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Abstract—For frequent disk I/O and large data transmissions among different racks and physical nodes, intermediate data

communication has become the most important performance bottle-neck in most running Hadoop systems. This paper proposes a

reduce placement algorithm called CORP to schedule related map and reduce tasks on the near nodes of clusters or racks for data

locality. Because the number of keys cannot be counted until the input data are processed by map tasks, this paper applies a reservoir

algorithm for sampling the input data, which can bring the distribution of keys/values closer to the overall situation of original data.

Based on the distribution matrix of the intermediate results in each partition, by calculating the distance and cost matrices among the

cross node communication, the related map and reduce tasks can be scheduled to relatively nearby physical nodes for data locality.

We implement CORP in Hadoop 2.4.0 and evaluate its performance using three widely used benchmarks: Sort, Grep, and Join. In

these experiments, an evaluation model is proposed for selecting the appropriate sample rates, which can comprehensively consider

the importance of cost, effect, and variance in sampling. Experimental results show that CORP can not only improve the balance of

reduces tasks effectively but also decreases the job execution time for the lower inner data communication. Compared with some other

reduce scheduling algorithms, the average data transmission of the entire system on the core switch has been reduced substantially.

Index Terms—Data sampling, data skew, inner communication, MapReduce, reduce placement

Ç

1 INTRODUCTION

1.1 Motivation

WITH the rapid development of the Internet and the
exponentially increasing size of data, data parallel

programming models have been widely used in processing
terabyte- and petabyte-intensive distributed data, such as
MapReduce [1], MPI [2], and OpenMP [3]. In particular,
Hadoop [4] is an open source implementation of MapRe-
duce and is currently enjoying wide popularity; however, it
still has room for improvement, such as intermediate data
fault tolerance [5], data skewness [6], and localized data [7].
This paper focuses on data-locality and inter-node network
traffic in Hadoop, which are critical factors in the high per-
formance of the MapReduce framework.

In the Hadoop framework, because map tasks always out-
put the intermediate data in the local nodes, the data should
be transmitted from the map nodes to corresponding reduce
nodes, which is an all-to-all communication model. The fre-
quent disk I/O and large data transmissions have become the
most significant performance bottle-neck in most running
Hadoop systems, which may saturate the top-of-rack switch
and inflate job execution time [8]. Cross-rack communication

occurs if a mapper and a reducer reside in different racks,
which is very common in the environment of current data
centers [9]. Due to the limitation of the switches in clusters,
the overall performance of a system is often not satisfactory
whenworking on large data-sets [10].

For map tasks, which always start at the node with current
input data, to mitigate network traffic, an effective method is
to place reduce tasks near the physical nodes on which map
tasks generate intermediate data used as the reduce input
[11]. Because the intermediate key distribution is the deter-
mining factor for the input data distribution of reduce tasks, if
the intermediate data from map tasks are distributed to
reduce tasks uniformly, reduce locality and task placement
are unable to optimize the all-to-all communication in
Hadoop. Luckily, data skew is universally existent in all input
data. Current research proves that moving tasks is more effi-
cient than moving data in the Hadoop distributed environ-
ment [12], where data skews are widespread (some key
values are significantly more frequent than others). These
studies allow us to solve the cross-rack/node communication
problem through reduce task placement.

Most versions of Hadoop usually employ static hash func-
tions to partition the intermediate data. This works well only
when the data are uniformly distributed, but performs poorly
when the intermediate results of the input are skewed. Fig. 1
illustrates the different amount of input data for each reduce
task when running the “WordCount” benchmark using 10
GB of data. For reduce tasks, partitioning skew will cause
shuffle skew, in which some reduce tasks will receive more
data than others. The shuffle skew problem would degrade
the performance in Hadoop, because a job may be delayed by
a reduce task fetching large input data.

To improve system performance in this situation, many
studies have focused on the data skew mitigation and tasks
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load balance at present. Typically, research has addressed the
problems of how to improve system performance by effi-
ciently partitioning the intermediate keys to guarantee fair
distribution of the inputs for reducers [13], improving data
locality by direct task placement [7], [14], [15], or indirect task
placement based on virtual machine immigration [16]. Others
have attempted to improve resource utilization through spec-
ulation execution [5], [17] or task placement [15].

With these existing studies, the starting point of our work
is not to solve the problems caused by data skew, but to pro-
vide a fine-grained detection method for the skewed inter-
mediate data distribution to optimize the inner cross-racks/
nodes communication through task placement. In this proc-
essing, through the calculation of the cost matrix, we con-
sider both the data locality and the load balance.

In the Hadoop architecture, data locality and load balance
are not contradictory goals, and there is no direct correlation
between these two aspects. At present, many studies are
attempting to optimize them synchronously. For example,
Ioan et al. proposed a data-aware work stealing technique
that is able to achieve good load balancing, and yet still tries
to best exploit data-locality [18]. In their implementations,
tasks are launched locally, but they could bemigrated among
schedulers for balancing loads throughwork stealing.

We draw many inspirations from these works. First, in
the processing of a Hadoop job, the map tasks will begin at
the node with its necessary input data. Although data local-
ity is very important for map tasks, data unbalance can also
damage the locality because individual node managers can-
not afford excessive map tasks. Second, data skew will
cause the imbalance among different reducers because of
the keys dispatching based on hash, but it is necessary to
consider the problem of how to place the reduce tasks based
only on this imbalance condition: how to implement the
locality by starting the reduce tasks on the nodes that are
the source nodes of their input data.

1.2 Our Contributions

This paper proposes a communication-oriented reduce
placement (CORP) method to reduce all-to-all communica-
tions between mappers and reducers, and its basic idea is to
place related map and reduce tasks on the near nodes of
clusters or racks. Because data skew is difficult to solve if
the input distribution is unknown, a normal thought is to
examine the data before determining the partition. In a real
application, the intermediate outputs can be monitored and
counted only after a job begins running, but it is

meaningless to obtain the key value distribution after proc-
essing all input data.

To address this problem, this paper provides a dynamic
range partition method that conducts a prerun sample of
the input before the real job. By integrating sampling into a
small percentage of the map tasks, this paper prioritizes the
execution of sampling tasks over the normal map tasks to
achieve the distribution statistics. The main contributions of
this paper are summarized below.

� We apply the reservoir algorithm to implement the
sampling for input data, and propose an evaluation
model to select the appropriate sample rate. This
model can comprehensively consider the importance
of cost, effect, and variance in sampling.

� We propose a novel reduce placement algorithm
based on data distribution, which can schedule the
related map and reduce tasks on the near nodes for
data locality. This algorithm can reduce the all-to-all
communication among inner Hadoop clusters.

� We implement CORP in Hadoop 2.4.0 and evaluate
its performance for some of the most common
benchmarks. Experiment results show that CORP
reduce the data transmission on core switch signifi-
cantly compared with the default hash mechanism.

The rest of the paper is organized as follows. Section 2
surveys related works on reducer placement and data skew.
Section 3 introduces the overall system framework. Section 4
proposes the data sampling algorithm of the MapReduce
framework. Section 5 proposes the reduce placement algo-
rithm. The performance evaluation is given in Section 6.
Section 7 concludes the paper.

2 RELATED WORKS

To optimize the performance in the Hadoop framework,
many algorithms and models for reduce task scheduling
have been proposed in recent years. Through analysis of the
current MapReduce scheduling mechanism, our early work
illustrated the reasons for system slot resource wasting,
which results in starvation of reduce tasks. We proposed a
self-adaptive reduce task scheduling model (SARS) for the
start time of reduce tasks [19]. Without the space deploy-
ment ability, SARS just determine the start time point of
each reduce task dynamically according to the predicted
completion time and current size of the map output. That is,
SARS cannot improve the data locality and lighten the net-
work loads in the Hadoop cluster.

Data skew is not a new problem specific to MapReduce.
For the typically skewed distribution of intermediate data in
Hadoop, we must face many real world applications exhibit-
ing significant data skew, including scientific applications
[17], [20]; distributed database operations such as join, group-
ing and aggregation [21]; search engine applications (Page
Rank, Inverted Index, etc.) and some simple applications
(sort, grep, etc.) [4]. Methods by which to handle data-skew
effects have been studied previously in parallel database
researches [22], [23], [24], but there is still no effective predic-
tionmodel for the distribution of the intermediate keys.

The following studies are more similar to our works.
Ibrahim et al. [13] developed a novel algorithm named LEEN
for locality-aware and fairness-aware key partitioning in

Fig. 1. Partitioning skew in reduce tasks.
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MapReduce. LEEN embraces asynchronous map and reduce
schemes. All buffered intermediate keys are partitioned
according to their frequencies and the fairness of the expected
data distribution after the shuffle phase. However, it lacks
preprocessing to estimate the data distribution effectively, so
this proposed mechanism may incur significant time cost to
scan the table of keys frequencies, which is generated after
map tasks. This aspect of time costs is not considered in their
experiments.

SkewTune is a partition algorithmproposed byKwon et al.
[17], which can remit the skew of intermediate data by redis-
tricting the larger partition of output data from map tasks.
This method is similar to the improvement of the Range algo-
rithm [25], which is also used as a comparable algorithm in
our experiments. SkewTune cannot pinpoint or split exact
large keys because it does not sample any key frequency infor-
mation. Therefore, as long as large keys are gathered and
processed, the system cannot rearrange them. Its reduce skew
mitigation cannot improve copy and sort phases, which cause
performance bottleneck for some applications.

The main advantage of the works by Gufler et al. [26] is
TopCluster, a proposed distributed monitoring system for
capturing data skew inMapReduce systems, that can provide
the cost estimation for each intermediate partition from map
tasks. Hence, the partitions are distributed to the reducers
such that the work load per reducer is balanced. Because the
concern of this work is partition processing rather than tasks
placement, the problem of data locality cannot be solved well
under thismodel, Similar to SkewTune [17].

Tan et al. [15] formulated a stochastic optimization
framework to improve the data locality for reduce tasks,
with the optimal placement policy exhibiting a threshold-
based structure. Their other work implemented a resource-
aware scheduler for Hadoop [27] that couples the progress
of map tasks and reduce tasks, utilizing wait scheduling for
reduce tasks and random peeking scheduling for map tasks
to jointly optimize the task placement. These excellent
works are based on improving the utility of slots resources,
which can improve the data locality but without enough
consideration of the load balance. In addition, it is also diffi-
cult to apply in current versions of Hadoop with Yarn
resource management components.

Chen et al. [6] presented LIBRA, a lightweight strategy
to solve the data skew problem for reduce-side

applications in MapReduce. LIBRA estimates the interme-
diate data distribution by sampling the partial map tasks,
and uses an innovative approach to balance the load
among the reduce tasks, which supports the split of large
keys. Their solutions can reduce the overhead while esti-
mating the reducers workload, but these solutions still
have to wait for the completion of all the map tasks for
whole input data. In addition, because data sampling is
always an additional step of work for running jobs, it
inevitably incurs extra running times and degrades the
overall system performance.

In conclusion, there are still some problems that are
not solved perfectly in these previous studies: (1) how to
detect the intermediate data distribution efficiently full
scanning in Hadoop job processing seems a bit ineffec-
tive; and (2) how to implement fine-grained control for
the task placement: it should be modelled and quantified
by an accurate cost evaluation model in the runtime
environment.

3 SYSTEM OVERVIEW

Our standpoint is that if map tasks and corresponding
reduce tasks are placed close to each other (on the same
server, same rack, etc.), the system would cost less for
the same amount of traffic relative to a case with the
reduce tasks located far from the node. Furthermore, in
addition to improving the performance of an application,
minimizing the communication cost will also reduce the
network overhead of the underlying infrastructure by
moving traffic from bottleneck links to high-bandwidth
links.

Fig. 2 shows the overall execution produce, which is
composed of two separate jobs. First, the original input data
are sampled to estimate the source of key/value tuples for
each reducer by nodes. The output of this phase is a matrix
to record the size and key/value distribution of current
input data, which can be transferred to a cost matrix for
reduce task placement. Before the working job is run, the
reduce task placement should be finished according to this
matrix. That way, most data handled by a reduce task han-
dles be localized as much as possible, thus saving traffic
cost and improving the performance of the reduce tasks.
The main steps are as follows.

Data Sampling: Input data are loaded into a file or files in
a distributed file system (DFS) where each file is partitioned
into smaller chunks, called input splits. Each split is
assigned to a map task. Map tasks process splits, and pro-
duce intermediate outputs which are usually partitioned or
hashed to one or many reduce tasks. Before a MapReduce
computation begins with a map phase, in which each input
split is processed in parallel, a random sample of the
required size will be produced. The splits of samples are
submitted to the auditor group, while the master and map
tasks wait for the results of the auditor.

Reduce Task Placement: The results of sampling will
determine the placement of reduce tasks. Fig. 3 briefly
shows a typical example. For 80 percent key/value pairs,
reduce task R1 comes from map task M2, and the remaining
intermediate results are from map task M1. Hence, the most
appropriate position to start the task of reduce task R1 is the
node on which map task M2 is running. Analogously, to

Fig. 2. The framework of CORP.
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obtain better data locality and save the inner communica-
tion among nodes, it is better to launch reduce task R2 on
the node of map taskM1.

4 DATA SKEW AND DATA SAMPLING IN

MAPREDUCE FRAMEWORK

4.1 Data Skew Model

In this model, to quantify the data received by a special
reduce task, some initial and intermediate results with their
relationships can be formalized as Table 1.

C ¼ Cs;l
i;j is a three-dimensional matrix of m� p� n that

defines the distribution of intermediate results in each parti-

tion. Cs;l
i;j denotes the number key/value tuples processed

by the jth reducer from the ith map task within the lth

node. And Cs;l
i;j ¼ k means that k pairs of keys/values from

map task Mi in node Nl are currently allocated to reduce
task j. For a partition that represents the tuple set processed
by the same reducer, the number of partitions is treated
equally to the reducer amount. In this model, n denotes the
number of nodes, p denotes the number of reducers, and m
denotes the number of map tasks. Hence, 0 � l < n,
0 � j < p, and 0 � i < m.

Under normal conditions, the key number of original
input data follows a Zipf distributions [28]. Parameter s

is used to denote the degree of the skew, which is usu-
ally assigned from 0.1 to 1.2. For a specific input dataset,
parameter s is a constant. A larger value indicates
heavier skew, and it also determines the distribution of
Ci;j. In this model, the number of key/value pairs proc-
essed by the reducer j is denoted as RCðjÞ. Without loss
of generality, the value of RCðjÞ with a skew degree
could be defined as follows:

RCðj; sÞ ¼
Xn�1
l¼0

Cs;l
j ¼

Xn�1
l¼0

Xm�1
i¼0

Cs;l
i;j : (1)

On this basis, we can calculate the average number of
key/value tuples of all running reduce tasks as

means ¼
Pp�1

j¼0 RCðj; sÞ
p

¼
Pp�1

j¼0
Pn�1

l¼0
Pm�1

i¼0 Cs;l
i;j

p
; (2)

in which parameter p is the number of reduce tasks.
Naturally, the intermediate data processed by a reduce

task can be considered as skew using standard deviation as

jRCðj; sÞ �means j > std; (3)

std is the standard deviation of the number of key/value
tuples for all reduce tasks, which can be used to measure
the overall load balancing level of reducers.

Further, we can evaluate the difference between the aver-
age intermediate results of all reduce tasks and the number
of key/value pairs belonging to the jth reducer as

RCðj; sÞ �meansð Þ ¼
Xn�1
l¼0

Xm�1
i¼0

Cs;l
i;j �

Pp�1
j¼0
Pn�1

l¼0
Pm�1

i¼0 Cs;l
i;j

p
:

(4)

The value of this standard deviation for all intermediate
results in reduce tasks can be calculated as

std½ðRCðj; sÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp�1

j¼0 RCðj; sÞ �meansð Þ2
p

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp�1
j¼0

Pn�1
l¼0
Pm�1

i¼0 Cs;l
i;j �

Pp�1
j¼0
Pn�1

l¼0
Pm�1

i¼0 C
s;l
i;j

p

 !2

p

vuuuut
:

(5)

In this case, when a reduce task is load balanced,
jRCðj; sÞ �meansj < std is always satisfied. As a result,
when the number of key/value tuples assigned to reducer j
is larger than the value of the mean, the jth reducer will be
taken as a skew task even although it is running normally.

To measure the data skew degree of all reduce tasks, this
paper uses the indicator FoS (Factor of Skew) to quantize
data skew and load balancing

FoS ¼ std½ðRCðj; sÞ�=means: (6)

The smaller the value of FoS, the better the load balanc-
ing and the lower data skew that will be obtained.

4.2 Data Sampling Algorithm

To ascertain the distribution of the intermediate data is
the only way to develop a reduce placement strategy.
Because the number of keys cannot be counted until the
input data are processed by map tasks, calculating the
optimal solution to the above problem is unrealistic, and
the cost of pre-scanning the whole dataset would likely
be unacceptable when the amount of data is huge. There-
fore, we present a distributed approximation algorithm
by sampling and estimation.

In most running Hadoop systems, sampling of the input
data can be achieved by using the class: org. apache.
hadoop. mapred. lib. InputSampler. This class implements

Fig. 3. The intermediate results distribution in reduce tasks.

TABLE 1
Variable Declaration

n, 0 � l < n n: node number; l: one node;
p, 0 � j < p p: reducer number; j: one reducer;
m, 0 � i < m m: mapper number; i: one mapper;

Cs;l
i;j

key/value numbers from the mapper
Mi in node Nl received by jth reducer;

RCðjÞ number of key/value pairs processed
by reducer j;

means average number of key/value tuples
of all running reduce tasks;

std the standard deviation for the current
loading of reducer;

FoS an indicator to measure the load
balance of reducer.

1152 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 4, OCTOBER-DECEMBER 2020



the SplitSampler method which samples records from the
first S partitions. The original release is a random sampling
of data convenient way. Reading a record will be added to
the sample set in each partition as long as the current num-
ber of samples is less than samples needed, by means of
looping through all records in this partition. Our sample
strategies are also run by invoking this InputSampler class
in the underlying implementation. To improve the initial
random selection strategy, this paper overloads the Split-
Sampler method and proposes a more efficient selection
model for sample data based on reservoir sampling.

Conventional uniform sampling will inevitably result in
a certain number of multi-duplicated samples. Because all
random number generators in the Java and Scala languages
are simply pseudorandom functions, for large-scale data,
especially with increasing sampling space, they cannot
guarantee that all sample data are completely randomized.
From [29], the main process of reservoir sampling is to save
k preceding elements first (k is the sample number and also
the size of the reservoir) and then randomly replace original
selected elements in the reservoir using a new element that
is selected from outside the reservoir in a different probabil-
ity. The final k sample data will be generated after finishing
the traversal for current input data. Compared with pseudo-
random functions, reservoir sampling can ensure random-
ness, especially when taking the data from some sequence
flows, and it is ideal for reading the input data from large
texts line by line in the Hadoop/Spark framework. Com-
pared with conventional uniform sampling, reservoir sam-
pling can ensure that the key distributions are closer to the
whole situation in the original data.

Algorithm 1 provides the process to obtain the distribu-
tion of the intermediate tuples for each reduce task. For a
specific MapReduce job, this algorithm first starts this job
with the sample data and records the number of tuples
from a map local node to each reduce task based on a moni-
tor in each map node. As a practice, a data cluster is the sub-
set of all pairs with the same key in this paper, and all
clusters processed by the same reducer constitute a partition
[6]. The function getOrignalMapNode is used to retrace the
intermediate tuples and obtain the map nodes that produce
these data [30]. From Algorithm 1, because the intermediate
tuple distribution of sample data remains coherent with the
whole input dataset, we can calculate the data size of reduce
tasks from every map node under the consistent distribu-
tion law.

Obviously, there is a trade-off between the sampling
overhead and the accuracy of the result. The experiments in
Section 6.2.1 are designed to select an appropriate sample
rate that satisfies these seemingly contradictory necessities.
However, it is important to note that not all jobs must sam-
ple the data before running. The key distribution is the
objective, which is indeed application independent. For jobs
with the same input, after uploading the original data to the
Hadoop Distributed File System (HDFS), their original stor-
age distributions in data nodes are relatively fixed.

For the matrix C ¼ Cs;l
i;j , the number and position of

map tasks on the nodes are simply up to the sizes and
distributions of the input data, which can determine sub-
scripts i and l for the element in matrix C. Subscript j is
just the order number of the reduce tasks, but the

number of reduce task can actually be pre-set in the
source code. Hence, for this situation, we must perform
data sampling only once, and the obtained matrix C can
be reused by different jobs.

Algorithm 1. Distribution Detection

Input:
The sample of data blocks BS;
a MapReduce job:mrj;
the number of computing nodes N ;
the number of reduce tasks R;

Output:
The matrix C of whole input data.
run the MapReduce jobmrj using BS as the input data;
initialize an intermediate matrix C.
Cs;l

i;j  0; 0 � l < N; 0 � j < R;
for each cluster ck with tuple key k do

//get reducer serial number for ck;
j systemhashðkÞ;
for each map node l do
for each map task i do
//if ck is come from node l
if l=getOrignalMapNodeðckÞ then
Cs;l

i;j  Cs;l
i;j + tuple number ofðckÞ;

end if
end for

end for
end for
SN  the number of tuples in BS;
WN  the number of tuples in whole input data;
for each map node l do

for each map task i do
for each reduce task j do
Cs;l

i;j  (Cs;l
i;j �WN) / SN ;

end for
end for

end for
returnmatrix C ¼ Cs;l

i;j

n o
.

5 COMMUNICATION ORIENTED REDUCE

PLACEMENT

5.1 The Model of MapReduce

In most implementations of various Hadoop versions, the
key-value pairs space is partitioned among the reducers.
The partitioner design has a direct impact on the overall
performance of the job: a poorly designed partitioning
function will not evenly distribute the load over the
reducers. As the default partitioner, HashPartitioner
hashes a record key to determine the partition (and thus
which reducer) in which the record belongs. The number
of partitions is then equal to the number of reduce tasks
for the job [31].

Let n be the number of nodes, andm be the number ofmap
tasks. We first initialize the node set as {N0; N1; . . . ;Nl; . . . ;
Nn�1}, and the map set as {M0;M1; . . . ;Mi; . . . ;Mm�1g; 0 �
n � m for rack set Rr; r 2 f0; 1; . . . ; k� 1g; 0 � k < n. For
this model, some specific data structures can be formalized as
follows:

(1) V : A vector of length p whose elements indicate the
relevant number of key/value tuples in every node.

TANG ET AL.: A DATA SKEW ORIENTED REDUCE PLACEMENT ALGORITHM BASED ON SAMPLING 1153



If vl;j = k, there are k key/value pairs in node Nl

assigned to reduce j. Therefore,we have

vl;j ¼
Xm�1
i¼0

Cl
i;j; 0 � l < n; (7)

and

Vl ¼ ½vl;0; vl;1; . . . ; vl;p�1�; C ¼ ½V0; V1; . . . ; Vn�1�: (8)

(2) D: A matrix of n� n that defines the distance
between physical nodes. According to the network
latency, we can define the distance between two
physical nodes in the same rack as d1, the distance
between two physical nodes in different racks but in
the same cluster as d2, the distance between two
physical nodes in different clusters as d3, and the dis-
tance between two physical nodes in different data
centers as d4. The distance among maps is the dis-
tance between the two nodes in which the maps are
located; i.e., the distance among maps in the same
node is 0. In the four situations above, the distance
value would increase with increasing physical dis-
tance: 0 < d1 < d2 < d3 < d4. This paper supposes
that the shorter the distance, the faster the data trans-
fer speed, which is the theoretical basis of the model
optimization.

(3) R: A matrix of p� n that defines the position of
reduce tasks started on the node, and is a typical
sparse matrix. The element rl;j is a Boolean variable
that indicates whether reduce task j is set up on
node l. The following condition ensures that each
reduce task should be placed on only one node:X

l

rl;j ¼ 1; 8l 2 ½0; n� 1�: (9)

The quantity of reduce tasks is usually less than that of
map tasks. A reduce task can be started in a physical
node only if the physical node can provide sufficient com-
puting resources apart from the existing map tasks. In
this model, the allocation matrix R indicates the position
at which to start up the reduce tasks, meanwhile, another
matrix D defines the mutual distances between the physi-
cal nodes. On this basis, this model uses a communication
matrix T among nodes to quantify the cost of data trans-
mission called intermediate results which are copied from
map tasks to reduce tasks in cluster. On this basis, we use
a vector RVj to denote the position of a task on a node in
the matrix R:

RVj ¼ ½r0;j; r1;j; . . . ; rl;j; . . . ; rn�1;j�: (10)

The element rl;j in vector RVj is a Boolean variable that indi-
cates whether reduce task j is placed on node l. Therefore, if
there are r reduce tasks among nodes, we can define matrix
R as follows:

R ¼ ½RV0; RV1; . . . ; RVr�1�T : (11)

To capture locality, we define a communication cost
function that measures the data transfer between two nodes.
In most Hadoop implementations, the largest cost of a

MapReduce application is in copying inner result data from
map tasks to relevant reduce tasks that are placed on the
other physical nodes. Using the network hops as the near-
far measure, this paper defines a vector DV to calculate the
distance among nodeNl and other nodes:

DVl ¼ ½disl;0; disl;2; . . . ; disl;d; . . . ; disl;n�1�
0 < jdisl;dj � d4; 0 � l; d < n:

(12)

For the process of map tasks outputting the intermediate
key-value set in their local node and the related reduce tasks
of fetching the corresponding data through the network,
there are two key factors regarding cost matrix T : the
amount of data transferred and the distances between the
map nodes and reduce nodes. An element tl;j of the cost
matrix can be obtained as follows:

tl;j ¼ DVl �RV T
j ; 8l 2 ½0; n� 1�; 8j 2 ½0; p� 1�

¼
Xn�1
d¼0

disl;d � rd;j:
(13)

In the foregoing discussion, Cl is defined as an interme-
diate result allocation matrix, which represents the key/

value pairs distribution in node l. tkl;j denotes the kth place-

ment choice for reduce task j on node l. With cost matrix T ,
the minimal cost MC of the whole Hadoop system can be
calculated by multiplying the distribution matrix C by the
cost matrix T from a distinguished central node:

MC Cs;l; T
� � ¼ min

k

Xm�1
i¼0

Xp�1
j¼0

cs;li;j

" #
� tkl;j

 !
: (14)

From Eq. (14), in the data skew environment, if most data
for reduce task j come from node l, when MC obtains the
minimal value, the jth reduce task can fetch the largest local
data blocks in the kth computing node. Here, m is the num-
ber of the map tasks, and p is the number of partitions. To
obtain the load balance of all reduce tasks, Algorithm 2 is
designed to combine the smaller clusters of <key; value>
tuples to an optimal reduce task, according to the current
workload of the reduce tasks. Algorithm 2 adjusts the inter-
mediate data distribution matrix C which is obtained from
Algorithm 1 before the system runs. The measure of the FoS
value for typical benchmarks in the experiments also veri-
fies that this algorithm can maintain the load balance for
M/R tasks effectively.

To achieve an optimal reduce task placement solution
that can minimize the network communication overhead
among different physical nodes, the objective function of
this model can be specified as the following optimization
problem:

Minimize
X
m;n

MCðCs;l; T Þ; (15)

where n denotes the number of nodes. Hence, the reduce
task placement can be specialized as a problem to obtain the
assignment of matrix T , which can achieve the target of
Eq. (15). The Cost Matrix Generation algorithm shows the
specific steps to calculate cost matrix T by multiplying dis-
tribution C by distance matrixD.
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Algorithm 2. Cluster Combination

Input:
A collection of tuple set: TS ¼ fts1; . . . ; tsk; . . . ; tsKg;
the collection of reduce tasks:R ¼ fr1; r2; . . . ; rj; . . . ; rpg, p � K;
the predictedmatrixC of whole input data fromAlgorithm 1.

Output:
The adjusted matrix C of input data.
calculate the size jtsij of each cluster. 1 � i � K;
sort TS in descending order according to j tsk j ;
assign p selected clusters from TS sequentially to p reducers;
for each k 2 ½pþ 1;K� do
for each map task i do
assign cluster tsk to reducer rp;
//get the map node for a specific reduce task;
l getOrignalMapNodeðtskÞ;
j p;
//adjust matrix C as output;
Cl

i;j tuple number ofðtskÞ;
sort R in descending order;

end for
end for
returnmatrix C.

Algorithm 3. Cost Matrix Generation

Input:
n: the number of node;
C: split-partition matrix;
D: distance of resources.

Output:
The cost matrix T .
partitionList ? ;
//traverse each element in matrix C;
for each l 2 ½0; n� 1� do
PartitionList ¼ getPartitionsListðC; iÞ;
for j in partitionList do
//Count pairs in every partition at node l;
tempC½j�  CalculateðC; j;DÞ;

end for
tempT  tempC � getDistðD; jÞ;
T  ComðtempQÞ;
continue;

end for
return T .

5.2 Placement Algorithm for Reduce Tasks

In Algorithm 3, the getPartiionsListðÞ method returns list
partitions on the lth node.

Parameter D is the distance matrix. The method
CalculateðÞ returns the value with the number of intermedi-
ates in node nl, and ComðÞ returns the minimum value of
the array.

In Algorithm 4, the getNodesListðÞ method returns the
list of node, and getCostðÞ will obtain the cost of placing the
jth reduce task on the lth node. The minimum value can be
selected in the array by the methodMinimizeðÞ.

6 EXPERIMENTAL EVALUATION

The experiments in this paper are divided into two steps.
First, we provide a detailed micro-benchmarking for our

data and put forward reduce placement techniques for each
MapReduce job class on a real cluster composed of 20 physi-
cal machines. Second we present a detailed and quantitative
analysis of the result for mixed job types executed under
this reduce placement algorithm.

Algorithm 4. Reduce Task Placement

Input:
p: the number of reduce;
n: the number of node;
T : the cost matrix.

Output:
The placement queue R which able to minimize the value of
MC.
List nodesList ? ;
for each j 2 ½0; p� 1� do
nodesList getNodesListðN;T Þ;
for l in nodes list do
//obtain the cost on lth node;
tempSum½l�  getCostðT; j; lÞ;

end for
R½l�  MinimizeðtempSumÞ;

end for
return R.

6.1 Experiment Setting

In our experiments, the following reduce scheduling algo-
rithms are chosen for comparison.

NorP (Normal Placement). In original Hadoop imple-
mentations, reduce tasks are launched according to random
assignment and the resource utilization in the computing
nodes. In Hadoop version 2.0 or higher, this distribution
can be controlled by the programmer in the YARN frame-
work, which is the implementation mechanisms of CORP:
to complete the reduce placement by invoking these YARN
APIs [4].

Range (Range Partition). This is a widely used algorithm
of partition distribution. In this method, the intermediate
<key; value> tuples are first sorted by key, and then the
tuples are sequentially assigned to the reduce task accord-
ing to this key range. Because the partitions may be split or
combined in to different reduce tasks, this algorithm can
ensure the furthest load balance of the reduce tasks [6], [25].

Self-Adaptive Reduce Scheduling. This is an optimal
reduce scheduling policy for reduce tasks start time in the
Hadoop platform [19]. It can decide the start time points of
each reduce task dynamically according to each job context,
including the task completion time and the size of the map
output. This model can decrease the reduce completion
time and the system average response time in the Hadoop
platform effectively [19].

As shown in Fig. 4, our cluster consists of 20 physical
machines loaded with the operating system of Ubuntu 12.04
(KVM as the hypervisor) with 16 core 2.53 GHz Intel pro-
cessors. Those machines are managed by CloudStack, which
is an open source cloud platform with two racks, each of
which contains 10 physical machines. The network band-
width is 1 Gbps, and the nodes within a rack are connected
through a single switch. In these experiments, the volume
of intermediate data transmissions of the whole system on
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this core switch can be counted by the monitor of the net-
work management software. Each job uses a cluster of
50 VMs with each VM configured with 4 GB of memory and
four 2 GHz vCPUs. A description of the various job types
and the dataset sizes are shown in Table 2.

6.2 Performance Evaluation

6.2.1 Sampling Experiments

In this section, we first propose an evaluation formula as
Eq. (16) to select the appropriate sample rate, which can
comprehensively consider the importance of cost, effect,
and variance in sampling

i ¼ argMin½fiðDi; Ti;FiÞ ¼ aDi þ bTi þ gFi�; (16)

where function fiðDi; Ti;FiÞ is a comprehensive index con-
sidering both cost and effect, in which Di reflects the differ-
ence among the sequences of FoS values between the
currently adopted percentage and 100 percent (the whole
input dataset), which can be calculated as

Di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
j¼1

di;j � 1

N

XN
j0¼1

d5;j0

0
@

1
A

2
vuuut ; (17)

where N denotes the experimental repetition time, and di;j
represents the FoS value obtained in the jth sampling
experiment under the ith sampling rate. 1 � i � SN is the
order number of different sampling percentages: {1 percent,
25 percent, 50 percent, 75 percent, 100 percent}, and SN
denotes the space size of different sampling rates. For this
experiment, SN ¼ 5, and d5;j denotes the values with a 100
percent sampling rate.

As an average sampling execution time, Ti can be calcu-
lated simply as

Ti ¼ 1

N

XN
j¼1

ti;j; (18)

where ti;j represents the execution time of the jth sampling
experiment under the ith sampling rate, 1 � i � SN and
1 � j � N .

To full consider the influence of data volatilities, Eq. (19)
provides the process to calculate the parameter Fi based on
the standard deviation formula:

Fi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

di;j � 1

N

XN
j¼1

di;j

 !2
vuut : (19)

Fig. 5 shows the FoS and execution time obtained in times
sampling experiments. Based on these results, Table 3 pro-
vides the final values of Di, Ti, and Fi for all benchmarks
with various sampling rates. Each group of sampling experi-
ments is repeated ten times, which means that the parameter
N in Eqs. (17), (18) and (19) should be set to 10 in these
experiments. Finally, for the weight coefficients which reflect
the importance of cost, effect, and variance in sampling, we
can simply set a ¼ b ¼ g ¼ 1. That is, we think that the cost,
effect, and data volatility are equally important.

Moreover, what is noteworthy is the group of experi-
ments with a sample rate of 1 percent: in this case, the time
costs are relatively low, and most of the FoS values are
lower than the other sample rates. However, it is easy to
find that the experimental results of FoS values and time
costs are very volatile, and the results of Di in Table 3 con-
firm that there is great difference compared with FoS values
with a 100 percent sample rate, which are actually measured
by Eq. (17). We hold that the lower sample rate cannot easily
represent the accurate distribution of the whole input
dataset.

By comprehensive consideration according to Eq. (16), it
is easy to learn that sampling 25 percent of the map tasks is

Fig. 4. Experiment network topology.

TABLE 2
Job Types and the Dataset Sizes

Workload classification Benchmarks Input data

Map and Reduce-input heavy sort 10 G
Map-input heavy Grep:word search 10 G
Reduce-input heavy Join 2 G

Fig. 5. The comparison experiment with various sampling rate.

TABLE 3
Comprehensive Evaluation for Cost and Effect

with Different Benchmarks

i rate Di Ti Fi fi

1 1% 407.307 316 51.173 774.48
2 25% 209.564 434 38.833 682.397
3 50% 143.043 555 31.668 729.711
4 75% 80.188 663 14.925 758.113
5 100% 11.580 730 3.662 745.242
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an appropriate choice for the input data of Sort and Grep
benchmarks. For benchmark join, the most appropriate
sample rate is 1 percent.

As mentioned previously, the major motivation for
CORP is to improve the data locality to diminish cross-rack
communication. In the following experiments, to verify the
advantages of CORP, we evaluate this model for FoS and
job execution time using these common benchmarks: Sort,
Grep, and Join.

As mentioned in Section 4.2.1, for the jobs with the same
input, we need only to perform data sampling once, and the
obtained matrix C can be reused by different jobs. More-
over, because the sampling target is merely detects the dis-
tribution of intermediate data, the time cost is much lower
than the practical jobs.

6.2.2 Sort Benchmark Testing

The Sort benchmark in Hadoop is usually used for workload
testing because it is a heavy job for map and reduce inputs.
In these experiments, we generate 10 GB of synthetic data
sets following Zipf distributions with s parameters varying
from 0.1 to 1.2 to control the degree of skew. The reason to
choose Zipf to describe the frequency of the intermediate
keys is that this distribution is very common in data coming
from human society [26].

In the following experiments, the performance evalua-
tions of the relevant algorithms are illustrated considering
their job execution time in the change of the input data
skew degree. In this paper, the load balancing and skew
degree are measured by the factor of skew. Fig. 6 shows the
experimental results based on the 10 GB of synthetic data.
From Fig. 6a, we can conclude that CORP can improve the
FoS obviously for different input data with various skew
degrees. The curves in Fig. 6b show that the job execution
performance of CORP remains better than normal place-
ment but worse than SARS. Through this result, we can
know that CORP can decrease the execution time in the
reduce phase because it can make the intermediate results
more localized.

More specifically, as we can see in Fig. 6a, the value of
FoS increases rapidly when the degree of skew exceeds 0.7
for all the experimental algorithms, and from Fig. 6b, the
execution times of all algorithms also increase substantially
once the degree of skew reaches a certain threshold.
Through the reduce placement, CORP ensures even data
processing in the nodes. From the results, this algorithm has
better performance in terms of FoS optimization, but it per-
forms poorly in terms of execution time.

The results in Fig. 6 shows that, by sampling to deter-
mine the placement of reduce tasks, CORP can obtain a bet-
ter data load balance, lower FoS and less transfer in the
cross-rack compared with other reduce scheduling algo-
rithms. However, when the skew degree is less than 0.7,
CORP performs worse than NorP and SARS in terms of exe-
cution time. The reason is that CORP must calculate the cost
matrix and make the decision on reduce task placement
after running a separate sampling job, which would incur
significate extra overheads. However, because the data
transmission among different nodes is optimized through
reduce local placement in CORP, the whole execution time
of a job can be decreased to offset the time spent, which is
increased by the extra overhead for decision-making. For
this reason, although the performance of CORP and Range
are both lower among these algorithms, CORP has a much
lower execution time than Range.

A similar trend is seen in Fig. 6c, inwhich the bars illustrate
the transfer data through the core switch as a percent of over-
all inner data traffic. As the skew degree increases, an approx-
imate task location produced by CORP can help balance the
expected load among physical machines and increase data
locality comparedwith other algorithms, which focus only on
the load balancing without consideration given to data local-
ity. The data transmission of CORP on the core switch have
been decreased by up to 51.9 percent compared with NorP
with the skewdegree set to s ¼ 1:1 (in the Fig. 6c).

Fig. 7 represents the variation of job execution time when
the data size ranges among {4 GB, 8 GB, 12 GB} with differ-
ent skew degrees (s ¼ 0:1 and s ¼ 1:2). When the data set
has a smaller skew degree (see Fig. 7a), SARS is the most
time-efficient algorithm, and CORP performs better than
only NorP owing to the overhead for data sampling and
task placement decision-making.

With the increased skew degree and the data size (see
Fig. 7b), the growth rate of the CORP execution time is
smaller than the others. However, in these two experiments,
Range has the worst execution time owing to its even split-
ting and combining strategy for intermediate tuples. This

Fig. 6. Performance versus data skew for Sort.

Fig. 7. Performance versus data size for sort.
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causes poor locality in the reduce phase and the redundant
inner communication finally results in the longer execution
times. Especially when the data-set size gradually
approaches 12 GB, the execution time of CORP becomes
smaller than SARS with skew degree s ¼ 1:2. The reason is
that the appropriate location of reduce tasks can help
achieve much greater localization, and decrease the unnec-
essary communication among racks. This experiment also
demonstrates that the performance of CORP is relatively
high when the scales of the skew degree and data set are
large.

Fig. 8 illustrates the relationship between FoS and the
data size: the smaller the FoS, the better the load balancing
(keeping s ¼ 1:2). When the data set has a smaller skew
degree and data size varies from 4 GB to 12 GB (see Fig. 8a),
we can observe that the FoS values of all methods increase
slowly, but this indicator of CORP is always better than the
other compared algorithms. As the dataset scale increases
rapidly, the performance of CORP is more prominent: the
FoS in our system is 60 percent smaller than NorP in the
Hadoop implementation.

As shown in Fig. 8b, the factor of skew among all reduce
tasks in CORP is only 160 percent, whereas, it reaches 280,
260, and 230 percent in NorP, SARS, and Range,
respectively.

6.2.3 Grep Benchmark Testing

Grep is a popular application for large-scale data processing
with heavy map-input. It searches some regular expressions
through input text files and outputs the lines that contain
the matched expressions. We improve the Grep benchmark
in Hadoop so that it outputs the matched lines in a descend-
ing order based on how frequently the searched expression
occurs. The data set we used is the full English Wikipedia
archive with a total data size of 10 GB, which constitute the
data processing jobs with heavy map tasks.

Because the behaviour of Grep depends on how fre-
quently the search expression appears in the input files, we

tune the expression and make the input query percentages
vary from 10 to 100 percent. Fig. 9 shows the changes of job
execution time, FoS value and cross-rack transfer with
increasing query percentage. Note that most current ver-
sions of Hadoop do not provide a suitable range partition
for this application: their pre-run sampler can detect the
input data but cannot handle applications in which the
intermediate data are in a different format from the input.

In contrast, the proposed sample algorithm in this paper
can spot-check the intermediate data directly and works
well for all types of applications. As we can see in Fig. 9a,
CORP performs obviously better than NorP, SARS, and
Range with lower query percentage. This is because CORP
has obvious advantages for searching unpopular words in
the archive and tends to generate results with heavy data
skew. Although the curve of execution time is always lower
than those of other algorithms in this experiment, as the
query percentage increases, because the distribution of the
result data becomes increasingly uniform, the performance
gap rapidly closes. As a matter of fact, when the query per-
centage approaches 100 percent, as shown in the Fig. 9b, the
performance of CORP is very similar to the other three
algorithms.

The inner data transfer in the Fig. 9c shows that CORP
has lower traffic (the highest is only 30.1 percent) compared
with the NorP, SARS, and Range algorithms for various
query percentages.

6.2.4 Join Benchmark Testing

Join is one of the most common reduce-input heavy applica-
tions, especially in a data skew environment. We implement
a simple broadcast Join job in Hadoop that partitions a large
table in the map phase, whereas a small table is directly
read in the reduce phase to generate a hash table to speed
up the Join operation. When the small table is too large to fit
into the memory, we use a buffer to maintain only a part of
the small table in memory and use the cache replacement
strategy to update the buffer. For this experiment, we select
a data set with size ¼ 2 GB and s ¼ 1:2 from the widely
used corpora “Yahoo News Feed dataset, version 1.0” [32] to
evaluate the time performance and load balance effect.
CORP is compared with other algorithms under Hash Join
(PHJ) and Replicated Join (PRJ) in Pig [33]. Fig. 10a shows
the load balance and job execution time of these three test
cases. In Fig. 10a, the best Join scheme in Pig is PRJ, which
splits the large table into multiple map tasks and performs
the Join in map tasks by reading the small table directly into
memory.

Fig. 8. FoS versus data size for Sort.

Fig. 9. Performance versus query percentage for Grep.
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In Fig. 10b, the best scheme in Pig is PHJ, which samples a
large table to generate the key distribution and makes the
partition decision beforehand. In Fig. 10c, the difference in
job execution time can be explained by inner data network
traffic. In CORP, the data can be read from closer nodes, and
lower time cost of communication can decrease the whole
job execution time. However, because the data sampling will
be additional works that can incur extra run time, the job exe-
cution speed in CORP is certainly lower than that of SARS.

6.2.5 Experiment Summary

In the foregoing experiments, we evaluate the performance
and effect using input data with even variable skew
degrees. To verify the effectiveness of synthesized data for
Sort and Join, a group of comparative experiments are
designed with the results shown in Fig. 11. For the chosen
realistic data, we generate some different sizes of synthe-

sized data with similar skew degree and repetition of keys.
In this example, s ¼ 0:7. From Fig. 11, we can easily see that
the experimental results of FoS and execution time on syn-
thesized data are roughly identical to the real loads.

The squares in Fig. 12 summarize the comparisons
among these algorithms: NorP, SARS, CORP, and Range.
The results in Fig. 12a show that CORP can achieve the
shortest execution time for the smallest data communication
from map tasks to reduce tasks. The comparison values of
FoS in Fig. 12b further illustrate that, benefiting from the
data-locality, CORP can achieve better load balance than
other algorithms within the workloads: Grep, Sort, and Join.

The final group of experiments is to test the performance
of batch jobs. Because one job client always waits for the exe-
cution to complete after the job is submitted, our way is to
submit various numbers of jobs using multiple shell clients
at the same time. The execution time is the duration from the
start of the first job to the end of the last job. Fig. 13 records
the execution time under CORP for batch jobs using the
benchmarks: Sort, Join, andGrep. It is easy to see the time cost
always sharply increaseswithmore than 6 concurrent jobs.

7 CONCLUSION

The existence of data skew in the intermediate output cre-
ated by map tasks provides an opportunity to optimize the
cross-rack communication by placing the reduce tasks on
the appropriate nodes. This paper mainly involves the fol-
lowing work, i.e., a sampling method based on a reservoir
algorithm is applied to sample the data selection. We pro-
pose an evaluation model and undertake a great deal of
experimental research to select the appropriate sample rate.
The advantage of this model is the ability to comprehen-
sively consider the importance of cost, effect, and variance
in sampling.

Sampling is an independent MapReduce job, which can
output a distribution matrix of intermediate results in each
partition. Based on this, by calculating the distance and cost
matrices among the cross-node communication, the related
map and reduce tasks can be scheduled to relatively nearby
physical nodes for data locality. Experiments verify that the
inner data transmission can be obviously optimized
through this algorithm. For most highly skewed data, the
job execution time can also be decreased for lower inner
data communication.
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