So we can conclude that for both
EES and DEWTS, with the appropriate sacrifice of
the whole tasks makespan, the resource utilization will
improve greatly.

From the results shown in Fig. 7b, we can see that
the extension ratio has no effect on the ECR value of
HEFT. The reasons are explained in the previous para-
graph. In contrast, the extension ratio has more effect
on both EES and DEWTS, the ECRs decrease rapidly
when α is in the range of [15 %, 60 %]. And the
decrease ratio of DEWTS is faster than EES, because
DEWTS has merged some processors before scaled
the frequency. We can also see that the ECR of EES
achieves its smallest value when α equals to 90 %, but
135 % to DEWTS. That is to say the idle slots have
been reclaimed more sufficiently.

To evaluate the efficiency comprehensively, we
consider the average execution time for each task as
a comparison metric as well, see in Fig. 7c. The aver-
age running times for EES and DEWTS keep raising
rapidly along with the scale of α, but the ratio is much
lower, and the average execution time is approach-
ing to the HEFT. Based on these results, we can say
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(a) Average resource utilization. (b) Average ECR.

(c) Average running time. (d) The energy saving ratio.

Fig. 7 Evaluation of random DAG with different extension schedule length

that EES sacrifices too much performance to meet
the energy consumption. And DEWTS has a better
trade-off value between the performance and reducing
energy dissipation.

At last of this set of experiments, we turn our atten-
tion to study the relationship between energy saving
ratio and various extension ratio. From Fig. 7d, we
know that both EES and DEWTS perform better in
energy saving, but the advantage of DEWTS is much
more obvious as we can see from the figure, and its
energy saving ratio increases more rapidly than EES.
Figure 7d shows another information that if α out-
strips a threshold (e.g., 90 % for EES and 135 %
for DEWTS), the energy saving ratio starts decreasing
after reaching the critical value, because the abili-
ties of both processors merging and the slacking time
are limited. As a periodically conclusion, DEWTS
outperforms EES in terms of extending the schedule
length.

From this group of experiments, we come to the
conclusion that changing extension ratio has no effect
on the performance of HEFT, but it does have a big
effect on both EES and DEWTS. The performance
of four features would be sequential improved with
the increasing of α, until α outstrips a threshold (e.g.,
90 % for EES and 135 % for DEWTS). Due to
the features of the DAG model and the slack room
for workloads are always finite, there exist an upper
bound in reducing the power consumption.

5.2.4 Estimate in Different Values of CCR

Like many previous researches, this paper also take
consideration of the evaluation for CCR. This group
of experiments are designed to investigate the impacts
that the attributes and structure of DAG graph itself
have on the three algorithms: EES, HEFT, and
DEWTS. In order to avoid the effect of other factors

Author's personal copy



An Energy-Efficient Task Scheduling Algorithm in DVFS-enabled Cloud

on EES and DEWTS, we set the value of the extension
ratio as 100 %. The reason for this choice is because
when the α = 1.0, the ECR of EES and DEWTS are
close to the minimum. Without loss of generality in
distributed environment, in this set of experiments, we
select 400 tasks with 48 available processors, namely
12 processors for each type. Other parameter values
are randomly selected from the set of parameters.

The results of testing the average resource utiliza-
tion under different CCR are given in Fig. 8a. Based
on the observations from the figures, we can find
that DEWTS is able to achieve quite considerably
resource utilization while meeting the deadline. When
the value of CCR is 2, DEWTS reaches its highest
resource utilization of 80 %, which is a quite consid-
erable value compared with EES (equal 60 % when
CCR is 0.5) and HEFT (equal 58 % when CCR is 0.5).
According to the results, it can be speculated that both

EES and HEFT can be considered as computation-
intensive applications because when CCR is low they
can get their highest resource utilizations. Meanwhile,
DEWTS can deal with both computation-intensive
applications and communication-intensive applica-
tions.

Figure 8b shows the effects of different CCR on
the ECR of these three algorithms. This figure shows
that when CCR is 0.5, both HEFT and EES meet their
lowest ECR: 6.9 and 4.1 respectively. Meanwhile,
DEWTS gets its lowest ECR (equal to 4.01) when the
value of CCR is 2. Compared with HEFT, both EES
and DEWTS perform much better. But compared with
EES, the value of CCR has smaller impact on the ECR
of DEWTS, for the fluctuation 0.5 is much less than
1.12. This phenomenon demonstrates that both HEFT
and EES are suited to computation intensive appli-
cations better than communication intensive parallel

(a) Average resource utilization. (b) Average ECR.

(c) Average running time. (d) The energy saving ratio.

Fig. 8 Estimate in Different CCR
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applications. And DEWTS can deal with both types of
applications better than EES.

The average executing time is given in Fig. 8c. As
HEFT has been proven to perform very competitively
with a low time complexity, and extension ratio has no
effect on it, so it is the best algorithm among the three
as far as the average running time is concerned. As
from the two above experiments results analysis, CCR
has an unignored impact on those three algorithms.
The average task execution time of DEWTS is lower
than EES, that is because DEWTS decreases the num-
ber of processors before using DVFS technique, which
brings the energy consumptions shorten.

Figure 8d describes the saving ratioes of EES and
DEWTS under different CCR compared with HEFT.
The results presented show that, when CCR is 0.5, the
EES comes to its best saving ratio. Based on our exper-
iments, the average saving ratio can reach up to 44 %.
We can find out that DEWTS comes to the best scene
when CCR is equal to 2, and the energy saving ratio
is up to 46.5 %. In contrast, when CCR is equal to 2,
EES can reduce 37% of energy dissipation. And when
CCR is equal to 0.5, the best saving ratio can be up to
44 %.

Combined with all the four experiments, we can
conclude that both EES and HEFT can be appropri-
ate for computation-intensive applications. And when
CCR is low, they can get their best performances.
As the advantages, DEWTS can deal with both
computation-intensive and communication-intensive
applications compared to EES and HEFT.

5.2.5 Estimate in Different Degree of Parallelism

In the last experiment, for verifying the varieties of
distributed system, the effects of the different degree
of parallelism β are considered. And we only test the
effect does the degree of parallelism has on resource
utilization and energy saving ratio. To balance both
EES and DEWTS, we use two CCR values (0.5 and
2.0) in this experiment, as the effects of the degree
of parallelism have on ECR and average running time
are similar to CCR. In order to avoid the effect of
other factors on EES and DEWTS, we set the value
of the extension ratio as 100 %. In this group of
experiments, we select 400 tasks with 48 available
processors, namely 12 processors for each type. Other
parameter values are randomly selected from the set
of parameters.

From Fig. 9, we can notice that although there is
little impact on energy consumption by parallelism
factors, DEWTS can achieve more energy saving ratio
when β equals to 5 and CCR = 2, because in these
conditions, there are more effective idle phases when
DEWTS leverages resource utilization by merging the
number of processors. Therefore, it can achieve higher
resource utilization and saves more power consump-
tion.

With DEWTS, the number of running processors
are less than the compared algorithms without violat-
ing the dependency constraints. Meanwhile, the task
executing time are slacked under the lower processor
voltages to decrease the energy consumption. Based

parallelism factor -β
(a) Average resource utilization.

parallelism factor -β
(b) Average ECR.

Fig. 9 Estimate in Different parallelism factor

Author's personal copy



An Energy-Efficient Task Scheduling Algorithm in DVFS-enabled Cloud

on all these experiments, with different types of DAG
task set, DEWTS can meet the deadline given by the
user constraints, not only maintains the good perfor-
mance, but also reduce the idle cost and extravagant
energy consumption.

There are 4-8 Voltage Identification (VID) pins for
each central processing unit, the basic principle for
CPU to adjust the voltage is to change the voltage on
VID pins. It can generate a group of VID identification
signal by changing the voltage of these identification
feet. We can use voltage regulation model to realize
this operating. In current processor productions, CPUs
like Intel XScale and AMD Duron all support a set
of voltage levels, such as AMD Mobile K6, its volt-
age range is from 0.9V to 2.0V, and the voltage of
Intel PXA250 can be also adjusted in the range 0.85V
- 1.3V. Based on these above processors, a DVFS-
enabled private cloud environment can be established
through an open source VM management platform
CloudStack. This cloud platform can be deployed on
a cluster consists of physical servers using the above
DVFS-enabled processors.

6 Conclusion and Future Works

Energy consumption reducing in cloud centers is crit-
ical for green computing. This paper provides an
energy-saving scheduler DEWTS based on dynamic
voltage/frequency scaling algorithm. DEWTS is
applicable to the scheduling system of most data cen-
ters consist of DVFS-enabled processors. Comparing
to previous works, the tasks can be distributed in the
idle slots under a lower voltage and frequency, without
violating the dependency constraints and increasing
the slacked makespan. This algorithm can be applied
to various parallel applications on heterogeneous envi-
ronment. It can obtain significant energy reduction as
well as maintaining the quality of service by meeting
the pre-set deadlines.

In future work, the system reliability will be con-
sidered. Some detail settings would be taken into
account to fit the experiments to the real environment.
For instance, the communication overhead, the volt-
age/frequency switching overhead and other uncertain
parameters in the actual presence of a heteroge-
neous environment will be considered in the further
researches.
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