
1 23

Cluster Computing
The Journal of Networks, Software Tools
and Applications

ISSN 1386-7857

Cluster Comput
DOI 10.1007/s10586-015-0426-z

CRFs based parallel biomedical named
entity recognition algorithm employing
MapReduce framework

Zhuo Tang, Lingang Jiang, Li Yang,
Kenli Li & Keqin Li

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Cluster Comput
DOI 10.1007/s10586-015-0426-z

CRFs based parallel biomedical named entity recognition
algorithm employing MapReduce framework

Zhuo Tang · Lingang Jiang · Li Yang · Kenli Li ·
Keqin Li

Received: 6 October 2014 / Revised: 4 January 2015 / Accepted: 10 January 2015
© Springer Science+Business Media New York 2015

Abstract As the rapid growth of the biomedical litera-
ture, the model training time in biomedical named entity
recognition increases sharply when dealing with large-scale
training samples. How to increase the efficiency of named
entity recognition in biomedical big data becomes one of the
key problems in biomedical text mining. For the purposes
of improving the recognition performance and reducing the
training time, this paper proposes an optimization method
for two-phase recognition using conditional random fields.
In the first stage, each named entity boundary is detected to
distinguish all real entities. In the second stage, we label the
semantic class of the entity detected. To expedite the training
speed, in these two phases, we implement the model training
process on a parallel optimization program framework based
on MapReduce. Through dividing the training set into several
parts, the iterations in the training algorithm are designed as
map tasks which can be executed simultaneously in a cluster,
where each map function is designed to complete the cal-
culation of a gradient vector component for each part in the
training set. Our experiments show that the proposed method
in this paper can achieve high performance with short train-
ing time, which has important implications for the current
biological big data processing.

Z. Tang (B) · L. Jiang · K. Li
College of Information Science and Engineering,
Hunan University, Changsha 410082, China
e-mail: ztang@hnu.edu.cn

L. Yang
College of Computer and Communication Engineering, Changsha
University of Science and Technology, Changsha 410004, China

K. Li
Department of Computer Science, State University of New York,
New Paltz, NY 12561, USA

Keywords Biomedical big data · Conditional random
fields · MapReduce · Named entity recognition · Parallel
algorithm

1 Introduction

With all kinds of wide applications of electronic texts in this
era of information explosion, vast data have brought serious
challenges for people to efficiently obtain useful informa-
tion. People urgently need some automatic tools instead of
using labor intensive artificial term lookup methods, which
has given rise to the emergence of text mining technologies
[1].

Text mining, which is recognized as the key to auto-
matic acquisition of information, refers to the process of
deriving high-quality information that is implicit, previously
unknown, and potentially useful from massive data. It is
an interdisciplinary field that is related to natural language
processing (NLP), information retrieval, information extrac-
tion, data mining, computational linguistics, machine trans-
lation, block analysis, and so on.

Named entity recognition (NER) is a critical step for text
mining. It is a subtask that seeks to locate and classify atomic
elements with some special significance in text into prede-
fined categories. The process of NER systems is structured as
taking an unannotated block of text, and then producing an
annotated block of text which highlights where the named
entities are. The annotations are usually marked by XML
ENAMEX elements, following the format developed for the
Message Understanding Conference in the 1990s [2].

At present, biomedical literature has an enormous quan-
tity and continues to increase at high speed. As one of the
most concerned areas, papers on biomedicine have been pub-
lished in a huge amount, reaching an average of 600,000 or

123

Author's personal copy

Cluster Comput

more per year. The currently most authoritative biomedical
literature database Medical Literature Analysis and Retrieval
System Online (MEDLINE) in American National Library of
Medical (NLM) has included the information of more than
7,000 kinds of important biomedical journals published in
over 70 countries and regions since 1966, including more
than 18 million articles [3]. However, keyword searching in
MEDLINE or Internet can only find relevant files list, so that
a lot of valuable information contained in the text can not be
directly shown to the user. Therefore, effective text mining
for vast biomedical data analysis is an imminent task.

Research emphasis on biomedical text mining is mainly
composed of two aspects, i.e., information extraction and
data mining. Specifically, it includes biological named entity
recognition (Bio-NER), synonyms and abbreviations iden-
tification, relation extraction, hypothesis generation using
the reasoning relationship, text classification and integration
framework of above work, and so on. This paper focuses on
the study of Bio-NER that aims to help molecular biologists
recognize and classify professional instances and terms, such
as protein, DNA, RNA, cell_line, and cell_type.

Bio-NER is the precondition of subsequent work, such as
extracting implicit semantic relation and background of bio-
logical process. However, because of its unique properties,
unstable quantity, unified naming rules, complex form, and
the existence of ambiguity, NER in biomedical field is not
mature enough, short of effect as in other areas.

On the other hand, most Bio-NER systems are based on
machine learning which need multiple iterative calculation
from training data to create the model. Therefore, it is com-
putationally intensive and seriously increases training time.
In particular, when facing large-scale training samples in
biomedical big data, the model training time will increase
sharply [4]. It is natural to look into distributed systems and
parallel methods to speed up the recognition process.

This paper presents a two-phase approach based on condi-
tional random fields (CRFs) to improve the performance, and
proposes an optimal algorithm for the model training process
based on MapReduce to reduce the time consumption. Our
approach divides the Bio-NER task into two sub-tasks, i.e.,
entity boundary detection and semantic class labeling. In the
first phase, boundary of each entity is detected, in order to
locate the real entities. In the second phase, entities detected
are labeled into five classes: protein, DNA, RNA, cell_line,
and cell_type. Meanwhile, in order to cope with the slow con-
vergence speed of the training algorithm which contributes
largely to the training time, we optimize the model train-
ing process based on MapReduce. In the training algorithm
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS), the first main step of each iteration is to calculate
the gradient vector ∇Li . Through analyzing the formula, we
have found that the calculation of each component of ∇Li

can be linked with an ordered pair in the training data which is

mutually independent. So we can split the calculation process
into several Map tasks and summarize the results by a Reduce
task. In addition, performance in the cases of different sizes
of training samples, different numbers of map and compute
nodes are studied, respectively. Experiments carried out on
JNLPBA 2004 datasets show that the method outperforms
most of the state-of-the-art systems and has short training
time, especially for large-scale training samples with appro-
priate Maps and nodes.

The remaining sections of this paper are organized as fol-
lows. Section 2 reviews the related work. Section 3 describes
our two-phase model based on CRFs and the useful feature
sets in detail. Section 4 develops the MapReduce algorithm
for the training process. Section 5 presents our experiments
and the results. Finally, we conclude the paper in Sect. 6.

2 Related work

Current methods for Bio-NER can be divided into three cat-
egories, i.e., dictionary-based methods, heuristic rule-based
methods [5], and statistical machine learning methods [6].
Compared with the first two methods, machine learning
has achieved better performance in text mining. There have
been many attempts to develop machine learning techniques
to identify named entities in molecular biology, including
Hidden Markov Model (HMM), Support Vector Machine
(SVM), Maximum Entropy Markov Model (MEMM) [7],
and CRFs [8,9]. However, one-phase approaches are widely
adopted in most of the systems. According to their methods,
an output label is represented by combining a region infor-
mation B/I/O with a semantic class C (such as protein, DNA,
RNA, cell_line, cell_type), which increases the number of
features due to the increased number of labels. Especially,
the training time will also be substantially longer.

Some researchers have tried to improve this situation.
They have studied the efficiency of Bio-NER by using two-
phase methods or exploring more helpful features [10,11].
Lee et al. proposed a method of two-phase Bio-NER based on
SVMs and post-processing with dictionary-lookup in 2003
[12]. They used a SVM classifier and a simple dictionary
in the first phase and chose the SVMs in the second phase.
According to their experiments on GENIA corpus, the accu-
racy of the identification and the classification are about 79.9
and 66.5 %, respectively. Kim et al. used CRFs and ME for
their two subtasks [13]. They selected separately a discrimi-
native feature set for each subtask. Furthermore, a rule-based
post-processing which was implemented using a finite state
transducer was used to refine the results from the model based
on machine learning. Their experiments [14] compared the
results of CRFs and ME models and drew the conclusion that
the CRFs-based model outperforms the ME-based model.
The best performance they have obtained was 71.19 % by

123

Author's personal copy

Cluster Comput

CRFs model with post-processing. Settles [9] presented a
framework for simultaneously recognizing occurrences of
protein, DNA, RNA, cell_line, and cell_type entity classes
using CRFs with a variety of traditional and useful features,
and showed that this approach can achieve an overall F1 mea-
sure around 70. However, from the research of Li et al. [15],
we have known that most one phase approaches need 4–5 h
in training process, while two-phase approaches reduce 3 h
around, facing about only 15 MB data.

Biomedical literatures are typical big data, a large and
complex collection of datasets characterized by four V’s
(volume, variety, veracity, and velocity), is difficult to deal
with using traditional data processing algorithms and mod-
els. Wang et al. proposed a dictionary learning algorithm,
which extends the classical method that uses the K-means
and Singular Value Decomposition (K-SVD) algorithm by
incrementally updating atoms, will ably represent the spa-
tiotemporal remote sensing of Big Data and do so both effi-
ciently and sparsely [16]. Recently, the experimental strat-
egy for two-phase Bio-NER [14] and computational require-
ments for large-scale data-intensive analysis of big data have
grown significantly. There are two effective parallel imple-
mentations for CRFs currently, the CRFs based on Message
Passing Interface (MPI) and the CRFs based on Graphics
Processing Units (GPU). However, they are not suitable for
large volumes of biomedical big data in data-intensive appli-
cations. The strongest weakness of MPI is communication
latency in a big data environment, and it is programming
complex method, so that MPI for CRFs shows low perfor-
mance for big data parallel processing. Due to the capacity
limits of global memory and the bottleneck of data trans-
mission for big data applications, GPU for CRFs based on
CUDA programing also shows low performance. Hence, they
are not good choices for current parallel CRFs with large-sale
of Bio-NER in this paper’s research plot.

At present, MapReduce, introduced by Google in 2004, is
an excellent model for distributed computing. It has emerged
as an important and widely used programming model for dis-
tributed and parallel computing, due to its ease of use, gen-
erality, and scalability. MapReduce Framework divides big
data set into several parts called split block and divides the
calculation problem of large amount of data into two stages,
Map and Reduce. In Map stage, many map tasks are par-
allel executed, and every map process one split block and
parses it as 〈key, value〉 sets. In Redcue stage, reduce tasks
will get all the processing 〈key, value〉 sets from map tasks,
and then put all the combination results and returns to the
output. It is worth noting that each map operation is rela-
tively independent, and all of the map tasks are run in parallel
[17]. Meanwhile MapReduce processing can provide part of
the function of fault tolerance and error recovery. When a
map task or reduce task fails, the corresponding work will be
rearranged, thus it will not affect the continuity of work. So

MapReduce is able to handle large amount of data processing
problem which is difficult to use general servers.

Now it is popular in text mining of various applica-
tions [18], especially Natural Language Processing (NLP)
and Machine Learning (ML), as the MapReduce para-
digm has emerged as a highly successful programing model
for large-scale data-intensive computing applications [19].
Laclavik et al. presented a pattern of annotation tool based
on MapReduce architecture to process large amount of text
data [20]. Lin and Dyer discussed the processing method
of data intensive text based on MapReduce, such as paral-
lelization of EM algorithm and HMM model [4]. Wang et
al. designed a MapReduce framework G-hadoop that aims
to enable largescale distributed computing across multiple
clusters[21]. Whitney et al. implemented a distributed per-
ceptron algorithm training on a HPC cluster, and examined
two topologies for the combination of separately trained
weight vectors, and found that the choice which duplicates
computation leads to shorter runtime [22]. However, little
research on CRFs based on MapRedcue has been launched,
especially for the Bio-NER application. That is because
highly iterative of CRFs algorithm leading to difficulties in
parallel and the complex semantics of biomedical named
entity itself. In this paper, we give the solution to fill the
void.

3 Two-phase recognition based on CRFs

3.1 Conditional random fields (CRFs)

Bio-NER can be thought of as a sequence segmentation
problem, in which each word is a token in a sequence to
be assigned a label such as protein, DNA, RNA, cell_line,
cell_type, or others. Conditional random fields (CRFs) is a
sequence data labeling model based on statistical approaches.
As an undirected graphical model which encodes the con-
ditional probability distribution, it represents a conditional
model P(y|x), which uses a Markov random field, with nodes
corresponding to elements of the structured object y, and
potential functions that are conditional on (features of) X.
CRFs is well suited for sequence analysis, and in particular,
has been shown to be useful in part-of-speech tagging and
named entity recognition task [23].

More often than not, linear chain CRFs that corresponds
to a conditionally trained finite-state machine is used in Bio-
NER application [24], shown in Fig. 1.

Following Lafferty et al. [23], the conditional probability
of the state output sequence y for a given input sequence x
like above is

P(y|x) = 1

Z(x)
exp

(
n∑

i=1

K∑
k=1

λk fk(x, i, yi−1, yi)

)
, (1)

123

Author's personal copy

Cluster Comput

Fig. 1 Linear chain CRFs model

Z(x) =
∑

y

exp

(
n∑

i=1

K∑
k=1

λk fk(x, i, yi−1, yi)

)
, (2)

where Z(x) is the normalization factor, fk(x, i, yi−1, yi)
K
k=1

are feature functions, λk is a weight of a feature, and yi−1,
yi denote the previous and the current states, respectively.

The process of model training is to find the maximum
likelihood of ordered pairs (xi , yi) in training set T =
(xi , yi)

M
i=1, which is in pursuit of the decent value of λ in

fact. And the labeling for a new sequence in test set can be
done by Viterbi algorithm [25].

3.2 Features of entity boundary detection

Entity boundary detection, which is the first phase of our Bio-
NER task, is to label terms inside entities with C and outside
entities with O, respectively. Similar to previous NER work
[26], we use the features which are very easy to derive for
the first phase. The features are listed below.

1. Word features The current word and its adjacent words
have been proved to play an important role in most NER
work. We use a window of size 5 which consists of the current
word, the two preceding words, and the two following words.
From experiments carried out on window sizes 3, 5, and 7,
respectively, a window size more than 5 not only increases
the dimension of features, but also degrades the value of F1

score. When window size is 3, the F1 score also degrades.
This demonstrates that the second preceding word and the
second following word are helpful features. To reduce the
number of features, all the word features are lower-cased.
Another feature which has a binary value for capitalization
will be compensated.

2. Capitalization and digit features For capitalization, a
few binary features are defined corresponding to initial cap-

ital, all capital, capital in inner and initial capital then mix.
For digit, a few binary features are defined corresponding
to only digit, digit with special character, initial digit then
alphabetic, and digit in inner.

3. Prefix and suffix features Prefixes and suffixes are
indicative for identifying NEs. The length of the prefixes and
suffixes is very significant. If the length is too long or too
short, then the feature would not be useful. During the exper-
iments, we have used all suffixes and prefixes with length up
to 5.

4. Part-of-speech features Part-of-speech features are also
vital in the NER task. In our experiments, GENIA tagger v3.0
is applied to get POS features. The tagger is specifically tuned
for biomedical documents such as MEDLINE abstracts. The
GENIA tagger is trained not only on the Wall Street Journal
corpus but also on the GENIA corpus and the PennBioIE cor-
pus, so the tagger works well on various types of biomedical
literature. The reported POS tagging accuracy of the tagger
is 98.26 % on GENIA corpus. The POS values of the current,
the previous two, and the next two words have been used in
our experiments.

5. Word normalization features In the Bio-NER task, there
are many words which are different from the words in the
newswire domain. For example, the word “CD28” is a name
of protein. The word “CD28” is composed of the two capi-
tals and two digits. Words similar to the word “CD28” tend
to be NEs. In our experiments, we have two types of word
normalization. Capitalized characters, small characters, and
consecutive digits are replaced by A, a, and 0, respectively.
The word “CD28” will be normalized as AA00. To classify
the similar words better, we also use a short normalization.
The AA00 is shortened as A0.

6. Previous NE tags The previous NE tags are helpful for
the target NEs. We have used two previous tags as features.

7. Trigger word features Some verbs preceding to NEs will
deliver useful information about the NE class. For example,
the word “activate” often occurs previous to NEs. We extract
these trigger words automatically from the training corpus
based on their frequency of occurrences.

8. Keywords features Many words which occur frequently
as entities contribute to the NER task. We automatically
extract the top 200 frequent ones as the keywords list from the
training data. If the entity is in the keywords list, the binary
feature is set to 1; otherwise, it is set to 0.

3.3 Features of semantic class labeling

Semantic class labeling is the second phase. The task is to
label the entities detected in the first phase into 5 NE cate-
gories: protein, RNA, DNA, cell_line, and cell_type. In addi-
tion to the features described in Sect. 3.2, we also use the
following four features for CRFs.

123

Author's personal copy

Cluster Comput

Fig. 2 An example of a segment of a sentence

1. Input features The input features are the results of entity
boundary detection.

2. Category-noun features Nouns are very crucial to the
category of the NEs because NEs are nouns. Some nouns are
not frequent, but they can recognize the category directly.
That is, all the occurrences of the noun are belonging to
the same category. For example, “receptor” was classified
into protein or DNA. The category of the noun “receptor”
was according to the context information. The noun “phos-
pholipase” was classified as protein almost at every occur-
rence and it is a category noun. All entities in our experiment
are classified into five types: protein, RNA, DNA, cell_line,
and cell_type. For each class, the category nouns which can
decide the class of themselves are selected. For a particu-
lar word wi , the following equation measures the fraction
p j (wi) of the word belonging to a class C j :

p j (wi) = occurrences of wi is a NE of class C j

total occurrences of wi in corpus
. (3)

Whether a word is selected for a class is decided according to
the value p j (wi). If the value p j (wi) is greater than 0.9, the
word wi will be considered as a category noun and be added
to the category-noun list of class C j . Five binary features
of the word are defined for these five classes. For class C j ,
the binary feature is defined as having value 1 if the word
belongs to its category-noun list; otherwise, 0 is given.

3. Adjacent-noun features Some words which occur as
adjacent nouns appear to be helpful for the recognition of
the category for the entities. For example, the NEs which
have the word “phospholipase” as their adjacent nouns are
classified into protein. For each class, the adjacent nouns are
selected as features. In our experiments, the adjacent nouns
are the two preceding or two following nouns of the target
word. A segment of a sentence is shown in Fig. 2. The word
“A2” has an adjacent noun “phospholipase”, and this “A2”
is classified into a protein. If a particular word wi has an
adjacent noun as a category noun, the word wi will be added
to the adjacent-noun list of the corresponding class. Binary
features are defined for each class.

4. Combined features Some words are not category nouns,
but they are indeed helpful with the aid of the other features.
If the value of p j (wi) is lower than 0.9, the word wi will not
be added to the category-noun list of class C j . For example,
the value of “enhancer” belonging to the class DNA is 0.66.
It is recognized as an entity for the class DNA or protein.
Sometimes, “enhancer” is not recognized as an entity. But if
the digit feature of the preceding words of “enhancer” is 1
(e.g., HIV-1 enhancer), it is an entity for DNA. The combined
features supplement category-noun features.

4 MapReduce for the training process

4.1 Parameter estimation

Parameter estimation of the model which is to calculate the
parameter λ is the major part of the training process, and
the most commonly used method is maximum likelihood
estimation. However, on the other hand, when confronting
large-scale training data, the parameter estimation process
is complicated and slow, which will tremendously increase
the time consumption. If we speed up the process of the
parameter λ calculation, we would cut down the training time
[27,28].

Presume that every (xi , yi) ∈ T = (xi , yi)
M
i=1 is indepen-

dently and identically distributed. Then the log-likelihood
function of the training data T will be shown below:

L(λ) =
∑

T

log P(y|x). (4)

For linear chain CRFs as

P(y|x) = 1

Z(x)
exp

(
n∑

i=1

K∑
k=1

λk fk(x, i, yi−1, yi)

)
,

the log-likelihood function should be

L(λ) =
∑

T

log

(
1

Z(x)
exp

(
n∑

i=1

K∑
k=1

λk fk(x, i, yi−1, yi)

))

=
∑

T

(
n∑

i=1

K∑
k=1

λk fk(x, i, yi−1, yi)− log Z(x)

)
. (5)

To find the parameter λ to make convex function L(λ) reach
the maximum, we should make its gradient vector

∇L =
(

∂L

∂λ1
,

∂L

∂λ2
, . . . ,

∂L

∂λk

)

to be
−→
0 , and then try to seek the parameter λ.

123

Author's personal copy

Cluster Comput

The partial derivative of each parameter λk will be calcu-
lated like this:

∂L(λ)

∂λk
=

∑
T

(
n∑

i=1

fk(x, i, yi−1, yi)− ∂

∂λk
log Z(x)

)

=
∑

T

(
n∑

i=1

fk(x, i, yi−1, yi)− 1

Z(x)
· ∂ Z(x)

∂λk

)

=
∑

T

(n∑
i=1

fk(x, i, yi−1, yi)

− 1

Z(x)

∑
y

exp

(
n∑

i=1

K∑
k=1

λk fk(x, i, y′i−1, y′i)
)

n∑
i=1

fk(x, i, y′i−1, y′i)
)

=
∑

T

(n∑
i=1

fk(x, i, yi−1, yi)

−
∑

y

1

Z(x)
exp

(
n∑

i=1

K∑
k=1

λk fk(x, i, y′i−1, y′i)
)

n∑
i=1

fk(x, i, y′i−1, y′i)
)

=
∑

T

(
n∑

i=1

fk(x, i, yi−1, yi)

−
∑

y

P(y′|x)

n∑
i=1

fk(x, i, y′i−1, y′i)
)

. (6)

Meanwhile, we introduce a penalty function to solve over-
fitting:

L ′(λ) = L(λ)−
∑

k

λ2
k

2σ 2 . (7)

And the partial derivative of each parameter λk for the log-
likelihood function is:

∂L ′(λ)

∂λk
=

∑
T

(
n∑

i=1

fk(x, i, yi−1, yi)

−
∑

y

P(y′|x)

n∑
i=1

fk(x, i, y′i−1, y′i)
)
− λk

σ 2 . (8)

Unfortunately, there is no closed-form solution for search-
ing the target parameter λ by making the above equation to
be zero. As a result, the parameter selection process needs
to use some numerical iteration techniques, such as Gen-
eralized Iterative Scaling Algorithm (GIS), Improved Iter-
ative Scaling Algorithm (IIS), Limited-memory Broyden–
Fletcher–Goldfarb–Shanno Algorithm (L-BFGS) [29], and
so on.

4.2 L-BFGS

In the field of training phase in CRFs machine learning algo-
rithm, one of the most versatile, effective, and widely used
methods is the L-BFGS. Comparing with GIS, IIS and other
training algorithm, L-BFGS [30–32] uses the change of the
gradient to simulate the Hessian matrix at each iteration, so
that it can achieve good results. Each iteration in L-BFGS can
be mainly divided into three steps, and the full description
of the L-BFGS algorithm is described detailedly by Jorge
Nocedal in [33,34]:

– Calculate ∇Li which is on behalf of iteration i of the
gradient vector;

– Select the search direction −→pi = Hi∇Li ;
– Select the step length −→ai which satisfies strong Wolfe

conditions, and finally calculate the estimated parameters
of the next.

4.3 MapReduce scheme

Although MapReduce is an easy-programming parallel
framework for big data [35], it is not easy to comprehensively
parallelize the whole iterative process of L-BFGS. Consid-
ering the iterative nature of overall algorithm L-BFGS, we
choose to optimize each step of the iteration. We propose
an optimization method for calculating the gradient vector
∇Li . The main idea is to use MapReduce to calculate each
component of ∇Li .

For the training data T = (xi , yi)
M
i=1, the gradient vector

of the model:

∇L =
(

∂L

∂λ1
,

∂L

∂λ2
, . . . ,

∂L

∂λk

)

can be gradually obtained by calculating the partial derivative
of each λk iteratively:

λ0 = 0;
∂L ′(λ)

∂λk
=

∑
T

(n∑
i=1

fk(x, i, yi−1, yi)

−
∑

y′
P(y′|x)

n∑
i=1

fk(x, i, y′i−1, y′i)
)
− λk

σ 2 .

(9)

Notice that:
n∑

i=1

fk(x, i, yi−1, yi)

is the expectation of characteristics fk under the empirical
distribution with a given vector −→x in one ordered pair. Its
result can be simply calculated by knowing about the number
of occurrences of fk in the ordered pair.

123

Author's personal copy

Cluster Comput

∑
y′

P(y′|x)

n∑
i=1

fk(x, i, y′i−1, y′i)

is the expectation of characteristics fk under the model dis-
tribution with a given vector −→x in one ordered pair. We use
a dynamic programming method called forward-backward
algorithm to get its result indirectly like employing in HMM.

So we may safely draw the conclusion that it is feasi-
ble to calculate the Eq. (9). It is observed that we can get
the difference between the two expectations for each of the
input sequence in the training set with the condition that
ordered pairs are mutually independent, and then accumu-
late all results. That means we can use MapReduce structure
to get ∂L ′(λ)

∂λk
rapidly.

For MapReduce, the training set T = (xi , yi)
M
i=1 is firstly

divided into several parts. Calculating the expectations of
fk on each part in the training set can be accomplished by
a Mapper() in Hadoop, and the accumulation for the whole
training set by Reducer(). For the post-processing, we add
the difference between the accumulated value and the penalty
term.

The MapReduce plan is divided into four main steps:

– Divide the training set into several parts (see Algorithm
1);

– Map function: Complete the parallel calculation for the
expectations of fk on each part in the training set, and
map all of the samples in the training data to an ordered
pair of (key, value) with keys value being the name of the
training set (see Algorithm 2);

– Reduce function: Use the method of summation of values
for all the ordered pairs with the same key value (see
Algorithm 3);

– Post-processing: Calculate the difference between the
summation and the penalty term (see Algorithm 1).

Algorithm 1 MapReduce Processing for the Parameter Esti-
mation in L-BFGS
Require:

T :the training set (xi , yi)
M
i=1.

M :the predefined number.
D:the intermediate data.
EV :the difference of two expected value.

Ensure:
C Li :component of the goal gradient vector ∇Li .

1: Divide T into m parts: T1, T2, ..., Tm ;
2: //Initial intermediate data
3: D← ∅;
4: MapTask_GetExpectedValue();
5: ReduceTask_GetExpectedValue();
6: //Add the penalty term to correct data
7: C Li ← EV - λk/σ

2. //We use σ 2 = 10

Algorithm 2 SubTask1: Map
Require:

T :the training set (xi , yi)
M
i=1.

D:the intermediate data.
1: MapTask_GetExpectedValue() {
2: for each part of T do
3: key ← name of T ;
4: value ← ∑

Tm
(
∑n

i=1 fk(x, i, yi−1, yi) −∑
y′ P(y′|x)

∑n
i=1 fk

(x, i, y′i−1, y′i));
5: //store (key, value) in the intermediate data D
6: D← D ∪ {(key, value)};
7: end for
8: }

Algorithm 3 SubTask2: Reduce
Require:

D:the intermediate data.
Ensure:

EV :the difference of two expected value.
1: ReduceTask_GetExpectedValue() {
2: EV ← 0;
3: for each (key, value) in D do
4: EV ← EV + value;
5: end for
6: return EV .
7: }

5 Experiments

5.1 Corpus

The JNLPBA 2004 datasets has been used for our experi-
ments. The training set is GENIA corpus v.3.02, which con-
sists of 2000 abstracts that are searched out by MEDLINE
database with using MeSH terms human, blood cells and
transcription factors as the keywords. 404 abstracts of the
test set are also from MEDLINE database. Half of them are
obtained by the same way as the training set, and the other
half are searched out by using MeSH terms blood cells and
transcription factors as the keywords. In our experiments, we
only use the five classes: protein, DNA, RNA, cell_line, and
cell_type as the task does, and the corpus was transformed
into B/I/O format to express entities.

The experiment results are measured with F1 score. As
one of the commonly used evaluation standards, the F1 score
combines precision rate P and recall rate R:

P = T P

T P + F P
, (10)

R = T P

T P + F N
, (11)

where T P is the number of correctly identified named enti-
ties, F P is the number of non-named entities which are

123

Author's personal copy

Cluster Comput

Table 1 Results of the two phases

Phase Class Precision Recall F1 score

Entity boundary detection All 75.22 78.32 76.74

Semantic class labeling Protein 73.92 77.23 75.54

DNA 73.52 71.29 72.39

RNA 64.61 77.69 70.50

Cell_line 60.41 64.29 62.29

Cell_type 77.34 71.27 74.18

All 70.79 76.01 73.31

marked as named entities, and F N is the number of named
entities that the system does not recognize. In many cases,
we need to put them together as F1 score value given below:

F1(P, R) = 2P R

P + R
. (12)

5.2 Results of the two-phase recognition approach

As described in Sects. 3.2 and 3.3 in this paper, experiments
for the two-phase tasks are carried out based on CRFs. In
Table 1, we have summarized the results of entity boundary
detection and semantic class labeling, where all the features
described in Sects. 3.3 and 3.3 are used to help increase the
performance.

Next, we make comparisons between our system and the
top-ranked systems on the JNLPBA 2004 shared task in
Table 2. In both phases, we get higher precision and recall
rates. Because of no post-processing, our two-phase CRFs
model obtains a lower F1 score of 73.31 % than the CRFs
model with post-processing algorithms which has 74.31 %
in F1 score. Compared to the F1 score 73.06 % of the CRFs
model without post-processing algorithms, our CRFs model
has higher F1 score due to the useful features. In a word,
Table 2 shows our system outperforms most systems.

5.3 Results of the optimization approach based on
MapReduce

Now there are many Google’s MapReduce open source
implement versions, for example Apache Hadoop, Cloud-
era distribution including Hadoop (CDH), Hortonworks
Data Platform (HDP), G-Hadoop [38] etc. As presented in
Sect. 3.3, we adopt Apache Hadoop framework which has
been widely used in industry of the whole world [39]. All the
features described above are used in the two phases. In the
experiments, Hadoop 1.2 is deployed in a cluster with five
nodes, and the size of its data block is limited to 64 MB. The
hardware configuration is listed in Table 3, and the configu-
rations of the Hadoop cluster are in Table 4.

It is hard to get existing large-scale corpus with labeled
information, so we use our own production. We copy from

Table 2 Comparisons with other top-ranked experiments

Method Precision Recall F1 score

Our two-phase method 70.79 76.01 73.31

Li et al. [6] 70.59 75.71 73.06

Zhou and Su [36] 69.42 75.99 72.55

Okanohara et al. [37] 70.35 72.65 71.48

Kim and Yoon [14] 72.77 69.68 71.19

Finkel et al. [7] 71.62 68.56 70.06

Table 3 The hardware configuration

Level CPU Memory Amount

Slave 4-core, 3.07 GHz 4G 4

Master 4-core, 2.7 GHz 4G 1

Table 4 The hardware configuration

Configuration items Cofiguration
properties

Value

Map slots mapred.tasktracker.map.
tasks.maximum

4

Reduce slot mapred.tasktracker.
Reduce.tasks.maximum

2

Copy thread mapred.reduce.
parallel.copies

5

HDFS replications dfs.replication 3

Input split size dfs.block.size 64 MB

the GENIA corpus several times to the appropriate test scale.
This method does not change the accuracy, which is impor-
tant and necessary for our time research.

Our experiments were carried out on a single machine
and a Hadoop cluster with different scale of training sam-
ples, respectively. For clearly observing the results, we divide
our experimental results into several charts to show different
measures. In Fig. 3, we compare the training time in the two
phases of the unoptimized and optimized methods. Then, in
Fig. 4, we calculate the training speed and make comparison
between them. Finally, the parallel speedup is given in Fig. 5.

It is obvious from Fig. 3 that the training time of the two
phases increases with the expansion of training samples in
both unoptimized and optimized methods. In addition, in the
second stage, the model training process has more training
time than it does in the first stage. It is because the other four
useful features described in Sect. 3.3 played roles.

For small training samples, there is no much difference
between the training times of the unoptimized and opti-
mized methods. When the training samples are limited within
120 MB, the optimized method takes more time to establish
the model. It is mainly due to the communication processing.
Specifically, in the implementation process of MapReduce

123

Author's personal copy

Cluster Comput

Fig. 3 Comparison between
unoptimized and optimized
recognitions (time). a Training
time under small training
samples. b Training time under
large training samples

(a)

(b)

framework, each input data is output to the map-task local
node when it is split and distributed to the corresponding map
task. And then the reduce task will copy output data which
have the same key value from map nodes. The process of data
transmission leads to certain time delay. Moreover, there is
a shuffle processing for data internal sorting after copying.

For large training samples, there is significant difference
between the training times of the unoptimized and optimized
methods. The time of the unoptimized method in the two
phases keeps growing, and the extent of growth is more and
more significant. While using the optimized method, the time
has modest growth especially for large-scale samples. As we
can expect, the increase rate tends to be gentle, and will be
leveled off when samples are enough. Overall, the optimized
method consumed less training time than the unoptimized
method, but it is not obvious when the scale of training sam-
ples is small.

In order to observe and study the relation between the
training speed (MB/s or GB/s) and the size of samples, we
give the corresponding results in Fig. 4 obtained from Fig. 3.

For small data, the training speed decreases with the
expansion of training samples for both optimized or unopti-
mized methods. However, it is gradually stable in the opti-
mized method especially in its second stage, while dropping
in the unoptimized method. On the other hand, when con-
fronting large-scale data, the speed is higher and higher with
training samples enlarging in the optimized method, while
flatten out at a low speed in the unoptimized method. How-
ever, the speed starts decreasing when the data enlarge from

3 to 4 GB. This is largely restricted to the Hadoop cluster
performance and the amount of Map.

In a word, the optimized method has higher training speed
distinctly, especially in large-scale training samples. As the
training samples continue to grow, the restriction of the clus-
ter performance and Maps has show its own role in the par-
allel optimization process.

Figure 5 gives the speedup, which is defined as the ratio
of the sequential processing time to the parallel processing
time, i.e., the ratio of the unoptimized training time to the
optimized training time.

As explained previously, our optimization method does
not show obvious advantage for small data. However, when
facing a large amount of data in parallel, the speed of our
algorithm can make up the time waste caused by the internal
communication delay, and bring larger parallel speedup.

From the above results, it can be seen that when the train-
ing samples are small, the parallel optimization method has
no obvious influence on training time and speed. When the
training sample reaches certain size, the optimized method
has less training time and higher training speed. However,
when facing training samples with larger sizes, the effect of
the optimized method will not be better. So in the next step,
we conduct two other experiments using our methods for
large-scale training samples to explore the influence of the
number of compute nodes and Map in a Hadoop cluster on
the training efficiency.

The following experiments are designed to assess the
impact on training time in the cases of different number of

123

Author's personal copy

Cluster Comput

Fig. 4 Comparison between
unoptimized and optimized
recognitions (speed). a Training
speed under small training
samples. b Training speed under
large training samples

(a)

(b)

Fig. 5 Parallel speedup. a
Speedup under small training
samples. b Speedup under large
training samples

(a)

(b)

compute nodes and Map, with the size of training data being
4GB. In Sect. 3.3, we divide T = (xi , yi)

M
i=1 into m parts,

and each part is put on a map task. So the parameter m can
be used to denote the number of map tasks in this example.
Figure 6 gives the results.

It can be seen from the above experiments that for large-
scale training samples, the training time is cut down again
after increasing the number of cluster nodes and map tasks
m. This demonstrates that Maps and performance of the clus-
ter do affect the training efficiency of the model. When the

123

Author's personal copy

Cluster Comput

Fig. 6 Influence of the number
of Map and compute nodes. a
Different number of nodes. b
Different compute Map

(a)

(b)

number reaches a certain value and continue increasing, the
time will almost certainly be moderate.

6 Conclusion

In this paper, we have proposed a two-phase biomedical
named entity recognition method using CRFs with some
useful features and gave a parallel optimization based on
MapReduce for the training algorithm in detail. Our experi-
ments have shown that the useful feature sets could enhance
the value of F1 score and the MapReduce scheme could
reduce the training time greatly, especially for large-scale
training corpus. However, named entity recognition in bio-
medical field remains lots of challenges and there is still much
room for improvement. For follow-up work, we will focus on
enhanced parallel models and methods for large-scale data
and try to improve the feature sets to get better performance.

Acknowledgments The authors are grateful to the three anonymous
reviewers for their criticism and comments which have helped to
improve the presentation and quality of the paper. This work is sup-
ported by the Key Program of National Natural Science Foundation of
China (Grant No. 61133005), and National Natural Science Foundation
of China (Grant Nos. 61370095,61432005).

References

1. Wikipedia, Text mining [EB/OL]. http://en.wikipedia.org/wiki/
Text_mining. 24 Oct 2013

2. Wikipedia, Named-entity recognition [EB/OL]. http://en.
wikipedia.org/wiki/Named_entity_recognition. 22 Aug 2013

3. Wikipedia, MEDLINE [EB/OL]. http://en.wikipedia.org/wiki/
MEDLINE. 14 Sep 2013

4. Lin, J., Dyer, C.: Data-Intensive Text Processing with MapReduce.
Morgan and Claypool Publishers, San Francisco (2010). doi:10.
2200/S00274ED1V01Y201006HLT007

5. Shen, L., Shen, H., Cheng, L.: New algorithms for efficient mining
of association rules. In: The Seventh Symposium on the Frontiers
of Massively Parallel Computation, pp. 234–241 (1999)

6. Li, L., Zhou, R., Huang, D.: Two-phase biomedical named entity
recognition using CRFs. Comput. Biol. Chem. 33(4), 334–338
(2009)

7. Finkel, J., Dingare, S., Nguyen, H.: Exploiting context for biomed-
ical entity recognition: from syntax to the web. In: Proceedings of
the International Joint Workshop on Natural Language Processing
in Biomedicine and Its Applications (JNLPBA), pp. 88–91 (2004)

8. Wang, H., Zhao, T., Li, S., Yu, H.: A conditional random fields
approach to biomedical named entity recognition. J. Electron.
6(24), 838–844 (2007)

9. Settles, B.: Biomedical named entity recognition using condi-
tional random fields and rich feature sets. In: Proceedings of
the International Joint Workshop on Natural Language Process-
ing in Biomedicine and its Applications (JNLPBA), pp. 104–107
(2004)

10. Li, L., Fan, W., Huang, D.: A two-phase bio-NER system based on
integrated classifiers and multi-agent strategy. IEEE/ACM Trans.
Comput. Biol. Bioinform. (2013). doi:10.1109/TCBB.2013.106

11. Yang, L., Zhou, Y.: Exploring feature sets for two-phase biomed-
ical named entity recognition using semi-CRFs. Knowl. Inf. Syst.
(2013). doi:10.1007/s10115-013-0637-7

12. Lee, K.-J., Hwang, Y.-S., Rim, H.-C.: Two-phase biomedical NE
recognition based on SVMs. In: Proceedings of the ACL Workshop
on Natural Language Processing in Biomedicine (BioMed), pp.
33–40 (2003)

123

Author's personal copy

http://en.wikipedia.org/wiki/Text_mining
http://en.wikipedia.org/wiki/Text_mining
http://en.wikipedia.org/wiki/Named_entity_recognition
http://en.wikipedia.org/wiki/Named_entity_recognition
http://en.wikipedia.org/wiki/MEDLINE
http://en.wikipedia.org/wiki/MEDLINE
http://dx.doi.org/10.2200/S00274ED1V01Y201006HLT007
http://dx.doi.org/10.2200/S00274ED1V01Y201006HLT007
http://dx.doi.org/10.1109/TCBB.2013.106
http://dx.doi.org/10.1007/s10115-013-0637-7

Cluster Comput

13. Kim, S., Yoon, J., Park, K.-M., Rim, H.-C.: Two-phase biomedical
named entity recognition using a hybrid method. In: Proceedings
of the 2nd International Joint Conference (IJCNLP), pp. 646–657
(2005)

14. Kim, S., Yoon, J.: Experimental study on a two phase method
for biomedical named entity recognition. IEICE Trans. Inf. Syst.
7(E90–D), 1103–1110 (2007)

15. Li, Lishuang, Zhou, Rongpeng, Huang, Degen: Two-phase biomed-
ical named entity recognition using CRFs. Comput. Biol. Chem.
33, 334–338 (2009)

16. Wang, L., Ke, L., Liu, P., Ranjan, R., Chen, L.: IK-SVD: dictionary
learning for spatial big data via incremental atom update. Comput.
Sci. Eng. 16(4), 41–52 (2014)

17. Wang, L., von Laszewski, G., Younge, A.J., He, X., Kunze, M.,
Tao, J.: Cloud computing: a perspective study. New Gener. Comput.
28(2), 137–146 (2010)

18. Wittek, P., Darányi, S.: Accelerating text mining workloads in a
MapReduce-based distributed GPU environment. J. Parallel Dis-
trib. Comput. 2(73), 98–206 (2013)

19. Wang, L., Tao, J., Marten, H., Streit, A., Khan, S.U., Kolodziej, J.,
Chen, D.: MapReduce across distributed clusters for data-intensive
applications. In: The 26th IEEE International Parallel & Distributed
Processing Symposium (IPDPS) Workshops 2012: 2004–2011

20. Laclavik, M., Seleng, M., Hluchy, L.: Towards large scale seman-
tic annotation built on MapReduce architecture. Lecture Notes in
Computer Science 3(5103), 331–338 (2008)

21. Wang, L., Tao, J., Ranjan, R., Marten, H., Streit, A., Chen, J., Chen,
D.: G-Hadoop: MapReduce across distributed data centers for data-
intensive computing. Future Gener. Comput. Syst. 29(3), 739–750
(2013)

22. Whitney, M., Clifton, A., Sarkar, A., Fedorova, A.: Making the
most of a distributed perceptron for NLP. In: Pacific Northwest
Regional NLP Workshop, Redmond, Washington, USA (2012)

23. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields:
probabilistic models for segmenting and labeling sequence data.
In: 27th Proceedings of the International Conference on Machine
Learning (ICML), pp. 282–289 (2010)

24. Atkinson, J., Bull, V.: A multi-strategy approach to biological
named entity recognition. Expert Syst. Appl. 39(17), 12968–12974
(2012)

25. Forney, G.D. Jr.: The viterbi algorithm. In: Proceedings of the
IEEE, vol. 3(61), pp. 268–278. Codex Corporation. Newton, MA
(2005)

26. Vijay Sundar Ram, R., Akilandeswari, A., Lalitha Devi, S.: Lin-
guistic features for named entity recognition using CRFs. In: Inter-
national Conference on Asian Language Processing (IALP), pp.
158–161 (2010)

27. Langford, J.: Parallel machine learning on big data, XRDS: cross-
roads. ACM Mag. Stud. 1(19), 60–62 (2012)

28. Meraji, S., Tropper, C.: A machine learning approach for optimiz-
ing parallel logic simulation. In: 39th International Conference on
Parallel Processing (ICPP), pp. 545–554 (2010)

29. Livieris, I.E., Apostolopoulou, M.S., Sotiropoulos, D.G., Sioutas,
S., Pintelas, P.: Classification of large biomedical data using ANNs
based on BFGS method. In: 13th Panhellenic Conference on Infor-
matics (PCI), pp. 87–91 (2009)

30. Munkhdalai, T., Li, M., Kim, T., Namsrai, O.-E., Jeong, S.-p., Shin,
J., Ryu, K.H.: Bio named entity recognition based on co-training
algorithm. In: 26th International Conference on Advanced Infor-
mation Networking and Applications Workshops (WAINA), pp.
857–862 (2012)

31. Zhang, J., Shen, D., Zhou, G., Tan, C.-L.: Enhancing HMM-based
biomedical named entity recognition by studying special phenom-
ena. J. Biomed. Inform. 6(37), 411–422 (2004)

32. Mathur, A., Chakrabarti, S.: Accelerating newton optimization for
log-linear models through feature redundancy. In: 6th International
Conference on Data Mining, pp. 404–413 (2006)

33. Nocedal, J.: Updating quasi-Newton matrices with limited storage.
Math. Comput. 35, 773–782 (1980)

34. Liu, D.C., Nocedal, J.: On the limited memory BFGS method
for large scale optimization. J. Math. Program. B 3(45), 503–528
(1989)

35. Wang, L., Chen, D., Ranjan, R., Khan, S.U., Kolodziej, J., Wang, J.:
Parallel processing of massive EEG data with MapReduce. In: The
18th IEEE International Conference on Parallel and Distributed
Systems (ICPADS), pp. 164–171 (2012)

36. Guodong, Z., Jian, S.: Exploring deep knowledge resources in bio-
medical name recognition. In: Proceedings of the International
Joint Workshop on Natural Language Processing in Biomedicine
and Its Applications (JNLPBA), pp. 96–99 (2004)

37. Okanohara, D., Miyao, Y., Tsuruoka, Y., Tsujii, J.: Improving the
scalability of semi-Markov conditional random fields for named
entity recognition. In: Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th Annual Meeting of
the ACL, pp. 465–472 (2006)

38. Zhao, Jiaqi, Wang, Lizhe, Tao, Jie, Chen, Jinjun, Sun, Weiye, Ran-
jan, Rajiv, Kolodziej, Joanna, Streit, Achim, Georgakopoulos, Dim-
itrios: A security framework in G-Hadoop for big data computing
across distributed cloud data centres. J. Comput. Syst. Sci. 80(5),
994–1007 (2014)

39. Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Qin, X.:
Improving MapReduce performance through data placement in het-
erogeneous Hadoop clusters. In: IEEE International Symposium
on Parallel and Distributed Processing, Workshops and Phd Forum
(IPDPSW), pp. 1–9 (2010)

Zhuo Tang received the Ph.D.
in computer science from
Huazhong University of Science
and Technology, China, in 2008.
He is currently an associate pro-
fessor of computer science and
technology at Hunan University.
His research interests include
security model, parallel algo-
rithms and resources scheduling
for distributed computing sys-
tems, grid and cloud computing.
He is a member of CCF.

Lingang Jiang is working
towards the master degree at the
College of Information Science
and Engineering, Hunan Uni-
versity of China. His research
interests include modeling and
scheduling for distributed com-
puting systems, parallel algo-
rithms.

123

Author's personal copy

Cluster Comput

Li Yang received the Ph.D.
in computer science from
Huazhong University of Sci-
ence and Technology, China, in
2013. She is currently an assis-
tant professor of Computer and
Communication Engineering at
Changsha University of Science
and Technology. Her research
interests include bioinformatics,
artificial intelligence, biomedical
text mining.

Kenli Li received the Ph.D.
in computer science from
Huazhong University of Science
and Technology, China, in 2003.
He was a visiting scholar at Uni-
versity of Illinois at Champaign
and Urbana from 2004 to 2005.
Now, he is a professor of Com-
puter science and Technology
at Hunan University, associate
director of National Supercom-
puting Center in Changsha. His
major research includes parallel
computing, grid and cloud com-
puting, and DNA computer. He

has published more than 70 papers in international conferences and
journals, such as IEEE TC, IEEE TPDS, JPDC, ICPP, CCGrid. He is
an outstanding member of CCF.

Keqin Li received the B.S.
degree in computer science from
Tsinghua University, Beijing, in
1985 and the Ph.D. degree in
computer science from the Uni-
versity of Houston in 1990. He
is currently a full professor of
computer science in the Depart-
ment of Computer Science, State
University of New York, New
Paltz. His research interests are
mainly in the design and analy-
sis of algorithms, parallel and
distributed computing, and com-
puter networking, with particular

interests in approximation algorithms, parallel algorithms, job schedul-
ing, task dispatching, load balancing, performance evaluation, dynamic
tree embedding, scalability analysis, parallel computing using optical
interconnects, optical networks, and wireless networks. He has more
than 200 research publications. He is a fellow of the IEEE, and a mem-
ber of the IEEE Computer Society, and the ACM.

123

Author's personal copy

	CRFs based parallel biomedical named entity recognition algorithm employing MapReduce framework
	Abstract
	1 Introduction
	2 Related work
	3 Two-phase recognition based on CRFs
	3.1 Conditional random fields (CRFs)
	3.2 Features of entity boundary detection
	3.3 Features of semantic class labeling

	4 MapReduce for the training process
	4.1 Parameter estimation
	4.2 L-BFGS
	4.3 MapReduce scheme

	5 Experiments
	5.1 Corpus
	5.2 Results of the two-phase recognition approach
	5.3 Results of the optimization approach based on MapReduce

	6 Conclusion
	Acknowledgments
	References

