
An Intermediate Data Partition Algorithm
for Skew Mitigation in Spark
Computing Environment

Zhuo Tang , Wei Lv, Kenli Li , Senior Member, IEEE, and Keqin Li , Fellow, IEEE

Abstract—In the parallel computing framework of Hadoop/Spark, data skew is a common problem resulting in performance

degradation, such as prolonging of the entire execution time and idle resources. What lies behind this issue is the partition imbalance,

that causes significant differences in the amount of data processed by each reduce task. This paper proposes a key reassigning and

splitting partition algorithm (SKRSP) to solve the partition skew from the source codes of Spark-core_2.11 project, which considers

both the partition balance of the intermediate data and the partition balance after shuffle operators. First, we propose a step-based

algorithm for sampling the input data to estimate the general key distribution of entire intermediate data. According to the types of the

specific applications, we design two algorithms: hash based key reassigning algorithm (KRHP) and rang based key splitting algorithm

(KSRP), which can generate appropriate strategy and implement the skew mitigation in shuffle phase. KKSRP generates the

weighted bounds to split intermediate data for the type of sort-based applications while KRHP records these reassigned keys and the

new reducers these keys belong to for other applications. Finally, we implement SKRSP in Spark 2.2.0 and evaluate its

performance through four benchmarks exhibiting significant data skew:WordCount, Sort, Join, and PageRank. The experimental

results verify that our algorithm not only can achieve a better partition balance but also reduce the execution time of reduce

tasks effectively.

Index Terms—Data sampling, data skew, MapReduce, partition, spark

Ç

1 INTRODUCTION

AS a fast and general engine for large-scale data process-
ing, Apache Spark [1] divides data into multiple

partitions of RDD [2] and processes them stage by stage.
The shuffle phase is the basis for dividing the stages in the
DAG, which can maintain the read/write relationship
betweenmap tasks in map stages and reduce tasks in reduce
stages [3]. Compared with Hadoop [4], Spark is a faster data
processing platform based memory computing, and has a
more efficient implementation mechanism for large-scale
data processing.

As the intermediate data usually consist of many key/
value tuples in the shuffle phase, keys of tuples in each map
task output datum must be allocated to a certain reduce
partition according to specific partition methods. These
methods are usually used to calculate which reduce parti-
tion a key should belongs to [5]. When the data distribution
among all the reduce partitions were unbalanced, it may

cause remote fetching failure and extra communication
overheads, and longer execution time of overload reduce
tasks, which result in prolonging of the entire execution
time and idle resources. Because when other tasks with
smaller data sizes have been completed, the larger one has
not been finished yet and the others must wait for its com-
pletion [6].

To optimize performance in the MapReduce framework,
the previous solutions mainly include the following aspects:
Improving the data locality [7], [8]; Reducing the fetching
cost for reduce tasks [9], [10]; Improving resource utilization
[11], [12], [13]; Improving the partition balance and mitigat-
ing the partition skew [10]. Implementing an efficiently bal-
anced partition algorithm to make every reduce partition a
similar size is the most direct method because an imbal-
anced partition is the root cause of the skew problem [14].
Moreover, it changes the partition strategy directly without
moving data again after shuffle phase, so that it has no extra
transmission overhead. And it is easily integrated with
Spark because we apply the partition strategy based on
Spark’s original mechanism.

Hash partition [15] and range partition [16] are the two
default partition algorithms in Spark. The hash method is
the simplest and is applied to the vast majority of applica-
tions in Spark, except for sort operations. Sort operations
need preserving the total ordering, so the range partition
method is designed for this demand. Range can only be
implemented on the application whose key ordering has
been defined. Unfortunately, both of these two methods eas-
ily cause the skewness of intermediate data.

� K. Li is with the College of Information Science and Engineering, National
Supercomputing Center in Changsha, Hunan University, Changsha,
Hunan 410082, China, and also with the Department of Computer Science,
State University of New York, New Paltz, NY 12561 USA.
E-mail: lik@newpaltz.edu.

� Z. Tang, W. Lv, and K. Li are with the College of Information Science and
Engineering, National Supercomputing Center in Changsha, Hunan
University, Changsha, Hunan, China 410082.
E-mail: {ztang, lkl}@hnu.edu.cn, lik@newpaltz.edu.

Manuscript received 20 May 2018; revised 31 Aug. 2018; accepted 25 Oct.
2018. Date of publication 31 Oct. 2018; date of current version 4 June 2021.
(Corresponding author: Zhuo Tang.)
Recommended for acceptance by J. Chen.
Digital Object Identifier no. 10.1109/TCC.2018.2878838

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021 461

2168-7161 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5224-4048
mailto:
mailto:
mailto:

To solve the skewness, some useful methods were pro-
posed by previous researches. Most of them were designed
for Hadoop and utilized the system characteristics [17], [18],
[19], but only a few partition methods is based on Spark [20],
[21]. However, being different from Hadoop, Spark can exe-
cute the tasks stage by stage. Therefore, some Hadoop based
approaches do not necessarily apply to Spark. Most of meth-
ods compute partition strategy only on the basis of the tuples
number of intermediate data, which is the simplest but
thoughtless. To generate more applicable partition policies,
previous studies also took the complexity of reducer side
algorithms into account, and considered both data locality
and fairness.

This work uses shuffle-op to represent RDD operators that
cause shuffle phase and use normal-op to represent the others.
Then a reduce task in Spark computing framework contains
two parts: shuffle-op and normal-op. Actually, limited to the
traditional Mapreduce framework, previous studies only
consider the execution of shuffle-op. In the Spark, as show in
the Fig. 1, after fetching the splits of intermediate data, a
reduce task start processing the data with shuffle-op and nor-
mal-op. However, after shuffle-op, the number of tuples in
this partition changes and the partitions become skewed. It
means that if the shuffle operator makes the tuple numbers
change a lot, the balance of intermediate data cannot guaran-
tee the balance of partitions after shuffle-op. In this way, a
good Spark partition strategy should make a trade off
between the balance of shuffle-op and that of normal-op.

Drawing many inspirations from these ideas, based on a
step-based rejection sampling method, this paper proposes
the key cluster reassigning and splitting partition algorithms
(SKRSP) to relieve the skewness among reducers, which con-
siders the partition balance of both shuffle-op and normal-op.
Themain contributions of this paper are summarized below.

� An improved step-based rejection algorithm is pro-
posed and applied to sample the map partitions and
estimate intermediate data key distribution accord-
ing to the switch of map side combination. Based on
Spark RDD, this method has a high degree of paral-
lelism and execution efficiency, which can achieve a
much better approximation to the key distribution.

� A hash-base key reassigning partition algorithm
(KRHP) is proposed to divide intermediate datamore
fairly to balance the load among the reduce tasks.
This partition method is suitable for all the applica-
tions except for these sort requiring operations.

� A weighted range partition algorithm based on key
splitting (KSRP) is proposed to allocate the interme-
diate data more evenly and mitigate partition skew

among reducers, and it is suitable for applications
that require sorting.

� A partitioning algorithm is proposed to split the
intermediate data considering both the partition bal-
ance of the intermediate data and the partition bal-
ance after shuffle operator.

The rest of the paper is organized as follows: Section 2
introduces the survey work on skew mitigation over a par-
allel computing system based on MapReduce. Section 3
introduces the overall system framework of SKRSP.
Section 4 presents the step-based data sampling method
and key distribution estimation. Section 5 proposes the
partition policy computation, including KRHP and KSRP.
The experimental results and evaluations are provided in
Section 6. Section 7 concludes the paper.

2 RELATED WORKS

For the typically skewed distribution of intermediate data,
we must face many real world applications exhibiting sig-
nificant data skew, including distributed database opera-
tions such as Join, Grouping and Aggregation [22], [23], [24],
search engine applications (Page Rank, Inverted Index,
etc.), and some simple applications (sort, grep, etc.) [4].
Methods by which to handle data-skew effects have been
studied previously in parallel database studies [25], [26].
After the release of Hadoop, data skew has also been stud-
ied in the MapReduce environment, which is more similar
to our work:

Chen et al. [17] presented LIBRA, which is an improved
range partition strategy that uses an innovative sampling
method to ascertain a highly accurate key distribution of
intermediate data by sampling only a small fraction of map
tasks. It is an excellent approach for Hadoop. Unfortunately,
sampling directly for the intermediate data will bring a
huge overhead in Spark actual environment.

Gufler et al. [27] proposed the partition cost model
for load balancing in MapReduce, which took into acco-
unt both skewed data distributions and complex reducer
side algorithms. Later, they proposed TopCluster [28], an
approximation algorithm for the input data distribution
which scales to massive data sets.

Ibrahim et al. [18] developed a novel algorithm named
LEEN for locality-aware and fairness-aware key partition-
ing in MapReduce. They sorted all keys by their fairness/
locality value and greedily choose the reduce node with the
maximum fairness score for each key.

The above approaches take advantage of Hadoop’s fea-
tures, so they can achieve relatively good results. However,
as mentioned in Section 1, they only consider the balance of
one shuffle operator. Thus, the advantages of the Hadoop-
based algorithms cannot be fully realized in Spark environ-
ment. During the past several years, some skew mitigation
algorithms specifically designed for spark were proposed.

Some studies focus on a specific application, such as Join
[29], [30]. Comparing with specialized improvement solu-
tions, Liu et al. presented a more general partition method,
SP-Partitioner [21], which makes each bucket which collects
the data from the same map task be assigned equal sized
data. Unfortunately, it partitions only on the basis of the
tuple number of intermediate data.

Fig. 1. The integrated balance of reduce task.

462 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

Yu et al. tackled the data skew problem from a different
angle. They proposed SASM [31], which repartitions un-
processed blocks of overload tasks to other idle tasks.
This method is similar to the SkewTune [19] based on the
Hadoop. Their disadvantages are that during the execution
of reducer, the reassignment of unprocessed blocks cost a lot
overhead, including extra transmission and computation.

The above work gives us a lot of inspiration, but does not
provide an effective solution on Spark. There are two
important issues to address: (1) how to estimate the key dis-
tribution more accurately and (2) how to calculate the more
appropriate partition strategy.

3 SYSTEM OVERVIEW

This section presents the system in a general way. This sys-
tem implements the key cluster reassigning and splitting
approach to solve data skew for general applications. In our
implementation, SKRSP is established based on the Spark-
2.2.0. In this version, for each map task, each key/value
tuple in the map output obtains its reducer index respec-
tively according to its key and the partition method.

In this paper, a more appropriate partition strategy are
proposed to improve the partition balance. The architecture
of our system is shown in Fig. 2, which contains the follow-
ing four steps:

Data Sampling. To avoid the data skewness among reduce
tasks, it is necessary to estimate the key distribution of inter-
mediate data before the shuffle phase. Therefore, a prior
sample job must be launched on the input of map tasks
before the regular job. We implement a step-based rejection
sampling algorithm on different partitions in parallel.

Key Distribution Estimation. All the samples and corre-
sponding sample rates are collected from different map
splits, which constitute the input to calculate the weight of
each key by the sample rate. On this basis, we can estimate
the general key distribution of intermediate data.

Partition Strategy Computation. In accordance with the
specific application scenario of the Spark job, this system
adopts different methods to generate the allocation strategy.
For these applications that belong to the class of sort, the algo-
rithm KSRP is proposed to determine the weighted bounds.
And the final key reassignment policies can be obtained by
other algorithmKRHP.

Intermediate Data Partition. On the basis of the partition
strategy obtained from the third step, during the writing
phase of shuffle, each key/value <K; V > tuple gets its
reduce partition index r and then is written to shuffle files
sequentially according to r. For the output of a map task,
these <K; V > tuples with the same r compose a bucket,
which will become part of the rth reduce partition and be
processed by the rth reducer.

The execution of the shuffle phase depends on Spark’s
original mechanism, and the main contribution of this paper
is to provide a way to generate a suitable key allocation
strategy according to current input data.

4 DATA SAMPLING AND KEY DISTRIBUTION

ESTIMATION

4.1 Description

To ascertain the distribution of the intermediate data, a step-
based rejection algorithm is first proposed and imple-
mented, which can sample for different partitions with
appropriate sampling size in parallel. To adapt to different
application scenarios, a variable ratio is used to adjust the
proportion of sampled map partitions. For the ratio, the
number of sampled map tasks is preferably a multiple of
worker nodes. Hence if there aremmappers and wworkers,
ratio is best set to multiples of w=m. Because when the keys
are evenly distributed over all the map partitions, the distri-
butions of all intermediate keys in each partition are more
or less the same. So in this case, a small ratio is already
available for the general key distribution; otherwise, ratio is
supposed to be 1.0.

For illustrative purpose, some significant variable decla-
rations are presented in Table 1.

Fig. 3 describes the general process of the step-based
rejection sampling algorithm, which can be divided into
four steps:

1) Generate a random step si;
2) Determine whether to accept the step si. If accept, go

to Step (3), otherwise return to Step (1);
3) Skip over the next s tuples;
4) Add ðsþ 1Þth to the sample. Set Ni ¼ Ni � si � 1 and

ni ¼ ni � 1. If Ni > 0 and ni > 0, return to Step (1),
otherwise stop sampling.

First of all, the sampling size numi can be calculated by:

numi ¼ max ratei � leni;min
r� ’

m
; leni

� �� �
; (1)

where ratei represents the sampling rate, and ’ is defined
as the lower bound of the sampling size. r and m denote

Fig. 2. The Framework of SKRSP.

TABLE 1
Variable Declaration

leni the ith partition size;
numi the sampling size for the ith partition;
Ni the number of unprocessed tuples left in the ith

partition;
ni the number of tuples that remain to be selected for

the sample;
si the random step that counts the number of tuples to

skip over.

TANG ET AL.: AN INTERMEDIATE DATA PARTITION ALGORITHM FOR SKEW MITIGATION IN SPARK COMPUTING ENVIRONMENT 463

the number of reducers and mappers in a shuffle phase,
respectively.

The two most critical parts are the step generation and the
decision to accept the step.We select the first provided choice
parameterswhich are proposed byVitter [32], which can com-
plete the sampling in linear complexity on the average with a
reliable accuracy. Thus, the step si can be generated by:

si ¼ bxc ¼ Ni 1� u1=ni
� �j k

; (2)

where u is uniformly distributed on the unit interval. For
Step (2), there are two relevant approaches to judge whether
to accept the step. These two methods are applied to differ-
ent periods of sampling. First, at the beginning of sampling,
the decision can be generated by Eqs. (3) and (4):

1� xi

Ni
� 1

v

Ysi
k¼0

1� ni � 1

Ni � k

� �" # 1
ni�1

(3)

vNi

Ni � ni þ 1

� � 1
ni�1

� 1� si
ni � 1

� �
Ni

Ni � xi
: (4)

If the Eqs. (3) and (4) are satisfied, step si can be accepted.
The variable v is a random decimal, which is uniformly dis-
tributed on the unit interval.

Since this above method becomes slower when ni is close
to Ni. For this situation, we can set a threshold a in this
model. When ni=a � Ni, the other simpler approach is
selected to complete the remaining sampling. If Eq. (5) is
met, the step si can be accepted.

1� v �
Ysi
k¼0

1� ni

Ni � k

� �
: (5)

The sampling procedure can be finished until ni ¼ 0.
To avoid memory overflow and improve the efficiency, the
key clusters during the sampling are combined in parallel.
In other words, for ith partition, the frequency freqi;k of a
key k would be updated once a tuple of key k is added to
the samples. Therefore, we can obtain the frequency list of
keys in each partition after sampling.

Considering that some operations need to perform map
side combination, it is not appropriate to simply represent
the key distribution of intermediate data with that of RDD
tuples. Hence, a function transðk; iÞ is designed to denote
the number of tuples with a key k in the ith map task output
in this model, which can be calculated as follows:

transði; kÞ ¼
freqi;k
ratei

; MSC ¼ 0
1; MSC ¼ 1;

�
(6)

where MSC ¼ 1 denotes that map side combination is per-
formed. In this model, ck denotes the number of all the tuples
whose key is k, which is an estimation of the frequency of
key k in the intermediate data, and can be calculated by:

ck ¼
Xm�1

i¼0

transði; kÞ
ratio

: (7)

Therefore, a general key distribution can be finally obtained.
It is represented by C, and composed of all the ck.

4.2 Data Sampling and Key Distribution
Estimation Algorithm

The specific processes of data sampling and key distribution
estimation are respectively provided in Algorithms 1 and 2
in detail.

Algorithm 1 adopts a step based rejection sampling
method to process the data. It first generates a step si. When
ni=a < Ni, it determines whether to accept the step accord-
ing to the first approach by Eqs. (3) and (4). When ni=a � Ni,
it makes the decision according to the second approach by
Eq. (5). When a step is accepted, a key is added to the sample
and its frequency is updated by freqi;k ¼ freqi;k þ 1. Thus,
each element of the returned array Sample including two
part: the sampling rate and the frequency list of keys for
a certain partition.

Algorithm 1. Step-based Rejection Sampling

Input:
Map partitions:MP .

Output:
The array of tuples including sampling rate and data:
Sample.
Sample ¼ ? ;
for each sampled partition i in map input dataMP do
kpos denotes pos

th tuples in partition i;
Initialize the sampling position, pos ¼ 0;
Initialize the frequency list for partition i, freqi ¼ ? ;
Calculate real sample rate ratei and sampling size ni;
while ni > 0 do
Generate random decimal u and random step si;
if ni=a � Ni then
Determine whether the first condition is satisfied;

else
Determine whether the second condition is satisfied;

end if
if accept then

pos ¼ posþ si þ 1;
//k denotes the posth key in partition i;
freqi;k ¼ freqi;k þ 1;
Ni ¼ Ni � 1� si;
ni ¼ ni � 1;

end if
end while

end for
Sample ¼ S m

i¼0Samplei ¼
S m

i¼0ðratei;
S

freqi;kÞ;
return Sample.

Fig. 3. The process of sampling.

464 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

Second, as obtaining the sampling rate and key frequency
list, Algorithm 2 merges the sampling results of all the parti-
tions. ck ¼ ck þ ðtransði; kÞ=ratioÞ is to add the weight of key
k in the ith partition to the total weight ck of key k. Therefore,
we get a collectionC as an estimation of the key distribution.

Algorithm 2. Key Distribution Estimation

Input:
The sampling result: Sample;

Output:
The collection of weights for key clusters: C.
for each sample result Samplei of ith partition do
for each key k in Samplei do
//Merge the key clusters in all the partitions;
ck ¼ ck þ ðtransði; kÞ=ratioÞ;

end for
end for
// Update the key clusters;
C ¼ S

ck;
return C.

The time complexity of the intermediate keys distribu-
tion detection is oðs� ðtþ kÞÞ, where s is the number of
sampled partitions. t is the tuple number in each partition,
and k is the number of distinct keys in each partition.

5 PARTITION POLICY

5.1 Model of the Partition Algorithm

The standard of division is of quit significance for a parti-
tion method. Many previous studies divide data on account
of the balance of intermediate data. A common measure-
ment used by them for data skew is the coefficient of varia-
tion: FoS ¼ stddevð~xÞ=meanð~xÞ, where x is a vector that
contains the data size processed by each task. stddevðxÞ
denotes the Standard deviation of data size, and meanðxÞ
denotes the mean value of data size. In this equation, larger
coefficient indicates heavier skew [17].

However, the balance of intermediate data can only guar-
antee the balance of executing shuffle operations, because
the number of tuples often changes after a shuffle operation
has been performed. For instance, for a self join operation,
the number c of tuples changes to c2. Therefore, not only we
should take the balance of intermediate data into account,
but also we must consider the change in the numbers of
tuples after the shuffle operators.

Based on the ideas and perspectives of thinking men-
tioned above, this section formulates the integrated skew
degree Isd as follows:

Isd ¼

ffiPp�1

j¼0
Ij�Iavgþ�ðSðIjÞ�SavgÞð Þ2

p

r
Iavg þ �Savg

; (8)

where Ij denotes the ith partition of intermediate data
and SðIjÞ is the tuple number of ith partition after shuffle
operator. Iavg and Savg is the corresponding average val-
ues. The variable � is the ratio of normal-op workload to
shuffle-op workload. As a matter of fact, Isd is the coeffi-
cient of variation about Ij þ �SðIjÞ that can be calculated
as follows:

Ij þ �SðIjÞ ¼
X
k2RPj

ck þ �
X
k2RPj

sðckÞ ¼
X
k2RPj

ck þ �sðckÞð Þ;

(9)

where k 2 RPj denotes that key k is assigned to jth reduce
partition and sðckÞ denotes the tuple number of key k
after shuffle operator. Thus, when calculating the strategies,
we should set the weight of each key as ck þ �sðckÞ. For the
sake of generality, we set � ¼ 1. On this basis, we can gener-
ate the actual partition strategies.

Two partition algorithms respectively based on the hash
and range are proposed to achieve the data balancing. The
range based method is designed for these applications
which require a ordering result and the hash-based method
is for the other general applications. For the jobs with the
similar types of input, because the distributions of the inter-
mediate keys would be consistent after the same RDD trans-
formations, we just need to do the data sampling only once,
and then the obtained partition policy can be reused by dif-
ferent jobs. For illustrative purposes, some significant vari-
able declarations are presented in Table 2.

As illustrated in Fig. 4, the process of the hash-based key
reassigning algorithm can be divided briefly into three
steps:

1) Divide the sample collections into several splits by
hash method.

2) Obtain the overload splits as redistributive partitions
and select some of the keys in overload splits as the
redistributive keys. Then, allocate these keys to other
splits and record their relations.

3) Implement the key reassignment strategy in real
shuffle phase.

For describing the hash-based key reassigning algorithm
in detail, some specific data structures can be formalized as
follows:

(1) W . A vector of length r whose element indicates the
total weight of each split. For these key clusters ck are
divided in C, parameter Wj denotes the weight of the jth
split. This algorithm first distributes these key clusters
according to the hash method, and call each parts hash-
splits. SoWj can be calculated by:

Wj ¼
X
ck2C

ðck þ sðckÞÞ � belongðk; jÞ; (10)

where the value of belongðk; jÞ is set to 1 when hk ¼ j, other-
wise, its value equals to 0. hk ¼ ðk:hashcodeþ rÞmod r.
Therefore, W is an approximation of the intermediate data

TABLE 2
Variable Declaration

r, 0 � j < r r: reducer number; j: one reducer;

m, 0 � i < m m: mapper number; i: one mapper;

C the collection of the frequencies of key clusters;

Wj the weight of splits j;

Wavg the average weight of all the splits;

Predis the collection of the redistributive partition indices;

Kredis the collection of the redistributive keys;

ST the reassignment strategy for redistributive keys inKredis;

WB the weight bounds for range partition.

TANG ET AL.: AN INTERMEDIATE DATA PARTITION ALGORITHM FOR SKEW MITIGATION IN SPARK COMPUTING ENVIRONMENT 465

distribution. Wavg denotes the average weight of all the
splits inW .

(2) Predis. A collection that contains the indices of over-
load splits in W . Because the weight of an overload split is
much greater than the averageWavg, Predis is calculated by:

Predis ¼ jjWj > Wavg � tol
� 	

; (11)

where tol is used to adjust the allowed skew tolerance when
filtering these partitions. Obviously, in the real shuffle
phase, these reduce partitions whose indices are recorded
in Predis have much more intermediate data to process than
the others do. Thus, some of their keys should be reassigned
to the others for load balance.

(3) Kredis. An collection composed of the redistributive
keys. When the jth hash-splits inW is regarded as overload,
its keys can be divided into two parts: Kj

hash (They are
keeped in the original hash-splits) and Kj

redis (They are real-
located to new splits). This model would try to put key with
larger ck intoKj

hash as more as possible. Meanwhile, it is bet-
ter to make the weight of Kj

hash more close to the average
weightWavg. Accordingly, theKj

hash andKj
redis are supposed

to satisfy:

Wavg �
X

k2Kj
hash

ck � minðKj
redisÞ; (12)

where minðKj
redisÞ indicates the key of the smallest ck in

Kredis. The weight of overload partition Wj should be
updated as

Pck

k2Kj
hash

. And the collectionKredis is the union of

all theKj
redis, which is shown as:

Kredis ¼
[

j2Predis
Kj

redis: (13)

(5) ST . A collection that records the partition strategy
for these reassigned keys. STj saves all reassignment infor-
mation of keys in Kj

redis. This is actually a packing problem:
how to assign all redistributive keys to boxes that are of
different sizes because these partitions already contain some
keys. In our works, we try the first fitting and best fitting
algorithms, and the results show that the first fitting algo-
rithm has greater performance, so that we set it as default.

After giving the specific definition of data structures, we
consider it necessary to give a detailed explanation of Fig. 4.
The area of a dashed box indicates the weight of a reduce
split divided by the hash method. To decrease the skewness,
the following steps are taken to solve this problem:

In the strategy generation phase, this model divides these
key clusters into r splits by the hash method and saves the
total weight of each split in W . Then, it can judge which
splits exceed the preset limit and record them in Predis.
For each split in Predis, such as 0, we try to select suitable
keys to fill a space ofWavg, and put other keys into redistrib-
utive key setKredis. Finally, these keys are allocated inKredis

to fill other small splits, and the reassignment information
are recorded in ST . For instance, if key A in the primary jth
hash-splits is allocated to the 2nd reducer, a new index will
be recorded in STj for key A.

In the real shuffle phase, when partitioning intermediate
data, for each tuple, if the keys’ hash index is recorded in
Predis and its new index is in Kredis, it can be allocated
according to the new index pk. If not, it will be allocated by
the hash method. For each key k with the hash index is hk,
and its final index fk can be calculated by:

fk ¼ pk; j ¼ hk \ j 2 Predis \ k 2 Kj
redis \ pk 2 STj

hk; otherwise

�
: (14)

As illustrated in Fig. 5, the process of the range-based key
splitting algorithm can be divided into three steps:

1) Sort the sampled key clusters by key and calculate
the step that is used to divide the boundaries;

2) Select the boundary keys and calculate the weights
of bounds;

3) Implement the weighted bounds in shuffle phase.
Range assigns the key cluster of a boundary key to a par-

tition, but KSRP splits the key cluster and allocates them to
different adjacent partition to make all the partitions have a
similar size.

For the model of key clusters splitting algorithm based
on range, some specific data structures can be formalized as
follows:

Fig. 4. The steps of hash-based key reassigning algorithm.

466 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

(1) step. A value denoting the interval to be used to
define a bound. It is equal to the average weight of
reduce partitions, calculated by:

step ¼ 1

r

Xl

ðck þ sðckÞÞ: (15)

(2) frctn. A probability for a boundary key to be
assigned to a certain reducer. We first sort the set C
by the key k. Then the weights of key clusters can be
accumulated as curWj in order. When the next key is
k and curWj þ ck > step, the key k is considered to
be a boundary key. To distinguish a boundary key
from ordinary keys, we use bj to represent the jth
boundary key and cbj þ sðcbjÞ to represent the weight
of its key cluster. Then we split the weight into two
parts: ðstep� curWjÞ which is allocated to the jth
partition and ðcbj þ sðcbjÞ þ curWj � stepÞ which is
assigned to the new weight of key bj for next step. So
the probability for the boundary key bj to allocate to
the jth reducer is calculated as:

frctnj;k ¼ step� curWj

cbj þ sðcbjÞ
(16)

(3) WB. A ordered vector that records the weighted
boundary keys. WB is composed of r� 1 boundary
keys and relevant frctn as:

WBj ¼ bj; frctnj;bj

� �
WB ¼ WB0;WB1; . . . ;WBj;WBr�2

 �
:

(17)

where each WBj in WB defines an upper bound of
partition j.

After giving the specific definition of data structures, the
detailed explanation of Fig. 5 is illustrated below.

In the first step, after the key cluster ck sorted in C
according to the key, we can select the boundary keys at
intervals of step. To make sure that the weight of each
split is equal to the average, each boundary key is split into
several parts. There are several possible situations:

1) When ck þ sðckÞ < step, cluster of key k is split into
two parts. For instant, in Fig. 5, boundary key A is
split into two parts. The first part belongs to split 0,
and the rest is allocated to split 1. So D becomes the
upper bounds of partition 0, and the fraction of D is
frctn0;D.

2) When ck þ sðckÞ > step, cluster of key k might be
split into more than two parts, which means that
some bounds might be the same key. In Fig. 5, the
cluster of key S are split into three parts, so key S are
the boundary keys of two bounds. If the fractions of
these three parts are 20, 70 and 10 percent, the two
bounds are ðS; 0:2Þ and ðS; 0:7Þ.

During the shuffle phase, for a given key k, the value of
WB can be calculated to find the first boundary key which
is not less than key k in the specified order. If the jth bound-
ary key is greater than the key k, the cluster of k will be
allocated to the jth reducer. If it is equal to k, this module
will generate a random decimal u. Finally, it sums up frctn
of bounds with a same key k in sequence until the total is
greater than u. In other words, the purpose is to find a value
of u to satisfy the conditions:

Xu
j¼a

frctnj;bj � u; �1 � u � �2; (18)

where �1 and �2 denote the indices of the first key and the
last key in WB, which are equal to key k. The u denotes the
first key, which meets Eq. (18).

If u exists, the key k will be assigned to reducer u. Other-
wise, it means that there are approximately ð1�P�2

j¼�1
frctnj;kÞ

of the tuples left in partition ð�2 þ 1Þ, and the key would be
allocated to the reducer ð�2 þ 1Þ.

Therefore, during the shuffle phase, we can dispatch
these keys on the basis of their fractions for different reduc-
ers. This process of getting the partition index can be
described as follows:

fk ¼
j; bj�1 < k < bj
u; b ¼ k \ 9Pu

j¼�1
frctnj;bj � u

�2 þ 1; b ¼ k \P�2
j¼�1

frctnj;bj < u

8><
>: : (19)

Fig. 5. The steps of splitting key clusters.

TANG ET AL.: AN INTERMEDIATE DATA PARTITION ALGORITHM FOR SKEW MITIGATION IN SPARK COMPUTING ENVIRONMENT 467

The example in Fig. 5 shows some typical cases of getting
partition index in Table 3. If the current key is F , it will be
assigned to the reducer because b0 ¼ D < F < b1 ¼ G.
If the current key is S and random decimal u is 0.85, its par-
tition index is r� 2 because

Pr�2
j¼r�3 frctnj;S ¼ frctnr�3;S þ

frctnr�2;S ¼ 0:2þ 0:7 ¼ 0:9 > 0:85. But when u is 0.95, its
index is r� 1 because

Pr�2
j¼r�3 frctnj;S ¼ 0:9 < 0:95.

5.2 Key Cluster Reassigning Partition Algorithm
Based on Hash

The hash-based algorithm attempts to generate a key reas-
signing strategy. Algorithm 3 is used to obtain redistribu-
tive partitions and keys.

Algorithm 3. Obtaining Reassigned Reduce Partitions
and Keys

Input:
The array of key cluster: C;

Output:
Redistributive partition indices and keys: ðPredis; KredisÞ.
Calculate the weights W ¼ fWjg of splits divided by hash

method;
Calculate the average weightWavg;
for j ¼ 0 to r� 1 do
ifWj > Wavg � tol then
// Get the overload split j;
Predis ¼ Predis [j;
rest ¼ Wavg;
Sort elements inKj

all by ck;
for each k 2 jth hash splits do
if rest � ck then
rest ¼ rest� ck � sðckÞ;

else
// Get the redistributive key k;
Kj

redis ¼ Kj
redis [k;

end if
end for
Wj ¼ Wavg � rest;

end if
end for
return Predis;

S r�1
j¼0K

j
redis.

Algorithm 3 first divides the key clusters in C by hash
method, and then for each split it records the keys and total
weight Wj. When Wj > Wavg � tol, the jth split is overload.
And the value j is then recorded in the Predis, as one of
the redistributive indices. This algorithm sorts the key
in each redistributive partition by the value of ck þ sðckÞ in

a descending order and set the remaining space rest to
Wavg. Sequentially, if ck þ sðckÞ > rest, this step adds k
into Kredis.

As obtained the Wj and Kredis after Algorithm 3,
Algorithm 4 is designed to work out an appropriate strat-
egy to dispatch these redistributive keys in Kredis. The
keys in Kredis are reassigned using first fitting algorithm.
And meanwhile, it is necessary to record the partition
strategy consisting of Predis and ST , which will be imple-
mented in the shuffle phase. The output of this algorithm
is a collection that records the partition strategy for these
reassigned keys.

Algorithm 4. Dispatching Redistributive Keys

Input:
The collection of redistributive keys:Kredis;
The collection of split weights:W ¼ fW0;W1; . . . ;Wp�1g.

Output:
The key reassignment strategy, ST .
Sort theW in ascending order;
//d denotes the order index and pk denotes the reduce index;
for d ¼ 0 to r� 1 do
rest ¼ Wavg �Wd;
for each key k 2 Kredis do
if ck < rest then
rest ¼ rest� ck � sðckÞ;
j ¼ getHashPartitionðkÞ;
//Reassign key k to reducer pk;
//Record this relation in STj;
Kredis ¼ Kredis � k;

end if
end for
Wd ¼ Wd � rest;

end for
Assign larger remaining key cluster to smaller reduce
partition;
return ST .

5.3 Key Cluster Splitting Partition Algorithm Based
on Range

For the key cluster splitting partition algorithm based
on range, it is significant to identify the weighted bounds.
Algorithm 5 illustrates this process in detail.

In the first place, it sorts the key cluster collection C
and calculates the the average weight step. The parameter
rest which denotes the remainder space of a partition
is initialized as step. When the weight of key cluster is
greater than rest, it means that the key is selected as

TABLE 3
Examples for Getting Partition Index

ID Bounds Key = F Key = S Key = S

0 (D, 0.35) F > D; S > D; S > D;
1 (G, 0.45) F < G; accept S > G; S > G;
...
r-3 (S, 0.2) S ¼ S; set u ¼ 0:85;

ratio ¼ 0:2; ratio < u;
S ¼ S; set u ¼ 0:95;
ratio ¼ 0:2; ratio < u;

r-2 (S, 0.7) ratio ¼ 0:9; ratio > u; accept ratio ¼ 0:9; ratio < u;
accept

468 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

a bound between two neighbouring partitions. This algo-
rithm calculates the fraci;k and sets the weight as ck þ sðckÞ�
rest which should be assigned to the next partitions. After
adding <k; fraci;t > to the ordered collection WB, we can
continue to figure out the next bounds. After working out all
the bounds or traversing all the key cluster, the process
terminates.

Algorithm 5. Splitting Key Cluster and Partitioning By
Range

Input:
The array of key cluster: C;
The number of reduce partitions: r.

Output:
The collection of weighted range bounds:WB.
Initialize the collection of bounds,WB ¼ ? ;
Initialize the index of tuple inKW , t ¼ 0;
Initialize the index of partition, j ¼ 0;
Sort the C by key;
Calculate the total weightWtotal of all the tuples inKW ;
step ¼ Wtotal=r;
while j < r� 1 do
rest ¼ step;
if rest � ck þ sðckÞ then
ck ¼ ck þ sðckÞ � rest;
fracj;k ¼ rest=allk;
WBj ¼ ðk; fracj;kÞ;
Start to calculate next partition, j ¼ jþ 1;
rest ¼ step;

else
rest ¼ rest� ck � sðckÞ;
Get next key k and set allk to ck þ sðckÞ;

end if
end while
returnWB.

5.4 Key Cluster Allocation Strategy

In the shuffle phase, when dividing intermediate data,
Spark determines which reducer a tuple belongs to in
accordance with a function getPartition based on the
key.

For the hash-based key reassigning algorithm, accord-
ing to the information recorded in Predis and Kredis,
Algorithm 6 obtains the final reduce index of key k. First,
it calculates the hash index j. Only when the jth partition
is redistributive, this algorithm traverses STj and attempts
to find the real reducer index pk. In this way, the time cost
of obtaining the partition can be extremely decreased.
Besides, key k is allocated according to hash method if j is
not a distributive index.

For the range-based key cluster splitting algorithm,
the weighted bound WB has been calculated using
Algorithm 5. On this basis, Algorithm 7 is used to deter-
mine the reduce index of a certain key k by searching the
bounds in WB. First, it searches for a boundary key bj that
is not less than k. If bj > k, k is allocated to jth reducer.
However, if bj ¼ k, we can generate a random decimal u
and sum up the fraction of bounds equal to key k until the
sum is greater than the u. The index of the last added
bound is the final index of key k.

Algorithm 6.Getting Partition BasedOnKey Reassigning

Input:
The key reassigned policy: ST ;
The key of the tuple: k;
The collection of reassigned partition index: Predis:

Output:
The final partition k belongs to: pfinal.
//Calculates the hash index j;
//Attempts to find the real reducer index pk;
j ¼ getHashPartitionðkÞ;
if j 2 Predis then
if pk 2 STj then
fk ¼ pk;

else
fk ¼ hk;

end if
end if
return fk.

Algorithm 7. Getting Partition Based On Key Cluster
Splitting

Input:
The key: k;
The weighted bounds:WB.

Output:
The final partition k belongs to: fk.
Initialize partition index j ¼ 0;
// bj denotes the jth boundary keys;
while j � r and k > bj do
j ¼ jþ 1;

end while
//Only when k is one of the boundary keys, we execute the

following code to calculate its final index;
if j � r� 1 and k ¼ bj then
ratio ¼ frctnj;k;
Generate a random decimal u;
while j � r and k ¼ bj and u > ratio do
j ¼ jþ 1;
if j < r then
ratio ¼ ratioþ frctnj;k;

end if
end while

end if
fk ¼ j;
return fk.

6 EXPERIMENTS

6.1 Experiment Setting

In this section, SKSRP is evaluated on a practical cluster
based on Spark 2.2.0, which includes 8 worker nodes and 1
master. The hardware and software configurations are
shown in Table 4. We have supplemented this partition
algorithm to the native method defaultPartitioner in Spark-
core source project. Hence, the Spark progress can use our
achievement through invoking our getPartition method
in SKRSP algorithm. (Our codes are to be shared at the
open-source code repository, GitHub, after the manuscript
is accepted.)

TANG ET AL.: AN INTERMEDIATE DATA PARTITION ALGORITHM FOR SKEW MITIGATION IN SPARK COMPUTING ENVIRONMENT 469

For evaluating the effect, as shown in Table 5, one appli-
cation requiring map side combination (WordCount) and
three types of application exhibiting significant data skew
(Join, Sort, PageRank) are selected. The application Word-
Count is used to test the the influence of map side com-
bination on intermediate data distribution estimation. And
the rest three applications are used to evaluate the effect of
SKRSP on skew mitigation.

In our experiments, the following partition methods are
chosen for comparison.

DefHash: (Default Hash Partition [15]). In the original Map-
Reduce Frameworks, such as Hadoop and Spark, it is a
default hash partition method for almost all applications
except for sort, which can partition intermediate data
extremely fast but easily makes the data distribution unbal-
anced over reduce partitions.

DefRange: (Default Range Partition [16]). It is another
default partition method used in traditional MapReduce
Frameworks for relative sort applications. Unfortunately,
when there are keys with fewer types but large numbers,
the range method stands a good chance to cause data skew.

SP-P: (SP-Partitioner [21]). It is a partition method
designed for Spark that makes each bucket which collects
the data from the same map task be assigned equal sized
data. It partitions the intermediate data on the basis of the
tuple numbers.

6.2 Performance Results

6.2.1 Sampling Method Evaluation

To evaluate the accuracy of our sampling algorithm, we
conduct a set of experiments to compare our method with
the Spark random sampler and the sampling method used
by range partitioner. We generate average 3000,000 strings
for each partition following Zipf distributions [33] with
parameter s ¼ 1:0. Considering the data distribution of
map partitions is not always uniform, four types of data
sets are generated to deal with this situation: a) uniform par-
titions with 5000 distinct keys; b) uniform partitions with
50000 distinct keys; c) skew partitions with 5000 distinct
keys; d) skew partitions with 50000 distinct keys. Because
the range sampler has no key combination during sampling
for each partition, it causes out of memory when the sam-
pling rate is slightly larger. So the sampling rate is set at

3.3 percent which is constrained by the amount of memory.
However, the experiments are still interested about the
effect of range sampler with larger sampling rate. And we
implement the key combination on this case and conduct
experiment on sampling rate of 20 percent. To give a rough
idea of the accuracy of these sampling methods, the root
mean square error is calculated for all distinct keys, which
can be calculated by:

acc ¼
ffiP

ck2Cðck � crealk Þ2
jCj

s
: (20)

The acc values for our method, range sampler and Spark
random sampler are shown in Table 6. It is obvious that the
accuracy of our method is much more stable than other
methods. To compare with the sampling method in LIBRA
[17], this experiment generates data with 65535 distinct
keys. We work out the root mean square error is 70, which
is smaller than 183 of LIBRA.

There are several control parameters in our method: ratio
is the proportion of the sampled parts in all map partitions,
sampling rate rate for each partition, the lowest bound ’ of
the sampling size and sampling threshold a. For the later
two parameters, we set ’ ¼ 100 and a ¼ 0:07. ratio is set as
8=m when there are only one shuffle phase, otherwise for
multiple shuffle phases, it is set as 1.0.

For the parameter of sampling rate, considering its
potential impact on partition result, this work conducts a
set of experiments to observe the variance of FoS over dif-
ferent sampling rate. The data sets are generated following
the Zipf distributions (s ¼ 0:8) and the distinct key num-
bers are set to there levels: 104, 105 and 106. We select
partitionBy for test, because it has no map side combina-
tion and no extra computation but just divide the data into
several new partitions, which is suitable for observing
the effects of sampling results on the partition. In this
experiment, the data sets are about 8.8G. And the over-
head of sampling and generating a strategy is less than
18s. The final experiment results are showed in Table. 7,
which indicates that for data with fewer distinct keys, a
small sampling rate has already achieved good partition
balance, but for data with more distinct keys, the rate is
supposed to be larger.

6.2.2 Key Distribution Estimation and Partition Strategy

Generation Testing

In the hash based key reassigning partition algorithm, these
are two important points been considered: 1) the influence
of map side combination on intermediate data distribution

TABLE 4
Configuration of Cluster

Type Configuration

Environment Ubuntu 12.04, JDK 1.8, Hadoop 2.6.0, Spark 2.2.0
CPU 4 Cores, 2.7 GHz
Memory 28G

TABLE 5
Benchmark Types

Application types Benchmarks

map side combination application WordCount
distributed database operations Join
simple applications Sort
search engine applications PageRank

TABLE 6
Accuracy Comparison

sampler rate U 5,000 U 50,000 S 5,000 S 50,000

skrsp 3.3% 1311 296 581 207
range 3.3% 1622 460 883 245
random 3.3% 1897 361 743 218
skrsp 20% 288 110 232 78
range 20% 538 171 276 87
random 20% 302 111 210 71

470 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

estimation and 2) the influence of intermediate data balance
and RDD partition balance on execution time. To illustrate
the function of these two point, two sets of experiments
are designed on these data sets with different data features
which easily causes data skew. There are two types of data
features: a) key skew (existing keys with extremely high fre-
quencies), b) hash skew (many different keys whose hash
codes point to the same reduce index).

To test the first point, a group of experiments are evalu-
ated by running WordCount benchmarks on data set with
hash skew. This is becauseWordCount needs map side com-
bination, and it is suitable to testing the influence to the fore-
cast of the key distributions from the map side combination.
And hash skew is the main cause of its performance
degradation.

In these experiments, the numbers of mappers and
reducers are set to 32 and 8 respectively. Then we make
RDD with 32 partitions and generate 107 key/value tuples
for each partition. For all the tuples, there are 105 keys
whose hash index are equal to 0 and 7h� 105 keys whose
hash indices are uniformly distributed from 1 to 7. Good
key distribution approximation can achieve better interme-
diate partition balance, so we can indirectly observe the
effect of estimation through the metric FoS.

Fig. 6 shows us the experiment results. As the results of
NMSC shows, because the intermediate data have been
combined in the map-side processing, and the distributions

of the intermediate keys have been changed. Hence, the key
distributions in later processes are not the same with map
process. If the effect of map side combination is not
included, the partition method might obtain the fake infor-
mation and cannot detect the occurrence of data skew.

For the second point, the reason why we choose Join is
because it is a typical data operation with higher likelihood
of data skew. Data skew has a great impact on the perfor-
mance of Join operation. And the size variation of the data
in the RDD before and after Join transformation is also very
large. To run the join benchmark, the experimental data sets
are generated by dividing it into several groups according
to key’s hash code. Each group contains approximately 1000
keys whose numbers are very close. The number of keys in
each group is distinct, so that we can simulate the situation
that both hash skew and key skew exist in the input data.

The numbers of the keys obey the Zipf distribution. We
use a zipf sampler whose skew degree is r to sample these
id arrays of all hash groups. Once obtain an id, a corre-
sponding key of the hash group would be generated. The
parameter r is used to control the skew degree: a larger r

indicates a higher skew degree. In this experiment, the way
of inner join is adopted. The type of key is integer, and the
type of value is a byte array of length 10.

If there are 25 groups and 25 partitions, the distribution
of keys on DefHash can be illustrated as shown in Fig. 7a.
Fig. 7b presents the allocation result if this input data is par-
titioned by SKRSP, which is much more uniform than that
in Fig. 7a.

In these experiments, we set up two test cases:

a) a large RDD joins a large RDD (580M� 580M);
b) a large RDD joins a small RDD (4G� 18M).
Figs. 8 and 9 show the Isd and application execution time

of these two cases when s varies from 0.2 to 1.2. When r

increases, for DefHash, both the Isd and the application exe-
cution times grow rapidly; at the same time, for SKRSP and
SP-P these indicators are maintained in a stable state with
considerably low values. Indeed, when running DefHash,
we discovered that a reduce task slows down the execution
of the entire application because it has to process many

Fig. 6. The effect of mapSideCombine.

TABLE 7
Sampling Experiments

key
number

sampling
rate

sampling
time(s)

strategy
generation
time(ms)

sdidd
reduce
time(s)

104 0 0 0 0.748 148
104 1� 10�5 15 47 0.512 84
104 5� 10�5 16 49 0.331 78
104 1� 10�4 16 48 0.283 63
104 5� 10�4 16 51 0.298 58
104 5� 10�2 17 71 0.296 64
105 0 0 0 0.748 95
105 1� 10�4 14 67 0.532 81
105 5� 10�4 16 144 0.323 72
105 1� 10�3 16 180 0.262 67
105 5� 10�3 16 242 0.300 62
105 1� 10�2 17 218 0.302 67
106 0 0 0 0.748 88
106 1� 10�3 12 207 0.512 82
106 1� 10�2 13 748 0.331 72
106 5� 10�2 14 2272 0.283 56
106 1� 10�1 15 2586 0.298 68
104 2� 10�1 16 1895 0.296 60

Fig. 7. Key distribution when r ¼ 1:0.

Fig. 8. Performance of Join when r varies (580 MB � 580 MB).

TANG ET AL.: AN INTERMEDIATE DATA PARTITION ALGORITHM FOR SKEW MITIGATION IN SPARK COMPUTING ENVIRONMENT 471

more tuples than the others do. SKRSP and SP-P effectively
avoids the occurrence of this situation so that it performs
much faster than DefHash. However, SKRSP performs sig-
nificantly better than SP-P, and SKRSP using first fitting is
more stable than SKRSP-BF using best fitting. Therefore, we
use the first fitting algorithm as the default method.

6.2.3 BigDataBenchmark Testing

In this section, two benchmarks of BigDataBench are
selected to test our method: simple application Sort, search
engine application PageRank. Both of them exhibit signifi-
cant data skew in real world. Sort is a typical operation
which need products the ordered output, which is suitable
to comparing the partition effects of the algorithms KSRP
and Range. And Pagerank is a widely used algorithm in most
search engine applications. Because it is very easy to cause
data skew when hot data occurs, Pagerank is very suitable to
observing the effect of performance improvement based on
SKRSP.

For the Sort benchmark, the scalable data sets of Wikipe-
dia entries are produced by text generator of BDGS. There
are four sizes of data: 5G, 10G, 15G and 20G, and the paral-
lelism is set as 64. Fig. 10 records the experimental results
which compared SKRSP with the default range partition in
Spark, including integrated skew degree, ResultStage exe-
cution time and application execution time.

Fig. 10a shows that the SKRSP can maintain a lower inte-
grated skew degree. Fig. 10b indicates that the ResultStage
execution time accounts for a large proportion of the appli-
cation execution time and SKRSP can reduce the time of
ResultStage so that the overall time is decreased by at least
10 percent. We also run the Sort benchmark on primary
Wikipedia dataset in different parallelism, 32, 64, 96. The
results are shown in Fig. 11, which indicates that different
parallelism causes distinct integrated skew degree. SKRSP
can decrease the value of Isd and reduce the ResultStage
execution time in each parallelism. But when the degree of
skew reduction is small, the performance improvement is
not remarkable.

The experiments adopt two kinds of data sets to test the
benchmark PageRank: one primary Google web data set
(web_Google) and two scala data sets by graph generator of
BDGS (genGraph_20, genGraph_21). When the number of
reducers is set as 32, this group of experiments compare
SKRSP with DefHash and SP-P. The application execution
time of each test is shown in Fig. 12. Compared to DefHash,
both the SKRSP and SP-P can decrease the application exe-
cution time. However when the size of data set increase,
SKRSP has a more prominent impact than SP-P because it
takes into account both the balance of intermediate data and
the balance of partitions after shuffle operator.

6.3 Experiment Summary

In this section, the performance of SKRSP is evaluated on
some popular applications with both synthetic and real-
world datasets. Through these results, we can find that:

� SKRSP step-based sampling method achieves a good
approximation to the key distribution of the original
dataset with little overhead.

� SKRSP takes the switch of map side combination into
account, which can estimate key distribution more
accurately.

� SKRSP can alleviate or avoid the partition skewness.
Moreover, the more skewed the data sets, the more
significant the effect of optimization. Note that not
all application should use SKRSP.

7 CONCLUSION

In the Spark framework, the default partition method easily
causes intermediate data distribution imbalance when the
input and output for map task are skewed. This situation
extends the task execution time. This paper attempts to
extenuate skewness among reduce tasks. First, it implements
a rapid step-based sampling job to obtain intermediate data,
and then it takes map side combination into consideration to
estimate the key distribution in intermediate data.Moreover,

Fig. 9. Performance of join when r varies (4 GB�18 MB).

Fig. 10. Sort benchmarks on scala data sets. Fig. 12. Application execution times of PageRank.

Fig. 11. Sort benchmarks on primary data set.

472 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

it determines the appropriate partition strategy, which not
only considers the balance of intermediate data distribution
but also takes the partition balance after shuffle operator into
account.

The experiments result shows that considering the influ-
ence of map side combination can estimate key distribution
more acutely. And the experiments are based on three types
of applications, which are prone to data skew, verify that
the imbalance of data distribution among reduce tasks can
be mitigated through this partition method. Moreover, with
increasingly skewed data, the effect on partition skew miti-
gation becomes more remarkable.

ACKNOWLEDGMENTS

The work is supported by the National Natural Science
Foundation of China (Grant Nos. 61572176, L1624040,
L182400035, 61873090), the National Key Research and
Development Program of China (2017YFB0202201).

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proc. Usenix Conf.
Hot Topics Cloud Comput., 2010, pp. 10–10.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mccauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. Usenix Conf. Netw. Syst. Des. Implementation,
2012, pp. 2–2.

[3] Y. Le, J. Liu, F. Ergun, and D. Wang, “Online load balancing for
mapreduce with skewed data input,” in Proc. IEEE Conf. Comput.
Commun., 2014, pp. 2004–2012.

[4] “Hadoop,” (2014, May). [Online]. Available: http://hadoop.
apache.org

[5] F.Ahmad, S. T. Chakradhar,A.Raghunathan, andT.N.Vijaykumar,
“Shufflewatcher: Shuffle-aware scheduling in multi-tenant mapre-
duce clusters*,” in Proc. USENIX Conf. USENIX Annu. Tech. Conf.,
2014, pp. 1–12.

[6] P. Beame, P. Koutris, and D. Suciu, “Skew in parallel query
processing,” in Proc. 33rd ACM SIGMOD-SIGACT-SIGART Symp.
Principles Database Syst., 2014, pp. 212–223.

[7] B. Palanisamy, “Purlieus: Locality-aware resource allocation for
mapreduce in a cloud,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., 2011, pp. 1–11.

[8] M. Hammoud and M. F. Sakr, “Locality-aware reduce task sched-
uling for mapreduce,” in Proc. IEEE 3rd Int. Conf. Cloud Comput.
Technol. Sci., 2011, pp. 570–576.

[9] J. Tan, S. Meng, X. Meng, and L. Zhang, “Improving reducetask
data locality for sequential mapreduce jobs,” in Proc. IEEE
INFOCOM, 2013, pp. 1627–1635.

[10] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “Leen: Locality/
fairness-aware key partitioning for mapreduce in the cloud,” in
Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci., 2010, pp. 17–24.

[11] P. Dhawalia, S. Kailasam, and D. Janakiram, “Chisel: A resource
savvy approach for handling skew in mapreduce applications,” in
Proc. IEEE 6th Int. Conf. Cloud Comput., 2013, pp. 652–660.

[12] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
J. Torres, and E. Ayguad, “Resource-aware adaptive scheduling
for mapreduce clusters,” in Proc. Int. Middleware Conf., 2011,
pp. 180–199.

[13] J. Tan, X. Meng, and L. Zhang, “Coupling task progress for map-
reduce resource-aware scheduling,” in Proc. IEEE INFOCOM,
2013, pp. 1618–1626.

[14] K. H. Lee, Y. J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel
data processing with mapreduce: A survey,” ACM Sigmod Rec.,
vol. 40, no. 4, pp. 11–20, 2012.

[15] “Hashpartitioner,” (2015, Mar.). [Online]. Available: http://spark.
apache.org/docs/latest/api/scala/index.html#org.apache.spark.
HashPartitioner

[16] “Rangepartitioner,” (2015, Mar.). [Online]. Available: http://
spark.apache. org/docs/latest/api/scala/index.html#org.apache.
spark.RangePartitioner

[17] Q. Chen, J. Yao, and Z. Xiao, “Libra: Lightweight data skew miti-
gation in mapreduce,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 9, pp. 2520–2533, Sep. 2015.

[18] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi, “Leen: Locality/
fairness-aware key partitioning for mapreduce in the cloud,”
in Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci., 2010,
pp. 17–24.

[19] Y. C. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune:
Mitigating skew in mapreduce applications,” in Proc. ACM
SIGMOD Int. Conf. Manag. Data, 2012, pp. 25–36.

[20] Z. Tang, X. Zhang, K. Li, and K. Li, “An intermediate data place-
ment algorithm for load balancing in spark computing environ-
ment,” Future Generation Comput. Syst., vol. 78, pp. 287–301, 2016.

[21] G. Liu, X. Zhu, J. Wang, D. Guo, W. Bao, and H. Guo, “SP-
Partitioner: A novel partition method to handle intermediate data
skew in spark streaming,” Future Generation Comput. Syst., vol. 86,
pp. 1054–1063, 2017.

[22] Y. Xu and P. Kostamaa, “Efficient outer join data skew handling in
parallel dbms,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1390–1396,
Aug. 2009. [Online]. Available: https://doi.org/10.14778/
1687553.1687565

[23] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen, “Handling data skew
in parallel joins in shared-nothing systems,” in Proc. ACM
SIGMOD Int. Conf. Manag. Data, 2008, pp. 1043–1052.

[24] Y. Xu and P. Kostamaa, “A new algorithm for small-large table
outer joins in parallel DBMS,” in Proc. IEEE Int. Conf. Data Eng.,
2010, pp. 1018–1024.

[25] E. Ardizzoni, A. A. Bertossi, M. C. Pinotti, S. Ramaprasad,
R. Rizzi, and M. V. S. Shashanka, “Optimal skewed data allocation
on multiple channels with flat broadcast per channel,” IEEE Trans.
Comput., vol. 54, no. 5, pp. 558–572, May 2005.

[26] J. W. Stamos and H. C. Young, “A symmetric fragment and
replicate algorithm for distributed joinsyout,” IEEE Trans. Parallel
Distrib. Syst., vol. 4, no. 12, pp. 1345–1354, Dec. 1993.

[27] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, “Handling
data skew in mapreduce,” in Proc. Int. Conf. Cloud Comput. Serv.
Sci., 2012, pp. 574–583.

[28] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, “Load balancing
in mapreduce based on scalable cardinality estimates,” in Proc.
IEEE Int. Conf. Data Eng., 2012, pp. 522–533.

[29] L. Cheng and S. Kotoulas, “Efficient skew handling for outer joins
in a cloud computing environment,” IEEE Trans. Cloud Comput.,
vol. 6, no. 2, pp. 558–571, Apr.-Jun. 2018.

[30] L. Cheng, S. Kotoulas, T. E. Ward, and G. Theodoropoulos,
“Efficiently handling skew in outer joins on distributed systems,”
in Proc. IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2014,
pp. 295–304.

[31] J. Yu, H. Chen, and F. Hu, “Sasm: Improving spark performance
with adaptive skew mitigation,” in Proc. IEEE Int. Conf. Progress
Informat. Comput., 2016, pp. 102–107.

[32] J. S. Vitter, “Faster methods for random sampling,” Commun.
ACM, vol. 27, no. 7, pp. 703–718, Jul. 1984. [Online]. Available:
http://doi.acm.org/10.1145/358105.893

[33] J. Lin, et al., “The curse of zipf and limits to parallelization: A look
at the stragglers problem in mapreduce,” in Proc. 7th Workshop
Large-Scale Distrib. Syst. Inf. Retrieval, 2012, pp. 2000–2009.

[34] Z. Tang, W. Ma, K. Li, and K. Li, “A data skew oriented reduce
placement algorithm based on sampling,” IEEE Trans. Cloud
Comput., (2016, Sept.). [Online]. Available: https://doi.org/
10.1109/TCC.2016.2607738

[35] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and K. Li, “A par-
allel random forest algorithm for big data in a spark cloud
computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 28, no. 4, pp. 919–933, Apr. 2017.

[36] B. Gufler, N. Augsten, A. Reiser, and A. Kemper, “Load balancing
in mapreduce based on scalable cardinality estimates,” in Proc.
IEEE Int. Conf. Data Eng., 2012, pp. 522–533.

TANG ET AL.: AN INTERMEDIATE DATA PARTITION ALGORITHM FOR SKEW MITIGATION IN SPARK COMPUTING ENVIRONMENT 473

http://hadoop.apache.org
http://hadoop.apache.org
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.HashPartitioner
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.HashPartitioner
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.HashPartitioner
http://spark.apache. org/docs/latest/api/scala/index.html#org.apache.spark.RangePartitioner
http://spark.apache. org/docs/latest/api/scala/index.html#org.apache.spark.RangePartitioner
http://spark.apache. org/docs/latest/api/scala/index.html#org.apache.spark.RangePartitioner
https://doi.org/10.14778/1687553.1687565
https://doi.org/10.14778/1687553.1687565
http://doi.acm.org/10.1145/358105.893
https://doi.org/10.1109/TCC.2016.2607738
https://doi.org/10.1109/TCC.2016.2607738

Zhuo Tang received the PhD degree in computer
science from the Huazhong University of Science
and Technology, China, in 2008. He is currently an
associate professor of the College of Computer
Science and Electronic Engineering at Hunan Uni-
versity, and is the associate chair of the Depart-
ment of Computing Science. His majors are
distributed system, cloud computing, and parallel
processing for big data, including distributed
machine learning, security model, parallel algo-
rithms, and resources scheduling and manage-

ment in these areas. He is now a core member in the open source
community of OpenStack. He has published almost 60 journal articles and
book chapters such as the IEEE Transactions on Cloud Computing,
the IEEE Transactions on Information Forensics and Security, FGCS, etc.
He is amember of ACMandCCF.

Wei Lv received the bachelor’s degree in com-
puter science from Hunan Normal University,
China. She is working towards the master degree
at the College of Information Science and Engi-
neering, Hunan University, China. Her research
interests include the parallel computing, big data
parallel processing, distributed system architec-
ture, especially the improvement and optimiza-
tion of MapReduce framework.

Kenli Li received the PhD degree in computer
science from the Huazhong University of Science
and Technology, China, in 2003. He was a visit-
ing scholar with the University of Illinois at
Urbana-Champaign from 2004 to 2005. He is cur-
rently a full professor of computer science and
technology at Hunan University, the dean of the
College of Information Sciences and Engineering
of Hunan University, and the deputy director in
the National Supercomputing Center in Chang-
sha. His major research areas include parallel

computing, high-performance computing, and grid and cloud computing.
He has published more than 160 research papers in international confer-
ences and journals such as the IEEE Transactions on Computers, the
IEEE Transactions on Parallel and Distributed Systems, JPDC, ICPP,
ICDCS, etc. He is an outstanding member of CCF. He is a senior mem-
ber of the IEEE and serves on the editorial board of the IEEE Transac-
tions on Computers.

Keqin Li is a SUNY distinguished professor of
computer science. His current research interests
include parallel computing and high-performance
computing, distributed computing, energy-efficient
computing and communication, heterogeneous co-
mputing systems, cloud computing, big data
computing, CPU-GPU hybrid and cooperative
computing, multicore computing, storage and file
systems, wireless communication networks, sen-
sor networks, peer-to-peer file sharing systems,
mobile computing, service computing, Internet of

things and cyber-physical systems. He has published almost 500 journal
articles, book chapters, and refereed conference papers, and has received
several best paper awards. He is currently or has served on the editorial
boards of the IEEE Transactions on Parallel and Distributed Systems,
the IEEE Transactions on Computers, the IEEE Transactions on Cloud
Computing, the IEEE Transactions on Services Computing. He is a fellow
of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

474 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

