
Future Generation Computer Systems 43–44 (2015) 51–60
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A self-adaptive scheduling algorithm for reduce start time
Zhuo Tang a,∗, Lingang Jiang a, Junqing Zhou a, Kenli Li a, Keqin Li a,b
a College of Information Science and Engineering, Hunan University, Changsha 410082, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• This paper illustrates the reasons of the system slots waster for reduces tasks waiting around.
• The model can determine the start time of reduce tasks, dynamically according to job context.
• As an optimal scheduling algorithm, SARS can decrease the reduce completion time for jobs.

a r t i c l e i n f o

Article history:
Received 28 December 2013
Received in revised form
1 August 2014
Accepted 15 August 2014
Available online 25 August 2014

Keywords:
Big data
Hadoop
MapReduce
Reduce
Self-adaptive
Task scheduling

a b s t r a c t

MapReduce is by far one of themost successful realizations of large-scale data-intensive cloud computing
platforms. When to start the reduce tasks is one of the key problems to advance the MapReduce
performance. The existing implementationsmay result in a block of reduce tasks.When the output ofmap
tasks become large, the performance of a MapReduce scheduling algorithm will be influenced seriously.
Through analysis for the current MapReduce scheduling mechanism, this paper illustrates the reasons of
system slot resources waste, which results in the reduce tasks waiting around, and proposes an optimal
reduce scheduling policy called SARS (Self Adaptive Reduce Scheduling) for reduce tasks’ start times in
the Hadoop platform. It can decide the start time point of each reduce task dynamically according to
each job context, including the task completion time and the size of map output. Through estimating job
completion time, reduce completion time, and system average response time, the experimental results
illustrate that, when comparing with other algorithms, the reduce completion time is decreased sharply.
It is also proved that the average response time is decreased by 11% to 29%, when the SARS algorithm is
applied to the traditional job scheduling algorithms FIFO, FairScheduler, and CapacityScheduler.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

MapReduce is an excellent model for distributed computing,
introduced by Google in 2004 [1]. It has emerged as an impor-
tant and widely used programming model for distributed and
parallel computing, due to its ease of use, generality, and scalabil-
ity. Among its open source implementation versions, Hadoop has
been widely used in industry around the whole world [2] and has
been used/extended by scientists as the base of their own research
work [3]. It has been applied to the production environments, such
as Google, Yahoo, Amazon, Facebook, and so on. Because of the
short development time,Hadoop can be improved inmany aspects,
such as intermediate data management and reduce tasks schedul-
ing [4]. This paper mainly focuses on the reduce scheduling prob-
lem, which refers to the starting times of the reduce tasks.

∗ Corresponding author. Tel.: +86 18627568501.
E-mail address: ztang@hnu.edu.cn (Z. Tang).

http://dx.doi.org/10.1016/j.future.2014.08.011
0167-739X/© 2014 Elsevier B.V. All rights reserved.
Map and Reduce are the two sections in a MapReduce schedul-
ing algorithm. In Hadoop, each task contains three functioning
phases: copy, sort, and reduce [5]. The goal of the copy phase is
to read the map tasks’ outputs. The sort phase is to sort the inter-
mediate data which are produced by map tasks and will be the in-
put to the reduce phase. Finally, the eventual results are produced
through the reduce phase, where the copy and sort phases are to
preprocess the input data of reduce. In real applications, copying
and sorting may consume considerable amount of time, especially
in the copy phase. In the theoretical model, the reduce functions
start only if all map tasks are finished [6]. However, in the Hadoop
implementation, all copy actions of reduce tasks will start when
the first map action is finished [7]. But in a slot duration, if there is
any map task still running, the copy actions will wait around. This
will lead to the waste of the reduce slot resources.

The existing MapReduce program frameworks often treat the
jobs as awhole process. However, the differences between themap
and reduce tasks are not considered. Since map and reduce task
execution times are not related, it is not accurate to compute the

http://dx.doi.org/10.1016/j.future.2014.08.011
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2014.08.011&domain=pdf
mailto:ztang@hnu.edu.cn
http://dx.doi.org/10.1016/j.future.2014.08.011


52 Z. Tang et al. / Future Generation Computer Systems 43–44 (2015) 51–60
average task execution time by taking map and reduce tasks to-
gether. The dynamic proportional scheduler [8] provides more job
sharing and prioritization capability in scheduling and also results
in increasing share of cluster resources and more differentiation
in service levels of different jobs. Zaharia et al. proposed the delay
scheduling algorithm [9] to address the conflict between data lo-
cality and fairness. Time estimation and optimization for Hadoop
jobs have been explored in [10,11]. In [10], the authors focused on
minimizing the total completion time of a set of MapReduce jobs.
In [11], the authors estimated the progress of queries that run as
MapReduce DAGs.

The need for a scheduling algorithm arises from the require-
ment for most modern systems to perform multitasking (execute
more than one process at a time) andmultiplexing (transmitmulti-
ple flows simultaneously) [12]. In traditional MapReduce schedul-
ing, the reduce task should begin when all the map tasks are
completed. In this way, the outputs of map tasks should be read
and written to the reduce tasks in the copy process [13]. However,
through the analysis of the slot resource usage in the reduce pro-
cess, this paper illustrates that data transfer will result in slot idle
and delay. On the other hand, various types of information and
data processed in the large-scale dynamic grid environment may
be incomplete, imprecise, fragmentary and overloading [14]. So as
Hadoop platform in cloud computing, when the map tasks’ out-
puts become large, the performance of a MapReduce scheduling
algorithm will be influenced seriously [15]. Especially, when mul-
tiple tasks are running simultaneously, inappropriate scheduling
of reduce tasks will lead to untimely scheduling of other jobs in
the system, and these are all the stumbling blocks of the Hadoop
popularization.

Through studying reduce task scheduling in the Hadoop plat-
form, this paper proposes an optimal reduce scheduling policy
called SARS (Self Adaptive Reduce Scheduling). SARS can reduce
the waiting around of copy actions and advance the performance
of a whole system. Through analyzing the details of a map and re-
duce two-phase scheduling process at runtime, the SARS algorithm
can determine the start time point of each reduce task dynamically
according to each job’s context, such as the task completion time
or the size of map output. This paper makes the following contri-
butions to MapReduce performance enhancement:

(1) The analysis for the current MapReduce scheduling mecha-
nism, and illustration of the reasons of system slot resources
wasting, which results in the reduce tasks waiting around;

(2) The development of a model details the start times of the
reduce tasks dynamically according to each job context,
including the task completion time and the size ofmap output;

(3) An optimal reduce scheduling algorithm which decreases the
reduce completion time and the system average response time
in the Hadoop platform.

The rest of this paper is organized as follows. Section 2 reviews
the relatedworks. Section 3 analyzes the problem of the longwait-
ing of reduce tasks. Section 4 proposes an optimal reduce schedul-
ing algorithm for reduce tasks’ start times in the Hadoop platform.
Experiments and analysiswhich support our contributions are pre-
sented in Section 5. Section 6 concludes this paper and describes
the future work.

2. Related work

There have been a number of proposals for task scheduling in
distributed systems, which use various mathematical techniques
to achieve the MapReduce scheduling process. At present, the
researches on MapReduce scheduling algorithms focus on the
optimization of the job computation time, cluster workloads, and
data communication.
Balanced-pools efficiently utilize performance properties of
MapReduce jobs in a given workload for constructing an opti-
mized job schedule [16]. For the default method of Hadoop, which
cannot schedule the tasks to the nodes with the prefetched data,
a prefetching technique was proposed in [17] to hide the re-
mote data access delay caused by the map tasks processed on the
nodes without the input data. We proposed MTSD, an extensional
MapReduce task scheduling algorithm for deadline constraints in
the Hadoop platform [18], which allows a user to specify a job’s
deadline and tries to make the job to be finished before the dead-
line. Some of these proposals [19] presented the workload char-
acteristic oriented scheduler, which strives for co-locating tasks of
possibly different MapReduce jobs with complementing resource
usage characteristics. In [20], the authors presented a scheduling
technique for multi-job MapReduce workloads that is able to dy-
namically build performance models of the executing workloads,
and then use thesemodels for scheduling purposes. As theMapRe-
duce distributed computations were analyzed as a divisible load
scheduling problem [21], several classes of algorithms were pro-
posed and examined for scheduling divisible loads on a hetero-
geneous system with memory limits [22]. Some task scheduling
algorithms are to release the data communication among remote
slots, e.g., the center-of-gravity reduce scheduler is a locality-
aware and skew-aware reduce task scheduler for saving MapRe-
duce network traffic [23], and MaRCO employs eager reduce to
process partial data from some map tasks while overlapping with
other map tasks’ communication [6].

Furthermore, there are also many researches using MapReduce
to resolve the big data process [24]. A MapReduce-based frame-
work for HPC analytics was developed in [25] to eliminate the
multiple scans and also reduce the number of data preprocessing
MapReduce programs. Considering the dynamic resource alloca-
tion for the IaaS cloud systems, the algorithms in [26] can adjust
the resource allocation dynamically based on the updated informa-
tion of the actual task executions. In these data processes, the util-
ity becomes a considerable problem naturally. The authors of [10]
discussed how to increase the utilization of MapReduce clusters to
minimize their cost. They optimized the execution of MapReduce
jobs on the cluster through the design of a job schedule that min-
imizes the completion time (makespan) of such a set of MapRe-
duce jobs. To achieve the optimal user utility, the goal of resource
provisioning in [27] is to minimize the cost of virtual machines for
executing MapReduce applications. For the practical applications,
some aspects of reality should be taken into account, such as fault
tolerance [28] and energy efficiency [29,30].

In this article, it is not possible to discuss every related scheme.
Hence, we only outline a few closely related papers as above. The
main focus of most current works about MapReduce scheduling
algorithms appears to be job scheduling, less involving task delay,
especially the consideration of the tasks with the same key for the
input data block. Through analysis of the intermediate data process
in Hadoop, this paper indicates that the scheduling of reduce tasks
is one of the key problems which affect the performance of a
system.

3. Problem analysis

Hadoop allows the user to configure the job, submit it, control
its execution, and query the state. Every job consists of indepen-
dent tasks, and each task needs to have a system slot to run. Fig. 1
shows the time delay and slot resources waste problem in reduce
scheduling. Y -axis in Fig. 1 means the resource slots, which is rep-
resented by Map slots and Reduce slots. At first in Fig. 1(a), we can
know that Job1 and Job2 are the current running jobs, before the
time t2, each job is allocated two map slots to run respective tasks.
Because the reduce tasks will begin once any map task finishes,



Z. Tang et al. / Future Generation Computer Systems 43–44 (2015) 51–60 53
(a) Job2 map tasks finished. (b) Job2 reduce tasks finished. (c) Job3 submitted.

Fig. 1. The performance of the policies with respect to various graph sizes.
from the duration t1 to t2, there are two reduce tasks from Job1 and
Job2 running respectively. Since the execution time of each task is
usually not the same, Job2 finishes its map tasks at time t2 and re-
duce tasks at time t3. Because the reduce tasks of Job1 are not finish
in this time t3, as indicated in Fig. 1(b), there are two new reduce
tasks from Job1 started. Now all the reduce slot resources are taken
up by Job1. In Fig. 1(c), at the moment t4, when Job3 starts, two idle
map slots can be assigned to it, and the reduce tasks from this job
will then start. However, we can find all reduce slots are already
occupied by the Job1, and the reduce tasks from Job3 have to wait
for slot release.

The root cause of this problem is that reduce task of Job3 must
wait for all the reduce tasks of Job1 to be completed, as Job1
takes up all the reduce slots and Hadoop system does not support
preemptive action acquiescently. In the early algorithm design,
reduce tasks can be scheduled once anymap tasks are finished [31].
One of the benefits is that the reduce tasks can copy the output of
themap tasks as soon as possible. But reduce taskswill have towait
before all map tasks are finished, and the pending taskswill always
occupy the slot resources so that other jobs which finish the map
tasks cannot start the reduce tasks. All in all, this will result in the
long waiting of reduce tasks and greatly increase the delay of the
Hadoop jobs.

In practice, a shared cluster environment often runs in parallel
multiple jobs that are submitted by different users. If the above
situation appears among different users at the same time, and the
reduce slot resources are occupied for a long time, the submitted
jobs from other users will not be pushed ahead until the slots are
released. Such inefficiency will extend the average response time
of a Hadoop system, lower the resource utilization rate, and affect
the throughput of a Hadoop cluster.

4. A self-adaptive reduce scheduling algorithm

4.1. Runtime analysis of MapReduce jobs

Through the above analysis, one method to optimize the
MapReduce tasks is to select an adaptive time to schedule the
reduce tasks. By thismeans, we can avoid the reduce tasks’ waiting
around and enhance the resource utilization rate. This section
proposes a self-adaptive reduce task scheduling algorithm, which
gives a method to estimate the start time of a task, instead of the
traditionalmechanismwhere the reduce tasks are started once any
map task is completed.

The reduce process can be divided into the following several
phases. Firstly, the reduce task requests to read each map output
Fig. 2. The default scheduling for reduce task.

data in the copy phase, which belong to this reduce function
in the map output data blocks. Next, in the sort process, these
intermediate data are output to an ordered data set by merging,
which are divided into two types. One type is the data in memory.
When the data are read from various maps at the same time, the
data should be merged as the same keys. The other is as like the
circle buffer. Because the memory belonging to the reduce task is
limited, the data in the buffer should be written to disks regularly
in advance.

In this way, subsequent data need to be merged by the data
which are written into the disk earlier, the so called external
sorting. The external sorting need to be executed several times
if the number of map tasks are large in the practical works. The
copy and sort are customarily called the shuffle phase. Finally, after
finishing the copy and sort process, the subsequent functions start,
and the reduce tasks can be scheduled to the compute nodes.

4.2. An advanced reduce scheduling algorithm

Because Hadoop employs the greedy strategy to schedule the
reduce tasks, to schedule the reduce tasks fastest, as described
above, some reduce tasks will always take up the system resources
without actually performing operations in a long time. The reduce
task start time is determined by this advanced algorithm SARS
(Self-Adaptive Reduce Scheduling). In this method, the start times
of the reduce tasks are delayed for a certain duration to lessen
the utilization of system resources. The SARS algorithm schedules
the reduce tasks at a special moment, when some map tasks are
finished but not all. By this means, how to select an optimal time
point to start the reduce scheduling is the key problem of the
algorithm. Distinctly, the optimum point can minimize the system
delay and maximize the resource utilization.

As shown in Fig. 2, assuming that Job1 has 16map tasks and one
reduce task, and there are 4 map slots and only one reduce slot in



54 Z. Tang et al. / Future Generation Computer Systems 43–44 (2015) 51–60
this cluster system. Figs. 2 and 3 describe the time constitution of
the life cycle for a special job:

(FTlm − STfm) + (FTcp − FTlm) + (FTlr − STsr), (1)

where the denotations of this equation are as follows:

FTlm: the completion time of the last map task;
STfm: the start time of the first map task;
FTcp: the finish time of copy phase;
FTlr : the finish time of Reduce;
STsr : the start time of reduce sort.

In Fig. 2, t1 is the start time ofMap1,Map2, and the reduce task.
During t1 to t3, the main work of the reduce task is to copy the out-
put from Map1 to Map14. The output of Map15 and Map16 will be
copied by the reduce task from t3 to t4. The duration from t4 to t5
is so called the sort stage, which ranks the intermediate results ac-
cording to the key values. The reduce function is called at the time
t5, which continues from t5 to t6. Because during t1 to t3, in the copy
phase, the reduce task only copies the output data intermittently,
once anymap task is completed, for themost time it is alwayswait-
ing around. We hope to make the copy operations completed at a
concentrated duration, which can decrease the waiting time of the
reduce tasks.

As Fig. 3 shows, if we can start the reduce tasks at t ′2, which can
be calculated using Eq. (3), and make sure these tasks can be fin-
ished before t6, then during t1 to t ′2, the slots can be used by any
other reduce tasks. But if we let the copy operation start at t3, be-
cause the output of all map tasks should be copied from t3, the de-
lay will be produced in this case. As shown in Fig. 2, the copy phase
starts at t2, which just collects the output of the map tasks inter-
mittently. By contrast, the reduce task’s waiting time is decreased
obviously in Fig. 3, in which case the copy operations are started
at t ′2.

The SARS algorithm works by delaying the reduce processes.
The reduce tasks are scheduled when part but not all of the map
tasks are finished. For a special key value, if we assume that
there are s map slots and m map tasks in the current system, the
completion time and the size of output data of each map task are
denoted as t_mapi and m_outj respectively, where i, j ∈ [1,m].
Then, we can know the amount of the map tasks data can be
calculated as:

N_m =

m
j=1

m_outj, j ∈ [1,m]. (2)

In order to predict the time required to transmit the data, this
paper defines the speed of data transmission from themap tasks to
the reduce tasks as transSpeed in the cluster environment, and the
number of concurrent copy threadswith reduce tasks is denoted as
copyThread. We denote the start time of the first map and reduce
task as startmap and startreduce respectively. Therefore, the optimal
start time of reduce tasks can be determined by the following
equation:

startreduce = startmap +
1
s

m
i=1

t_mapi

−
N_m

transSpeed × copyThread
. (3)

As shownby the time t ′2 in Fig. 3, themost appropriate start time
of a reduce task is when all the map tasks about the same key are
finished, which is between the times when the first map is started
and when the last map is finished. On the other hand, for map
and copy processes start almost at the same time, which is called
intermittent copy (once map has an output, copying followed),
Fig. 3. The scheduling method for reduce task in SARS.

causes themassivewaste of slot resources. For the reduce taskswill
be started before themap task finished, the time cost should be cut
from themap tasks completion time. Therefore,we use the average
completion time of map tasks to minus data transmission time
which produced by map task in Eq. (3), the value can be roughly
considered as the starting time of the no-intermission copy, which
is reduce tasks starting time in this paper. The waiting around of
the reduce tasksmaymake the jobs in needof the slot resources not
able to work normally. Through adjusting the reduce scheduling
time, this method can decrease the time waste for data replication
process and advance the utilization of the reduce slot resources
effectively.

Algorithm 1 SARS Scheduling Algorithm
Require:

M: the map slots collection;
R: the reduce slots collection;
Q : the job queue.

1: MT = obtainMapTask(M,Q );
2: start the map task inMT ;
3: obtain KVS as the middle key-value set;
4: for each job ∈ Q do
5: for each key ∈ KVS do
6: S_MapTask = 0; //all maps’ finish time
7: S_MapOut = 0; //all maps’ output
8: for each i ∈ [1,m] do
9: S_MapTask+ = t_mapi;

10: S_MapOut+ = m_outi;
11: end for
12: //get the starting time of reduce task:
13: startreduce = startmap + S_MapTask/s −

S_MapOut/(transSpeed ∗ copyThread);
14: if System.currentTime = startreduce then
15: if job exists waiting reduce task then
16: remove a reduce slot from R;
17: start the reduce task;
18: else
19: break;
20: end if
21: else
22: break;
23: end if
24: end for
25: end for

Using the job’s own characteristics to determine the reduce
scheduling time can use the slot resources effectively. The im-
provement of these policies is especially important for the CPU-
type jobs. For these jobswhich needmore CPU computing, the data
I/O of the tasks are less, somore slot resourceswill bewasted in the
default schedule algorithm.



Z. Tang et al. / Future Generation Computer Systems 43–44 (2015) 51–60 55
Table 1
The software and hardware configurations in the Hadoop cluster.

The node type Operating system CPU Memory Quantity

NameNode Open suse 11 4-core, 3.07 GHz 4 G 1
JobTracker Open suse 11 4-core, 2.7 GHz 4 G 1
DataNode/TaskTracker Open suse 11 4-core, 2.7 GHZ 4 G 5
Algorithm 2 obtainMapTask
Require:

M: the map slots collection;
Q : the job queue.

Ensure:
MT : map task set;
m: the count of current map tasks.

1: for each job ∈ Q do
2: count = 0;
3: if job has a waiting map task t then
4: MT = MT ∪ {t};
5: remove a map slot fromM;
6: count++;
7: else
8: break;
9: end if

10: end for
11: m = count;
12: return MT .

The pseudo code of the SARS scheduling algorithm is shown
in Algorithms 1 and 2. The time complexity of the algorithm is
O(n × K × m) due to the three-level nested for-loops, where n is
the length of the job queue, m is the number of map tasks, which
outputs kmiddle output keys.

5. Experimental evaluation

The purpose of the scheduling algorithm SARS is to shorten the
copy duration of the reduce process, decrease the task complete
time, and save the reduce slot resources. Through measuring the
job completion time and the reduce process completion time,
this section compares this method to the traditional scheduling
algorithms like First-In-First-Out (FIFO), FairScheduler (FAIR), and
CapacityScheduler (CS), and evaluates the effects for the average
finish time of the submitted jobs employed by this algorithm.

5.1. The experimental benchmarks

We choose these typical MapReduce-based benchmarks to
test the MapReduce and HDFS performance employing the SARS
algorithm:WordCount, Pi, MRBench, TeraSort, and GridMix.

The WordCount benchmark reads text files and counts how
often words occur. Each mapper takes a line as input and breaks
it into words. It then emits a key/value pair of the word and 1. Each
reducer sums the counts for eachword and emits a single key/value
with the word and sum.

The Pi benchmark is a Monte Carlo algorithm which computes
the exact binary digits of the mathematical constant π . It is
designed for computing the nth bit of π , for large n, say n is larger
than 100,000,000.

The MRBench checks whether small jobs are responsive and
running efficiently on the cluster. It focuses on the MapReduce
layer since its impact on the HDFS layer is very limited.

The TeraSort benchmark is to sort 1 TB of data (or any other
amount of data you want) as fast as possible. It is a benchmark
that combines testing the HDFS andMapReduce layers of a Hadoop
cluster.
Table 2
Key configuration in the Hadoop cluster.

Configuration items Configuration properties Value

Map slots mapred.tasktracker.map.tasks.maximum 4
Reduce slot mapred.tasktracker.Reduce.tasks.maximum 2
Copy thread mapred.reduce.parallel.copies 5
HDFS replications dfs.replication 1
Input file size dfs.block.size 64 M
DataNode heartbeat dfs.heartbeat.interval 3 s

The GridMix is a benchmark for the Hadoop cluster. It is mainly
used to test the performance of job execution in a cluster, which
submits a mix of synthetic jobs, modeling a profile mined from
production loads.

5.2. The experimental environment

The experiment environment is based onHadoop platformwith
the version number 1.20. The hardware and software configura-
tions are shown in Table 1. Furthermore, this Hadoop platform still
has some key configurations shown in Table 2.

Since many kinds of MapReduce jobs are I/O-bound, an under-
performing or poorly configured disk can drastically reduce overall
job performance. Datanodes store block data on top of a traditional
file system rather than on raw devices. Hadoop is designed to be
modest in its requirements on the hosts on which it runs. In our
experiments, the disk configuration is ext4 file system.

For the limitation of the cluster scale, the number of the file
replications is set to 1, and the numbers of maps and reduce slots
are respectively set as 4 and 2. Copy thread in this table refers to the
number of the threads which fetch the data blocks from the map
tasks. Because the HDFS system is composed of data block, the file
size is configurable and set to 64 M in this experiment. Finally, the
DataNode heartbeat time refers to the frequency of contactingwith
the NameNode.

5.3. Completion time evaluation

Completion time evaluation includes two aspects: the whole
job completion time and the reduce task completion time.
Comparing job completion time is to assess whether the proposed
algorithm may lead to delay for job itself. And for illustrating the
advantage of SARS, we also estimate the reduce completion time in
this experiment. For the accuracy of the result, the running job is
completely isolated, in other words, there is only one job running
at all times. The legends of experiment results are as follows:

(1) FIFO JT: The completion time of the whole job scheduled by
algorithm FIFO;

(2) FAIR JT: The completion time of the whole job scheduled by
algorithm FAIR;

(3) CS JT: The completion time of the whole job scheduled by
algorithm CS;

(4) SARS JT: The completion time of the whole job scheduled by
algorithm SARS;

(5) FIFO RT: The completion time of the reduce task scheduled by
algorithm FIFO;

(6) FAIR RT: The completion time of the reduce task scheduled by
algorithm FAIR;



56 Z. Tang et al. / Future Generation Computer Systems 43–44 (2015) 51–60
(a) Performance comparison between FIFO and SARS algorithms for
WordCount.

(b) Comparison of reduce completion time between FIFO and SARS
algorithms for WordCount.

Fig. 4. Comparison between FIFO and SARS algorithms on WordCount.
(a) Performance comparison between FAIR and SARS algorithms
for WordCount.

(b) Comparison of reduce completion time between FAIR and
SARS algorithms for WordCount.

Fig. 5. Comparison between FAIR and SARS algorithms on WordCount.
(a) Performance comparison between CS and SARS algorithms for
WordCount.

(b) Comparison of reduce completion time between CS and SARS
algorithms for WordCount.

Fig. 6. Comparison between CS and SARS algorithms on WordCount.
(7) CS RT: The completion time of the reduce task scheduled by
algorithm CS;

(8) SARS RT: The completion time of the reduce task scheduled by
algorithm SARS.
In these experiments, map number represents the number of

the current map tasks, and data size represents the size of the map
task processing data. For the limitation of the slot resources, we
can find that the job complete time will increase when the map
number substantially exceeds the system capacity.

Fig. 4(a) shows the comparison between algorithms FIFO and
SARS using the benchmark WordCount. From the curves, we can
know that their completion times of the whole job scheduled are
almost equal, except when the map number is 680, the value
of SARS JT is greater than FIFO JT distinctly. However, when
comparing the reduce task completion time, the result reveals that
the completion time SARS RT is far less than FIFO RT. According to
our statistics, 3–4 times speedup is achieved when comparing the
SARS RT to FIFO RT.
Fig. 4(b) shows the WordCount performance when employing
the FIFO and SARS algorithmswith 16 nodes. The input data is cho-
sen from theGENIA corpus v.3.02 (a semantically annotated corpus
for bio-text mining). From the figure, it is obvious that the running
time increases as the size of input data scales. Furthermore, the
SARS algorithm acquires better performance compared to the nor-
mal case, which means the MapReduce performance can be obvi-
ously affected by the starting moments of the reduce tasks.

Figs. 5 and 6 show the comparison among FAIR, CS, and
SARS algorithms using the benchmark WordCount. The whole job
completion time of SARS is noticeably and consistently shorter
than that of FAIR and CS. Furthermore, compared with both FAIR
and CS algorithms, SARS decreases the reduce execution time
significantly.

The comparison results between FIFO and SARS algorithms on
TeraSort are shown in Fig. 7. Similar to the WordCount job, the
sort completion time of FIFO and SARS algorithms are nearly equal,
with SARS JT slightly shorter. However, the reduce task completion



Z. Tang et al. / Future Generation Computer Systems 43–44 (2015) 51–60 57
(a) Performance comparison between FIFO and SARS algorithms
for TeraSort.

(b) Comparison of reduce completion time between FIFO and SARS
algorithms for TeraSort.

Fig. 7. Comparison between FIFO and SARS algorithms on TeraSort.
(a) Performance comparison between FAIR and SARS
algorithms for TeraSort.

(b) Comparison of reduce completion time between FAIR
and SARS algorithms for TeraSort.

Fig. 8. Comparison between FAIR and SARS algorithms on TeraSort.
(a) Performance comparison between CS and SARS
algorithms for TeraSort.

(b) Comparison of reduce completion time between CS and
SARS algorithms for TeraSort.

Fig. 9. Comparison between CS and SARS algorithms on TeraSort.
time of FIFO is around 1–2 times higher than that of SARS. Fig. 7(b)
shows both the data generation time and the sort time of TeraSort
benchmark. From the figure, we find that when the data size is
small, both the data generation time and sort time are relatively
small. However, when the data size exceeds 400 MB, the running
time increases quickly. And from the experimental data, we can
acquire that the performances of data generation and sort process
are all advanced by the SARS algorithm.

Figs. 8 and 9 show the comparison among FAIR, CS, and SARS
algorithms using the benchmark TeraSort. Again, we observe no-
ticeable and consistent reduction in job completion time. The data
generation time and sort time are also reduced. Furthermore, the
SARS algorithm is more appropriate in large-scale data processing.

Figs. 10–12 show the performance comparison among FIFO,
FAIR, CS, and SARS for the benchmark Pi, where we scale the num-
ber of maps from 100 to 800. Except the map number near to 600,
SARS can achieve significant reduction in job completion time. Fur-
thermore, the reduce completion time is reduced by a factor of 1–6.
Fig. 10. Comparison between FIFO and SARS algorithms for Pi.

Figs. 13–15 show the MRBench performance, where we scale
the number of maps from 100 to 600. Except map number
300, SARS achieves noticeable reduction in job completion time.
Furthermore, the reduce completion time is reduced by a factor of
1–2.



58 Z. Tang et al. / Future Generation Computer Systems 43–44 (2015) 51–60
Fig. 11. Comparison between FAIR and SARS algorithms for Pi.

Fig. 12. Comparison between CS and SARS algorithms for Pi.

Fig. 13. Comparison between FIFO and SARS algorithms for MRBench.

Fig. 14. Comparison between FAIR and SARS algorithms for MRBench.

It is clear from the above experiments that the SARS algorithm
can sharply decrease the reduce task completion time. Our
experimental results also illustrate that although the reduce
processes are delayed to start, the whole completion time of a
single job has not been extended. But in this way, the system can
obtain a lot of idle slots. If these slots can be reallocated by reduce
tasks fromother jobs, thewhole completion timewill be decreased
whenmore than one job are running together. How to schedule the
idle reduce slots in a multiple-job environment will be resolved in
our future works.

5.4. Average response time evaluation

The purpose of this experiment is to evaluate the average
response time whenmultiple jobs are submitted bymultiple users
Fig. 15. Comparison between CS and SARS algorithms for MRBench.

Fig. 16. The average response time of experimental jobs.

in the cluster. For appraising the running situation of multiple jobs
in a complex cluster environment, this paper uses the Gridmix
to submit jobs, which can analyze the Hadoop performance by
simulating the actual load of a Hadoop cluster. At first, this
experiment can generate a lot of input data and jobs according to
the pre-set parameters. After these jobs are submitted from batch
processing, they can be grouped into five categories:

(1) MapReduce jobs; (A: map tasks reserve 10% of the data, while
reduce tasks reserve 40%; B: map tasks reserve 10% data, and
reduce tasks reserve 40% data, output from A; C: map tasks
reserve 10% data, and reduce tasks reserve 40% data, output
from B.)

(2) The sort jobs for mass data, where key and value length are
variable;

(3) The filter for large data sets; (Map tasks reserve 0.2%of the data,
while reduce tasks reserve 5% of the rest.)

(4) The text sort through directly API invoking;
(5) The WordCount job including Combiners.

The data size and the number of the categories of these experiment
jobs can be configured from Gridmix, and these jobs can be
monitored and measured during their whole running process.

In consideration of the small scale of the experimental cluster,
only 24 jobs are submitted in Gridmix. We compare the average
response time of these algorithms before and after applying
the SARS policy: FIFO, FairScheduler, and CapacityScheduler. The
main evaluation indicator is the system response time with high
workload.

Fig. 16 shows the results of this comparison, where the denota-
tion ‘‘CS’’ represents the CapacityScheduler scheduling algorithm,
and ‘‘FAIR’’ means the FairScheduler scheduling algorithm. From
these results, we know that the SARS algorithm can advance the
performance of existing schedulers. After applying the SARS policy
to the traditional job scheduling algorithms, the average response
time can be decreased by 11% to 29%.



Z. Tang et al. / Future Generation Computer Systems 43–44 (2015) 51–60 59
6. Conclusion

The goal of the improved algorithm proposed in this paper is
to decrease the completion time of reduce tasks in the MapReduce
framework. This method can decide reduce task start time through
running situation of the jobs, and to avoid waiting around of the
reduce function. In this paper, the performance of this algorithm
is estimated from the job completion time, reduce completion
time, and the system average response time. The experimental
results illustrate that when comparing with the FIFO, the reduce
completion time is decreased sharply. It is also proved that the
average response time is decreased by 11% to 29% when the SARS
algorithm is applied to traditional job scheduling algorithms FIFO,
FairScheduler, and CapacityScheduler.

However, there are also some difficulties in the experiments.
The first is the speed of the network transmission. When multiple
reduce tasks from one TaskTracker run at the same time, they may
lead to the network I/O competition and lower the transmission
speed during the copy stage. Moreover, this study is based on
a homogeneous cluster environment. Since the SARS algorithm
assumes that all of the map task execution times and output
data are consistent, in a heterogeneous environment, the SARS
algorithm needs to be further improved.

Acknowledgments

The authors are grateful to the three anonymous reviewers for
their criticism and comments which have helped to improve the
presentation and quality of the paper. This work is supported by
the Key Program of National Natural Science Foundation of China
(Grant No. 61133005), and National Natural Science Foundation of
China (Grant Nos. 61103047 and 61370095).

References

[1] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,
in: Proc. 2004 Symposium on Operating System Design and Implementation,
pp. 137–150.

[2] Xiang Gao, Qing Chen, Yurong Chen, Qingwei Sun, Yan Liu, Mingzhu Li, A
dispatching-rule-based task scheduling policy for MapReduce with multi-
type jobs in heterogeneous environments, in: 2012 Seventh ChinaGrid Annual
Conference (ChinaGrid), pp. 17–24.

[3] Jiaqi Zhao, Lizhe Wang, Jie Tao, Jinjun Chen, Weiye Sun, Rajiv Ranjan, Joanna
Kolodziej, Achim Streit, Dimitrios Georgakopoulos: a security framework in
G-Hadoop for big data computing across distributed Cloud data centres,
J. Comput. System Sci. 80 (5) (2014) 994–1007.

[4] Jiong Xie, FanJun Meng, HaiLong Wang, HongFang Pan, JinHong Cheng, Xiao
Qin, Research on scheduling scheme for hadoop clusters, Proc. Comput. Sci. 18
(2013) 2468–2471.

[5] Zhuo Tang, Min Liu, Kenli Li, Yuming Xu, A MapReduce-enabled scientific
workflow framework with optimization scheduling algorithm, in: 2012 13th
International Conference on Parallel and Distributed Computing, Applications
and Technologies (PDCAT), pp. 599–604.

[6] Faraz Ahmad, Seyong Lee, Mithuna Thottethodi, T.N. Vijaykumar, MapReduce
with communication overlap (MaRCO), J. Parallel Distrib. Comput. 73 (5)
(2013) 608–620.

[7] Minghong Lin, Li Zhang, Adam Wierman, Jian Tan, Joint optimization of
overlapping phases in MapReduce, Perform. Eval. 70 (10) (2013) 720–735.

[8] T. Sandholm, K. Lai, Dynamic proportional share scheduling in hadoop, in:
Proceedings of the 15th Workshop on Job Scheduling Strategies for Parallel
Processing, 2010, pp.110–131.

[9] M. Zaharia, D. Borthakur, J.S. Sarma, K. Elmeleegy, S. Shenker, I. Stoica, Delay
scheduling: a simple technique for achieving locality and fairness in cluster
scheduling, in: Proceedings of the 5th European Conference on Computer
systems, 2010, pp. 265–278.

[10] Abhishek Verma, Ludmila Cherkasova, Roy H. Campbell, Orchestrating an
ensemble of MapReduce jobs for minimizing their makespan, IEEE Trans.
Depend. Secure Comput. (2013) 314–327.

[11] Kristi Morton, Magdalena Balazinska, Dan Grossman, Paratimer: a progress
indicator for mapreduce DAGs, in: Proceedings of the 2010 International
Conference on Management of Data, 2010, pp. 507–518. http://dx.doi.org/10.
1145/1807167.1807223.
[12] Hameed Hussain, Saif Ur Rehman Malik, Abdul Hameed, Samee Ullah Khan,
Gage Bickler, Nasro Min-Allah, Muhammad Bilal Qureshi, Limin Zhang, Yongji
Wang, Nasir Ghani, Joanna Kolodziej, Albert Y. Zomaya, Cheng-Zhong Xu,
Pavan Balaji, Abhinav Vishnu, Frédéric Pinel, Johnatan E. Pecero, Dzmitry
Kliazovich, Pascal Bouvry, Hongxiang Li, LizheWang, Dan Chen, Ammar Rayes,
A survey on resource allocation in high performance distributed computing
systems, Parallel Comput. 39 (11) (2013) 709–736.

[13] Yuan Luo, Beth Plale, Hierarchical MapReduce Programming Model and
Scheduling Algorithms, in: Cluster Computing and the Grid, IEEE International
Symposium on, pp. 769–774.

[14] Joanna Kolodziej, Samee Ullah Khan, Lizhe Wang, Aleksander Byrski, Nasro
Min-Allah, Sajjad Ahmad Madani, Hierarchical genetic-based grid scheduling
with energy optimization, Cluster Comput. 16 (3) (2013) 591–609.

[15] Hisham Mohamed, Stéphane Marchand-Maillet, MRO-MPI: MapReduce
overlapping using MPI and an optimized data exchange policy, Parallel
Comput. 39 (12) (2013) 851–866.

[16] Abhishek Verma, Ludmila Cherkasova, Roy H. Campbell, Two sides of a coin:
optimizing the schedule of MapReduce jobs to minimize their makespan and
improve cluster performance, in: 2012 IEEE 20th International Symposium
on Modelling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), pp. 11–18.

[17] Zhang Xiaohong, Ju Shui, Jiao Zhibin, A scheduling method based on deadlines
in MapReduce, in: Proceedings of the 2011 International Conference on
Electrical, Information Engineering and Mechatronics (EIEM), pp. 1585–1592.

[18] Zhuo Tang, Junqing Zhou, Kenli Li, Ruixuan Li, A MapReduce task scheduling
algorithm for deadline constraints, Cluster Comput. 16 (4) (2013) 651–662.

[19] Peng Lu, Young Choon Lee, Chen Wang, Bing Bing Zhou, Junliang Chen, Albert
Y. Zomaya, Workload characteristic oriented scheduler for MapReduce, in:
2012 IEEE 18th International Conference on Parallel and Distributed Systems
(ICPADS), pp. 156–163.

[20] J. Polo, Y. Becerra, D. Carrera, M. Steinder, I. Whalley, J. Torres, E. Ayguade,
Deadline-based MapReduce workload management, IEEE Trans. Netw. Serv.
Manag. 10 (2) (2013) 231–244.

[21] J. Berliska, M. Drozdowski, Scheduling divisible MapReduce computations,
J. Parallel Distrib. Comput. 71 (3) (2011) 450–459.

[22] J. Berlinska, M. Drozdowski, Heuristics for multi-round divisible loads
scheduling with limited memory, Parallel Comput. 36 (4) (2010).

[23] Mohammad Hammoud, M. Suhail Rehman, Majd F. Sakr, Center-of-gravity
reduce task scheduling to lower MapReduce network traffic, in: 2012 IEEE 5th
International Conference on Cloud Computing (CLOUD), pp. 49–58.

[24] Lizhe Wang, Jie Tao, Rajiv Ranjan, Holger Marten, Achim Streit, Jingying Chen,
Dan Chen, G-Hadoop: MapReduce across distributed data centers for data-
intensive computing, Future Gener. Comput. Syst. 29 (3) (2013) 739–750.

[25] Saba Sehrish, Grant Mackey, Pengju Shang, Jun Wang, John Bent, Supporting
HPC analytics applications with access patterns using data restructuring and
data-centric scheduling techniques inMapReduce, IEEE Trans. Parallel Distrib.
Syst. (2013) 158–169.

[26] Jiayin Li, Meikang Qiu, Zhong Ming, Gang Quan, Xiao Qin, Zonghua Gu,
Online optimization for scheduling preemptable tasks on IaaS cloud systems,
J. Parallel Distrib. Comput. 72 (5) (2012).

[27] Eunji Hwang, Kyong Hoon Kim, Minimizing cost of virtual machines for
deadline-constrained MapReduce applications in the cloud, in: 2012 13th
IEEE/ACM International Conference on Grid Computing (GRID), pp. 130–138.

[28] Zhifeng Xiao, Yang Xiao, Achieving accountable MapReduce in cloud
computing, Future Gener. Comput. Syst. 30 (2014) 1–13.

[29] Nitesh Maheshwari, Radheshyam Nanduri, Vasudeva Varma, Dynamic energy
efficient data placement and cluster reconfiguration algorithm forMapReduce
framework, Future Gener. Comput. Syst. 28 (1) (2012) 119–127.

[30] Xiaoli Wang, Yuping Wang, An energy and data locality aware bi-level
multiobjective task scheduling model based on MapReduce for cloud
computing, in: 2012 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT), pp. 648–655.

[31] Balaji Palanisamy, Aameek Singh, Ling Liu, Bryan Langston, Cura: a cost-
optimized model for MapReduce in a cloud, in: 2013 IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), pp. 1275–1286.

Zhuo Tang received the Ph.D. in computer science from
Huazhong University of Science and Technology, China, in
2008. He is currently an assistant professor of Computer
science and Technology at Hunan University. His research
interests include security model, parallel algorithms and
resources scheduling for distributed computing systems,
Grid and Cloud computing. He is a member of CCF.

http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref3
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref4
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref6
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref7
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref10
http://dx.doi.org/10.1145/1807167.1807223
http://dx.doi.org/10.1145/1807167.1807223
http://dx.doi.org/10.1145/1807167.1807223
http://dx.doi.org/10.1145/1807167.1807223
http://dx.doi.org/10.1145/1807167.1807223
http://dx.doi.org/10.1145/1807167.1807223
http://dx.doi.org/10.1145/1807167.1807223
http://dx.doi.org/10.1145/1807167.1807223
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref12
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref14
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref15
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref18
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref20
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref21
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref22
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref24
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref25
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref26
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref28
http://refhub.elsevier.com/S0167-739X(14)00159-9/sbref29


60 Z. Tang et al. / Future Generation Computer Systems 43–44 (2015) 51–60
Lingang Jiang is working towards the Master degree at
the College of Information Science and Engineering, Hunan
University of China. His research interests include mod-
eling and scheduling for distributed computing systems,
Parallel algorithms.

Junqing Zhou is working towards the Master degree at
the College of Information Science and Engineering, Hunan
University of China. His research interests include mod-
eling and scheduling for distributed computing systems,
Parallel algorithms.
Kenli Li received the Ph.D. in computer science from
Huazhong University of Science and Technology, China,
in 2003. He was a visiting scholar at University of Illinois
at Champaign and Urbana from 2004 to 2005. Now He is
a professor of Computer science and Technology at Hu-
nan University, associate director of National Supercom-
puting Center in Changsha. His major research includes
parallel computing, Grid and Cloud computing, and DNA
computer. He has published more than 70 papers in in-
ternational conferences and journals, such as IEEE TC, IEEE
TPDS, JPDC, ICPP, CCGrid. He is an outstanding member of

CCF.

Keqin Li received the B.S. degree in computer science from
Tsinghua University, Beijing, in 1985 and the Ph.D. degree
in computer science from the University of Houston in
1990. He is currently a full professor of computer science
in the Department of Computer Science, State University
of New York, New Paltz. His research interests are mainly
in the design and analysis of algorithms, parallel and
distributed computing, and computer networking, with
particular interests in approximation algorithms, parallel
algorithms, job scheduling, task dispatching, load balanc-
ing, performance evaluation, dynamic tree embedding,

scalability analysis, parallel computing using optical interconnects, optical net-
works, and wireless networks. He has more than 200 research publications. He is a
senior member of the IEEE, the IEEE Computer Society, and the ACM.


	A self-adaptive scheduling algorithm for reduce start time
	Introduction
	Related work
	Problem analysis
	A self-adaptive reduce scheduling algorithm
	Runtime analysis of MapReduce jobs
	An advanced reduce scheduling algorithm

	Experimental evaluation
	The experimental benchmarks
	The experimental environment
	Completion time evaluation
	Average response time evaluation

	Conclusion
	Acknowledgments
	References


