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Abstract— In currently popular access control models,
the security policies and regulations never change in the running
system process once they are identified, which makes it possible
for attackers to find the vulnerabilities in a system, resulting
in the lack of ability to perceive the system security status and
risks in a dynamic manner and exposing the system to such risks.
By introducing the maximum entropy (MaxENT) models into the
rule optimization for the Bell–LaPadula (BLP) model, this paper
proposes an improved BLP model with the self-learning function:
MaxENT-BLP. This model first formalizes the security properties,
system states, transformational rules, and a constraint model
based on the states transition of the MaxENT. After handling
the historical system access logs as the original data sets, this
model extracts the user requests, current states, and decisions to
act as the feature vectors. Second, we use k-fold cross validation
to divide all vectors into a training set and a testing set. In this
paper, the model training process is based on the Broyden–
Fletcher–Goldfarb–Shanno algorithm. And this model contains
a strategy update algorithm to adjust the access control rules
dynamically according to the access and decision records in a
system. Third, we prove that MaxENT-BLP is secure through
theoretical analysis. By estimating the precision, recall, and
F1-score, the experiments show the availability and accuracy
of this model. Finally, this paper provides the process of model
training based on deep learning and discussions regarding adver-
sarial samples from the malware classifiers. We demonstrate that
MaxENT-BLP is an appropriate choice and has the ability to help
running information systems to avoid more risks and losses.

Index Terms— Adversarial sample, BLP, machine learning,
mandatory access control, maximum entropy model, rule
optimization.

I. INTRODUCTION

THERE are many systems that are security-sensitive,
such as military sectors, government, and banks, whose
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resources are usually partitioned according to the secu-
rity levels while the entire system uses strict mandatory
access control (MAC) to keep the data confidential and
integral [1]. The Bell-LaPadula model (BLP) [2] is such a
computer security model proposed by David Bell and Leonard
La Padula to imitate military security policy, which has been
widely applied and studied in high security systems, such as
SELinux [3] and database security systems [4].

Due to the diversity of requests, especially in the cloud
computing environment with mass traffic, the current security
theorems and rules in BLP cannot adapt well to the variation of
a distributed system [5]. Because most systems lack the abil-
ities of environmental awareness and system self-adaptability,
it usually causes the following situations:

First, the security of a traditional BLP model is based
on the principle of stationarity, which requires the security
levels of subjects and objects to remain unchanged once they
are created. Practical applications show that this will result
in strong constraints on subject behaviour, and it will also
bring many security vulnerabilities and risks, which cannot
to be monitored. For example, the representative strategy
“read down” and “write up” in BLP can prevent information
flow to insecure subjects or objects effectively. However, if we
lack the capacity to identify threats in a dynamical procedure
and adjust the access rules in time, some malwares can access
the information that you do not want to publish by modifying
their security levels at run time.

Second, even though there are no malwares and attackers to
modify their security levels or objects’ security levels forcibly,
some inherent defects still exist in the traditional BLP model
and its later improved versions, which can also be found in all
other traditional access control models, such as Discretionary
Access Control (DAC) and Role based Discretionary Access
Control (RBAC). For example, the subject range for accessing
the sensitive objects is usually defined beforehand, and this
will destroy the system availability. In practice, the sensitive
objects are neither always read by the subjects in the higher
security levels nor always written by the subjects in the lower
security levels at all times. Hence, the systems need to know
about changes of the sensitiveness of the subjects and objects
in time.

The above mentioned defects of the traditional BLP model
are inherent because it is one of the typical traditional
mandatory accesses control mechanisms, which all have the
drawbacks of unchanged access rules once generated. That is,
even though the rules are strictly enforced, the risks and threats
still exist in these systems employing the BLP model, which
are even unrecognized in the system. The traditional BLP
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models in the current applications lack the ability to perceive
the system security status and risks in a dynamic manner.
Fortunately, the system access logs can record the transactions
and state transitions, which can be used to compensate the BLP
model limitations regarding environmental perception and self-
optimization based on data analysis and mining.

Hence, the operations need to be manually annotated as
“secure” or “insecure” to judge the security situation, which
can be the pre-processed training data after the historical
access logs are annotated based on the empirical knowledge.
It would be natural to employ the machine learning model
to identify and predict the unrecognized threats that may be
raised by authorized access requests from legitimate users.

As the core of artificial intelligence, machine learning [6]
is an effective means of self-learning by computers, which are
able to gain regulations by performing an automatic analysis
on a known set of data and apply them to predict unknown
data. For example, in the area of behaviour recognition,
the basic methods are learning the rules or generating
the decisions by model training [7]. For this target, there
have already been a series of specific algorithms, such
as Bayesian classification [8], the K-Nearest Neighbor
algorithm (KNN) [9], Support Vector Machine (SVM) [10],
the Hidden Markov Model (HMM) [11], Maximum
Entropy Models (MaxENT) [12], and Conditional Random
Fields (CRFs) [13].

In most running applications controlled by the BLP security
polices, system decisions are not only based on the previous
step but also depend on the current system states, security
rules, and user requests; there actually are not Markov prop-
erties in the processing of state transitions. Compared to the
HMM and CRFs models, MaxENT model is an appropriate
selection for the model inference [14].

Except for the above shallow learning and clustering tech-
niques, to identify unrecognized threats from the historic
access logs, a deep learning model such as Deep Neural
Network (DNN), is also appropriate for this purpose. The
advantages are listed as follows to illustrate the reason why
the MaxENT model is used in our works:
• Compared to other shallow learning models, the feature

selections in MaxENT are more flexible, and the perfor-
mance of the maximum entropy classifier is also usually
superior to that of KNN, SVM, etc.

• Compared to the deep learning model, because the access
log has a small number of features but a large number
of records, the advantage of MaxENT can be appropriate
for this type of data better than DNN. By adjusting the
adaptation to the unknown parameters and the fitting
levels for the known parameter, MaxENT can solve the
problem of over-fitting, which often appears in deep
learning models.

• Compared to other application scenarios with model train-
ing based on BFGS or deep learning, because any slight
disturbance would make the current sample completely
different from the original one, adversarial samples are
hard to generate from the input feature data. The mode
training of MaxENT based on BLP feature values is hard
to attack with conventional adversarial samples.

There is usually much hidden knowledge in the system logs,
which can be used to construct the training set [15]. Based
on the MaxENT theory, this paper proposes an improved
BLP model: MaxENT-BLP, which takes advantage of machine
learning methods to train the history access logs and attempts
to decrease the existing defects in the access rules of the tra-
ditional BLP model. By analysing and annotating the current
system logs, the MaxENT-BLP establishes a self-optimizing
model based on machine learning methods that can learn from
empirical data, and thus the security policies and rules can be
adjusted dynamically according to the historical and current
secure states in the running systems. The main contributions
of the paper are summarized as follows.

• We propose an improved mandatory access control
model. Because the access control polices in MaxENT-
BLP can be adjusted dynamically according to the cur-
rent security states and events in a system, it improves
the security and environmental perception for traditional
security model.

• We prove the security of MaxENT-BLP in theory, and
implement this model based on massive access logs
in a practical system. Experimental results show that
MaxMNT-BLP not only has good ability of threat recog-
nition, but also has good precision and recall.

The rest of this paper is organized as follows. Section 2 sur-
veys the related works. Section 3 proposes the model defin-
itions. Section 4 illustrates the model training and solution
through the historical access logs. Section 5 gives the security
analysis and proof for this proposed model. Experiments
and analysis that support our contributions are presented in
Section 6. Section 7 proposes the solution of model training
based on a deep learning method and discusses the defence
capability for the malware classifier. Finally, Section 8 con-
cludes this paper.

II. LITERATURE REVIEW

Because solutions to security problems usually rely on the
empirical data, the use of machine learning to solve system
threats and vulnerabilities is becoming an important means for
the security analysis of distributed systems over these years.
In recent years, the researches on adapting security models
primarily involves intrusion detection and authorization &
authentication systems.

A. Threat Discovery & Intrusion Detection

The vulnerability scanning and threat discovery often
discover unknown risks that rely on existing knowledge.
Hence, model training on the empirical data seems a
natural and effective means to achieve this goal [18].
Yamaguchi et al. [16] used principal component analysis and
a text mining technique to obtain defects in source code.
Bozorgi et al. [17] proposed a method for training SVM and
used it to predict system vulnerabilities. Puttini et al. [20]
employed a Bayes classification model for real-time intrusion
detection and modelled the user behaviours with a parame-
terized model. Tian et al. [21] designed a group of sequence
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kernels to implement SVM-based anomaly detection of system
calls.

Yeung and Ding [29] adopt an anomaly detection approach
by detecting possible intrusions based on program or user
profiles built from normal usage data using the hidden Markov
model (HMM) and the principle of maximum likelihood.
Because the feature selection is critical to knowledge-based
authentication, Chen and Liginlal [30] adopt the principle of
maximum entropy to implement the feature selection, which
can be formulated as an optimization problem to maximize the
Kullback-Leibler divergence between the guessing distribution
and the true empirical distribution over the same space of a
selected feature subset.

There are also various excellent research studies regard-
ing how to detect anomalies and malicious files among the
antimalware based on shallow learning and deep learning.
Recent state of art in machine learning reported the issues
that can occur if shallow learning classification or clustering
techniques are deployed [26]–[28]. To take advantage of both
shallow learning and deep learning models, these two types of
training methods are all considered in our works to solve the
aforementioned problems.

B. Adapting Access Control & Security Polices

In the study of adaptive access control, role mining is an
effect way to match the appropriate privileges to users [22].
Recently, research studies have provided many approaches that
automatically mine likely properties from a policy via the
technique of association rule mining [23], [24]. Role mining
is more suited to the role-based access control mechanism,
in which the role takes the core position in building and main-
taining the architecture of the RBAC system and migrating the
non-RBAC system to the RBAC system [25]. In our model,
because BLP is a typical MAC model, the principle of least
privilege can be obeyed through the policy optimization based
on MaxENT-BLP, even though there is no concept of role in
the MAC model.

Moreover, there are many research studies on adapting secu-
rity policies. Lo and Chen [31] proposed a method to evaluate
the risk levels of information security under various security
controls. In their works, the fuzzy linguistic quantifiers-guided
maximum entropy order-weighted averaging operator is used
to aggregate impact values assessed by experts, and applied to
diminish the influence of extreme evaluations such as personal
views and drastic perspectives. Mosenia et al. [19] described
a novel continuous authentication system that authenticates
users based on biomedical signal streams. By the way of
machine learning, they can provide the high accuracy levels
of biomedical signals.

From the above discussions, because the security and valid-
ity of created access rules need to be tested in the operational
process of practical systems, it is feasible to adjust the model
using existing experience data that comes from the running
model processes. Because the representative research works
on resolving the security state perception concern almost the
entire information system, most of them lack the ability to
mine and detect the vulnerabilities and risks for the specific
secure policies.

III. MAXENT-BLP MODEL

In this section, we first provide the basic model description,
which includes three security properties and element defin-
itions, and then propose two specific improvements for the
original BLP rules. Finally, by treating the request and state
transition of BLP as the feature functions, the MaxENT-BLP
model is constructed based on the computational process for
the expectation of feature function of the MaxENT.

A. Basic Definitions

The BLP model defines a set of security properties to
constrain the system states and the transition rules among
different states. The main function of the rules in BLP is to
ensure that the system state v is always a security state in the
system, if and only if the state v satisfies the following three
security properties [32].

1) Discretionary Property (ds-Property for Short): A state
v = (b, M, f ) that satisfies the ds-property requires: (si , o j , x)
∈ b ⇒ x ∈ Mi, j .

2) Simple Security Property (No Read Up, ss-Property for
Short): A state v = (b, M, f ) that satisfies the ss-property
requires: (s, o, x) ∈ b iff (i) x = e or x = a or x = c
(ii) (x = r or x = w) and L(s) � L(o).

3) *-Property (No Write Down): Suppose S� is a subset
of S. A state v = (b, M, f ) satisfies *-property to S� iff

s ∈ S� ⇒

⎧
⎨⎨

⎨⎩

o ∈ b(S : a)⇒ L(o) � L(s)

o ∈ b(S : w)⇒ L(o) = L(s)

o ∈ b(S : r)⇒ L(o) � L(s)

where, b(S : x1, x2) represents the object set in b that subject
S can access with x1 or x2 permission.

Thus, in this model, the security theorem defines the security
of the current state in the system and decides whether the state
transition rule is secure or not. The element definitions of this
model are listed in Table I.

There are ten basic rules in the classic BLP model [2]. For
instance, the first rule can be presented as Eq. (1), which
formalizes subject si applying for permission r to access
object o j .

ρ1(Rk, v)=

⎧
⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎩

(?, v), Rk /∈ (∅, g, si , o j , r)
(yes, v∗), Rk ∈ (∅, g, si , o j , r) &

r ∈ Mi, j , L(si ) ≥ L(o j ) &
o ∈ b(si : w, a), L(o j ) ≤ L(o)

(no, v), otherwise

(1)

where v∗ = {b∪{si , o j , r}, M, f }. σ1 = ∅, γ = g, p = r , σ2 
=
∅ is made to verify whether the domain of x satisfies the form
of the tuple: (∅, g, si , o j , r), and r ∈ Mi, j , L(si ) ≥ L(o j )
is made to verify whether it obeys the ds-property and ss-
property, which means that Si has permission r to o j in
the access matrix M and its security level can dominate the
security level of the object. o ∈ b(si : w, a), L(o j ) ≤ L(o)
are made to verify whether it obeys *-property, which means
that subjects cannot move information from an object with a
higher classification to an object with a lower classification.
Symbol “∪” in b ∪ {si , o j , r} represents the granting of
permission r to subject si to access o j .
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TABLE I

ELEMENT DEFINITIONS OF MAXENT-BLP

B. Learning Ability of the Improved BLP Model

The state transitions in the BLP model are defined
by current requests, rules, and the logical functions: ρ:
R×V→D×V ∗. For a given state and a request, the BLP
rules determine the response and the state transition.
In this model, the state set is V = {v1, v2, v3, · · · , vn},
the request set is R = {r1, r2, r3, · · · , rn}, the decision set is
D = {yes, no, error, ?}, and the set of results is represented
as: Y = {secure, insecure}.

Moreover, in this expression R×V→D×V ∗, R represents
the access request, V and V ∗ are the system status set before
and after transitions respectively, and D represents the deci-
sion. In the MaxENT model, X represents the model inputs,
Y represents the label results, and f (x) represent the feature
function. To build a bridge between the BLP and MaxENT
model, we set R and V as the input X of the training data,
and hence one of the basic element of the training data with
the MaxENT model can be denoted as this tuple: x = (ri , vi ).

In this processing, the decision set D is regarded as the
results of the data labels. As the output of the MaxENT model,
the value scope of the set Y is equal to the decision set D
in effect. To define an improved BLP model with some
learning ability based on MaxENT, we first establish the
feature vectors based on the original rules of the original BLP

model. In this model, the training set is formalized as Eq. (2):

T = {[(r1, v1) , y1] , [(r2, v2) , y2] · · · [(rn, vn) , yn]} (2)

where yi is the labelled result as the output. Then, we can
obtain the empirical distribution as Eq. (3):

�p(x, y) = �p [(ri , vi ) , y] = f (X = x, Y = y)

N

= f [(R = ri , V = vi ) , Y = y]

N
(3)

and,

�p(X = x) = V (X=x)
N (4)

where N is the total number of samples, which is the size of
the annotated data. Accordingly, the basic form of the feature
functions is designed as Eq. (5):

fi [(ri , vi ), y] =
�

1, ρi (ri , vi ) = yes, y = secure
0, others

(5)

where i ∈ 0, 1, 2, · · · , n, 1 ≤ i ≤ 10, and vi consists of a
three-tuple (b, M, f ). When a system receives a request r ∈ R
under a state v ∈ V , it will output a decision such as “yes”
according to a state transition rule ρi , which is based on the
characteristic to keep the system always in secure state. Based
on this, we can finally determine whether the feature values
are set as 0 or 1. In this manner, the computation process for
expectation of feature function for the empirical distribution
�p[(vi , ri ), y] is as shown in Eq. (6):

E�p( f ) =
�

x,y

�p(x, y) f (x, y)

=
�

(ri ,v i ),y

�p [(ri , vi ) , y] fi [(ri , vi ) , y] (6)

And the expectation of feature function under both the
model p[y|(r i , vi )] and the empirical distribution �p(ri , vi ) can
be calculated as Eq. (7):

E pi( f ) = 	

(ri ,vi ),y
�p(ri , vi )p[y|(r i , vi )] fi [(ri , vi ), y] (7)

From the above, the objective function and constrain con-
ditions of the MaxENT-BLP model could be expressed as
follows:

max
p∈C

H (p) = −
�

(ri ,vi ),y

�p(ri , vi )p[y|(r i , vi )] log p[y|(ri , vi )]

s.t .
�

y

[y|(vi , xi )] = 1

E�p( fi ) = Ep( fi ), 1 ≤ i ≤ 10 (8)

IV. MODEL TRAINING & STRATEGY OPTIMIZATION

This section firstly provides the overall framework of the
data flow in MaxMNT-BLP model, and then presents the
detailed course of computing the weights of the feature func-
tion. The output probabilities of these weights are also the
probabilities of BLP decisions.
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Fig. 1. The process diagram of MaxENT-BLP.

A. Process Description

The purpose of the model training is to obtain the knowl-
edge to judge the secure state for the system decisions.
Fig. 1 illustrates a simple but concrete example to explain the
decision making process of the BLP model based on model
training. After handling the historical system access logs as the
original data sets, through pre-processing and data annotation,
we first divide the data sets with the recognizable requests
into the training data and the testing data, and then complete
the features selection, finally extract the requests and current
states to act as the feature vectors.

After the model training based on parameter estimation,
we can complete the strategy optimization. In this way,
the analogous requests that have a certain number of the same
features with the recognizable request labelled “insecure” will
be infused by the optimized strategies, even though that the
initial BLP rules allow this request, but other requests with
an automatic label “secure” will be validated with a decision
“yes”. The entire process is a closed loop with reinforcing
feedback, this is because the requests with decisions based on
model inference would be supplemented into the original logs.
According to their actual secure states, these logs would be
annotated with the label “insecure” or “secure”.

MaxMNT-BLP represents the system action logs with the
user requests as the input sequence set. For the requests at
any time, if they do not exist in the original system access
logs, this request will be manually annotated. In this process,
the annotated results will be divided into three parts: the
decision that is returned to the requesters, the total records
supplemented into the original logs, and the extracted records
supplemented into the current training set as the new training
data. In this way, MaxMNT-BLP can be adjusted dynamically
according to the current security states and events in a system,
and it can improve the security and environmental perception
for traditional security models.

B. Parameter Estimation

The MaxENT-BLP Model is essentially a typical optimiza-
tion problem, which belongs to non-linear programming with
linear constraints. Because our goal is to train the model
parameters ω by the maximum likelihood estimation, this

process is effectively the equivalent of searching the max
values of the logarithm likelihood function. In this paper,
an improved Iterative Scaling (IIS) algorithm [33] is used
to solve the above problems. Suppose the current parameter
vector of MaxENT-BLP is ω= (ω1,ω2, · · · , ,ωn)T , then a
new parameter vector ω + δ= (ω1+δ1,ω2 + δ2, · · · ,ωn+δn)

T

is required, and it can make the value of the logarithmic
model likelihood function increase. If there is such a method
τ : ω→ ω + δ to update the parameter vector, then it can be
reused until we find the maximum number of the likelihood
function.

For a given empirical distribution �p((ri , vi ), y), the change
of the logarithm likelihood function with the parameter incre-
ment of δ can be calculated as Eq. (9):

L(ω + δ)− L(ω) =
�

(ri ,vi ),y

�p((ri , vi ), y) log pω+δ(y|(ri , vi ))

−
�

(ri ,vi ),y

�p((ri , vi ), y) log pω(y|(ri , vi ))

=
�

(ri ,vi ),y

�p((ri , vi ), y)

n�

i=1

δi fi ((ri , vi ), y)

−
�

x

�p(ri , vi ) log
Zω+δ(ri , vi )

Zω(ri , vi )
(9)

And the lower bound of the increment of the log-likelihood
function can be obtained based on this inequality: − log α ≥
1− α, α> 0:

L(ω+δ)−L(ω) ≥
�

(ri ,vi ),y

�p((ri , vi ), y)

n�

i=1

δi fi ((ri , vi ), y)+1

−
�

x

�p(ri , vi )
Zω+δ(ri , vi )

Zω(ri , vi )

=
�

(ri ,vi ),y

�p((ri , vi ), y)

n�

i=1

δi fi ((ri , vi ), y)+1

−
�

x

�p(ri , vi )
�

y

pω(y|(ri , vi )) exp

n�

i=1

δi fi ((ri , vi ), y) (10)

Letting A(δ|ω) represents the result of the lower bound
obtained in Eq. (10), we have: L(ω + δ)− L(ω) ≥ A(δ|ω).

If there exist an appropriate δ to raise the value of A(δ|ω),
that also makes the log-likelihood function increase. However,
because δ in function A(δ|ω) is a vector that consists of a
plurality of variables, these variables are not easily optimized
at the same time.

To lower the actual value of A(δ|ω), the IIS algorithm is
suitable for optimizing one of the variables δi while fixing
the other variables δ j , i 
= j . It also introduces the vari-
able f #((ri , vi ), y) = 	

i
fi ((ri , vi ), y). Here, fi is a binary

function, and f # ((ri , vi ), y) represents the frequency of all
the features appearing in ((ri , vi ), y). Thus, A(δ|ω) can be
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rewritten as Eq. (11):

A(δ|ω) =
�

(ri ,vi ),y

�p((ri , vi ), y)

n�

i=1

δi fi (x, y)+ 1

−
�

x

�p(ri , vi )
�

y

pω(y|(ri , vi ))

× exp




f
#
((ri , vi ), y)

n�

i=1

δi fi ((ri , vi ), y)

f #
((ri , vi ), y)

�

(11)

Considering the convexity of the exponential function, for
an arbitrary state or request, holds that: fi ((ri ,vi ),y)

f #((ri ,vi ),y)
≥ 0 and

n	

i=1

fi ((ri ,vi ),y)
f #((ri ,vi ),y)

= 1. According to the Jensen inequality, we can

obtain the following relationship as Eq. (12):

exp



n�

i=1

fi ((ri , vi ), y)

f # ((ri , vi ), y)
δi f # ((ri , vi ), y)

�

≤
n�

i=1

fi ((ri , vi ), y)

f # ((ri , vi ), y)
exp

�
δi f # ((ri , vi ), y)


(12)

Based on Eq. (12), Eq. (11) can be rewritten as:

A(δ|ω) ≥
�

(ri ,vi ),y

�p((ri , vi ), y)

n�

i=1

δi fi (x, y)+ 1

−
�

x

�p(ri , vi )
�

y

pω(y|(ri , vi ))

×
n�

i=1

fi ((ri , vi ), y)

f # ((ri , vi ), y)
exp

�
δi f # ((ri , vi ), y)


(13)

In Eq. (13), the right part of this inequality is denoted as
B(δ|ω), and L(ω + δ) − L(ω) ≥ B(δ|ω). Therefore, B(δ|ω)
becomes a new lower bound of the amount of change of the
logarithmic likelihood function. We can use Eq. (14) to work
out the partial derivative of B(δ|ω) to δi :

∂ B(δ|ω)

∂δi
=

�

(ri ,vi ),y

�p((ri , vi ), y) fi ((ri , vi ), y)

−
�

x

�p (ri , vi )
�

y

pω (y|(ri , vi )) fi ((ri , vi ), y)

× exp
�
δi f # ((ri , vi ), y)


(14)

To detect the extreme points, the value of the expression
of the partial derivatives is set to zero. Hence, we can obtain
Eq. (15):

�

(ri ,vi ),y

�p ((ri , vi )) pω (y|(ri , vi )) fi ((ri , vi ), y)

× exp
�
δi f # ((ri , vi ), y)


= E�p ( fi ) (15)

Hence, the traditional MaxEnt model can be formalized as
follows:

pω(y|x) = 1

Zω(x)
exp



n�

i=1

ωi fi (x, y)

�

(16)

where

Zω(x) =
�

y

exp



n�

i=1

ωi fi (x, y)

�

(17)

In Eq. (17), Zω(x) is called the normalization factor, and
fi (x, y) is the feature function. ωi represents the weight of
the feature, which is the parameter vector of the MaxENT
model. Thus, the value of δi can be worked out by solving
Eq. (15), and then further to calculate the weights of ω, which
can be plugged into Eq. (16) and Eq. (17) to obtain the optimal
estimate of MaxENT-BLP expediently.

C. Strategy Optimization Algorithms

In this section, the Quasi-Newton method [34] can be
applied to solve the learning processing of MaxENT-BLP.
pω(y|x) = pω[y|(ri , vi )] can be calculated as Eq. (18):

pω[y|(ri , vi )] =
exp

�
n	

i=1
ωi fi [(ri , vi ), y]

�

	

y

�
n	

i=1
ωi fi [(ri , vi ), y]

� (18)

The objective function can be established as Eq. (19):

min
ω∈Rn

f (ω) =
�

x

�p(ri , vi ) log
�

y

exp



n�

i=1

ωi fi [(ri , vi ), y]
�

−
�

x,y

�p[(ri , vi ), y]
n�

i=1

ωi fi [(ri , vi ), y] (19)

Then, the equation of the gradient can be calculated as:

g(ω) =
�

∂ f (ω)

∂ω1
,
∂ f (ω)

∂ω2
, · · · , ∂ f (ω)

∂ωn

�T

(20)

where:
∂ f (ω)

∂ωi
=

�

x,y

�p(ri , vi )pω[y|(ri , vi )] fi [(ri , vi ), y] − E�p( fi ),

i = 1, 2, · · · , n (21)

Because the MaxENT is a typical probabilistic graph model,
we can solve this model through an improved Broyden
Fletcher Goldfarb Shanno (BFGS) algorithm [34], which is
an iterative method for solving unconstrained nonlinear opti-
mization problems. For a real-valued function f : Rn → R,
g(x) and G(x) denote the gradient and the Hessian matrix of
the function f at x respectively. For simplicity, they are often
denoted by gk and Gk . In this model, function f : Rn → R
is continuously differentiable, and for a vector x ∈ Rn , �x�
denotes its Euclidean norm.

For the unconstrained optimization problem: min f (x),
x ∈ Rn , a sequence xk can be generated by the iterative scheme
by BFGS: x (k+1) = x (k)+λk× pk, k = 0, 1, 2, · · · , M , where
pk is the direction obtained by solving the linear equation:
Bk pk + gk = 0. The matrix Bk can be updated as Eq. (22)
during the following iterations:

Bk+1 = Bk + yk yT
k

yT
k δk
− Bkδkδ

T
k Bk

δT
k Bkδk

(22)

where, yk = gk+1 − gk , δk = x (k+1) − x (k).



TANG et al.: SELF-ADAPTIVE BLP MODEL BASED ON MODEL TRAINING WITH HISTORICAL ACCESS LOGS 2053

In Eq. (22), Bk+1 inherits the positive definiteness of Bk

as long as yk
T × sk > 0, which is guaranteed to hold if the

step size λk is determined by an equation of line search as
Eq. (24):

f (x (k) + λk pk) = min
λ≥0

f (x (k) + λpk) (23)

Algorithm 1 illustrates the entire process to solve
MaxENT-BLP by the BFGS method. The computational
cost of algorithm 1 depends on the dimension N of
the symmetric matrix B , thus the time complexity of
algorithm 1 is O(N × N).

Algorithm 1 BFGS Algorithm of Maximum Entropy Model
Learning
Input:

Feature functions f1, f2, ..., fn ;
Empirical distribution �p[(ri , vi ), y] ;
Objective function f (ω);
Gradient g(ω) =  f (ω) ;
Accuracy ε.

Output:
Optimal parameter values ω∗ ;
Optimal model pω∗ [y|(ri , vi )].
//begin procedure£º
Initial point ω(0), set B0 as positive definite symmetric
matrix, set k = 0.
while TRUE do

Calculate the pk according to Bk pk = −gk

Calculate the λk according to Eq. (22)
Calculate the gk = g(ω(k)) according to Eq. (19)
if ||gk|| < ε then

Get the iteration final ω∗ = ω(k)

Break;
end if
k ← k + 1
Update the value of ωi according to : ω(k+1) ← ω(k) +
λk pk

Update the value of Bk according to Eq. (21)
Update the value of yk according to : yk = gk+1 − gk

end while
return pω∗ [y|(ri , vi )].

Based on the results of the model training, as a strategy
update processing, Algorithm 2 is designed to adjust the access
control rules dynamically according to the current security
states and events in a system. In this process, the records
that cannot be identified automatically according to historical
experience will be exported to be marked by manual tagging.
After that, we can put these all marked records into the original
record set iteratively. Finally, the necessary model parameters
can be obtained via a training process by Algorithm 1.
Actually, Algorithm 2 just re-calculates the new weights of
the feature function with the original data vectors. The output
probabilities of these weights are also the probabilities of BLP
decisions. In this way, the MaxENT Model can adjust the
access control rules adjusted dynamically according to the

TABLE II

DEFINITION OF REQUEST FEATURE VECTOR

Algorithm 2 UBFGS: Strategy Update Algorithm
Input:

Parameter K ;
Origin Data vector set D0;
Unable to distinguish Data vector set D1;
Data vector set D2, D3, D4.

Output:
New optimal parameter values ω# ;
New optimal model pω# [y|(ri , vi )].
//begin procedure£º
//D0 represent the sum record before current moment, D1
represent
//the sum record whose request Unable to identify in current
a period of
// time
Merger D0 and D1, denote as a new set D2;
// K -fold cross-validation can be used to divide training set
and test set
Using K -fold cross-validation divide D2 into two part,
training set D3 and test set D4;
//D3 is the new training set after being mergered
Using D3 and algorithm 1 to get the value pω# [y|(ri , vi )];
return pω# [y|(ri , vi )].

current security states and events in the running process of
the system.

D. Feature Selection

Because the historical system access logs could be served
as the original data set in MaxENT-BLP, requests and current
state should be extracted to act as the feature vectors. The
value of the feature vector is composed of a quintuple:
(σ1, γ , σ2, o j , x), and the meanings of each value in the feature
vector are listed in Table II.

In this model, the current security state of a system can
be formalized as a triple (b, M, f ). As in the following log
shown in Table III, for a certain system log in our experiments,
the pre-treated data can be represented as five components, and
more detailed analysis for the experimental data is presented
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TABLE III

A PRE-PROCESSING LOG WITH DECISION: yes

TABLE IV

A PRE-PROCESSING LOG WITH DECISION: no

in Section 5.1. The first part is the current access-set b, string
“s3o2e” indicates that subject s3 has permission e on object
o2 at present.

The second part is the current system privilege matrix M .
Because we selected 3 subjects and 3 objects from the access
logs, M contains 9 columns in the inner data structure. The
third part denotes the set of current security level function F .
There are 6 columns in the same manner, including 3 subjects
and 3 objects. The value “s12310” in F shows the security
classification is 2 and the department set is {3, 1, 0}. The
fourth part describes the current system request R. It contains
5 columns, which means subject s1 asking for permission w
to access object o5.

The last part is the decision set that needs to be labelled
after training in this model, which is to label the system
decisions for a special input, including “yes, no, ?” and
“error”. In rule 1, the training data cannot be labelled “yes”
until the following conditions are satisfied: the request should
be legal (the fourth part), the security levels of subjects
must dominate those of objects (the third part), the requested
permissions must belong to the privilege matrix (the second
part), and *-property must be satified (the first part and third
part). Therefore, there are a total 25 features in the data set
for the five columns in these five parts.

Given this, the paper adds a list of features to the data set
in MaxENT. The following example in Table IV represents
subject s2 asking to read object o5, but the system rejects this
request because the security level of o5 dominates that of s2.

The feature vectors are extracted from the original data and
denoted as (R, V , D, Y ), where R represents the requests of
access, V represents the states of the MaxENT-BLP system,
D represents the decisions of the request, and Y represents
the set of annotations.

In this model, the decision set D can be divided into the
secure and insecure parts: Ds and Du respectively. Therefore,
the data format after processing is (Ri , Vj , Dk, Y ), (0 ≤ i ≤
m0, 0 ≤ j ≤ m1, k = 0, 1). For example, (r2, v1, ds, y1),

Fig. 2. An instance of MaxENT-BLP decision process.

where ds ∈ Ds and y1 ∈ Y , denotes that the execution
operation from subject S0 to object O0 in the case of system
state v1 is secure.

After processing the original data, K -fold cross validation is
used to the model training for MaxENT-BLP. In this method,
because R and V in the test set are regarded as the input,
we can obtain a decision set D� as the output. If D� is
consistent with D in the test set, the system is effective.

E. Instance Analysis

In our application environment, there is a distributed office
automation (OA) system in a large manufacturing corpora-
tion.1 The access control model and security polices in this
system are basically based on the BLP model. Actually,
in most larger corporations, the BLP model usually can
bring administrative convenience for the massive users and
resources.

This section describes a typical process regarding how some
operations from validated users are identified as a threat to
the system over time. In this instance, we describe the overall
process of how an information system generates the new rules
and modifies the existing rules based on the processed access
logs dataset. The system rejects the request from Jack to access
the salary file of the company, because based on the historical
access logs, this type of operations should be recognized as
a threat according to some of its features. To illustrate this
process in detail, the basic data flow of this instance is shown
in Fig. 2.

In this system, the items in the original access logs were
recorded as follows:

• 2014/12/23 11:32:34 Amy read only salary.txt secure
allow note:routine inspection

• 2014/12/25 16:12:28 Joe read-write salary.txt null null
note:check my salary

• 2014/10/25 15:52:34 Jack read salary.txt insecure allow
note:check my salary

• 2014/8/12 14:32:31 Jack write salary.txt insecure refuse
note:check my salary

Table V and Table VI give the partial user information and
authorization configuration in this company. As shown in these
records, Amy is a general manager, and she has all permission
for the files that belong to this database company. Bob is

1https://www.szzt.com.cn/en/
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TABLE V

BASIC INFORMATION OF USERS

TABLE VI

THE AUTHORIZATION CONFIGURATION FOR THE OBJECT SALARY.txt

TABLE VII

ENCODING OF OPERATIONS IN ACCESS LOGS

a department manager, so he does not have the permission
to access salary.txt. In addition, Joe and Lily are ordinary
employees, and thus they just have read only permission to
the responding file.

The traditional BLP model lacks the ability to adjust the
rules according to the system running status. The allowed
requests at the beginning would never be rejected if the
security levels stay the same, despite the same type of accesses
being annotated as a threat many times.

In this instance, the operations from Jack have been repeat-
edly labelled as threats even though he has legal permission
to read his own salary records. The traditional BLP model is
unable to recognize the same type of risks. That is, despite of
the high similarity of actions between Jack and Joe for many
of the same parts of features, the operations from Joe are still
allowed for his legitimate identity.

Fortunately, the advanced access mechanisms based on
MaxENT-BLP can recognize previously unknown threats.
Table VII quantize the original records, where B I denotes
whether the subject is in the basic information table, and F A
denotes whether the subject is authorized with the relevant
permissions. In these fields, 0 represents “no”, and 1 represents
“yes”.

Based on the above privileges numeralization, we use
B F = {B I, F A} to denote the basic information set, RP =
{R1, W1, E1, A1, C1} to denote the requested permission for
the objects, and AP = {R2, W2, E2, A2, C2} to denote the
authorized permission by the authorization system. The char-
acters in the two sets represent the following corresponding
permissions: “R: read; w: write; E: execute; A: append;
C: control”. In this manner, the records in the training set
are all encoded and labelled as this formalization, which are
the inputs of the training process in the MaxENT-BLP model.

The first row in Table VII is from a specific request:
“2015/12/25 15 : 52 : 34 Jack wri te salary.tx t”,

which represents a record of requesting the write permission to
the object “0000 0000 0000 0001”. Because Jack is in the basic
information, B I = 1. For its group Cgroup = 3, we have:
F A = 0, B F = B I, F A = 10 = 2.

For the feature vector (R, V , D, Y ), R =
(B F, RP&AP, objects), and D denotes the artificial label,
with the values belonging to this set: {secure, insecure}.
In this case, because B F = 10, RP = 00010,
AP = 10000, and RP&AP = 0, we have
R = B F, RP&AP, objects = 2, 0, 0000000000000001.
Because this record is manually labelled as “insecure”,
the feature vector based on the previous template can be
written as: (2, 0, 0000000000000001, v1, insecure).

The second row in Table VII gives the encoding for
another unrecognized request: “2016/10/25 05 : 52 : 34
Joe add salary.tx t”. The original record is shown as an
unknown threat with out a manual label. Similar to the first
record, we also have: B F = B I, F A = 10 = 2, RP = 00100
for requesting the write permission, and hence its feature vec-
tor can be represented as: (2, 0, 0000000000000001, vi, ?, ?).

Finally, by through putting this vector to the
MaxENT-BLP model, the full feature vector
(2, 0, 0000000000000001, vi, insecure, no) can be obtained.

V. SECURITY ANALYSIS & DISCUSSION

MaxENT-BLP improves the system transition rules to
enhance its availability. These improvements are based on the
reservation or reinforcement of the original security of the BLP
model. Because these security rules still obey the information
flow direction of “No read up, No write down” in the tra-
ditional BLP model, this improvement just appends stricter
restrictions, so the improved security model also does not
violate the basic characteristics, ss-property, and *-property.

In essence, the ss-property limits the execution of “read
only” when the subject security levels are higher than that of
objects. In MaxENT-BLP, the random accesses from subject
s to an object o will not cause information to flow from a
high security level to low security level. In this way, the ss-
property will be kept in the entire transition. *-property limits
the rules to allow the add operation when the security levels of
objects are higher those of subjects and allows the read/write
operation when the security levels of objects are equal to those
of subjects. In this improved model, the operations restricted
read/write are just for specific objects, and should satisfy the
essential condition: “security level of object dominates that
of subject”, so it still satisfies *-property in the BLP model.
Furthermore, because users with low security levels cannot
modify the specific data in a high security level, this not only
improves the integrity of the BLP model but also enhances the
usability of the original BLP model.

In the MaxENT-BLP model, the state transition rules are
all originated from the BLP model. Thus, it is necessary to
provide the security proof for this new rule. Based on the
following theorems, we can prove that the security of the
MaxENT-BLP model is equivalent to that of the BLP model.

Definition: A state v is a secure state iff v satisfies
ss-property, *-property, and ds-property.
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TABLE VIII

NUMBER OF DECISION IN DATASET

TABLE IX

NUMBER OF DECISION IN TRAINING SET AND

TESTING SET (NUMBER/PORTION)

Theorem: Rules after training still satisfy MaxENT-BLP
security constraints, and the training process has no effect on
the security of the model.

Proof: The training dataset is derived from preprocess-
ing of system access logs, but the preprocessing procedure
does not change the security properties of each element in
system logs. Therefore, the satisfaction of the basic features
of MaxENT-BLP in these log data is reserved.

For some special requests, such as skip-level accesses,
by reducing the read-write scope of some objects, stricter
limitations are imposed to avoid breaking the basic fea-
tures of the MaxENT-BLP model, including ss-property and
*-property. In this way, some skip-level operations are forbid-
den in this model, and just the objects belonging to the same
security levels or adjacent security levels can be accessed.
In conclusion, rules after training still satisfy the security
constraints of the traditional BLP model. This completes the
proof of the theorem.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Conditions and Method

This section illustrates a group of experiments to verify the
effectiveness of MaxENT-BLP. The related programs in these
experiments are based on a BFGS tool package [35]. MaxENT-
BLP can be widely used in the access control modules with
the independent logs sub-systems. In this paper, the original
data are from a real distributed office automation system
based on a MySQL cluster, and the processed dataset consists
of 17,640,731 record vectors. For this dataset, there are two
types of annotations for this feature set: Secure and Insecure.
Table VIII shows the distribution of the dataset.

Table IX illustrates the decisions distribution of the training
set and testing set. The numbers in this table count the same
decisions in the data set.

To assess the performance accurately, we use three cross-
validation techniques to train and evaluate the dataset. In 2-fold
cross-validation, we divide 17,640,731 request records into

TABLE X

THE RESULTS OF THE 8-FOLD VALIDATION TECHNIQUES

TABLE XI

COMPARISON OF AVERAGE P, R, F1 FOR TWO CROSS

VALIDATION TECHNIQUES

two sets: The first set contains 11,760,648 record vectors, and
the second set contains 5,880,243 record vectors. Table IX lists
the number of decisions in the training set and testing set. The
tags “Secure” and “Insecure” denote that the related operations
are secure or insecure for the system respectively, which
are also the evidence for the decisions regarding the related
operations made by the system. In this case, three-fourths of
the vectors (2/3 of each decision) are used for training and one-
fourths for testing (1/3 of each decision). The same analysis
method can be used to explain the 8-fold cross-validation in
these experiments.

B. Analysis of Experimental Results

Table X lists the results of 8-fold cross-validation tech-
niques. In Table XI, the resulting correct differentiation rates
represent the average of F1-Measure, and it reflects that
MaxENT-BLP could make a relatively appropriate system
decisions when it receives the users access requests from
another perspective. In these experiments, the accuracies are
up to 97.40% with 8-fold cross-validation.

The comparison experiments between traditional BLP and
MaxENT-BLP validate the effectiveness of the proposed
model. Because the data in Fig. 3(a) denotes the accumulated
number of all previous days, the number of illegal accesses of
BLP presents linear growth. However, with the model training
and self-learning capacity, some previously unknown illegal
accesses will be recognized and then be intercepted along
with the MaxENT-BLP system module running. Therefore,
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Fig. 3. The security evaluation of MaxENT-BLP. (a) Illegal accesses. (b) Illegal accesses occurrence rate. (c) Successful recognized rate. (d) Incorrect
interception rate of secure access.

Fig. 4. The number of unrecognized requests.

the growth rates of accumulated number of illegal accesses
are lower compared to the traditional BLP model.

Fig. 3(b) reflects the comparison of protection effect to the
system between the traditional BLP model and the MaxENT-
BLP model. The y-axis denotes the occurrence rate of the
illegal accesses for each day during the experiment, which
can be calculated by dividing the number of illegal accesses
by the total access number of each day.

In these experiments, because the cause of illegal accesses is
that the threats usually cannot be recognized, the relationship
between the threats and the illegal accesses are illustrated
clearly in Fig. 3(c). With the minimal data, for the imprecise
record samples, the recognition rate of the MaxENT-BLP
model is lower than that of the traditional BLP model instead.
However, with the growth of the training data, due to its
positive feedback mechanism, MaxENT-BLP becames more
and more precise at recognizing the threats as the system runs.

Fig. 3(d) shows the incorrect interception percentage of
secure access. The figure indicates that as time and access
records increase, the percentage of incorrect interception of
the accesses to the secure objects will remain steady in
BLP. However, on the contrary, MaxENT-BLP can make
the incorrect interception of secure access lower and lower
to some extent. In the initial stages, for a small number
of record samples, the incorrect interception percentage of
MaxENT-BLP is a lightly larger than that of BLP. However,
through the rules optimization after the model training and
rules learning process, the same types of accesses that were
intercepted by mistake will be allowed into the system. As a
result, the incorrect interception percentage of secure access
in MaxENT-BLP will be decreased with the increment of the
system traffic.

Fig. 4 illustrates that, if we just adopt the BFGS algorithm
to implement MaxENT, for these non-existent requests in the
original system logs, because the requests are unable to be

Fig. 5. The deep learning model of our task.

identified, these requests that cannot be handled will grow in
number. The experimental results show that with the effect
of Algorithm 2, the related polices can be adjusted dynami-
cally according to the system states, which can decrease the
unrecognized request effectively. Meanwhile, the comparison
between the two curves in Fig. 4 also illustrates that the effect
of model training under Algorithm 2 is better than under the
original BFGS algorithm because UBFGS can re-recognize
the training data by supplementing the new annotated data
periodically.

It is well known that for all supervised machine learning
models, the accuracies of the model inferences are almost up
to the quality of the data in training sets. With more training
samples, better predicting results for the testing set can be
obtained. Because the model training process in MAXENT-
BLP is also typically supervised learning, we can conclude
that the effect of the proposed model is up to the quantities
of the information in the historical logs.

VII. DISCUSSION

A. Model Training Based on Deep Learning

Without a doubt, there are several traditional classification
approaches and deep machine learning methods that can be
used to increase the environment aware abilities of the BLP
model based on the data training from the historical logs.
In particular, deep learning models are more robust than many
traditional machine learning models when they are faced with
malicious attacks. Therefore, we also apply the deep learning
model to process our task and it can make our model more
robust in protecting itself from the attack.

The nature of the data annotation and training can be treated
as a problem of binary classification: the historical logs should
be divided into a secure and insecure group automatically.
To address this issue, we adopt a deep neural networks (DNN)
as a classifier. The model architecture, shown in Fig. 5, is a
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TABLE XII

RESULTS OF OUR MAXENT MODEL AGAINST OTHER METHODS

slight variant of the DNN architecture for our task. The
feature vectors selected in Section 4.4 are used as input for
our deep learning model. Let X = (σ1, γ , σ2, o j , x) be a
5-dimensional feature vector as our model’s input. The value
of each dimension is different. As shown in Fig. 5, each neuron
in the input layer is used to accept one dimension’s value of
the feature vector.

Our deep learning model consists of n hidden layers and
each hidden layer contains m neurons. These neurons, which
apply activation functions, are linked to each other to learn
models. A neural network model F can be defined as follows:

X = (σ1, γ , σ2, o j , x)

F : X �→ fn(. . . f2( f1(X, θ1), θ2) . . . , θn) (24)

where each vector θi parameterizes layer i of the network F
and includes weights for the links connecting layer i to layer
i − 1. These parameters θ = {θi } are learned during model
training. We use stochastic gradient descent to train our model.

DNN is an appreciate method that can be used to implement
the secure/insecure classification. To illustrate the effectiveness
of the method objectively, we have tested the models of DNN
and MaxENT based on the same training data. In addition,
to compare with some traditional machine learning models,
we also apply shallow methods including Bayes, KNN, and
SVM.

KNN: This algorithm has a major shortcoming for classifi-
cation. It is sensitive to very unbalanced datasets. When most
entities belong to one or a few classes, the infrequent classes
will dominate in most neighborhoods.

SVM: Support Vector Machine is one of the most efficient
machine learning algorithms for classification. However, it is
not perfect. The disadvantages are that the theory only really
covers the determination of the parameters for a given value of
the regularization and kernel parameters and choice of kernel.

In the research works, we have compared the effectiveness
of these methods by working out the Precision, Recall and
F1-score of these models, and recorded the training time of
the two models as the efficiency indexes.

The average performances of different methods are dis-
played in Table XII. We use the 8-fold cross-validation tech-
nique to train and evaluate the dataset. The resulting correct
differentiation rates represent the average of F1-Measure. The
accuracy of our model is up to 97.40% with 8-fold cross-
validation.

As we can see from the results, our learning-to-rank
approach based on MaxENT achieves significantly better
results compared with traditional classification approaches.

Fig. 6. The training time of five models. (a) The training time. (b) The
training time under different proportions datasets.

The SVM model, which is believed to be suitable for clas-
sification, did not perform well in our setting. The compar-
ison between MaxENT and DNN shows the effectiveness
of our model. It reflects that MaxENT-BLP could make
relatively appropriate system decisions when receiving user
access requests from another perspective.

Fig. 6(a) gives the execution time of the other four tradi-
tional classification methods to train all dataset with 8-fold
cross-validation. Fig. 6(b) displays the training time under
different proportions of the datasets. These figures indicate
that Deep Neural Networks are very time-consuming method,
and the same goes for SVM and KNN. Bayes is efficient but
not accurate. However, MaxENT-BLP is time-saving with a
satisfactory effect. These experimental results prove that the
model of MaxENT is sometimes better than deep learning
methods for some massive training dataset with rare features.

B. Discussion for the Adversarial Samples From
Malware Classifier

There are some attacks often instantiated by adversarial
examples: legitimate inputs altered by adding small, often
imperceptible, perturbations to force a learned classifier to
misclassify the resulting adversarial inputs, while remaining
correctly classified by a human observer [27].

Literature [27] pointed out that the parameter training can
resist the attacks from the adversarial sample if the processing
satisfies the following three conditions: (a) the capabilities
required are limited to observing output class labels; (b) the
number of labels queried is limited; and (c) the approach
applies and scales to different machine learning classifier
types.

In our parameter training, the attackers only need to know
the output tag set of the target model, which is the result of
the model inference in the MaxENT-BLP, and this processing
is easily undetected due to small input data. Because the
output is a finite set, it is obvious that the limited output
itself satisfies our requirements for system security. Because
the original model is based on traditional machine learning
methods, the adversarial regions generated by this method
between the classification boundary and the real boundary are
easily obtained by computing the gradient for the output results
(similar to the algorithms in [36] and [37]).

Actually, the attack based on adversarial samples for
BFGS/L-BFGS cannot be prevented by the distillation tech-
niques. This is largely due to the distillation method spring-
ing from the compression of the neural network, and this
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technology is only suitable for reducing and preventing the
attacks based on adversarial samples for deep learning models.

After further thinking, we found that the attacks based
on adversarial samples generally achieve their purposes by
modifying some feature values without affecting the subjec-
tive judgement of the sample content. For instance, in deep
learning models, the classification features are usually all of
the pixels in a picture, and for text classification by semantics,
each word in an article is a feature. The slight changes in
some very small parts of the features for this type of samples
cannot change the sample itself and influence the subjective
judgement of human to the sample classifications.

In this sense, adversarial samples may only be suitable for
the feature value continuous model. For example, if we add
a few pixels to a picture of a bird, I think the animal in this
picture is still a bird. For the same reason, the main idea of a
long article cannot be changed if we modify some irrelevant
words. In this manner, slight variations in the feature values
cannot change the sample, but that may affect the results of
the sample classification.

The distribution of the feature value in the MaxENT-BLP is
a typical discrete model. First, the length of each feature item
is fixed, and in the preprocessing before model training, there
is a filter function to the value of each feature item, and the
characters that exceed the fixed length will be filtered. Hence,
for generation of the adversarial samples, they can only modify
the values of each feature item, and new characters added are
invalid.

However, compared to a feature value continuous model
such as a picture, the feature value modification is not the same
thing. In MaxENT-BLP, any slight changes would change the
sample itself. It would be changed to another sample, making
it completely not the original one. For instance, for the feature
values in Table III, any numerical changes will change the
original significances of the subjects, objects, or operations
from any subjects to objects. That is, the changes of the
feature values would change the sample of access logs to
another record. For different input samples, the outputs of the
MaxENT-BLP are obviously independent.

The following contents prove and analyse how adversarial
samples cannot be generated in MaxENT-BLP:

First, Because the precision of the features is limited, it is
not rational for the classifier to respond differently to an input
x than to an adversarial input: �x = x + η, if every element of
the perturbation is smaller than the precision of the features.
Formally, for problems with well-separated classes, we expect
the classifier to assign the same class to x and �x so long as
�η�∞ < ε, where is small enough to be discarded by the
sensor or data storage apparatus associated with our problem.
For the dot product of the adversarial samples and weight
vector:

ωT ·�x = ωT · x + ωT · η (25)

The adversarial perturbation causes the activation to grow
by ωT . We can maximize this increase subject to the max
norm constraint on ω by assigning η = sign(ω).

If ω has n dimensions and the average magnitude of an
element of the weight vector is m, then the activation will

grow by m × n. Because � η �∞ does not grow with the
dimensionality of the problem but the change in activation
caused by perturbation by η can grow linearly with n, for
high dimensional problems, we can make many infinitesimal
changes to the input that add up to one large change to the
output.

In this way, with a disturbance η, it will cause a normal
classifier to generate a different output from the expectation
for the input x and �x = x + η.

Let θ be the parameters of a model, x the input to the
model, y the targets associated with x (for machine learning
tasks that have targets) and J (θ, x, y) the cost used to train the
neural network. We can linearize the cost function around the
current value of θ , obtaining an optimal max-norm constrained
perturbation of this function.

η = �sign(�x J (θ, x, y)) (26)

In our application scenario, the actual input is a self-defined
feature vector −→x = (σ1, γ , σ2, o j , x) the deep learning model.
If the malicious software wants to attack the MaxENT-BLP
model, some necessary disturbances η would be added to the
feature vector −→x . As the above discussion, the features in
this model are sparse, and the feature values of this model are
discrete not continuous. If we add a disturbances η to a feature
vector −→x , no matter how small, the input sample would be
changed to another sample: �x∗ = x+η. In this manner, the case
in which the classifier outputs different results is reasonable.

Therefore, we can draw the conclusion that: if the space of
the feature value is continuous, and the adversarial samples
do exist in the original input data, the parameter training in
the MaxENT-BLP model can be attacked by this method.
However, the adversarial samples cannot be generated from
the input feature vectors of this model, because the value space
of this model is discrete.

Hence, to protect the sample data of our model, we can
have other secure courses, and the simplest method is integrity
verification. For example, the sample data can be validated by
computing and verifying its hash code.

VIII. CONCLUSION

Traditional access control models often lack the ability to
perceive unknown threats. By training the historical access
logs based on data training methods, MaxENT-BLP breaks the
limitation in security state perception and self-optimization.
Because most methods of current threat discovery technologies
based on machine learning are often just used to detect
unrecognizable intrusions, the major contribution of this paper
is the proposal of a model training method that adjusts the
decisions of the special BLP policies according to the secure
annotations of historical data. This model can optimize the
special insecure access control polices as the system runs.

The security of the model itself is fully considered in
MaxENT-BLP. Because any slight disturbance added to the
feature space would change one sample into another, this paper
demonstrates that the adversarial sample cannot be generated
from the training samples of MaxENT-BLP, and this model
is hard to influence because its feature values are discrete.
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The experimental results verify the learning ability of
MaxENT-BLP, which can help systems to avoid risks and
losses.
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