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1. Introduction 

Data are representations of information, and the information content of data is generally 

believed to be valuable, and data form the basis of information systems. Using computers to 

process data, extracting information is a basic function of information systems. In today's highly 

information-oriented society, Web can be said to be currently the largest information system, of 

which the data are massive, diverse, heterogeneous, and dynamically changing. Using Hadoop to 

rapidly extract useful information from massive data of an enterprise has become an efficient 

method for programmers in the process of application development. 

The significance of big data is to analyze people’s behavior, intention, and preference in the 

growing and popular social networks. It is also to process data with non-traditional structures and 

to explore their meanings. Big data is often used to describe a company’s large amount of 

unstructured and semi-structured data. Using analysis to create these data in a relational database 

for downloading will spend too much time and money. Big data analysis and cloud computing are 

often linked together, because real-time analysis of large data requires a framework similar to 

MapReduce to assign works for hundreds or even thousands of computers. After several years of 

criticism, questioning, discussion, speculation, big data finally ushered in the era belonging to it. 

Hadoop presents MapReduce as an analytics engine, and under the hood it uses a distributed 

storage layer referred to as the Hadoop distributed file system (HDFS). As an open source 

implementation of MapReduce, Hadoop is so far one of the most successful realizations of 

large-scale data-intensive cloud computing platforms. It has been realized that when and where to 

start the reduce tasks are the key problems to enhance the MapReduce performance. 

For time scheduling in MapReduce, the existing work may result in a block of reduce tasks. 

Especially, when the map tasks’ output is large, the performance of a MapReduce task scheduling 

algorithm will be influenced seriously. Through analysis for the current MapReduce scheduling 

mechanism, Section 3 in this chapter illustrates the reasons of system slot resource wasting, which 

results in reduce tasks waiting around. Then, the section proposes a self-adaptive reduce task 

scheduling policy for reduce tasks’ start times in the Hadoop platform. It can decide the start time 
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point of each reduce task dynamically according to each job context, including the task completion 

time and the size of map output. 

Meanwhile, another main performance bottleneck is caused by all-to-all communications 

between mappers and reducers, which may saturate the top-of-rack switch and inflate job 

execution time. The bandwidth between two nodes is dependent on their relative locations in the 

network topology. Thus, moving data repeatedly to remote nodes becomes the bottleneck. For this 

bottleneck, reducing cross-rack communication will improve job performance. Current researches 

prove that moving task is more efficient than moving data [1], especially in the Hadoop distributed 

environment, where data skews are widespread. 

Data skew is an actual problem to be resolved for MapReduce. Existing Hadoop’s reduce task 

scheduler is not only locality unaware, but also partitioning skew unaware. The parallel and 

distributed computation features may cause some unforeseen problems. Data skew is a typical 

such problem, and the high runtime complexity amplifies the skew and leads to highly varying 

execution times of the reducers. Partitioning skew causes shuffle skew, where some reduce tasks 

receive more data than others. The shuffle skew problem can degrade performance, because a job 

might get delayed by a reduce task fetching large input data. In the presence of data skew, we can 

use a reducer placement method to minimize all-to-all communications between mappers and 

reducers, whose basic idea is to place related map and reduce tasks on the same node or cluster or 

rack. 

Section 4 of this chapter addresses space scheduling in MapReduce. We analyze the source of 

data skew and conclude that partitioning skew exists within certain Hadoop applications. The node 

at which a reduce task is scheduled can effectively mitigate the shuffle skew problem. In these 

cases, reducer placement can decrease the traffic between mappers and reducers and upgrade 

system performance. Some algorithms are released, which synthesize the network locations and 

sizes of reducers’ partitions in their scheduling decisions in order to mitigate network traffic and 

improve MapReduce performance. Overall, Section 4 introduces several ways to avoid scheduling 

delay, scheduling skew, poor system utilization, and low degree of parallelism. 

Some typical applications are discussed in this chapter. At present, biomedical literature has 

an enormous quantity and continues to increase at high speed. People urgently need some 

automatic tools to process and analyze the biomedical literature. In the current methods, the model 

training time increases sharply when dealing with large-scale training samples. How to increase 

the efficiency of named entity recognition in biomedical big data becomes one of the key problems 

in biomedical text mining. For the purposes of improving the recognition performance and 
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reducing the training time, through implementing the model training process based on 

MapReduce, Section 5 of this chapter proposes an optimization method for two-phase recognition 

using conditional random fields (CRFs) with some new feature sets.  

2. Overview of Big Data Processing Architecture 

MapReduce is an excellent model for distributed computing, introduced by Google in 2004 

[2]. It has emerged as an important and widely used programming model for distributed and 

parallel computing, due to its ease of use, generality, and scalability. Among its open source 

implementation versions, Hadoop has been widely used in industry around the whole world [3]. It 

has been applied to the production environments, such as Google, Yahoo, Amazon, Facebook, and 

so on. Because of the short development time, Hadoop can be improved in many aspects, such as 

the problems of intermediate data management and reduce task scheduling [4]. 

 

 

Figure 1. The typical process of the MapReduce. 

 

As shown in Fig.1, map and reduce are two sections in a MapReduce scheduling algorithm. In 

Hadoop, each task contains three function phases, i.e., copy, sort, and reduce [5]. The goal of the 

copy phase is to read the map tasks’ output. The sort phase is to sort the intermediate data, which 

are the output from map tasks and will be the input to the reduce phase. Finally, the eventual results 

are produced through the reduce phase, where the copy and sort phases are to preprocess the input 

data of the reduce phase. In real applications, copying and sorting may cost considerable amount of 

time, especially in the copy phase. In the theoretical model, the reduce functions start only if all 
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map task are finished [6]. However, in the Hadoop implementation, all copy actions of reduce 

tasks will start when the first map action is finished [7]. But in slot duration, if there is any map 

task still running, the copy actions will wait around. This will lead to the waste of reduce slot 

resources. 

In traditional MapReduce scheduling, reduce tasks should start when all the map tasks are 

completed. In this way, the output of map tasks should be read and written to the reduce tasks in 

the copy process [8]. However, through the analysis of the slot resource usage in the reduce 

process, this chapter illustrates that data transfer will result in slot idle and delay. In particular, 

when the map tasks’ output becomes large, the performance of MapReduce scheduling algorithms 

will be influenced seriously [9]. When multiple tasks are running, inappropriate scheduling of the 

reduce tasks will lead to the situation where other jobs in the system cannot be scheduled timely. 

These are the stumbling blocks of Hadoop popularization. 

A user needs to serve two functions in the Hadoop framework, i.e., mapper and reducer, to 

process data. Mappers produce a set of files and send to all the reducers. Reducers will receive files 

from all the mappers, which is an all-to-all communication model. Hadoop runs in a datacenter 

environment in which machines are organized in racks. Cross-rack communication happens if a 

mapper and a reducer reside in different racks. Every cross-rack communication needs to travel 

through the root switch and hence the all-to-all communication model becomes a bottleneck. 

This chapter points out the main affecting factors for the system performance in the 

MapReduce framework. The solutions to these problems constitute the content of the proposed 

time-space scheduling algorithms. In Section 3, we present a self-adaptive reduce task scheduling 

algorithm to resolve the problem of slot idle and waste. In Section 4, we analyze the source of data 

skew in MapReduce, and introduce some methods to minimize cross-rack communication and 

MapReduce traffic. To show the application of this advanced MapReduce framework, in Section 

5, we describe a method to provide the parallelization of model training in named entity 

recognition in biomedical big data mining. 

3. Self-Adaptive Reduce Task Scheduling 

3.1 Problem Analysis 

Through studying reduce task scheduling in the Hadoop platform, this chapter proposes an 

optimizing policy called self-adaptive reduce scheduling (SARS) [10]. This method can decrease 

the waiting around of copy actions and enhance the performance of the whole system. Through 
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analyzing the details of the map and reduce two-phase scheduling process at the runtime of the 

MapReduce tasks[11], SARS can determine the start time point of each reduce task dynamically 

according to each job’s context, such as the task completion time, the size of map output[12], etc. 

This section makes the following contributions: (1) the analysis for the current MapReduce 

scheduling mechanism and illustration of the reasons of system slot resource wasting which results 

in reduce tasks waiting around; (2) the development of a method to determine the start times of 

reduce tasks dynamically according to each job context, including the task completion time and the 

size of map output; (3) the description of an optimizing reduce scheduling algorithm which 

decreases the reduce completion time and system average response time in a Hadoop platform. 

 

 

 

 

Figure 2. The performance of the policies with respect to various graph sizes. 

 

Hadoop allows the user to configure the job, submit it, control its execution, and query the 

state. Every job consists of independent tasks, and each task needs to have a system slot to run. 

Fig.2 shows the time delay and slot resources waste problem in reduce task scheduling. Through 

Fig.2(a), we can know that Job1 and Job2 are the current running jobs, and at the initial time, each 

job is allocated two map slots to run respective tasks. Since the execution time of each task is not 

the same, as shown in Fig.2(a), the Job2 finishes its map tasks at time t2. Because the reduce tasks 

will begin once any map task finishes, from the duration t1 to t2, there are two reduce tasks from 

Job1 and Job2 which are running respectively. As indicated in Fig.2(b), at time t3, when all the 

reduce tasks of Job2 are finished, two new reduce tasks from Job1 are started. Now all the reduce 

(a) Job2 map tasks finished   (b) Job2 reduce tasks finished   (c) Job3 submitted 
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slot resources are taken up by Job1. As shown in Fig.2(c), at the moment t4, when Job3 starts, two 

idle map slots can be assigned to it, and the reduce tasks from this job will then start. However, we 

can find that all reduce slots are already occupied by Job1, and the reduce tasks from Job3 have to 

wait for slot release. 

The root cause of this problem is that reduce task of Job3 must wait for all the reduce tasks of 

Job1 to be completed, as Job1 takes up all the reduce slots and Hadoop system does not support 

preemptive action acquiescently. In early algorithm design, a reduce task can be scheduled once 

any map tasks are finished [13]. One of the benefits is that the reduce tasks can copy the output of 

the map tasks as soon as possible. But reduce tasks will have to wait before all map tasks are 

finished, and the pending tasks will always occupy the slot resources, so that other jobs which 

finish the map tasks cannot start the reduce tasks. All in all, this will result in long waiting of 

reduce tasks, and greatly increase the delay of Hadoop jobs.  

In practical applications, a shared cluster environment often has different jobs in running 

which are from multiple users at the same time. If the above similar situation appears among the 

different users at the same time, and the reduce slot resources are occupied for a long time, the 

submitted jobs from other users will not be pushed ahead until the slots are released. Such 

inefficiency will extend the average response time of a Hadoop system, lower the resource 

utilization rate, and affect the throughput of a Hadoop cluster. 

3.2 Runtime Analysis of MapReduce Jobs  

Through the above analysis, one method to optimize the MapReduce tasks is to select an 

adaptive time to schedule the reduce tasks. By this means, we can avoid the reduce tasks’ waiting 

around and enhance the resource utilization rate. This section proposes a self-adaptive reduce task 

scheduling policy, which gives a method to estimate the start time of a task, instead of the 

traditional mechanism where reduce tasks are started once any map task is completed. 

The reduce process can be divided into the following several phases. Firstly, the reduce task 

requests to read each map output data in the copy phase, which belong to this reduce function in 

the map out data blocks. Next, in the sort process, these intermediate data are output to an ordered 

data set by merging, which are divided into two types. One type are the data in memory. When the 

data are read from the various maps at the same time, the data should be merged as the same keys. 

The other is as like the circle buffer. Because the memory belonging to the reduce task is limited, 

the data in the buffer should be written to disks regularly in advance. 

In this way, subsequent data need to be merged by the data which are written into the disks 

earlier, the so called external sorting. The external sorting needs to be executed several times if the 
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number of map tasks are large in the practical works. The copy and sort are customarily called the 

shuffle phase. Finally, after finishing the copy and sort process, the subsequent functions start, and 

the reduce tasks can be scheduled to the compute nodes. 

3.3 A Method of Reduce Task Start Time Scheduling 

Because Hadoop employs the greedy strategy to schedule the reduce tasks, to schedule the 

reduce tasks fastest, as described above, some reduces tasks will always take up the system 

resources without actually performing operations in a long time. Reduce task start time is 

determined by this advanced algorithm SARS (Self-Adaptive Reduce Scheduling). In this method, 

the start times of the reduce tasks are delayed for a certain duration to lessen the utilization of 

system resources. The SARS algorithm schedules the reduce tasks at a special moment, when 

some map tasks are finished but not all. By this means, how to select an optimal time point to start 

the reduce scheduling is the key problem of the algorithm. Distinctly, the optimum point can 

minimize the system delay and maximize the resource utilization. 

 

Figure 3. The default scheduling of reduce tasks. 

 

As shown in Fig.3, assuming that Job1 has 16 map tasks and one reduce task, and there are 4 

map slots and only one reduce slot in this cluster system. Figures 3 and 4 describe the time 

constitution of the life cycle for a special job: 

(FTlm- STfm) + ( FTcp- FTlm )+(FTlr+ STsr).                                           (3-1) 

The denotations in Eq. (3-1) are defined as follows. FTlm is the completion time of the last map 

task; STfm is the start time of the first map task; FTcp is the finish time of the copy phase; FTlr is the 

finish time of reduce; STsr is the start time of reduce sort. 

In Fig.3, t1 is the start time of Map1, Map2, and the reduce task. During t1 to t3, the main 

work of the reduce task is to copy the output from Map1 to Map14. The output of Map15 and 

Map16 will be copied by the reduce task from t3 to t4. The duration from t4 to t5 is so called the 
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sort stage, which ranks the intermediate results according to the key values. The reduce function is 

called at the time t5, which continues from t5 to t6. Because during t1 to t3, in the copy phase, the 

reduce task only copies the output data intermittently, once any map task is completed, and for the 

most time it is always waiting around. We hope to make the copy operations completed at a 

concentrated duration, which can decrease the waiting time of the reduce tasks. 

 

Figure 4. The scheduling method for reduce tasks in SARS. 

 

As Fig.4 shows, if we can start the reduce tasks at t2’, which can be calculated using the 

following equations, and make sure these tasks can be finished before t6, then during t1 to t2’, the 

slots can be used by any other reduce tasks. But if we let the copy operation start at t3, because the 

output of all map tasks should be copied from t3, delay will be produced in this case. As shown in 

Fig.3, the copy phase starts at t2, which just collects the output of the map tasks intermittently. By 

contrast, the reduce task’s waiting time is decreased obviously in Fig.4,  in which case the copy 

operations are started at t2’. 

The SARS algorithm works by delaying the reduce processes. The reduce tasks are scheduled 

when part but not all of the map tasks are finished. For a special key value, if we assume that there 

are s map slots and m map tasks in the current system, and the completion time and the size of 

output data of each map task are denoted as t_mapi and m_outj respectively, where i, j ∈ [1,m]. 

Then, we can know the amount of the map tasks data can be calculated as: 
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In order to predict the time required to transmit the data, we define the speed of the data 

transmission from the map tasks to the reduce tasks as transSpeed in the cluster environment, and 

the number of concurrent copy threads with reduce tasks is denoted as copyThread. We denote the 

start time of the first map task and the first reduce task as startmap and startreduce respectively. 

Therefore, the optimal start time of reduce tasks can be determined by  following equation: 
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As shown by  the time t2’ in Fig.4,  the most appropriate start time of a reduce task is when all 

the map tasks about the same key are finished, which is between the times when the first map is 

started and when the last map is finished. The second item in Eq. (3-3) denotes the required time of 

the map tasks, and the third item is the time for data transmission. Because the reduce tasks will be 

started before the copy processes, the time cost should be cut from the map tasks completion time. 

The waiting around of the reduce tasks may make the jobs in need of the slot resources not able to 

work normally. Through adjusting the reduce scheduling time, this method can decrease the time 

waste for data replication process and advance the utilization of the reduce slot resources 

effectively. Using the job’s own characteristics to determine the reduce scheduling time can use 

the slot resources effectively. The improvement of these policies is especially important for the 

CPU-type jobs. For these jobs which need more CPU computing, the data I/O of the tasks are less, 

so more slot resource will be wasted in the default schedule algorithm. 

4. Reduce Placement 

As the mapper and reducer functions use an all-to-all communication model, this section 

presents some exiting and popular solutions in Sections 4.1-4.3, where we introduce several 

algorithms to optimize the communication traffic, which could increase the performance of data 

processing. In Sections 4.4-4.5, we mention the existence of data skew, and propose some methods 

based on space scheduling, i.e., reduce placement, to solve the problem of data skew. 

4.1 Optimal Algorithms for Cross-Rack Communication Optimization 

In Hadoop framework, a user needs to provide two functions, i.e., mapper and reducer, to 

process data. Mappers produce a set of files and send to all the reducers, and a reducer will receive 

files from all the mappers, which is an all-to-all communication model. Cross-rack communication 

[14] happens if a mapper and a reducer reside in different racks, which is very often in today’s data 

center environments. Typically, Hadoop runs in a datacenter environment in which machines are 

organized in racks. Each rack has a top-of-rack switch and each top-of-rack switch is connected to 

a root switch. Every cross-rack communication needs to travel through the root switch and hence 

the root switch becomes a bottleneck [15]. MapReduce employs an all-to-all communication 

model between mappers and reducers. This results in saturation of network bandwidth of 

top-of-rack switch in the shuffle phase and straggles some reducers and increases job execution 
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time. 

There are two optimal algorithms to solve the reducer placement problem (RPP), and an 

analytical method to find the minimum (may not be feasible) solution of RPP, which considers the 

placement of reducers to minimize cross-rack traffic. One algorithm is a greedy algorithm [16], 

which assigns one reduce task to a rack at a time. When assigning a reduce task to a rack, it chooses 

the rack which incurs the minimum total traffic (up and down) if the reduce task is assigned to that 

rack. The second algorithm, called binary search [17], uses binary search to find the minimum 

bound of the traffic function for each rack, and then uses that minimum bound to find the number 

of reducers on each rack. 

4.2 Locality-Aware Reduce Task Scheduling 

MapReduce assumes the master-slave architecture and a tree-style network topology [18]. 

Nodes are spread over different racks encompassed in one or many data centers. A salient point is 

that the bandwidth between two nodes is dependent on their relative locations in the network 

topology. For example, nodes that are in the same rack have higher bandwidth between them as 

opposed to nodes that are off-rack. As such, it pays to minimize data shuffling across racks. The 

master in MapReduce is responsible for scheduling map tasks and reduce tasks on slave nodes 

after receiving requests from slaves for that regard. Hadoop attempts to schedule map tasks in 

proximity to input splits in order to avoid transferring them over the network. In contrast, Hadoop 

schedules reduce tasks at requesting slaves without any data locality consideration. As a result, 

unnecessary data might get shuffled in the network causing performance degradation. 

Moving data repeatedly to distant nodes is becoming the bottleneck[19]. We rethink reduce 

task scheduling in Hadoop and suggest making Hadoop’s reduce task scheduler aware of 

partitions’ network locations and sizes in order to mitigate network traffic. There is a practical 

strategy that leverages network locations and sizes of partitions to exploit data locality, named 

locality-aware reduce task scheduler (LARTS) [18]. In particular, LARTS attempts to schedule 

reducers as close as possible to their maximum amount of input data and conservatively switches 

to a relaxation strategy seeking a balance between scheduling delay, scheduling skew, system 

utilization, and parallelism. LARTS attempts to collocate reduce tasks with the maximum required 

data computed after recognizing input data network locations and sizes. LARTS adopts a 

cooperative paradigm seeking good data locality while circumventing scheduling delay, 

scheduling skew, poor system utilization, and low degree of parallelism. We implemented LARTS 

in Hadoop-0.20.2. Evaluation results show that LARTS outperforms the native Hadoop reduce 

task scheduler by an average of 7%, and up to 11.6%. 
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4.3 MapReduce Network Traffic Reduction 

Informed by the success and the increasing prevalence of MapReduce, we investigate the 

problems of data locality and partitioning skew present in the current Hadoop implementation and 

propose the center-of-gravity reduce scheduler (CoGRS) algorithm [20], a locality-aware and 

skew-aware reduce task scheduler for saving MapReduce network traffic. CoGRS attempts to 

schedule every reduce task R at its center-of-gravity node determined by the network locations of 

R’s feeding nodes and the skew in the sizes of R’s partitions. Notice that the center-of gravity node 

is computed after considering partitioning skew as well.  

The network is typically a bottleneck in MapReduce-based systems. By scheduling reducers 

at their center-of-gravity nodes, we argue for reduced network traffic which can possibly allow 

more MapReduce jobs to co-exist in the same system. CoGRS controllably avoids scheduling 

skew, a situation where some nodes receive more reduce tasks than others, and promotes 

pseudo-asynchronous map and reduce phases. Evaluations show that CoGRS is superior to native 

Hadoop. When Hadoop schedules reduce tasks, it neither exploits data locality nor addresses 

partitioning skew present in some MapReduce applications. This might lead to increased cluster 

network traffic.  

We implemented CoGRS in Hadoop-0.20.2 and tested it on a private cloud as well as on 

Amazon EC2. As compared to native Hadoop, our results show that CoGRS minimizes off-rack 

network traffic by average of 9.6% and 38.6% on our private cloud and on an Amazon EC2 cluster, 

respectively. This reflects on job execution times and provides an improvement of up to 23.8%. 

Partitioning skew refers to the significant variance in intermediate keys’ frequencies and their 

distribution across different data nodes. In essence, a reduce task scheduler can determine the 

pattern of the communication traffic in the network, affect the quantity of shuffled data, and 

influence the runtime of MapReduce jobs.  

4.4 The Source of MapReduce Skews 

Over the last few years, MapReduce has become popular for processing massive data sets. 

Most research in this area consider simple application scenarios like log file analysis, word count, 

and sorting, and current systems adopt a simple hashing approach to distribute the load to the 

reducers. However, processing massive amounts of data exhibit imperfections to which current 

MapReduce systems are not geared. The distribution of scientific data is typically skewed [21]. 

The high runtime complexity amplifies the skew and leads to highly varying execution times of the 

reducers. 

There are three typical skews in MapReduce. (1) Skewed key frequencies – If some keys 
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appear more frequently in the intermediate data tuples, the number of tuples per cluster owned will 

be different. Even if every reducer receives the same number of clusters, the overall number of 

tuples per reducer received will be different. (2) Skewed tuple sizes – In applications which hold 

complex objects within the tuples, unbalanced cluster sizes can arise from skewed tuple sizes. (3) 

Skewed execution times – If the execution time of the reducer is worse than linear, processing a 

single large cluster may take much longer than processing a higher number of small clusters. Even 

if the overall number of tuples per reducer is the same, the execution times of the reducers may 

differ. 

According to those skew types, we propose several processes to improving the performance 

of MapReduce. 

4.5 Reduce Placement in Hadoop  

In Hadoop, map and reduce tasks typically consume large amount of data, and the total 

intermediate output (or total reduce input) size is sometimes equal to the total input size of all map 

tasks (e.g., sort) or even larger (e.g., 44.2% for K-means). For this reason, optimizing the 

placement of reduce tasks to save network traffic becomes very essential as optimizing the 

placement of map tasks, which is already well understood and implemented in Hadoop systems. 

This section explores scheduling to ensure that the data that a reduce task handles the most are 

localized, so that it can save traffic cost and diminish data skew [22].  

Sampling – Input data is loaded into a file or files in a distributed file system (DFS) where 

each file is partitioned into smaller chunks, called input splits. Each split is assigned to a map task. 

Map tasks process splits [23], and produce intermediate outputs which are usually partitioned or 

hashed to one or many reduce tasks. Before a MapReduce computation begins with a map phase, 

where each input split is processed in parallel, a random sample of the required size will be 

produced. The split of samples are submitted to the auditor group; meanwhile, the master and map 

tasks will wait for the results of the auditor. 

Auditor Group – The auditor group (AG) carries out a statistical and predicted test to 

calculate the distribution of reduce tasks, and then start the reduce VM [24] at the appropriate place 

in the PM. The AG will receive several samples, and then will assign its members which contain 

map and reduce tasks to them. The distribution of intermediate key/value pairs which adopt a 

hashing approach to distribute the load to the reducers will be computed in reduces. 

Placement of Reduce VM – The results of AG will decide the placement of reduce virtual 

machines (VM). For example, in Fig.5, if 80% key/value pairs of reduce 1 come from map 2 and 

the remaining intermediate results are from map 1, the VM of reduce 1 will be started in the 
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physical machine (PM) which contains the VM of map 2. Similarly, the VM of reduce 2 will be 

started in the PM which includes the VM of map 1. 

 

 

Figure 5. The intermediate results distribution in reduce tasks.  

5. Named Entity Recognition in Biomedical Big Data Mining: A Case Study 

Based on the above study of time-space Hadoop MapReduce scheduling algorithms, we 

present a case study in the field of biomedical big data mining. Compared to traditional methods 

and general MapReduce for data mining, our project makes originally inefficient algorithm 

become time-bearable in the case of integrating the above scheduling algorithms. 

5.1 Biomedical Big Data 

In the past several years, massive data have been accumulated and stored in different forms, 

whether in business enterprises, scientific research institutions, or government agencies. But when 

facing with more and more rapid expansion of the databases, people cannot set out to obtain and 

understand valuable knowledge within the big data.  

The same situation has happened in the biomedical field. As one of the most concerned areas, 

especially after the human genome project (HGP), literature in biomedicine has appeared in large 

numbers, reaching an average of 600,000 or more per year [25]. Meanwhile, the completion of the 

human genome project has produced large human gene sequence data. In addition, with the fast 

development of science and technology in recent years, more and more large-scale biomedical 

experiment techniques, which can reveal the law of life activities on the molecular level, must use 

the big data from the entire genome or the entire proteome, which results in huge amount of 

biological data. These mass biological data contain a wealth of biological information, including 

significant gene expression situation and protein-protein interaction. What is more, a disease 

network, which contains hidden information associated with the disease and gives biomedical 

scientists the basis of hypothesis generation, is constructed based on disease relationship mining in 



14 

  

these biomedical data. 

However, the most basic requirements for biomedical big data processing are difficult to meet 

efficiently. For example, keyword searching in biomedical big data or the Internet can only find 

lots of relevant file lists, and the accuracy is not high, so that a lot of valuable information 

contained in the text cannot be directly shown to the people.  

5.2 Biomedical Text Mining and Named Entity Recognition 

In order to explore the information and knowledge in the biomedical big data, people 

integrate mathematics, computer science, and biology tools, which promote the rapid development 

of large-scale biomedical text mining. It refers to the biomedical big data analysis process of 

deriving high-quality information that is implicit, previously unknown, and potentially useful from 

massive biomedical data. 

Current research emphasis on large-scale biomedical text mining is mainly composed of two 

aspects, i.e., information extraction and data mining. Specifically, it includes biomedical named 

entity recognition (Bio-NER), relation extraction, text classification, and integration framework of 

the above work.  

Biomedical named entity recognition (Bio-NER) is the first and important and critical step in 

biomedical big data mining. It aims to help molecular biologists recognize and classify 

professional instances and terms, such as protein, DNA, RNA, cell_line, and cell_type. It is to 

locate and classify atomic elements with some special significance in biomedical text into 

predefined categories. The process of Bio-NER systems is structured as taking an unannotated 

block of text, and then producing an annotated block of text which highlights where the biomedical 

named entities are [26].  

However, because of lots of unique properties in biomedical area, such as unstable quantity, 

non-unified naming rules, complex form, the existence of ambiguity and so on, Bio-NER is not 

mature enough, especially it takes much time. Most current Bio-NER systems are based on 

machine learning which need multiple iterative calculations from corpus data. Therefore, it is 

computationally intensive and seriously increases recognition time, including model training and 

inference. For example, it takes almost 5 hours for the CRFs model training process using 

Genia4ER training corpus which is only about 14MB [27]. How do we confront tens of thousands 

of biomedical text data volume? How do we cope with unbearable wait of recognition for a long 

long time? It is natural to seek for distributed computing and parallel computing to solve the 

problem. 
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5.3 MapReduce for Conditional Random Fields 

Conditional random fields (CRFs) is an important milestone in the field of machine learning, 

put forward in 2001 by John Lafferty et al. [28]. CRFs, a kind of discriminant model and an 

undirected graph model at the same time, defines a single logarithmic linear distribution for a joint 

probability of entire label sequence based on a given particular observation sequence. The model is 

widely used in natural language processing (NLP), including named entity recognition (NER), 

part-of-speech tagging, and so on.  

Figure 6 shows the CRFs model which computes the conditional probability )|(


xyp  of an 

output sequence ),...,,
21

( yyy
n

y 


 under the condition of a given input sequence 
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21 xxx n

x 
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.  

 

Figure 6. Liner CRFs. 

 

Liner CRFs which is used in Bio-NER is as follows: 
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For the training process of the CRFs model, it is to seek for the parameter 

）（ 
K
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


 which is most in accordance with the training data )},{(
1





yx ii

T

N

i

. 

Presume every ),(


yx  is independently and identically distributed. The parameter is obtained 

generally in this way: 

              


T

xyPL )|(log)( .                                                          (5-3) 

When the log-likelihood function )(L  reaches the maximum value, the parameter is almost the 

best. However, to find the parameter to maximize the training data likelihood, there is no 

closed-form solution. Hence, we adopt parameter estimation, i.e., the L-BFGS algorithm [29], to 

find the optimum solution. 

To find the parameter ）（ 
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iterative computations with initial value 0
0
  at first. Researches show that the first step, that is 

to calculate Li  which is on behalf of the gradient vector in iteration i , calls for much time. 

Therefore, we focus on the optimized improvement for it. 

Every component in Li  is computed as follows: 
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It can be linked with every ordered pair ),(


yx  within 
T

which is mutually independent. So we 
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each of the input sequence in the training set T, and then put results of all the sequences together. 

As a result, it can be computed in parallel as shown in Fig.7. 
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Figure 7. The MapReduce plan for computing component. 

 

We split the calculation process in-house 
T

into several map tasks and summarize the 

results by a reduce task. And the difference between penalty term 




2

k  is designed to be the 

post-processing. 

In the actual situation, it is impossible to schedule one map task for one ordered pair ),(


yx , 

because the number of ordered pairs in large-scale of training samples is too much and hard to 

estimate. We must syncopate the training data T into several small parts, and then start the 

MapReduce plan as shown in the above discussion. 

For MapReduce Bio-NER application, the data skew leads to uneven load in the whole 

system. Any specific corpus has its own uneven distribution of the entity (as show in table below), 

resulting in the serious problem of data skew. And protean, artificial defined feature sets 

exacerbate the problem both in training and inference process. 

  

Table 1. The proportion of each type of entities in the corpus JNLPBA2004 

 Protein DNA RNA Cell_line  Cell_type 

Training Set 59.00% 18.58% 1.85% 7.47% 13.10% 

Test Set 58.50% 12.19% 1.36% 5.77% 22.18% 

 

Combined with schemes given in this chapter, it can be solved based on the modified Hadoop 

MapReduce. The implementation will further improve system performance on the MapReduce 

with time-space scheduling. 

javascript:void(0);
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6. Concluding Remarks 

As data are the basis of information systems, how to process data and extract information 

becomes one of the hottest topics in today's information society. This chapter introduces the 

MapReduce framework, an excellent distributed and parallel computing model. As its 

implementation, Hadoop plays a more and more important role in a lot of distributed application 

systems for massive data processing,  

For the increasing data and cluster scales, to avoid scheduling delay, scheduling skew, poor 

system utilization, and low degree of parallelism, this chapter proposes some improved methods 

which focus on the time and space scheduling of reduce tasks in MapReduce.  

Through analyzing the MapReduce scheduling mechanism, this chapter illustrates the 

reasons of system slot resource wasting which results in reduce tasks waiting around, and it 

proposes the development of a method detailing the start times of reduce tasks dynamically 

according to each job context, including the task completion time and the size of map output. 

There is no doubt that the use of this method will decrease the reduce completion time and system 

average response time in Hadoop platforms. 

 Current Hadoop schedulers often lack of data locality consideration. As a result, unnecessary 

data might get shuffled in the network causing performance degradation. This chapter addresses 

several optimizing algorithms to solve the problem of reduce placement. We make a Hadoop 

reduce task scheduler aware of partitions’ network locations and sizes in order to mitigate network 

traffic and improve the performance of Hadoop. 

Finally, a parallel biomedical data processing model using the MapReduce framework is 

presented as an application of the proposed methods. As USA proposed the human genome project 

(HGP), biomedical big data shows its unique position among the academics. A widely used CRFs 

model and an efficient Hadoop-based method, Bio-NER, have been introduced to explore the 

information and knowledge under the biomedical big data. 
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