
Future Generation Computer Systems ( ) –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

An intermediate data placement algorithm for load balancing in Spark
computing environment
Zhuo Tang a,∗, Xiangshen Zhang a, Kenli Li a, Keqin Li a,b
a College of Information Science and Engineering, Hunan University, Changsha 410082, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• A novel sampling method for massive data as the input of Spark framework.
• An algorithm for filling the settled number of buckets with roughly equal number of tuples.
• Experiments are given to verify the performance and effects of the proposed algorithm.

a r t i c l e i n f o

Article history:
Received 30 November 2015
Received in revised form
12 May 2016
Accepted 23 June 2016
Available online xxxx

Keywords:
Data sampling
Data skew
Load balancing
MapReduce
Spark

a b s t r a c t

Since MapReduce became an effective and popular programming framework for parallel data processing,
key skew in intermediate data has become one of the important system performance bottlenecks. For
solving the load imbalance of bucket containers in the shuffle process of the Spark computing framework,
this paper proposes a splitting and combination algorithm for skew intermediate data blocks (SCID),
which can improve the load balancing for various reduce tasks. Because the number of keys cannot be
counted out until the input data are processed by map tasks, this paper provides a sampling algorithm
based on reservoir sampling to detect the distribution of the keys in intermediate data. Contrasting with
the original mechanism for bucket data loading, SCID sorts the data clusters of key/value tuples from each
map task according to their sizes, and fills them into the relevant buckets orderly. A data cluster will
be split once it exceeds the residual volume of the current bucket. After filling this bucket, the remainder
clusterwill be entered into the next iteration. Through this processing, the total size of data in each bucket
is roughly scheduled equally. For each map task, each reduce task should fetch the intermediate results
from a specific bucket, the quantity in all buckets for a map task will balance the load of the reduce tasks.
We implement SCID in Spark 1.1.0 and evaluate its performance through three widely used benchmarks:
Sort, Text Search, and Word Count. Experimental results show that our algorithms can not only achieve
higher overall average balancing performance, but also reduce the execution time of a job with varying
degrees of data skew.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As a widely applied computing model for large-scale data
processing, MapReduce can be used to parallelize the computa-
tion by running multiple map and reduce tasks over distributed
data across multiple machines automatically and efficiently [1]. In
current popular implementations of MapReduce [2,3], compared
with Hadoop [4] and other distributed computing frameworks [5],

∗ Corresponding author.
E-mail address: ztang@hnu.edu.cn (Z. Tang).

Apache Spark has a more efficient implementation mechanism for
large-scale data processing [6].

As the process of MapReduce in the Spark framework treats
all the intermediate data as key/value tuples, a data cluster is
the subset of all tuples with the same key [7]. Because mapper
and reducer are the containers for map tasks and reduce tasks
respectively [8], one way of implementations in Apache Spark is
using hash algorithm to distribute the clusters to each reducer, and
all clusters which are processed by the same reducer constitute
a partition [9,10]. As the size of partitions depends on the
number of relevant key/value tuples, data skew will give rise
to the imbalance among different reducers because of the keys
dispatching based on the hashing algorithm. As the skew of

http://dx.doi.org/10.1016/j.future.2016.06.027
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.06.027
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:ztang@hnu.edu.cn
http://dx.doi.org/10.1016/j.future.2016.06.027


2 Z. Tang et al. / Future Generation Computer Systems ( ) –

Fig. 1. The shuffle process in the Spark.

Fig. 2. Input data of each reducer inWord Count benchmark.

intermediate key/value tuples is universally existent in all input
data [11,12], especially in the in-memory computing frameworks,
data skew has become one of themain performance bottlenecks in
the Spark distributed environment,whichwill cause the imbalance
of the node workloads in the shuffle phase.

As shown in Fig. 1, reduce tasks have to wait until an arbitrary
map task of a given job is finished.

In this framework, output are organized as data clusters which
are transmitted between mapper and reducer, and a bucket is
an array buffer for relevant reducer to collect the output of map
tasks. In almost all literatures, data cluster is abbreviated as cluster.
According to the number of reducers, each mapper will create the
same number of buckets. That is, the number of buckets is M × R,
whereM is the number ofmap tasks, and R is the number of reduce
tasks.

It is clear that this computing framework cannot effectively
deal with skewed data. For reduce tasks, partitioning skew will
cause shuffle skew, which means some reducers will receive
more data than others [13–15]. For example, Fig. 2 illustrates the
different amounts of input data for each reducer when running the
benchmark Word Count [16] using 10 GB of text data. For reduce
tasks, partitioning skew will cause shuffle skew, in which some
reduce tasks will receive more data than others. The results show
that some reduce tasks suffer frommany more inputs than others.
In this situation, the task queue will arise on those reducers with
heavy loads [17,18], and this will increase the completion time of
running jobs, as well as degrade the system performance.

To cure the above problems, this paper proposes a splitting and
combination algorithm for the skewed intermediate data (SCID)
to implement efficient load balance among buckets in the Spark
platform. As shown in Fig. 1, because each reducer always fetches
data from a fixed bucket for each mapper, it is obvious that if we
can keep the buckets for one mapper balance, the load balancing
among all reducers could be improved. Tomake each bucketwhich
collects the data from the same mapper assigned the equal size of
data under its rated capacity, oversize clusters will be split, and the
smaller ones will be combined to fill into the target buckets.

But the accurate policies of clusters adjustment are difficult
to be generated if the intermediate keys distribution in the input
data are unknown. In a real application, the intermediate outputs
can be monitored and counted only after a job begins running,
but it is meaningless to obtain the distribution of key/value tuples
after processing all input data. To address this problem, this paper
provides a dynamic range partitionmethod that conducts a prerun
sample of the input before the real job. By integrating sampling
into a small percentage of the map tasks, this paper prioritizes the
execution of sampling tasks over the normal Spark jobs to achieve
the distribution statistics.

Finally, for the range partitioning modules in the benchmarks
Word Count [16], Sorting [19], and Text Search [20] are sensitive to
key skew, they are all appropriate to evaluate the performance of
this proposed algorithm. The main contributions of this paper are
summarized below.

• We apply the reservoir algorithm to implement the sampling
for input data, and propose an evaluation model to select the



Z. Tang et al. / Future Generation Computer Systems ( ) – 3

appropriate sample rate. Thismodel can comprehensively consider
the importance of cost, effect, and variance in sampling.

• We propose an algorithm to split and combine the clusters
of key/value tuples. Through filling the settled number of buckets
with roughly equal sized cluster combinations, it can receive better
balance effect among the workloads of reduce tasks.

• Several groups of experiments are given to verify that the
proposed algorithm can increase the performance of Apache Spark
to deal with various degree of data skew.

The rest of the paper is organized as follows. Section 2
surveys related works on data skew in distributed processing
environment. Section 3 introduces the overall system framework.
Section 4 proposes the data sampling algorithm of the MapReduce
framework. Section 5 proposes the algorithms of data cluster
splitting and combination. The performance evaluation is given in
Section 6. Section 7 concludes the paper.

2. Related work

As many MapReduce implementations have been used to
process massive data, data skew is proved to be one of the most
threats to the system performance. Afrati et al. implemented a
multiway join as a single MapReduce process than as a cascade of
2-way joins [21]. They gave an algorithm to optimize themultiway
join by minimizing the amount of replication of tuples from the
input data. This algorithm can detect and fix the problems where
an attribute is mistakenly included in the map keys, but still has
the performance deficiencies when facing the data skew.

To optimize the performance in Hadoop framework, many
algorithms and models about reduce tasks scheduling have been
proposed in recent years. Hassan et al. proposed a MRFA-Join
algorithm [22], which is a new frequency adaptive algorithm
based on MapReduce programming model and a randomized key
redistribution approach for join processing of large-scale data sets.
To fix the problem of buffering all records from both inner and
outer relations, Blanas et al. proposed a semi-join algorithm for log
processing, and implemented an improved version of MapReduce
sort-merge joins [23]. But these algorithms above still suffer from
the baneful influence of data skew.

To solve data skew problems, several studies proposed some
improved partitioning schemes based on the frequency of keys [24,
25]. Ibrahim et al. demonstrated that the presence of partitioning
skew causes a huge amount of data transfer during the shuffle
phase, and this will lead to significant unfairness on the
reduce input among distributed data nodes [26]. To address this
imbalance, they proposed a key partitioning algorithm named
LEEN with awareness of locality and fairness. Gufler et al. defined
a cost model that takes into account non-linear reducer tasks [27].
Based on themodel, they proposed two load balancing approaches,
fine partitioning and dynamic fragmentation that can deal with
both skewed data and complex reduce tasks.

Yujie Xu et al. designed a MapReduce job to detect the frequen-
cies of data inner keys, and estimated the overall distribution to
make a partition scheme in advance [13]. Compared with these
previous works, Gufler and other studies just directly fragmented
and combined the partitions [28]. As a more fine-grained algo-
rithm, our method can make the resized partitions be sent to the
respective buckets by splitting and combination, based on a more
accurate estimation for the intermediate data skew.

3. System overview

Fig. 3 shows the default distribution mechanism for data
clusters in Spark 1.1.0 based on the hashing function. In
this architecture, chucks are the data fragments, which is an
organizational units of files with a default fixed size in HDFS. For

Fig. 3. Data distribution of shuffle in Spark 1.1.0.

map tasks, the input data are loaded into files in a distributed file
system (HDFS) where each file consists of smaller chunks, which
are called input splits. Each split is assigned to a map task. Map
tasks process splits, and produce intermediate outputs which are
usually partitioned and hashed to the relevant buckets. In this
paper, we use I ⊆ K × V to represent the intermediate result
from m map tasks, where K and V are respectively the sets of
keys and values. According to the description in Section 1, a cluster
is formalized as a subset containing all key/value tuples with a
specific key k:

Ck = {(k, v) ∈ I}, k ∈ K , v ∈ V . (1)

In Fig. 3, the partition for intermediate tuples is determined by
applying a partitioning function Π in Eq. (2):

Π : K −→ {1, . . . , p}. (2)

The intermediate results are split into p partitions according to the
keys of the tuples. Thisway, all tuples belonging to the same cluster
are placed into the same partition. A partition is thus a ‘‘input
container’’ for a bucket which receives one or more clusters, and p
can be as the number of buckets here. We can formalize a partition
j as Eq. (3):

P(j) =


k∈K :Π(k)=j

C(k). (3)

Fig. 4 represents an improved workflow of a Spark job, and
the most critical component is the load balancing module. Before
running Spark jobs, load balancer will generate a balanced
partitioning strategy, which specifies how to split and combine
the data clusters. This strategy can be used in the combination
phase of shuffling process for a specific Spark job. In our proposed
architecture, the load balancingmodule contains the following two
phases.

Data sampling. For obtaining the treatment strategies for
clusters in advance, it is necessary to ascertain the distribution
of intermediate keys. Before a MapReduce computation begins
with a map phase, where all the input splits are processed in
parallel, a random sample of the required size will be produced.
Data sampling is an independent and separate Spark job which
running before the regular job in nature. Through the statistical
numbers of keys in the sample data, we can forecast the rough
sizes of all clusters which will be produced after map stages for
the whole input. And this estimate can be as the direct input to
generate the splitting strategies for the data clusters.



4 Z. Tang et al. / Future Generation Computer Systems ( ) –

Fig. 4. Architecture with load balancing.

Splitting and combination. In this paper, for filling the target
buckets equably as far as possible, some overlarge clusters should
be split into several segments to fit the rated capacities of the
buckets. This paper proposes a fine-grained splitting algorithm
to eliminate the workloads of some reduce tasks caused by
the cumbersome clusters. In this paper, splitting is just for
combination: for a specific cluster, how to split is depend on the
rated capacities of the target buckets.

The traditional assignment mechanism in the Spark framework
lacks the perceptions to the inner data distribution. Based on the
sampling, this paper proposes an improved computing framework
to calculate the approximate proportions for different keys, which
can be used as the basis of load-balanced partition strategies.

4. Data sampling in the Spark framework

4.1. Data skew model

In this model, for quantifying the sizes of the clusters received
by a bucket with considering the effect of data skew, some
initial and intermediate objects with their relationships can be
formalized as follows.

As cluster is the collection of key/value tuples with a same key,
the overall clusters can be formalized as a set C in Eq. (4):

C = {C1, C2, . . . , Ci, . . . , Cm}, 1 ≤ i ≤ m (4)

where m is the number of clusters. Ci is a structure, which can be
formalized as Ci = {order, SC}, where Ci.order records the initial
order number of this cluster, and SC can be expressed as a separate
sequence in Eq. (6).

And current buckets in the system can be formalized as a set B
in Eq. (5):

B = {B1, B2, . . . , Bk, . . . , Bn}, 1 ≤ k ≤ n (5)

where n is the number of the buckets.
To record the number of key/value tuples in each cluster Ci, this

model proposes a set SC to simplify this problem, which is shown
in Eq. (6):

SC = {SC1, SC2, . . . , SCi, . . . , SCm}, 1 ≤ i ≤ m (6)

where SCi is an integer which denotes the data size of a specific
cluster.

More often than not, for the text data, the number of interme-
diate keys from original input data often follows the Zipf distri-
butions [29,30]. In this model, we can use a varying parameter σ
(from 0.1 to 1.2) to control the degree of skew, where larger value

means heavier skew. In this paper, a matrix P is used to formalize
this distribution. For a cluster may be split into different segments,
pk,i ∈ P denotes the number of key/value tuples in a segment from
cluster Ci which is dispatched to the bucket Bk. Hence, SCi can be
seen as the total size of segments in all buckets from cluster Ci as
Eq. (7):

SCi =

n
k=1

pk,i. (7)

In this model, the number of key/value tuples that the bucket k
contains is denoted as BC(k). For the key/value tuples distribution
pk,i under a skew degree σ can be marked as pσ

k,i, where σ is not a
calculation parameter, and just reflects the skew degree of current
input data. And the value of BC(k) with skew degrees could be
defined as Eq. (8):

BC(k, σ ) =

m
i=1

pσ
k,i. (8)

On this basis, we can calculate the average number of
⟨key, value⟩ tuples of all buckets with current skew degree σ as
Eq. (9):

meanσ =

n
k=1

BC(k, σ )

n
=

n
k=1

m
i=1

pσ
k,i

n

(9)

where the parameter n is the number of buckets.
Naturally, the intermediate data processed by a bucket can

be considered as skew using standard deviation. The clusters
processed by a bucket are considered skew when the following
condition in Eq. (10) is satisfied:

|meanσ − BC(k, σ )| > std (10)

where σ denotes the current degree of data skew, and std is
the standard deviation of all the buckets in ⟨key, value⟩ numbers,
which can be used to measure the overall load balancing level of
buckets. We can calculate the left part of Eq. (10) in the absolute
value signs as Eq. (11):

meanσ − BC(k, σ ) =

n
k′=1

m
i=1

pσ
k′,i

n
−

m
j=1

pσ
k,j

=

n
k′=1

m
i=1

pσ
k′,i − n

m
j=1

pσ
k,j

n
. (11)



Z. Tang et al. / Future Generation Computer Systems ( ) – 5

Hence, the value of this standard deviation for all clusters in the
buckets can be calculated by Eq. (12):

std(P, σ ) =


n

k=1

 n
v=1

m
i=1

pσ
v,i

n −

m
j=1

pσ
k,j

2

n
.

(12)

In this case, when a bucket is load balanced, |meanσ − BC(k,
σ )| < std is always satisfied. Because standard deviation is usually
applied to reflect the range of fluctuations for a sequence, we can
use the indicator FoS (factor of skew) tomeasure the load balancing
degrees of all the buckets as Eq. (13):

FoS = std(P, σ )/meanσ . (13)

Obviously, the smaller the value of FoS, the better the load
balancing, and lower data the skew that will be obtained.

4.2. Reservoir sampling algorithm

Ascertaining the distribution of inner keys is the inevitable
course to make the balancing of reducers. In a real application, the
intermediate outputs can be monitored and counted only after a
job begins running, but it is meaningless to obtain the key value
distribution after processing all input data. Hence, calculating the
optimal solution to the above problem is unrealistic, and the cost
of pre-scanning the whole data will be hard to accept when the
amount of data is very huge [31].

In this paper, for higher accuracy, we propose a reservoir
samplingmethod to estimate the inner structure of large input data
in the Spark framework. As a typical random sampling method,
with the random data replacement policy in the sampling zone,
this algorithm can achieve a much better approximation to the
distribution of intermediate data. For sampling is with a small
percentage of the input data, this paper prioritizes the execution
of sampling job over the normal map tasks in order to achieve the
distribution statistics.

Algorithm 1 Reservoir sampling
Require:

The reservoir size: r .
Ensure:

The sample data block set BS.
1: set BS as a set of the sample data block, BS=∅;
2: //traverse blocks arriving from the input data
3: k = 0;
4: for each block b in the input data do
5: k=k+1;
6: if k ≤ r then
7: //add the block b to the reservoir;
8: BS = BS


b;

9: else
10: select a block b′ in the input data;
11: replace a randomly selected block in the reservoir with the block b′;
12: end if
13: end for
14: return BS.

As shown in Algorithm1, a uniform random samplewith a fixed
size k will be selected first without replacement from the input
data, and the goal of this step is to form a reservoir. From (k+ 1)th
chunk, the ith chunk will be selected with the probability: 1/i
(i = k+1, k+2, . . . ,N), and the chunkwill appear in the reservoir
with probability: k/i. In this process, an element in the original
reservoir will be replaced randomly, until all of the nk chunks in
reservoir are completely substituted. After one traversal, we can
get entirely random k chunks from the original input data. It can be
proved that each data will be taken out with equal probability k/n
when the unknowable mount of all input data equals to n, n ≥ k.

When n = k, the probability of each sample being taken out is
equal according to the previous k samples put into reservoir, which
is to say k/k = 1. Set the current sample number to be n, so the
probability of a number being taken out from the reservoir array is
k/n. Then the problem becomes to prove that this theorem is also
found in the situation of n+ 1: the probability of putting (n+ 1)th
element into the reservoir is k/(n + 1). For a random chunk in the
previous n elements we have (k + 1) ≤ m ≤ n. First, the model
can be defined simply as follows:

(1) The selection probability ofmth chunk: k/m;
(2) The selection probability of (m + 1)th chunk: k/(m + 1);
(3) The probability that the mth chunk is not replaced by (m +

1)th: 1 − 1/k;
(4) The probability that the (m + 1)th chunk is not selected:

1 − k/(m + 1). Hence, the equation to calculate the probability
thatmth chunk appears in the reservoir is as follows:

P(m) =
k
m

×


k

m + 1


×


1 −

1
k


+


1 −

k
m + 1


× · · ·

×


k

n + 1


×


1 −

1
k


+


1 −

k
n + 1


=

k
m

×


m

m + 1
×

m + 1
m + 2

× · · · ×
n

n + 1


=

k
m

×
m

n + 1

=
k

n + 1
. (14)

Eq. (14) clearly proves that the probability of each sample being
taken is equal in the situation of n + 1. Conventional uniform
sampling will inevitably result in a certain number of multi-
duplicated samples. Because all random number generators in the
Java and Scala languages are simply pseudorandom functions, for
large scale data, especially with increasing sampling space, they
cannot guarantee that all sample data are completely randomized.
From the description in Algorithm 1, the main process of reservoir
sampling is to save k preceding elements first (k is the sample
number and also the size of the reservoir) and then randomly
replace original selected elements in the reservoir using a new
element that is selected from outside the reservoir in a different
probability. The final k sample datawill be generated after finishing
the traversal for current input data. Comparedwith pseudorandom
functions, reservoir sampling can ensure randomness, especially
when taking the data from some sequence flows, and it is ideal
for reading the input data from large texts line by line in the
Spark framework. Comparedwith conventional uniform sampling,
reservoir sampling can ensure that the key distributions are closer
to the whole situation in the original data.

4.3. Prediction of cluster sizes

Algorithm 2 provides the process to evaluate the data size for
each cluster.

For a specific Spark job, this algorithm first starts this job with
the sample data, and records the size of clusters from a map local
node based on a monitor. From Algorithm 1, based on a basic
assumption that the distribution probability of keys in sample data
mostly keep coherent with all input data, we can roughly estimate
the data size of each cluster from every map node.

Algorithm 2 illustrates the whole process for cluster size
estimation. First, for a specific Spark job, the input data set BS
is the sample of data blocks as the output of Algorithm 1, and
mrjob represents the Spark job for sampling. For the sampled data,
Algorithm 2 counts the number of clusters based on a monitor
deployed on map nodes, and obtains a set SC = {SCi}, where SCi



6 Z. Tang et al. / Future Generation Computer Systems ( ) –

Fig. 5. The steps of clusters distribution.

Algorithm 2 Cluster Size Prediction
Require:

The sample of data blocks BS;
A MapReduce job: mrjob .

Ensure:
SC: The number set of clusters for overall input data.

1: initialize each element in SC: SCi = 0;
2: run the Spark job mrjob using BS as the input data;
3: get a tuples set MOUT from the map out of Spark job mrjob;

//initialize the number for each tuples with a same key
4: initialize the counter i = 0, j = 0;
5: sort the tuples < k, v > inMOUT on keys;
6: count the number of set MOUT : N;

//count the number for tuples with a same key
7: while j ≠ N do
8: get the key Kr of the r − th tuple;
9: m = 1;
10: for r = j; r < N; do
11: if Kr+1 == Kr and r! = N − 1 then
12: m = m + 1;
13: else
14: SCi = m;
15: i + +;
16: j = r;
17: break;
18: end if
19: r + +;
20: end for
21: SN = the number of tuples in BS;
22: WN = the number of tuples in all input data;
23: SCi = (SCi × WN) / SN;
24: end while
25: produce the set of clusters C from MOUT ;
26: return SC .

denotes the number of ⟨ki, value⟩ tuples for the sampled data.
Because the number of key/value tuples for each key in sample set
is usually in proportion to key number of the original data roughly,
we can estimate the cluster size by scaling up the approximate
number of each cluster from sample data.

5. Cluster splitting and combining

5.1. Process description

In this section, a bucket packing algorithm by splitting the clus-
ters is proposed to achieve the data balancing. In this algorithm,

we record the rated capacity of each bucket as the average Wavg ,
which can be calculated as Eq. (15):

Wavg =

m
i=1

SCi

n

(15)

where m is the number of clusters, and n is the number of
buckets. With this upper limit for containing clusters, the current
residual volume array of buckets can be denoted as: {RB1, RB2,
. . . , RBj, . . . , RBn}.

As shown in Fig. 5, at the beginning of Algorithm 3, the residual
volumes of buckets at the first time are all initialed as Wavg . For
the first iterator, we sort the set {Ci} in ascending order according
to the cluster sizes. From the maximal cluster Cm, if SCm ≥ RB1,
then a new segment will split out from Cm with size Wavg to be
dispatched into B1. And only the remaining part of Cm with size
of SCm − RB1 and all remaining clusters need to enter into the
next iterator. In this case, we just use one step to fill a bucket. But
in most cases, it usually cannot fill any bucket with the current
maximal cluster, that is: SCm < RB1. Therefore, we need to put Cm
into the first bucket. For the remaining space, the current second
maximal Cm−1 will be checked to seewhether it can fill the space. If
SCm+SCm−1 ≥ RB1, then cluster Cm−1 will be split, else cluster Cm−1
will be dispatched to this bucket, and the process will traverse all
the residual clusters forwarduntil a clusterCi satisfy this condition:

i
j=m

Cj ≥ RBk, (j = m,m − 1, . . . , i) (16)

where k is the sequence number of current bucket. In this
algorithm, because it will fill up a bucket in each iteration step,
the number k can also denote the current iteration times. And in
each iterator, the set of clusters size SC will be resorted. Through
this processing, the total sizes of data from a specific mapper for all
buckets are scheduled roughly equal.

5.2. Algorithms

Algorithm 3 illustrates the overall process, for shuffle process
will start once a definite proportion of map tasks output the



Z. Tang et al. / Future Generation Computer Systems ( ) – 7

intermediate data (in spark 1.1.0, the default ratio is 20%), all
elements in clusters {C1, C2, . . . , Ci, . . . , Cm} cannot be coexist at
the same time. But this situationwill not affect the feasibility of our
algorithm, because we can estimate the overall cluster sizes from
the sampling process, after running the sampling algorithm before
running the actual job, Algorithm 3 is indeed a process simulator:
it just need to output a data placement policy by simulating the
processing of cluster splitting and combination instead of moving
the practical data.Moreover, a simple bubble sorting ‘‘ClusterSORT ’’
are illustrated in Algorithm 4, which is as a subprocedure of
Algorithm 3.

Algorithm 3 Splitting and Combining of Clusters
Require:

C = {C1, C2, . . . , Cj, . . . , Cm};//The set of tuples clusters
SC = {SC1, SC2, . . . , SCi, . . . , SCm};//The number set of each cluster in set C
B = {B1, B2, . . . , Bk, . . . , Bn}; //The current buckets list
RB = {RB1, RB2, . . . , RBk, . . . , RBn}.//The current residual volume array of bucket

Ensure:
//A pre set data placement policy
Matrix P: P = {pi,j}, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

1: Initial Matrix P: pi,j = 0;
2: Wavg = 0;
3: for i = 1; i ≤ m; i + + do
4: Wavg = Wavg + SCi;
5: end for
6: Wavg = Wavg/n;
7: for k = 1; k ≤ n; k + + do
8: RBk = Wavg ;
9: end for//for each bucket
10: for k = 1; k ≤ n; k + + do
11: //sort current remaining cluster by SC in descending order, using Algorithm 4
12: C = ClusterSORT (C)

//for each clusters, from the max one
13: for i = 1; i ≤ m; i + + do
14: if SCi ≤ RBk then
15: RBk = RBk − SCi

//put Ci into bucket Bk;
//j is the initial order number of Ci before sorted.

16: j = Ci.order;
17: pk,j = SCi;
18: else
19: break; //Find a cluster Ci large than the remaining space of current bucket

Bk
20: end if
21: end for
22: SCi = SCi − RBk; // Split cluster Ci , fill bucket Bk
23: end for
24: return P .

Algorithm 3 is actually an application of First Fit Decreasing
(FFD) solution for bin-packing problem. For the sizes of bins and
items are known in advance, as a greedy algorithm, FFD is proven
an effective method which can get the locally optimal solution
quickly. And in our case, because the items (data clusters) can be
split and recombined, FFD can obtain an almost perfect result to fit
the buckets with their preset capacities. And because the current
remainder clusters need to be reordered in this algorithm, but the
matrix P is used to record the distribution polices of the original
data clusters, as lines 15–17 in Algorithm 3, the structure Ci.order
is used to record the original order number of the residual cluster
in this process.

Eq. (17) shows the matrix P output from Algorithm 3 as a pre-
set of data placement polices:

P =


p1,1 p1,2 p1,3 · · · p1,j · · · p1,m
p2,1 p2,2 p2,3 · · · p2,j · · · p2,m

· · · · · · · · ·

pi,1 pi,2 pi,3 · · · pi,j · · · pi,m
· · · · · · · · ·

pn,1 pn,2 pn,3 · · · pn,j · · · pn,m

 . (17)

Algorithm 4 ClusterSORT
Require:

//The set of tuples clusters
C = {C1, C2, . . . , Cj, . . . , Cm};
//The number set of each cluster in set C
SC = {SC1, SC2, . . . , SCi, . . . , SCm}.

Ensure:
The set of sorted clusters: C ′ .

1: for j = 1; j ≤ m; j + + do
2: for i = 1; i < m − j; i + + do
3: if SCi < SCi+1 then
4: temp = SCi;
5: SCi = SCi+1;
6: SCi+1 = temp;
7: tempC = Ci;
8: Ci = Ci+1;
9: Ci+1 = tempC;
10: end if
11: end for
12: end for
13: return C ′

= C .

As the definition in Section 4.1, data placement matrix P =

{pi,j} denotes the number of key/value tuples from the jth cluster
which should be dispatched to the ith bucket. This matrix can be
expanded as a set of tuples sets, which can directly denotes the
number of processed key/value tuples from every cluster for each
bucket as Eq. (18):

B1, {⟨k1, p1,1⟩, ⟨k2, p1,2⟩ · · · ⟨kj, p1,j⟩ · · · ⟨km, p1,m⟩}

B2, {⟨k1, p2,1⟩, ⟨k2, p2,2⟩ · · · ⟨kj, p2,j⟩ · · · ⟨km, p2,m⟩}

B3, {⟨k1, p3,1⟩, ⟨k2, p3,2⟩ · · · ⟨kj, p3,j⟩ · · · ⟨km, p3,m⟩}

· · ·

Bi, {⟨k1, pi,1⟩, ⟨k2, pi,2⟩ · · · ⟨kj, pi,j⟩ · · · ⟨km, pi,m⟩}

· · ·

Bn, {⟨k1, pn,1⟩, ⟨k2, pn,2⟩ · · · ⟨kj, pn,j⟩ · · · ⟨km, pn,m⟩}.

(18)

Algorithm 5 presents how to dispatch the intermediate data
frommapout to each bucket,where thematrix P is used as an input
parameter. We use a matrix CB = {CBi,j} to formalize the current
loads of all buckets, in which CBi,j denotes the current number of
key/value tuples from jth cluster which has been dispatched to
ith bucket. At the beginning of algorithm, this matrix should be
initialed as CBi,j = 0 for all clusters and buckets.

Algorithm 5 can implement the distribution of the intermediate
data under the results of the above Algorithms 1–4. Once a map
outputs a tuple ⟨Ki, v⟩, the target of this algorithm is to determine
which bucket should be chosen to accept this key. As the input of
Algorithm 5, matrix P can be acquired from Algorithm 3, whose
input contains a parameter C , which denotes the set of sizes for
each cluster among all input data, but it is an estimated value from
Algorithm 2 based on the sampling of the overall input data. From
the above analysis, we can reach the conclusion that there maybe
some keys are not contained in the clusters set C . That is to say, we
should judge whether this tuple ⟨Ki, v⟩ can be dispatched under
matrix P .

For the clusters set C is one of output from Algorithm 3 which
being sorted in descending order, Algorithm 5 first travel C to get
the location of key Ki. If there is not any key/value tuple in clusters
set C can match this key Ki, this tuple should be dispatched under
the default hashing function. Otherwise, we can dispatch this key
under the current matrix P , which denotes the maximum number
of each key for every bucket. The actual implementation is to travel
the relevant column vector −→pj in matrix P . The ordinal number of
the column is up to the location of the key Ki in clusters set C . For
vector −→pj , every element denotes the allowed maximal quantities
of the tuples with this key Ki in each bucket.



8 Z. Tang et al. / Future Generation Computer Systems ( ) –

Table 1
The software and hardware configurations in the Hadoop cluster.

The node type Master Slave

Software environment ubuntu 12.04, JDK 1.7
Hadoop 2.6.0, Spark 1.1.0

ubuntu 12.04, JDK 1.7
Hadoop 2.6.0, Spark 1.1.0

CPU 4 cores, 2.7 GHz 4 cores, 2.7 GHz
Memory 8G 8G
Quantity 1 15

Algorithm 5 Cluster Dispatching
Require:

A MapReduce job: MRjob;
The number of clusters: m;
The number of buckets: n;
//The set of tuples clusters
C = {C1, C2, . . . , Cj, . . . , Cm};
Matrix P: P = {pi,j}, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Ensure:
Dispatch a tuple ⟨key, value⟩ from output of map tasks to appropriate buckets.
//initialize all cluster number in all buckets

1: CBi,j = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m;
2: run the Spark job MRjob;
3: start receive the tuples set T = ⟨k, v⟩ from the map out of Spark job mrj;
4: get the key ki of the i − th tuple ⟨ki, v⟩;

//get the order no j of the key ki in clusters C
5: for j = 1; j ≤ m; j + + do
6: if ki == the key of Cj then
7: break;
8: end if
9: end for
10: j = Cj.order;

//travel each row of the matrix P
11: if (j ≠ m) or (j == m and ki == the key of Cm) then
12: for i = 1; i ≤ n; i + + do
13: if CBi,j ≤ pi,j then
14: dispatch the tuple ⟨ki, v⟩ to bucket Bi;
15: CBi,j + +;
16: end if
17: end for
18: else
19: dispatch the tuple ⟨ki, v⟩ under the default hashing function;
20: end if
21: return Success.

This algorithm travels each element of −→pj to judge whether
current CBi,j is less than the limit pi,j. The actual meaning is as
follows: for key Ki, this solution will travel all buckets in this
system. If current bucket Bi is not full for this key, then dispatch
the tuple ⟨ki, v⟩ to this bucket. Because the number of various keys
in matrix P (which also means the column number in P) is usually
less than the actual number of keys for the incomplete sampling,
from Eq. (15), it is easy to know that the up limit numbers of each
key for every bucket should be larger than the actual distributed
key numbers. Obviously, the incomplete sampling is one of the
main reasons of the non-completely balance among the bucket
workloads.

6. Evaluation

6.1. Experiment setting

SCID has been evaluated on a practical test cluster, which
includes 15 slave nodes and 1 master node connected by a Gigabit
Ethernet switch. The experimental environment is based on the
Spark 1.1.0, and the hardware and software configurations are
shown in Table 1. All experiments use the default configurations
in Spark for HDFS.

In the following experiments, to verify the advantages of SCID,
we evaluate this model for FoS and the execution time using
these common benchmarks: Sort, Text Search, and Word Count. To
estimate the defects and advantages of this proposed algorithm
SCID objectively, the following compared algorithms are chosen

to be implemented with the above benchmarks in the same
experiment environment.

Range: range partition. This is a widely used algorithm of
partition distribution. In thismethod, the intermediate ⟨key, value⟩
tuples are sorted by key first, and then the tuples are assigned
to reduce tasks according this key range sequentially. Range can
improve the data balance among reduce tasks to a certain degree.
But its poor locality in the reduce phase and the redundant inner
communication finally results in the longer execution time [32].

LIBRA: lightweight implementation of balanced range assign-
ment. LIBRA is a lightweight strategy to solve the data skew
problem for reduce-side applications in MapReduce. It uses an in-
novative sampling method which can achieve a highly accurate
approximation to the distribution of the intermediate data by sam-
pling only a small fraction of the intermediate data during the nor-
mal map processing [14].

PCWC: partition combination & Word Count. The algorithm is
in order to obtain a better load balancing level when the degree
of data skew is serious. The basic idea is to split the large clusters
into equal number of pieces according to the quantity of reduce
tasks. With large data skew, there are a great differences among
the cluster sizes, and PCWC can hardly distribute the ⟨key, value⟩
tuples to reduce nodes evenly [13].

DEFH: default hashing algorithm. It is the default mechanism
in the Spark computation environment which can obtain a good
performance only when keys equally appear with an uniformly
distribution.

The performance of different reduce placement algorithms are
compared through two key indicators with the goal of measuring
the impact of intermediate data replacement. (1) Execution time.
For themain effect of SCID is to balance theworkload of the reduce
tasks, it can decrease the length of the longest tasks waiting queue
effectively. For a specific benchmark, this performance index can
reflect the advantages of the proposed algorithm. As similar with
Hadoop, in the Spark 1.1.0 framework, the start time and the
finish time of map or reduce processing can also be measured
directly. (2) Load balancing degree. We use the model FoS to
quantize the load balancing among the all buckets in the Spark
computation framework directly. In these experiments, we design
and implement a monitor in Spark 1.1.0 to measure and record the
current data size for the all buckets, and these observed values can
be used as the input parameters of FoS.

6.2. Performance evaluation

6.2.1. Sampling experiments
In this section,we first propose an evaluation formula as Eq. (19)

to select the appropriate sample rate, which can comprehensively
consider the importance of cost, effect, and variance in sampling.

i = argMin[fi(∆i, Ti, Φi) = α∆i + βTi + γΦi] (19)

where function fi(∆i, Ti, Φi) is a comprehensive index considering
both cost and effect, in which ∆i reflects the difference among the
sequences of FoS values between the currently adopted percentage



Z. Tang et al. / Future Generation Computer Systems ( ) – 9

Fig. 6. The comparison experiment in various sampling rate.

Table 2
FoS values of each sampling.

i Sample rate (j) 1 2 3 4 5 6 7 8 9 10

1 20% 110 83 125 65 120 136 130 95 130 88
2 40% 115 92 102 128 127 98 97 113 115 98
3 60% 96 117 111 111 90 114 106 101 117 125
4 80% 120 124 127 118 113 108 118 125 98 120

Table 3
Execution time of each sampling.

i Sample rate (j) 1 2 3 4 5 6 7 8 9 10

1 20% 121.5 132.5 115 134.5 117.5 121.5 140 112.5 137 125.5
2 40% 229.5 241 233.5 225 219 223 220 235.5 219 226
3 60% 359.5 330 352 353 363.5 330.5 330 320 340 366.5
4 80% 365 380 370.5 370 370 389.5 376.5 358 390 371

and 100% (the whole input data set), which can be calculated by
Eq. (20):

∆i =


N
j=1

di,j −

N
r=1

d4,r

N


2

(20)

where N denotes the experimental repetition times, and di,j rep-
resents the FoS value obtained in the jth sampling experiment
under the ith sampling rate. 1 ≤ i ≤ SN is the order number of
different sampling percentages: {20%, 40%, 60%, 80%}, and SN de-
notes the space size of different sampling rates. For this experi-
ment, SN = 5, and d4,j denotes the values with a 80% sampling
rate. As an average sampling execution time, Ti can be calculated
simply by Eq. (21):

Ti =

N
j=1

ti,j

N

(21)

where ti,j represents the execution time of the jth sampling
experiment under the ith sampling rate, 1 ≤ i ≤ SN and1 ≤ j ≤ N .

To full consider the influence of data volatilities, Eq. (22)
provides the process to calculate the parameter Φi based on the
standard deviation formula:

Φi =

 1
N

N
j=1


di,j −

1
N

N
j=1

di,j

2

. (22)

Fig. 6 shows the FoS and execution time obtained in times
sampling experiments. The original records about FoS values and
execution time in Fig. 6 are as shown in Tables 2 and 3 respectively.

Table 4
Comprehensive evaluation for cost and effect with different benchmarks.

i Rate ∆i Ti Φi fi

1 20% 77.61 125.75 22.87 226.23
2 40% 40.36 227.15 12.22 279.73
3 60% 41.33 344.5 10.10 395.93
4 80% 26.28 374.05 8.31 408.64

Table 4 provides the final values of∆i, Ti, andΦi for all benchmarks
with various sampling rates. Each group of sampling experiments
is repeated ten times, which means that the parameter N in Eqs.
(17)–(19) should be set to 10 in these experiments. Finally, for the
weight coefficients, we can simply set α = β = γ = 1. That is, we
think that the cost, effect, and data volatility are equally important.
According to Eq. (19), it is easy to learn that sampling 20% of the
map tasks is an appropriate choice for the input data.

6.2.2. Sort benchmark testing
Fig. 7 shows that the reduce execution time of the above five

algorithms all increase with the data skew degree varied from 0.1
to 1.1 under the sort benchmark. Fig. 7(a) represents the variation
of load balancing when the degrees of data skew ranges from 0.1
to 1.1. It is obvious that the value of FoS increases rapidly when
the degree of skew exceeds 0.65 for all experimental algorithms.
Through the clusters partition and placement, SCID can make the
sizes of processed data more even in reduce tasks.

Fig. 7(b) shows the effects to the system performance for the
imbalance of data size among different reducers. The starting
points of the reduce tasks are identified as the time once a definite
proportion ofmap tasks output the intermediate data (in our Spark
platform, the default ratio is 20%). It is easy to see that with the
lower skewdegree, PCWC, DEFH, and LIBRA are slightly better than
SCID. This is because although the processing of generating the



10 Z. Tang et al. / Future Generation Computer Systems ( ) –

(a) Load balancing. (b) Reduce execution time.

Fig. 7. Performance vs. data skew degrees for Sort.

(a) σ = 0.1. (b) σ = 1.1.

Fig. 8. Reduce execution time vs. data size for Sort.

distribution strategy matrix P which are described in Algorithms
1–4 are completed in a previous sampling job, compared with
the normal reduce tasks which running on the Spark framework,
there are still a degree of additional computing for SCID to get
the order number of each key in strategy matrix P to determine
how to dispatch the ⟨key, value⟩ pairs, which is just the process
of algorithm 5. Compared with other algorithms, the method
proposed in Algorithm 5 which determines the distribution of the
intermediate data is actually tuple by tuple. Although this way can
bring more fine-grained control in intermediate data distribution,
the time cost is significant.

But when skew degree is larger than 0.7, the performance can
be improved greatly by the optimized placement policies for the
intermediate data. By balancing theworkloads for the reduce tasks,
the influences of the extra operations can be eliminated to a much
greater extent. It is obvious that the execution time of reduce tasks
under SCID increases much slower than other algorithms. Fig. 8(a)
reflects the same phenomenon. And for these reasons, the similar
situations happen in the experiments when using the benchmark
Word Count.

Fig. 8 represents the variation of reduce execution time when
the data size ranges from 4 GB to 12 GB under two different
skew degrees (σ = 0.1 and σ = 1.1). When the data set has
a lower skew degree (see Fig. 8(a)), PCWC has the highest time-
efficient, and LIBRA and SCID perform worse than DEFH because
the extra overheads caused by cluster splitting and combination.

We have to admit that because the performance improvements
are not apparent by balancing the workload of the inner tasks,
the negative effect caused by the extra cluster adjustments to the
overall performance is significant.

However, Fig. 8(b) highlights the effect of the optimizations
fromSCIDwithheavydata skew. The reduce execution timeof SCID
has always been theminimumwith the skew degree σ = 1.1. And
as the data size increases, due to the performance improvement
by data balancing mechanism, the growth rate of execution time
under SCID is smaller than others. This experimental results
demonstrate that SCID can achieve better performance with heavy
skew degree. The larger size of data, themore improvement can be
attained.

Fig. 9(a) shows the experimental results with light data skew
(σ = 0.1), and Fig. 9(b) is with the heavy data skew (σ = 1.1)
relatively. It is obvious that the buckets balancewill becomeworse
with more skew input data. When the data size ranges from 4 GB
to 12 GB with a lower skew degree, it is can be observed that
although the FoS values of all algorithms increase slowly, but this
indicator of SCID is always better than other compared algorithms.
As the data set scale increases rapidly, the performance of SCID
is more prominent: the FoS values with SCID is 40% smaller than
DEFH in the Spark implementation. As shown in Fig. 9(b), the
balance degrees for all reduce tasks with SCID are all less than
15%, whereas, it reaches to 100%, 25%, 200%, and 150% with PCWC,
LIBRA, DEFH, and Range, respectively.



Z. Tang et al. / Future Generation Computer Systems ( ) – 11

(a) σ = 0.1. (b) σ = 1.1.

Fig. 9. Load balancing vs. data size for Sort.

(a) Load balancing. (b) Execution time.

Fig. 10. Performance vs. query percentages for Text Search.

6.2.3. Text search benchmark testing
In this experiment, SCID and all compared algorithms are

evaluated using Text Search benchmark with an English Wikipedia
archive data set [33]. Text Search is a widely used benchmark in
the Spark framework, whose realization mechanism is similar to
Grep benchmark in theHadoop. Because the behavior of Text Search
depends on how frequently the search expression appears in the
input file, we tune the search expression and make the output
percentages vary from 10% to 100% of the input.

From Fig. 10(a), we can learn that SCID performs more
efficiently to balance the buckets workloads than other algorithms
especially with lower query percentages. In fact, with less
proportions of text data being searched, it will be easy to
cause serious skew for the intermediate key/value tuples. In this
situation, it will cause imbalance among different buckets, and
degrade the system performance during the reduce phase. When
the output percentage is higher, because the resulting data become
more evenly distributed, the performance difference becomes
smaller, although SCID is still slightly better.

A similar trend is also appearing in Fig. 10(b), with more
balanced data in the fixed number of buckets, reduce task has
a higher efficiency to process the intermediate data in parallel.
When the output percentage equal to about 50%, the maximum
values of these curves mean that DEFH and Range both have worse
workload balancing in buckets. This is because that when the size

output results are close to half of the input data, the distributions
of intermediate keys are often most uneven, which will cause the
bad balance and poor system performance.

Fig. 11 shows the variation of reduce execution time when the
data size ranges from10 to 30GBwith different query percentages.
From these results, we can conclude that the executing time
increasesmore slowly contrastingwith the growth of the data size,
especially for the first four algorithms.

As shown in Fig. 11(b), compared with the results in Fig. 11(a),
when the output percentage equals to 50%, for algorithm SCID, its
difference to Range and SCID grows to the largest. That is due to
the advantages of improving the load balance among reduce tasks
for the higher skewed data.

Fig. 12 illustrates a group of experiments to evaluate the effect
of balancing the reduce tasks workloads under the Text Search
benchmark with various data sizes. As shown in Fig. 12(a), with
a smaller query percentage, there is a lower growth rate of FoS
based on the algorithms LIBRA and SCID when the input data
sizes range from 10 to 30 GB, however, SCID is always better
than LIBRA. Compared with the larger output percentages in
Fig. 12(b), Fig. 12(a) can demonstrate that SCID has a significant
load balancing advantage with higher data skew more clearly.

6.2.4. Word count benchmark testing
Fig. 13 shows the time performance and load balance capacities

of algorithm SCID under Word Count benchmark. FoS values



12 Z. Tang et al. / Future Generation Computer Systems ( ) –

(a) Output percentage = 0.1. (b) Output percentage = 0.5.

Fig. 11. Reduce execution time vs. data size for Text Search.

(a) Output percentage = 0.1. (b) Output percentage = 0.5.

Fig. 12. Load balancing vs. data size for Text Search.

(a) Load balancing. (b) Execution time.

Fig. 13. Performance evaluation forWord Count benchmark as the data skew increases.

of buckets workloads and the finish time of reduce tasks are
measured when the skew degree of the input data range from
0.1 to 1.1. Fig. 13(a) compares the capacities of load balancing
for different algorithms. From Fig. 13(b), we can learn that SCID

has less obvious performance advantage when the skew degree
is low. The reason is similar to the explanation of Fig. 7(b) in the
experiment under the benchmark sort: there are some additional
calculations to determine the dispatching strategies before sending



Z. Tang et al. / Future Generation Computer Systems ( ) – 13

(a) σ = 0.1. (b) σ = 1.1.

Fig. 14. Reduce execution time vs. data size forWord Count.

(a) σ = 0.2. (b) σ = 1.1.

Fig. 15. Load balancing vs. data sizeWord Count.

the key/value tuples to the relevant buckets, which will bring the
redundant overheads.

If the load balance mechanism cannot bring a larger perfor-
mance improvement for the evenly distributed data, SCID is not
better than other algorithms on time performance. But as the
skew degree of the input data increases, the effect of load bal-
ance becomes more and more obvious. In more details, as shown
in Fig. 13(b), the value of FoS increases rapidly when the degree of
skew exceeds 0.7 for all experimental algorithms.

Fig. 14 represents the variation of reduce execution time with
different skewdegrees (σ = 0.1 andσ = 1.1), and the experimen-
tal results are measured with different data size: 4, 8, and 12 GB.

As shown in Fig. 14(a), when the data set has a lower skew
degree, PCWC is the most time-efficient, and LIBRA as well as SCID
performs even worse than DEFH due to the extra transmission of
intermediate data. But in Fig. 14(b), as the above analyzed reasons,
SCID can achieve a relatively better performance with greater
skew for the input data. This can be verified from the measured
results: the execution time of SCID grows more slowly than other
algorithms as the data size increases. In these two experiments,
Range performs worst among all algorithms, and the reason is
similar to the analysis in sort benchmark experiment.

The squares in Fig. 15 confirms the differences of the balancing
capacities for the compared algorithms under Word Count bench-
mark. Be similar to the analysis in sort benchmark, it is obvious that
SCID has a significant advantage for load balance when the skew
degree is higher.

6.2.5. Evaluation of whole execution time
The implement of overall process of SCID algorithm includes

two regular Spark jobs: the one is the sampling job, which is
responsible to work out the key distributions for current input
data. The main process is as the descriptions of the steps in
Algorithms 1–3. The other is the original job, which is responsible
for the specific business logics. Some improvements as the
additional modules in the second job are as Algorithm 5. This may
lead to some performance loss for the reduce tasks, and the reasons
are explained and analyzed in Section 6.2.2.

Eq. (23) formalizes the components of the whole execution
time: wet . In this equation, (Sample)job1 is the whole execution
time of the first sampling job, (Map)job2 is the time cost of the map
processing of the original job, (Dispatching)job2 represents the time
cost to determine the dispatching of the intermediate data output
frommap tasks, and (Reduce)job2 represents the remaining time of
this job.

wet = (Sample)job1 + (Map)job2 + (Dispatching)job2
+ (Reduce)job2 (23)

where (Dispatching)job2 + (Reduce)job2 represents the reduce
execution time in previous experimental results. Fig. 16 shows
the whole execution time under these three benchmarks: Sort,
TextSearch, and Word Count. Considering the four compared
algorithms: PCWC, DEFH, LIBRA, and Range, they all have
corresponding data sampling in their practical processes. For the



14 Z. Tang et al. / Future Generation Computer Systems ( ) –

(a) Sort . (b) Text search. (c) Word count.

Fig. 16. Whole execution time vs. data skew degrees for three Benchmarks.

same benchmarks and the same input data, the time costs in
map phase are consistent in the rough. From Eq. (23), we can
know that the differences among the whole time cost of these five
algorithms mainly appear in the sampling and reduce phases. In
all implementations of these algorithms, to keep things fair, the
sample rates are all set as 20%. For SCID, the time cost (Sample)job1
should be the duration to calculate out the distribution matrix of
intermediate keys using 20% of the input data.

Moreover, the ratio of execution time betweenmap and reduce
phases is not only about data skew degree, but also about the
repetition rate of intermediate keys. In extreme cases, for the
input data with high repetition, because many works would be
completed by the operations combineByKey in the map phases, the
time cost in map phases would make up a larger proportion in the
whole execution time. In our experiments, because the keys in the
input data are dispersewith a lower repetition, itmakes the reduce
time have considerable proportion in the whole time.

From Fig. 16(a), the slopes of the curves are roughly consistent
with Fig. 7(b), which verifies the correctness of the previous
analysis. For our fine grained data distribution polices, the
advantages of SCID will be highlighted only when facing to higher
skewed data. The higher skewed the data, the more obvious the
effect. Moreover, it will raise the task waiting queues from the
unbalanced workloads only if the data size exceeds a certain level.
Hence, the advantages of algorithm SCID will also be relatively
obvious for massive input data. For similar reasons, the slopes of
Fig. 16(b) and (c) are also consistent with Fig. 10(b) and Fig. 13(b).

7. Conclusion

For the output of the map tasks, the default intermediate data
dispatching mechanism in the Spark framework cannot achieve
satisfied efficiency for the skewed data. Data skew mitigation
is important for improving MapReduce performance. This paper
first ascertains the distribution of the inner keys through a
proposed sampling algorithm based on reservoir model. Because
data sampling is always an additional work for the regular jobs, it
will bring the extra running times and degrade the overall system
performance inevitably. For this reason, based on the estimated
frequencies of overall keys, this paper focuses on how to split and
combine the output data from map tasks to the proper buckets
rather than discuss when the sampling should start.

Experiments verify that the load balancing among the data
containers for reduce tasks can be improved through data
placement. And the system performance can also be improved
for decreasing the waiting tasks in individual blocked queue. So
the whole execution time of a job can be reduced to offset the
time costs caused by the pre-running sampling in the real Spark
implementation environment.

Acknowledgments

The work is supported by the National Natural Science
Foundation of China (Grant Nos. 61572176), National High-tech
R&D Program of China (2015AA015303), and the Key Technology
Research and Development Programs of Guangdong Province
(2015B010108006).

References

[1] J. Dean, S. Ghemawat,Mapreduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[2] Q. Chen, C. Liu, Z. Xiao, Improving mapreduce performance using smart
speculative execution strategy, IEEE Trans. Cloud Comput. 63 (4) (2014)
954–967.

[3] Thilina Gunarathne, Bingjing Zhang, Tak-Lon Wu, Judy Qiu, Scalable parallel
computing on clouds using Twister4Azure iterativeMapReduce, Future Gener.
Comput. Syst. 29 (4) (2013) 1035–1048.

[4] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,
Symp. Oper. Syst. Des. Implement. (2004) 137–150.

[5] Andrei Sfrent, Florin Pop, Asymptotic scheduling for many task computing in
Big Data platforms, Inform. Sci. 319 (2015) 71–91.

[6] Spark, 2015-11-30. [EB/OL] http://spark.apache.org/.
[7] B. Heintz, A. Chandra, R. Sitaraman, J. Weissman, End–to–end optimization for

geodistributed mapreduce, IEEE Transactions on Cloud Computing (1) (2014)
1. http://dx.doi.org/10.1109/TCC.2014.2355225.

[8] J. Polo, Y. Becerra, D. Carrera, M. Steinder, I. Whalley, J. Torres, E. Ayguade,
Deadline-based mapreduce workload management, IEEE Trans. Netw. Serv.
Manag. 10 (2) (2013) 231–244.

[9] S.R. Ramakrishnan, G. Swart, A. Urmanov, Balancing reducer skew in
mapreduce workloads using progressive sampling, in: Proceedings of the
Third ACM Symposium on Cloud Computing. http://dx.doi.org/10.1145/
2391229.2391245.

[10] Y. Le, J. Liu, F. Ergun, D. Wang, Online load balancing for mapreduce with
skeweddata input, in: INFOCOM2014Proceedings, IEEE, 2014, pp. 2004–2012.

[11] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, S. Wu, Handling partitioning skew in
mapreduce using leen, Peer Peer Netw. Appl. 6 (4) (2013) 409–424.

[12] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Dumitrescu, Lex
Wolters, Dick H.J. Epema, The grid workloads archive, Future Gener. Comput.
Syst. 24 (7) (2008) 672–686.

[13] Y. Xu, P. Zou, W. Qu, Z. Li, K. Li, X. Cui, Sampling-based partitioning in
mapreduce for skewed data, in: ChinaGrid Annual Conference (ChinaGrid),
2012, pp. 1–8.

[14] Q. Chen, J. Yao, Z. Xiao, Libra: Lightweight data skewmitigation in mapreduce,
Parallel and Distributed Systems, IEEE Transactions on Cloud Computing 99
(2014) 1–14.

[15] Fan Zhang, Junwei Cao, Samee U. Khand, Keqin Lie, Kai Hwang, A task-level
adaptive MapReduce framework for real-time streaming data in healthcare
applications, Future Gener. Comput. Syst. 43–44 (2015) 149–160.

[16] Word Count, 2015-11-30. [EB/OL] http://spark.apache.org/examples.html#
WordCount.

[17] Y. Fan,W.Wu, Y. Xu, H. Chen, Improvingmapreduce performance by balancing
skewed loads, Communications 11 (8) (2014) 85–108. China.

[18] Radu Prodan, Specification-correct and scalable coordination of Grid applica-
tions, Future Gener. Comput. Syst. 23 (4) (2007) 587–605.

[19] Sort, 2015-11-30. [EB/OL] http://sortbenchmark.org/.
[20] Text Search, 2015-11-30. [EB/OL] http://spark.apache.org/examples.html#

TextSearch.
[21] F.N. Afrati, J.D. Ullman, Optimizing joins in a map-reduce environment,

in: Proceedings of the 13th International Conference on Extending Database
Technology, ACM, 2010, pp. 99–110.

[22] M.A.H. Hassan, M. Bamha, F. Loulergue, Handling data-skew effects in join
operations using mapreduce, Procedia Comput. Sci. 29 (2014) 145–158.

http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref1
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref2
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref3
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref4
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref5
http://spark.apache.org/
http://dx.doi.org/10.1109/TCC.2014.2355225
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref8
http://dx.doi.org/10.1145/2391229.2391245
http://dx.doi.org/10.1145/2391229.2391245
http://dx.doi.org/10.1145/2391229.2391245
http://dx.doi.org/10.1145/2391229.2391245
http://dx.doi.org/10.1145/2391229.2391245
http://dx.doi.org/10.1145/2391229.2391245
http://dx.doi.org/10.1145/2391229.2391245
http://dx.doi.org/10.1145/2391229.2391245
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref10
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref11
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref12
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref14
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref15
http://spark.apache.org/examples.html#WordCount
http://spark.apache.org/examples.html#WordCount
http://spark.apache.org/examples.html#WordCount
http://spark.apache.org/examples.html#WordCount
http://spark.apache.org/examples.html#WordCount
http://spark.apache.org/examples.html#WordCount
http://spark.apache.org/examples.html#WordCount
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref17
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref18
http://sortbenchmark.org/
http://spark.apache.org/examples.html#TextSearch
http://spark.apache.org/examples.html#TextSearch
http://spark.apache.org/examples.html#TextSearch
http://spark.apache.org/examples.html#TextSearch
http://spark.apache.org/examples.html#TextSearch
http://spark.apache.org/examples.html#TextSearch
http://spark.apache.org/examples.html#TextSearch
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref21
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref22


Z. Tang et al. / Future Generation Computer Systems ( ) – 15

[23] S. Blanas, J.M. Patel, V. Ercegovac, J. Rao, E.J. Shekita, Y. Tian, A comparison of
join algorithms for log processing in mapreduce, in: Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, ACM, 2010,
pp. 975–986.

[24] D.G. Mestre, C.E.S. Pire, Improving load balancing for mapreduce-based entity
matching, in: 2013 IEEE SymposiumonComputers and Communications. ISCC,
IEEE, 2013, pp. 618–624.

[25] V.S. Martha, W. Zhao, X. Xu, h-mapreduce: a framework for workload bal-
ancing inmapreduce, in: Advanced Information Networking and Applications,
AINA, 2013 IEEE 27th International Conference on, IEEE, 2013, pp. 637–644.

[26] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, L. Qi, Leen: Locality/fairness-aware key
partitioning for mapreduce in the cloud, in: 2010 IEEE Second International
Conferenceon on Cloud Computing Technology and Science, CloudCom, IEEE,
2010, pp. 17–24.

[27] B. Gufler, N. Augsten, A. Reiser, A. Kemper, Load balancing inmapreduce based
on scalable cardinality estimates, in: 2012 IEEE 28th International Conference
on Data Engineering, ICDE, IEEE, 2012, pp. 522–533.

[28] B. Gufler, N. Augsten, A. Reiser, A. Kemper, T.U.M. Mnchen, Handling data
skew in mapreduce, in: Proceedings of the 1st International Conference
on Cloud Computing and Services Science, CLOSER 2011, Noordwijkerhout,
Netherlands, 7–9 May, 2011, pp. 1–6.

[29] J. Lin, et al. The curse of zipf and limits to parallelization: A look at the stragglers
problem in mapreduce, in: 7th Workshop on Large-Scale Distributed Systems
for Information Retrieval, 2012, pp. 2000–2009.

[30] L.A. Adamic, B.A. Huberman, Zipfs law and the internet, Glottometrics 3 (1)
(2002) 143–150.

[31] Daewoo Lee, Jin-Soo Kimb, Seungryoul Maenga, Large-scale incremental
processing with MapReduce, Future Gener. Comput. Syst. 36 (2014) 66–79.

[32] RangePartitioner, [EB/OL] http://spark.apache.org/docs/1.3.0/api/java/org/
apache/spark/RangePartitioner.html.

[33] Wikipedia, 2015-11-30. [EB/OL] http://en.wikipedia.org/wiki/Archive.

Zhuo Tang received the Ph.D. in Computer Science from
Huazhong University of Science and Technology, China,
in 2008. He is currently an Associate Professor of the
College of Computer Science and Electronic Engineering
at Hunan University, and he is the sub-dean of the
department of Computing Science. His major interests are
in distributed computing system, cloud computing, and
the parallel process for big data, including the distributed
machine learning, security model, parallel algorithms, and
resources scheduling and management in these areas. He
is a member of ACM and CCF.

Xiangshen Zhang is working towards the master degree
at the College of Information Science and Engineering,
HunanUniversity, China. His research interests include the
parallel computing, the improvement and optimization of
task scheduling module in Hadoop and Spark platforms.

Kenli Li received the Ph.D. in Computer Science from
Huazhong University of Science and Technology, China,
in 2003. Now he is a Professor of Computer Science and
Technology at Hunan University, Associate Director of
National Supercomputing Center in Changsha. His major
research includes parallel computing, grid and cloud
computing, and DNA computer. He has published over 260
journal articles, book chapters, and refereed conference
papers. And he is an outstanding member of CCF and a
member of IEEE.

Keqin Li is a SUNY Distinguished Professor of Computer
Science. His current research interests include parallel
computing and high-performance computing, distributed
computing, energy-efficient computing and communica-
tion, heterogeneous computing systems, cloud comput-
ing, big data computing, CPU–GPU hybrid and cooper-
ative computing, multicore computing, storage and file
systems, wireless communication networks, sensor net-
works, peer-to-peer file sharing systems, mobile com-
puting, service computing, Internet of things and cy-
ber–physical systems. He has published over 490 journal

articles, book chapters, and refereed conference papers, and has received several
best paper awards. He is currently or has served on the editorial boards of IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on Comput-
ers, IEEE Transactions on Cloud Computing, Distributed Computing. He is an IEEE
Fellow.

http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref23
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref24
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref25
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref26
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref27
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref30
http://refhub.elsevier.com/S0167-739X(16)30212-6/sbref31
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/1.3.0/api/java/org/apache/spark/RangePartitioner.html
http://en.wikipedia.org/wiki/Archive

	An intermediate data placement algorithm for load balancing in Spark computing environment
	Introduction
	Related work
	System overview
	Data sampling in the Spark framework
	Data skew model
	Reservoir sampling algorithm
	Prediction of cluster sizes

	Cluster splitting and combining
	Process description
	Algorithms

	Evaluation
	Experiment setting
	Performance evaluation
	Sampling experiments
	Sort benchmark testing
	Text search benchmark testing
	Word count benchmark testing
	Evaluation of whole execution time


	Conclusion
	Acknowledgments
	References


