
1

Time-Space Scheduling in the MapReduce Framework

Zhuo Tang, Lingang Jiang, Ling Qi, Kenli Li, and Keqin Li

College of Information Science and Engineering, Hunan University, Changsha 410082, China

1. Introduction

Data are representations of information, and the information content of data is generally

believed to be valuable, and data form the basis of information systems. Using computers to

process data, extracting information is a basic function of information systems. In today's highly

information-oriented society, Web can be said to be currently the largest information system, of

which the data are massive, diverse, heterogeneous, and dynamically changing. Using Hadoop to

rapidly extract useful information from massive data of an enterprise has become an efficient

method for programmers in the process of application development.

The significance of big data is to analyze people’s behavior, intention, and preference in the

growing and popular social networks. It is also to process data with non-traditional structures and

to explore their meanings. Big data is often used to describe a company’s large amount of

unstructured and semi-structured data. Using analysis to create these data in a relational database

for downloading will spend too much time and money. Big data analysis and cloud computing are

often linked together, because real-time analysis of large data requires a framework similar to

MapReduce to assign works for hundreds or even thousands of computers. After several years of

criticism, questioning, discussion, speculation, big data finally ushered in the era belonging to it.

Hadoop presents MapReduce as an analytics engine, and under the hood it uses a distributed

storage layer referred to as the Hadoop distributed file system (HDFS). As an open source

implementation of MapReduce, Hadoop is so far one of the most successful realizations of

large-scale data-intensive cloud computing platforms. It has been realized that when and where to

start the reduce tasks are the key problems to enhance the MapReduce performance.

For time scheduling in MapReduce, the existing work may result in a block of reduce tasks.

Especially, when the map tasks’ output is large, the performance of a MapReduce task scheduling

algorithm will be influenced seriously. Through analysis for the current MapReduce scheduling

mechanism, Section 3 in this chapter illustrates the reasons of system slot resource wasting, which

results in reduce tasks waiting around. Then, the section proposes a self-adaptive reduce task

scheduling policy for reduce tasks’ start times in the Hadoop platform. It can decide the start time

2

point of each reduce task dynamically according to each job context, including the task completion

time and the size of map output.

Meanwhile, another main performance bottleneck is caused by all-to-all communications

between mappers and reducers, which may saturate the top-of-rack switch and inflate job

execution time. The bandwidth between two nodes is dependent on their relative locations in the

network topology. Thus, moving data repeatedly to remote nodes becomes the bottleneck. For this

bottleneck, reducing cross-rack communication will improve job performance. Current researches

prove that moving task is more efficient than moving data [1], especially in the Hadoop distributed

environment, where data skews are widespread.

Data skew is an actual problem to be resolved for MapReduce. Existing Hadoop’s reduce task

scheduler is not only locality unaware, but also partitioning skew unaware. The parallel and

distributed computation features may cause some unforeseen problems. Data skew is a typical

such problem, and the high runtime complexity amplifies the skew and leads to highly varying

execution times of the reducers. Partitioning skew causes shuffle skew, where some reduce tasks

receive more data than others. The shuffle skew problem can degrade performance, because a job

might get delayed by a reduce task fetching large input data. In the presence of data skew, we can

use a reducer placement method to minimize all-to-all communications between mappers and

reducers, whose basic idea is to place related map and reduce tasks on the same node or cluster or

rack.

Section 4 of this chapter addresses space scheduling in MapReduce. We analyze the source of

data skew and conclude that partitioning skew exists within certain Hadoop applications. The node

at which a reduce task is scheduled can effectively mitigate the shuffle skew problem. In these

cases, reducer placement can decrease the traffic between mappers and reducers and upgrade

system performance. Some algorithms are released, which synthesize the network locations and

sizes of reducers’ partitions in their scheduling decisions in order to mitigate network traffic and

improve MapReduce performance. Overall, Section 4 introduces several ways to avoid scheduling

delay, scheduling skew, poor system utilization, and low degree of parallelism.

Some typical applications are discussed in this chapter. At present, biomedical literature has

an enormous quantity and continues to increase at high speed. People urgently need some

automatic tools to process and analyze the biomedical literature. In the current methods, the model

training time increases sharply when dealing with large-scale training samples. How to increase

the efficiency of named entity recognition in biomedical big data becomes one of the key problems

in biomedical text mining. For the purposes of improving the recognition performance and

3

reducing the training time, through implementing the model training process based on

MapReduce, Section 5 of this chapter proposes an optimization method for two-phase recognition

using conditional random fields (CRFs) with some new feature sets.

2. Overview of Big Data Processing Architecture

MapReduce is an excellent model for distributed computing, introduced by Google in 2004

[2]. It has emerged as an important and widely used programming model for distributed and

parallel computing, due to its ease of use, generality, and scalability. Among its open source

implementation versions, Hadoop has been widely used in industry around the whole world [3]. It

has been applied to the production environments, such as Google, Yahoo, Amazon, Facebook, and

so on. Because of the short development time, Hadoop can be improved in many aspects, such as

the problems of intermediate data management and reduce task scheduling [4].

Figure 1. The typical process of the MapReduce.

As shown in Fig.1, map and reduce are two sections in a MapReduce scheduling algorithm. In

Hadoop, each task contains three function phases, i.e., copy, sort, and reduce [5]. The goal of the

copy phase is to read the map tasks’ output. The sort phase is to sort the intermediate data, which

are the output from map tasks and will be the input to the reduce phase. Finally, the eventual results

are produced through the reduce phase, where the copy and sort phases are to preprocess the input

data of the reduce phase. In real applications, copying and sorting may cost considerable amount of

time, especially in the copy phase. In the theoretical model, the reduce functions start only if all

4

map task are finished [6]. However, in the Hadoop implementation, all copy actions of reduce

tasks will start when the first map action is finished [7]. But in slot duration, if there is any map

task still running, the copy actions will wait around. This will lead to the waste of reduce slot

resources.

In traditional MapReduce scheduling, reduce tasks should start when all the map tasks are

completed. In this way, the output of map tasks should be read and written to the reduce tasks in

the copy process [8]. However, through the analysis of the slot resource usage in the reduce

process, this chapter illustrates that data transfer will result in slot idle and delay. In particular,

when the map tasks’ output becomes large, the performance of MapReduce scheduling algorithms

will be influenced seriously [9]. When multiple tasks are running, inappropriate scheduling of the

reduce tasks will lead to the situation where other jobs in the system cannot be scheduled timely.

These are the stumbling blocks of Hadoop popularization.

A user needs to serve two functions in the Hadoop framework, i.e., mapper and reducer, to

process data. Mappers produce a set of files and send to all the reducers. Reducers will receive files

from all the mappers, which is an all-to-all communication model. Hadoop runs in a datacenter

environment in which machines are organized in racks. Cross-rack communication happens if a

mapper and a reducer reside in different racks. Every cross-rack communication needs to travel

through the root switch and hence the all-to-all communication model becomes a bottleneck.

This chapter points out the main affecting factors for the system performance in the

MapReduce framework. The solutions to these problems constitute the content of the proposed

time-space scheduling algorithms. In Section 3, we present a self-adaptive reduce task scheduling

algorithm to resolve the problem of slot idle and waste. In Section 4, we analyze the source of data

skew in MapReduce, and introduce some methods to minimize cross-rack communication and

MapReduce traffic. To show the application of this advanced MapReduce framework, in Section

5, we describe a method to provide the parallelization of model training in named entity

recognition in biomedical big data mining.

3. Self-Adaptive Reduce Task Scheduling

3.1 Problem Analysis

Through studying reduce task scheduling in the Hadoop platform, this chapter proposes an

optimizing policy called self-adaptive reduce scheduling (SARS) [10]. This method can decrease

the waiting around of copy actions and enhance the performance of the whole system. Through

5

analyzing the details of the map and reduce two-phase scheduling process at the runtime of the

MapReduce tasks[11], SARS can determine the start time point of each reduce task dynamically

according to each job’s context, such as the task completion time, the size of map output[12], etc.

This section makes the following contributions: (1) the analysis for the current MapReduce

scheduling mechanism and illustration of the reasons of system slot resource wasting which results

in reduce tasks waiting around; (2) the development of a method to determine the start times of

reduce tasks dynamically according to each job context, including the task completion time and the

size of map output; (3) the description of an optimizing reduce scheduling algorithm which

decreases the reduce completion time and system average response time in a Hadoop platform.

Figure 2. The performance of the policies with respect to various graph sizes.

Hadoop allows the user to configure the job, submit it, control its execution, and query the

state. Every job consists of independent tasks, and each task needs to have a system slot to run.

Fig.2 shows the time delay and slot resources waste problem in reduce task scheduling. Through

Fig.2(a), we can know that Job1 and Job2 are the current running jobs, and at the initial time, each

job is allocated two map slots to run respective tasks. Since the execution time of each task is not

the same, as shown in Fig.2(a), the Job2 finishes its map tasks at time t2. Because the reduce tasks

will begin once any map task finishes, from the duration t1 to t2, there are two reduce tasks from

Job1 and Job2 which are running respectively. As indicated in Fig.2(b), at time t3, when all the

reduce tasks of Job2 are finished, two new reduce tasks from Job1 are started. Now all the reduce

(a) Job2 map tasks finished (b) Job2 reduce tasks finished (c) Job3 submitted

6

slot resources are taken up by Job1. As shown in Fig.2(c), at the moment t4, when Job3 starts, two

idle map slots can be assigned to it, and the reduce tasks from this job will then start. However, we

can find that all reduce slots are already occupied by Job1, and the reduce tasks from Job3 have to

wait for slot release.

The root cause of this problem is that reduce task of Job3 must wait for all the reduce tasks of

Job1 to be completed, as Job1 takes up all the reduce slots and Hadoop system does not support

preemptive action acquiescently. In early algorithm design, a reduce task can be scheduled once

any map tasks are finished [13]. One of the benefits is that the reduce tasks can copy the output of

the map tasks as soon as possible. But reduce tasks will have to wait before all map tasks are

finished, and the pending tasks will always occupy the slot resources, so that other jobs which

finish the map tasks cannot start the reduce tasks. All in all, this will result in long waiting of

reduce tasks, and greatly increase the delay of Hadoop jobs.

In practical applications, a shared cluster environment often has different jobs in running

which are from multiple users at the same time. If the above similar situation appears among the

different users at the same time, and the reduce slot resources are occupied for a long time, the

submitted jobs from other users will not be pushed ahead until the slots are released. Such

inefficiency will extend the average response time of a Hadoop system, lower the resource

utilization rate, and affect the throughput of a Hadoop cluster.

3.2 Runtime Analysis of MapReduce Jobs

Through the above analysis, one method to optimize the MapReduce tasks is to select an

adaptive time to schedule the reduce tasks. By this means, we can avoid the reduce tasks’ waiting

around and enhance the resource utilization rate. This section proposes a self-adaptive reduce task

scheduling policy, which gives a method to estimate the start time of a task, instead of the

traditional mechanism where reduce tasks are started once any map task is completed.

The reduce process can be divided into the following several phases. Firstly, the reduce task

requests to read each map output data in the copy phase, which belong to this reduce function in

the map out data blocks. Next, in the sort process, these intermediate data are output to an ordered

data set by merging, which are divided into two types. One type are the data in memory. When the

data are read from the various maps at the same time, the data should be merged as the same keys.

The other is as like the circle buffer. Because the memory belonging to the reduce task is limited,

the data in the buffer should be written to disks regularly in advance.

In this way, subsequent data need to be merged by the data which are written into the disks

earlier, the so called external sorting. The external sorting needs to be executed several times if the

7

number of map tasks are large in the practical works. The copy and sort are customarily called the

shuffle phase. Finally, after finishing the copy and sort process, the subsequent functions start, and

the reduce tasks can be scheduled to the compute nodes.

3.3 A Method of Reduce Task Start Time Scheduling

Because Hadoop employs the greedy strategy to schedule the reduce tasks, to schedule the

reduce tasks fastest, as described above, some reduces tasks will always take up the system

resources without actually performing operations in a long time. Reduce task start time is

determined by this advanced algorithm SARS (Self-Adaptive Reduce Scheduling). In this method,

the start times of the reduce tasks are delayed for a certain duration to lessen the utilization of

system resources. The SARS algorithm schedules the reduce tasks at a special moment, when

some map tasks are finished but not all. By this means, how to select an optimal time point to start

the reduce scheduling is the key problem of the algorithm. Distinctly, the optimum point can

minimize the system delay and maximize the resource utilization.

Figure 3. The default scheduling of reduce tasks.

As shown in Fig.3, assuming that Job1 has 16 map tasks and one reduce task, and there are 4

map slots and only one reduce slot in this cluster system. Figures 3 and 4 describe the time

constitution of the life cycle for a special job:

(FTlm- STfm) + (FTcp- FTlm)+(FTlr+ STsr). (3-1)

The denotations in Eq. (3-1) are defined as follows. FTlm is the completion time of the last map

task; STfm is the start time of the first map task; FTcp is the finish time of the copy phase; FTlr is the

finish time of reduce; STsr is the start time of reduce sort.

In Fig.3, t1 is the start time of Map1, Map2, and the reduce task. During t1 to t3, the main

work of the reduce task is to copy the output from Map1 to Map14. The output of Map15 and

Map16 will be copied by the reduce task from t3 to t4. The duration from t4 to t5 is so called the

8

sort stage, which ranks the intermediate results according to the key values. The reduce function is

called at the time t5, which continues from t5 to t6. Because during t1 to t3, in the copy phase, the

reduce task only copies the output data intermittently, once any map task is completed, and for the

most time it is always waiting around. We hope to make the copy operations completed at a

concentrated duration, which can decrease the waiting time of the reduce tasks.

Figure 4. The scheduling method for reduce tasks in SARS.

As Fig.4 shows, if we can start the reduce tasks at t2’, which can be calculated using the

following equations, and make sure these tasks can be finished before t6, then during t1 to t2’, the

slots can be used by any other reduce tasks. But if we let the copy operation start at t3, because the

output of all map tasks should be copied from t3, delay will be produced in this case. As shown in

Fig.3, the copy phase starts at t2, which just collects the output of the map tasks intermittently. By

contrast, the reduce task’s waiting time is decreased obviously in Fig.4, in which case the copy

operations are started at t2’.

The SARS algorithm works by delaying the reduce processes. The reduce tasks are scheduled

when part but not all of the map tasks are finished. For a special key value, if we assume that there

are s map slots and m map tasks in the current system, and the completion time and the size of

output data of each map task are denoted as t_mapi and m_outj respectively, where i, j ∈ [1,m].

Then, we can know the amount of the map tasks data can be calculated as:

],1[,__
1

mjoutmmN
m

j

j 


. (3-2)

In order to predict the time required to transmit the data, we define the speed of the data

transmission from the map tasks to the reduce tasks as transSpeed in the cluster environment, and

the number of concurrent copy threads with reduce tasks is denoted as copyThread. We denote the

start time of the first map task and the first reduce task as startmap and startreduce respectively.

Therefore, the optimal start time of reduce tasks can be determined by following equation:

9

 .
__

1

copyThreadtransSpeed

mN

s

mapt
startstart

m

i i

mapreduce



  (3-3)

As shown by the time t2’ in Fig.4, the most appropriate start time of a reduce task is when all

the map tasks about the same key are finished, which is between the times when the first map is

started and when the last map is finished. The second item in Eq. (3-3) denotes the required time of

the map tasks, and the third item is the time for data transmission. Because the reduce tasks will be

started before the copy processes, the time cost should be cut from the map tasks completion time.

The waiting around of the reduce tasks may make the jobs in need of the slot resources not able to

work normally. Through adjusting the reduce scheduling time, this method can decrease the time

waste for data replication process and advance the utilization of the reduce slot resources

effectively. Using the job’s own characteristics to determine the reduce scheduling time can use

the slot resources effectively. The improvement of these policies is especially important for the

CPU-type jobs. For these jobs which need more CPU computing, the data I/O of the tasks are less,

so more slot resource will be wasted in the default schedule algorithm.

4. Reduce Placement

As the mapper and reducer functions use an all-to-all communication model, this section

presents some exiting and popular solutions in Sections 4.1-4.3, where we introduce several

algorithms to optimize the communication traffic, which could increase the performance of data

processing. In Sections 4.4-4.5, we mention the existence of data skew, and propose some methods

based on space scheduling, i.e., reduce placement, to solve the problem of data skew.

4.1 Optimal Algorithms for Cross-Rack Communication Optimization

In Hadoop framework, a user needs to provide two functions, i.e., mapper and reducer, to

process data. Mappers produce a set of files and send to all the reducers, and a reducer will receive

files from all the mappers, which is an all-to-all communication model. Cross-rack communication

[14] happens if a mapper and a reducer reside in different racks, which is very often in today’s data

center environments. Typically, Hadoop runs in a datacenter environment in which machines are

organized in racks. Each rack has a top-of-rack switch and each top-of-rack switch is connected to

a root switch. Every cross-rack communication needs to travel through the root switch and hence

the root switch becomes a bottleneck [15]. MapReduce employs an all-to-all communication

model between mappers and reducers. This results in saturation of network bandwidth of

top-of-rack switch in the shuffle phase and straggles some reducers and increases job execution

10

time.

There are two optimal algorithms to solve the reducer placement problem (RPP), and an

analytical method to find the minimum (may not be feasible) solution of RPP, which considers the

placement of reducers to minimize cross-rack traffic. One algorithm is a greedy algorithm [16],

which assigns one reduce task to a rack at a time. When assigning a reduce task to a rack, it chooses

the rack which incurs the minimum total traffic (up and down) if the reduce task is assigned to that

rack. The second algorithm, called binary search [17], uses binary search to find the minimum

bound of the traffic function for each rack, and then uses that minimum bound to find the number

of reducers on each rack.

4.2 Locality-Aware Reduce Task Scheduling

MapReduce assumes the master-slave architecture and a tree-style network topology [18].

Nodes are spread over different racks encompassed in one or many data centers. A salient point is

that the bandwidth between two nodes is dependent on their relative locations in the network

topology. For example, nodes that are in the same rack have higher bandwidth between them as

opposed to nodes that are off-rack. As such, it pays to minimize data shuffling across racks. The

master in MapReduce is responsible for scheduling map tasks and reduce tasks on slave nodes

after receiving requests from slaves for that regard. Hadoop attempts to schedule map tasks in

proximity to input splits in order to avoid transferring them over the network. In contrast, Hadoop

schedules reduce tasks at requesting slaves without any data locality consideration. As a result,

unnecessary data might get shuffled in the network causing performance degradation.

Moving data repeatedly to distant nodes is becoming the bottleneck[19]. We rethink reduce

task scheduling in Hadoop and suggest making Hadoop’s reduce task scheduler aware of

partitions’ network locations and sizes in order to mitigate network traffic. There is a practical

strategy that leverages network locations and sizes of partitions to exploit data locality, named

locality-aware reduce task scheduler (LARTS) [18]. In particular, LARTS attempts to schedule

reducers as close as possible to their maximum amount of input data and conservatively switches

to a relaxation strategy seeking a balance between scheduling delay, scheduling skew, system

utilization, and parallelism. LARTS attempts to collocate reduce tasks with the maximum required

data computed after recognizing input data network locations and sizes. LARTS adopts a

cooperative paradigm seeking good data locality while circumventing scheduling delay,

scheduling skew, poor system utilization, and low degree of parallelism. We implemented LARTS

in Hadoop-0.20.2. Evaluation results show that LARTS outperforms the native Hadoop reduce

task scheduler by an average of 7%, and up to 11.6%.

11

4.3 MapReduce Network Traffic Reduction

Informed by the success and the increasing prevalence of MapReduce, we investigate the

problems of data locality and partitioning skew present in the current Hadoop implementation and

propose the center-of-gravity reduce scheduler (CoGRS) algorithm [20], a locality-aware and

skew-aware reduce task scheduler for saving MapReduce network traffic. CoGRS attempts to

schedule every reduce task R at its center-of-gravity node determined by the network locations of

R’s feeding nodes and the skew in the sizes of R’s partitions. Notice that the center-of gravity node

is computed after considering partitioning skew as well.

The network is typically a bottleneck in MapReduce-based systems. By scheduling reducers

at their center-of-gravity nodes, we argue for reduced network traffic which can possibly allow

more MapReduce jobs to co-exist in the same system. CoGRS controllably avoids scheduling

skew, a situation where some nodes receive more reduce tasks than others, and promotes

pseudo-asynchronous map and reduce phases. Evaluations show that CoGRS is superior to native

Hadoop. When Hadoop schedules reduce tasks, it neither exploits data locality nor addresses

partitioning skew present in some MapReduce applications. This might lead to increased cluster

network traffic.

We implemented CoGRS in Hadoop-0.20.2 and tested it on a private cloud as well as on

Amazon EC2. As compared to native Hadoop, our results show that CoGRS minimizes off-rack

network traffic by average of 9.6% and 38.6% on our private cloud and on an Amazon EC2 cluster,

respectively. This reflects on job execution times and provides an improvement of up to 23.8%.

Partitioning skew refers to the significant variance in intermediate keys’ frequencies and their

distribution across different data nodes. In essence, a reduce task scheduler can determine the

pattern of the communication traffic in the network, affect the quantity of shuffled data, and

influence the runtime of MapReduce jobs.

4.4 The Source of MapReduce Skews

Over the last few years, MapReduce has become popular for processing massive data sets.

Most research in this area consider simple application scenarios like log file analysis, word count,

and sorting, and current systems adopt a simple hashing approach to distribute the load to the

reducers. However, processing massive amounts of data exhibit imperfections to which current

MapReduce systems are not geared. The distribution of scientific data is typically skewed [21].

The high runtime complexity amplifies the skew and leads to highly varying execution times of the

reducers.

There are three typical skews in MapReduce. (1) Skewed key frequencies – If some keys

12

appear more frequently in the intermediate data tuples, the number of tuples per cluster owned will

be different. Even if every reducer receives the same number of clusters, the overall number of

tuples per reducer received will be different. (2) Skewed tuple sizes – In applications which hold

complex objects within the tuples, unbalanced cluster sizes can arise from skewed tuple sizes. (3)

Skewed execution times – If the execution time of the reducer is worse than linear, processing a

single large cluster may take much longer than processing a higher number of small clusters. Even

if the overall number of tuples per reducer is the same, the execution times of the reducers may

differ.

According to those skew types, we propose several processes to improving the performance

of MapReduce.

4.5 Reduce Placement in Hadoop

In Hadoop, map and reduce tasks typically consume large amount of data, and the total

intermediate output (or total reduce input) size is sometimes equal to the total input size of all map

tasks (e.g., sort) or even larger (e.g., 44.2% for K-means). For this reason, optimizing the

placement of reduce tasks to save network traffic becomes very essential as optimizing the

placement of map tasks, which is already well understood and implemented in Hadoop systems.

This section explores scheduling to ensure that the data that a reduce task handles the most are

localized, so that it can save traffic cost and diminish data skew [22].

Sampling – Input data is loaded into a file or files in a distributed file system (DFS) where

each file is partitioned into smaller chunks, called input splits. Each split is assigned to a map task.

Map tasks process splits [23], and produce intermediate outputs which are usually partitioned or

hashed to one or many reduce tasks. Before a MapReduce computation begins with a map phase,

where each input split is processed in parallel, a random sample of the required size will be

produced. The split of samples are submitted to the auditor group; meanwhile, the master and map

tasks will wait for the results of the auditor.

Auditor Group – The auditor group (AG) carries out a statistical and predicted test to

calculate the distribution of reduce tasks, and then start the reduce VM [24] at the appropriate place

in the PM. The AG will receive several samples, and then will assign its members which contain

map and reduce tasks to them. The distribution of intermediate key/value pairs which adopt a

hashing approach to distribute the load to the reducers will be computed in reduces.

Placement of Reduce VM – The results of AG will decide the placement of reduce virtual

machines (VM). For example, in Fig.5, if 80% key/value pairs of reduce 1 come from map 2 and

the remaining intermediate results are from map 1, the VM of reduce 1 will be started in the

13

physical machine (PM) which contains the VM of map 2. Similarly, the VM of reduce 2 will be

started in the PM which includes the VM of map 1.

Figure 5. The intermediate results distribution in reduce tasks.

5. Named Entity Recognition in Biomedical Big Data Mining: A Case Study

Based on the above study of time-space Hadoop MapReduce scheduling algorithms, we

present a case study in the field of biomedical big data mining. Compared to traditional methods

and general MapReduce for data mining, our project makes originally inefficient algorithm

become time-bearable in the case of integrating the above scheduling algorithms.

5.1 Biomedical Big Data

In the past several years, massive data have been accumulated and stored in different forms,

whether in business enterprises, scientific research institutions, or government agencies. But when

facing with more and more rapid expansion of the databases, people cannot set out to obtain and

understand valuable knowledge within the big data.

The same situation has happened in the biomedical field. As one of the most concerned areas,

especially after the human genome project (HGP), literature in biomedicine has appeared in large

numbers, reaching an average of 600,000 or more per year [25]. Meanwhile, the completion of the

human genome project has produced large human gene sequence data. In addition, with the fast

development of science and technology in recent years, more and more large-scale biomedical

experiment techniques, which can reveal the law of life activities on the molecular level, must use

the big data from the entire genome or the entire proteome, which results in huge amount of

biological data. These mass biological data contain a wealth of biological information, including

significant gene expression situation and protein-protein interaction. What is more, a disease

network, which contains hidden information associated with the disease and gives biomedical

scientists the basis of hypothesis generation, is constructed based on disease relationship mining in

14

these biomedical data.

However, the most basic requirements for biomedical big data processing are difficult to meet

efficiently. For example, keyword searching in biomedical big data or the Internet can only find

lots of relevant file lists, and the accuracy is not high, so that a lot of valuable information

contained in the text cannot be directly shown to the people.

5.2 Biomedical Text Mining and Named Entity Recognition

In order to explore the information and knowledge in the biomedical big data, people

integrate mathematics, computer science, and biology tools, which promote the rapid development

of large-scale biomedical text mining. It refers to the biomedical big data analysis process of

deriving high-quality information that is implicit, previously unknown, and potentially useful from

massive biomedical data.

Current research emphasis on large-scale biomedical text mining is mainly composed of two

aspects, i.e., information extraction and data mining. Specifically, it includes biomedical named

entity recognition (Bio-NER), relation extraction, text classification, and integration framework of

the above work.

Biomedical named entity recognition (Bio-NER) is the first and important and critical step in

biomedical big data mining. It aims to help molecular biologists recognize and classify

professional instances and terms, such as protein, DNA, RNA, cell_line, and cell_type. It is to

locate and classify atomic elements with some special significance in biomedical text into

predefined categories. The process of Bio-NER systems is structured as taking an unannotated

block of text, and then producing an annotated block of text which highlights where the biomedical

named entities are [26].

However, because of lots of unique properties in biomedical area, such as unstable quantity,

non-unified naming rules, complex form, the existence of ambiguity and so on, Bio-NER is not

mature enough, especially it takes much time. Most current Bio-NER systems are based on

machine learning which need multiple iterative calculations from corpus data. Therefore, it is

computationally intensive and seriously increases recognition time, including model training and

inference. For example, it takes almost 5 hours for the CRFs model training process using

Genia4ER training corpus which is only about 14MB [27]. How do we confront tens of thousands

of biomedical text data volume? How do we cope with unbearable wait of recognition for a long

long time? It is natural to seek for distributed computing and parallel computing to solve the

problem.

15

5.3 MapReduce for Conditional Random Fields

Conditional random fields (CRFs) is an important milestone in the field of machine learning,

put forward in 2001 by John Lafferty et al. [28]. CRFs, a kind of discriminant model and an

undirected graph model at the same time, defines a single logarithmic linear distribution for a joint

probability of entire label sequence based on a given particular observation sequence. The model is

widely used in natural language processing (NLP), including named entity recognition (NER),

part-of-speech tagging, and so on.

Figure 6 shows the CRFs model which computes the conditional probability)|(


xyp of an

output sequence),...,,
21

(yyy
n

y 


 under the condition of a given input sequence

),...,,(
21 xxx n

x 


.

Figure 6. Liner CRFs.

Liner CRFs which is used in Bio-NER is as follows:

)),,,(exp(.

)(

1
)|(

1
1 1

yyf
ii

n

i

K

k
kk

ix

xZ

xyP




 




  , (5-1)

where

 




 




y

ii

n

i

K

k
kk yyf ixxZ)),,,(exp()(

1
1 1

 , (5-2)

and i is the position in the input sequence),...,,(
21 xxx n

x 


, and  k
 is a weight of a feature that

does not depend on location i , and }),,,({ 1 1
yyixf iik

K

k





 are feature functions.

16

For the training process of the CRFs model, it is to seek for the parameter

）（ 
K

,...,,
21




 which is most in accordance with the training data)},{(
1





yx ii

T

N

i

.

Presume every),(


yx is independently and identically distributed. The parameter is obtained

generally in this way:



T

xyPL)|(log)( . (5-3)

When the log-likelihood function)(L reaches the maximum value, the parameter is almost the

best. However, to find the parameter to maximize the training data likelihood, there is no

closed-form solution. Hence, we adopt parameter estimation, i.e., the L-BFGS algorithm [29], to

find the optimum solution.

To find the parameter ）（ 
K

,...,,
21




 to make convex function)(L reach the

maximum, algorithm L-BFGS makes its gradient vector),...,,(

21  K

LLL
L
















0 by

iterative computations with initial value 0
0
 at first. Researches show that the first step, that is

to calculate Li which is on behalf of the gradient vector in iteration i , calls for much time.

Therefore, we focus on the optimized improvement for it.

Every component in Li is computed as follows:







2

''

1
1

'

1
1

]),,,(|(),,,([
)(

k

ii

n

i
k

T
ii

n

i
k

k

yyfyyyfL ix

y

xPix 


















  
‘

）

‘

. (5-4)

It can be linked with every ordered pair),(


yx within 
T

which is mutually independent. So we

can calculate the difference between),,,(
1

1

yyf
ii

n

i
k

ix






 and),,,(|(
''

1
1

'

yyfy
ii

n

i
k

ix

y

xP








 
‘

） on

each of the input sequence in the training set T, and then put results of all the sequences together.

As a result, it can be computed in parallel as shown in Fig.7.

17

Figure 7. The MapReduce plan for computing component.

We split the calculation process in-house 
T

into several map tasks and summarize the

results by a reduce task. And the difference between penalty term




2

k is designed to be the

post-processing.

In the actual situation, it is impossible to schedule one map task for one ordered pair),(


yx ,

because the number of ordered pairs in large-scale of training samples is too much and hard to

estimate. We must syncopate the training data T into several small parts, and then start the

MapReduce plan as shown in the above discussion.

For MapReduce Bio-NER application, the data skew leads to uneven load in the whole

system. Any specific corpus has its own uneven distribution of the entity (as show in table below),

resulting in the serious problem of data skew. And protean, artificial defined feature sets

exacerbate the problem both in training and inference process.

Table 1. The proportion of each type of entities in the corpus JNLPBA2004

 Protein DNA RNA Cell_line Cell_type

Training Set 59.00% 18.58% 1.85% 7.47% 13.10%

Test Set 58.50% 12.19% 1.36% 5.77% 22.18%

Combined with schemes given in this chapter, it can be solved based on the modified Hadoop

MapReduce. The implementation will further improve system performance on the MapReduce

with time-space scheduling.

javascript:void(0);

18

6. Concluding Remarks

As data are the basis of information systems, how to process data and extract information

becomes one of the hottest topics in today's information society. This chapter introduces the

MapReduce framework, an excellent distributed and parallel computing model. As its

implementation, Hadoop plays a more and more important role in a lot of distributed application

systems for massive data processing,

For the increasing data and cluster scales, to avoid scheduling delay, scheduling skew, poor

system utilization, and low degree of parallelism, this chapter proposes some improved methods

which focus on the time and space scheduling of reduce tasks in MapReduce.

Through analyzing the MapReduce scheduling mechanism, this chapter illustrates the

reasons of system slot resource wasting which results in reduce tasks waiting around, and it

proposes the development of a method detailing the start times of reduce tasks dynamically

according to each job context, including the task completion time and the size of map output.

There is no doubt that the use of this method will decrease the reduce completion time and system

average response time in Hadoop platforms.

 Current Hadoop schedulers often lack of data locality consideration. As a result, unnecessary

data might get shuffled in the network causing performance degradation. This chapter addresses

several optimizing algorithms to solve the problem of reduce placement. We make a Hadoop

reduce task scheduler aware of partitions’ network locations and sizes in order to mitigate network

traffic and improve the performance of Hadoop.

Finally, a parallel biomedical data processing model using the MapReduce framework is

presented as an application of the proposed methods. As USA proposed the human genome project

(HGP), biomedical big data shows its unique position among the academics. A widely used CRFs

model and an efficient Hadoop-based method, Bio-NER, have been introduced to explore the

information and knowledge under the biomedical big data.

7. Bibliography

[1] J.Tan, S. Meng, X.Meng, L.Zhang. Improving reduce task data locality for sequential MapReduce

jobs. International Conference on Computer Communications (INFOCOM), 2013 Proceedings IEEE,

14-19 April 2013, pp.1627-1635.

[2] J. Dean and S. Ghemawat, MapReduce: simplified data processing on large clusters,

Communications of the ACM - 50th anniversary issue: 1958 - 2008 CACM Homepage archive Volume 51

Issue 1, January 2008, pp. 137–150.

http://cacm.acm.org/
http://dl.acm.org/citation.cfm?id=J79&picked=prox&cfid=410175283&cftoken=10097592

19

[3] X. Gao, Q. Chen, Y. Chen, Q. Sun, Y. Liu, M. Li, A dispatching-rule-based task scheduling policy

for MapReduce with multi-type jobs in heterogeneous environments, 2012 7th ChinaGrid Annual

Conference (ChinaGrid), pp.17–24.

[4] J. Xie, F. Meng, H. Wang, H. Pan, J. Cheng, X. Qin, Research on scheduling scheme for Hadoop

clusters, Procedia Computer Science, 2013, Volume: 18, pp. 2468–2471.

[5] Z. Tang, M. Liu, K.Q. Li , Y. Xu . A MapReduce-enabled scientific workflow framework with

optimization scheduling algorithm, 2012 13th International Conference on Parallel and Distributed

Computing, Applications and Technologies (PDCAT), pp. 599–604.

[6] F. Ahmad, S. Lee, M. Thottethodi, T. N. Vijaykumar, MapReduce with communication overlap

(MaRCO), Journal of Parallel and Distributed Computing, May 2013, Volume: 73, Issue: 5, pp. 608–620.

[7] M. Lin, L. Zhang, A. Wierman, J. Tan, Joint optimization of overlapping phases in MapReduce,

Performance Evaluation, Volume: 70, Issue: 10, October 2013, pp. 720–735.

[8] Y. Luo, B. Plale, Hierarchical MapReduce programming model and scheduling algorithms, Cluster

Computing and the Grid, IEEE International Symposium on, 13-16 May 2012, pp. 769–774.

[9] H. Mohamed, S. Marchand-Maillet, MRO-MPI: MapReduce overlapping using MPI and an

optimized data exchange policy, Parallel Computing, In Press, Volume 39 Issue 12,10 September 2013,

pp.851-866 .

[10] Z. Tang, L.G. Jiang, J. Q. Zhou, K.L. Li, K.Q. Li. A Self-Adaptive Scheduling Algorithm for

Reduce Start Time. Future Generation Computer Systems. Manuscript under revision.

[11] Y. Luo, B. Plale, Hierarchical MapReduce programming model and scheduling algorithms, 12th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 13-16 May 2012,

pp. 769–774.

[12] D. Linderman, D. Collins, H. Wang, H. Meng Merge: a programming model for heterogeneous

multi-core systems, ASPLOS XIII Proceedings of the 13th international conference on Architectural

support for programming languages and operating systems Volume 36 Issue 1, March 2008, pp: 287-296.

[13] B. Palanisamy,A. Singh,L. Liu,BLangston. Cura: A cost-optimized model for MapReduce in a

cloud, IEEE International Symposium on Parallel and Distributed Processing (IPDPS), IEEE Computer

Society, 20-24 May 2013, pp. 1275–1286.

[14] L. Ho,J. Wu, P. Liu. Optimal algorithms for cross-rack communication optimization in

MapReduce framework. , 2011 IEEE International Conference on Cloud Computing (CLOUD), 4-9 July

2011, pp. 420-427.

[15] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,and A. Goldberg. Quincy: fair

scheduling for distributed computing clusters. Proceedings of the ACM SIGOPS 22nd symposium on

Operating systems principles (SOSP), 11-14 October 2009, pp. 261-276.

[16] Wikipedia [EB/OL] http://en.wikipedia.org/wiki/Greedy_algorithm. 2013-09-14.

[17] Daniel Dominic Sleator,Robert Endre Tarjan. Self-adjusting binary search trees. Journal of the

http://dl.acm.org/author_page.cfm?id=81100228090&CFID=410175283&CFTOKEN=10097592
http://dl.acm.org/author_page.cfm?id=81100445511&CFID=410175283&CFTOKEN=10097592
http://dl.acm.org/author_page.cfm?id=81350588664&CFID=410175283&CFTOKEN=10097592
http://dl.acm.org/author_page.cfm?id=81327490548&CFID=410175283&CFTOKEN=10097592
http://research.microsoft.com/asplos08/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6008653
http://dl.acm.org/author_page.cfm?id=81100459059&coll=DL&dl=ACM&trk=0&cfid=295382812&cftoken=92488251
http://dl.acm.org/author_page.cfm?id=81100645220&coll=DL&dl=ACM&trk=0&cfid=295382812&cftoken=92488251

20

ACM (JACM) JACM Homepage archive Volume 32 Issue 3, July 1985, pp. 652-686.

[18] M. Hammoud and M. F. Sakr. Locality-aware reduce task scheduling for MapReduce. Cloud

Computing Technology and Science (CloudCom), 2011 IEEE Third International Conference on, 29 Nov –

1.Dec 2011, pp. 570-576.

[19] S. Huang, J. Huang, J. Dai, T. Xie, B. Huang. The HiBench benchmark suite: characterization of

the MapReduce-based data analysis, Date Engineering Workshops (ICDEW), IEEE 26th International

Conference on, 1-6 March 2010 , pp. 41-51.

 [20] M. Hammoud, M. S Rehman, and M. F. Sakr. Center-of-gravity reduce task scheduling to lower

MapReduce network traffic. Cloud Computing (CLOUD), IEEE 5th International Conference on, 24-29

June,2012, pp. 49-58.

 [21] Y. C. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skew-resistant parallel processing of

feature-extracting scientific user-defined functions, Proceedings of the 1st ACM Symposium on Cloud

Computing (SoCC), June 2010, pp. 75-86.

[22] P. Dhawalia, S.Kailasam; D.Janakiram. Chisel: A resource savvy approach for handling skew in

MapReduce applications. Cloud Computing (CLOUD), IEEE Sixth International Conference on, 28 June

-3 July 2013, pp. 652-660.

[23] R. Grover, M. J.Carey. Extending Map-Reduce for efficient predicate-based sampling. Data

Engineering (ICDE), 2012 IEEE 28th International Conference on, pp: 486-497.

[24] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi. Evaluating MapReduce on virtual machines:

the Hadoop case cloud computing. Lecture Notes in Computer Science, Volume 5931, 2009, pp: 519-528.

[25] Wikipedia, MEDLINE [EB/OL]. http://en.wikipedia.org/wiki/MEDLINE. 2013-09-14.

[26] J. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, N. Collier. Introduction to the bio-entity recognition task

at JNLPBA. Proceedings of the International Joint Workshop on Natural Language Processing in

Biomedicine and its Applications (JNLPBA), August 2004, pp: 70-75.

[27] L. Li, R. Zhou, D. Huang. Two-phase biomedical named entity recognition using CRFs.

Computational Biology and Chemistry, 2009, Volume 33 Issue 4, pp. 334–338.

[28] J. Lafferty, A. McCallum, F. Pereira. Conditional random fields: probabilistic models for

segmenting and labeling sequence data. In Proceedings of the 18th International Conference on Machine

Learning (ICML), June 28 - July 1 2001, pp. 282-289.

[29] D. Liu, J Nocedal. On the limited memory BFGS method for large scale optimization. In:

Mathematical Programming, Volume 45, Issue 1-3, August 1989, pp. 503-528.

http://jacm.acm.org/
http://dl.acm.org/citation.cfm?id=J401&picked=prox&cfid=295382812&cftoken=92488251
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132468
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132468
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5443885
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5443885
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6253102
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dhawalia,%20P..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kailasam,%20S..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Janakiram,%20D..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6676753&queryText=Handling+Data+Skew+in+MapReduce
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6676753&queryText=Handling+Data+Skew+in+MapReduce
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596015
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6226952
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6226952
http://link.springer.com/book/10.1007/978-3-642-10665-1
http://link.springer.com/bookseries/558
http://www.sciencedirect.com/science/journal/14769271

