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Abstract— Private cars, a class of small motor vehicles usually
registered by an individual for personal use, constitute the vast
majority of city automobiles and hence significantly affect urban
traffic. In particular, private cars tend to stop-and-wait (SAW)
in specific regions during daily driving. This SAW behavior
produces a spatiotemporal aggregation effect, which facilitates
the formation of urban hot zones. In this paper, we investigate
the SAW behavior and aggregation effect based on large-scale
private car trajectory data. Specifically, motivated by the first law
of geography, we leverage the kernel density estimation (KDE)
method and extend it to three dimensions to capture the density
distribution of the SAW data. Furthermore, according to the
inherent relationship between the present SAW density and
future SAW aggregation, we propose a 3D-KDE-based prediction
model to characterize the dynamic spatiotemporal aggregation
effect. In addition, we design a modified inertia weight particle
swarm optimization (MIW-PSO) algorithm to determine the
optimal weight coefficients and to avoid local optima during SAW
prediction. Extensive experiments based on real-world private car
SAW data validate the effectiveness of our method for discovering
dynamic aggregation effects, therein outperforming the current
methods in terms of the Kullback-Leibler (KL) divergence, mean
absolute error (MAE), and root mean square error (RMSE).
To the best of the authors’ knowledge, our work is the first to
utilize private car trajectory data to study the aggregation effect
in urban environments, thereby being able to provide new insight
into the study of traffic management and the evolution of urban
traffic.

Index Terms— Aggregation effect, private car, stop-and-
wait (SAW), kernel density estimation, trajectory data.
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I. INTRODUCTION

A. Background and Motivation

IN RECENT years, the ever-increasing number of auto-
mobiles has exerted tremendous pressure through a series

of problems facing modern cities such as municipal trans-
portation services, traffic management and environmental
protection [1]. Meanwhile, the large numbers of vehicles
driving along urban road networks produce a huge volume
of vehicular trajectory data. Therefore, collecting vehicle tra-
jectory and analyzing such information provide a promising
solution to alleviating traffic jams and improving transport
services [2], [3]. Moreover, it creates new opportunities for
understanding people’s travel behaviors and the evolution of
urban traffic [4].

During daily driving, people stop their car when they reach
certain locations [5], which are normally preset destinations
such as locations of employment, shopping areas, residential
areas, and frequented public areas. In addition, cars stay and
wait for certain periods of time since people will spend time
at these places with their own purposes before they come
back to their car and drive away. This travel behavior can be
referred to as stop-and-wait (SAW) and can be observed when
studying the SAW points originating from the trajectory data.
In other words, the so-called SAW behavior directly reflects
people’s travel demands because people need to stop their
car at certain locations and spend time at nearby locations
to conduct their activities. Therefore, people driving in the
city exhibit a specific SAW behavior and hence generate
aggregation effects [6], which in turn lead to a form of hot
zones in urban environments. Further, the SAW data offer
valuable information for understanding the development of
urban traffic, thereby being capable of benefiting trajectory
data mining and urban computing [7], [8].

Note that for urban vehicles, one fact is that the great
majority of private cars, i.e., a class of small motor vehicles
usually registered by an individual and for personal use,
constitute the vast majority of city automobiles. For instance,
with the further industrialization and urbanization of China,
the number of automobiles reached 194 million by the end
of 2016, more than 80 percent of which are private cars [9].
Therefore, this large number of private cars contributes
remarkably to urban problems such as traffic congestion, urban
energy consumption and the emissions of polluting gases [8].
More importantly, private cars drive with a clear purpose
based on the personal travel demands and generate distinctly
different SAW points compared with the other two types of
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vehicles in a city [10]: buses and taxis. Specifically, buses
are designed to carry many passengers; they move along a
predefined route on a preset time schedule and stop at a fixed
location, i.e., bus stations, which are normally determined
by public transportation service providers. Hence, the SAW
behaviors of buses are mostly steady both in terms of travel
time and stopping location. Taxis drive in a city and provide
non-shared rides for a single passenger or small group of
passengers, the SAW behaviors of which are concentrated at
drop-off/pick-up passengers. Unlike buses, the SAW locations
for taxis are completely determined by the passenger, usually
being random and relying on the travel demands of the
passengers for a personal trip. The driving of private cars
is based on personal travel needs; in most cases, it directly
reflects the individual travel demands for people with long-
term use of the vehicle, who are likely the private car owners
or their family members. Moreover, private cars driving in
the city exhibit a certain degree of regularity [11], namely,
their travels are often concentrated in specified areas, such as
residential, workplace and hot spots in the city, which in turn
generate aggregation effects. In other words, large numbers of
vehicles, the majority of which being private cars, drive to the
same areas, and their SAW behaviors lead to the formation of
urban hot zones. In this context, the SAW behaviors obtained
from private car trajectory data best reflect the spatiotemporal
aggregation effect during the evolution of urban traffic.

Currently, research using the trajectory data of private cars is
scarce, especially concerning the SAW behavior. In this paper,
we propose analysis of the characteristics of SAW behaviors
hidden in large-scale trajectory data collected from private
cars and to discover the spatiotemporal aggregation effect.
In particular, this study attempts to provide new thinking to
reveal human travel patterns and optimize the design of traffic
management and urban computing systems.

B. Related Work

The analysis of trajectory data of vehicles and learning
knowledge from the trajectory information have attracted
substantial attention in existing studies. The authors of [12]
use GPS trajectories generated by over 32,000 taxis in Beijing
over 47 days to compute the travel speed of each road segment.
Combining with the speed and traffic volume of the road
segment, they compute the real-time fuel consumption and
exhaust emissions of vehicles running on the road network.
In [13], the authors utilize transit smart card data cover-
ing Oyster transactions across all public transport modes,
including bus and rail, to measure travel behaviors. In [14],
the authors investigate the geocast strategy in bus-based
VANETs and present a geocast routing mechanism with histor-
ical bus trajectories. In [15], the authors propose the headway
adherence as an indicator of regularity and use automatic
vehicle location (AVL) data to analyze the travel mode in a bus
transit network. A novel approach named T-CONV is applied
to model multi-scale trajectories collected from 442 taxis for
a year as two-dimensional images toward achieving precise
prediction [16]. The authors in [17] utilize thousands of
buses equipped with GPS to generate a tremendous amount
of bus data and propose a Bus Trajectory-based Congestion

Identification (BTCI) framework to explore the anomalous
traffic status. In summary, current studies on trajectory data
focus on floating cars or probe vehicles [10] and rarely
consider private cars and their SAW behaviors.

An aggregation effect is generated in areas where the
concentration of points inside is significantly high, which can
reveal valuable information about the underlying environments
such as road-way networks, traffic volumes and human activ-
ities [18]. In urban areas, the aggregation effect of vehicles
has important social and application value [6], [7], [19] since
it can be used for identifying frequent patterns, mining urban
hotspots, reducing traffic congestion, etc. In [20], the authors
present a three-in-one trajectory prediction method for imple-
menting region-of-interest (ROI) discovery with 8000 moving
objects on real-world transportation networks in Chengdu and
in the U.S. states of New York and Kansas. The authors
in [21] propose a Density-Based Hierarchical CLUSter-
ing (DBH-CLUS) method to identify pick-up/drop-off hotspots
from 12,000 taxis during 3-month period. In [22], the authors
present a combination Voronoi model and Mobile Mapping
System (MMS) to update the POIs in Xicheng District,
Beijing. However, these methods may generate false positive
hotspots since they do not consider the relevance of the
geographical location. Recently, researchers have proposed
visualization techniques to drive analysis of aggregation-like
features of trajectory data. In [23], the authors propose an
interactive framework to address the problem of billboard
location selection via designing a novel visualization-driven
data mining model. To achieve this, the authors add a heatmap
layer based on Google Maps API to conduct visual analytics
with 3,501 taxis, over 230,000 road network data records and
154,633 POI data records. The authors in [24] propose an
interactive system for visual analysis to extract urban traffic
congestion from taxi trajectories, in which the traffic speed
on each road segment is computed and traffic jam events are
automatically detected. This indicates the feasibility of low-
speed trajectory data that are more suitable for the analysis of
traffic congestion. There is a connection between these meth-
ods and our study of the aggregation effect. Specifically, with
the concept of SAW, we emphasize that people stop their car
at certain areas (such as places of work, shopping zones, and
residential regions) and spend time performing their activities.
The objective of our study is to discover the spatiotemporal
aggregation effect based on the dynamic SAW density since
the SAW behavior of private cars directly reflects people’s
travel demands, thereby leading to the aggregation effect.

C. Contributions

In this work, we focus on investigating the SAW behavior
and discovering the aggregation effect based on studying the
private car trajectory big data. To the best of the authors’
knowledge, our work is the first to utilize the trajectory
information obtained from private cars to study the aggre-
gation effect in urban environments, thereby also providing
a new perspective for investigating traffic management and
urban planning. The trajectory data are collected by a low-
cost and user-friendly onboard device, which is introduced
in Section IV-A. The collected private car trajectory datasets
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show the characteristics of the spatiotemporal aggregation.
According to the first law of geography [25], the spatiotem-
poral aggregation effect can be explained as follows. i) The
SAW points retrieved from the private car trajectory data for a
specified urban area are related to each other. ii) Closer SAW
points are more strongly related than are more distant points.
This significantly contributes to the formation of hot zones in
urban environments, in which the vehicle density is gradually
increasing from the edge to the center of the hot zones.
Inspired by this, we leverage the Kernel Density Estimation
method [26] and extend it to three dimensions (3D-KDE) to
characterize the dynamic density distribution of SAW. We then
design a prediction model based on 3D-KDE to discover the
inherent spatiotemporal aggregation effect. Note that the SAW
density of the current day can be expressed by historical
days of the current week and the current day of the previous
week with corresponding weights. However, it is a delicate
task to find proper weights for the prediction of the future
SAW aggregation by exploiting the previous trajectory data.
To this end, we design a modified inertia weight particle swarm
optimization (MIW-PSO) method to determine the optimal
weight coefficients and avoid local optima.

To validate the performance of our method, we conduct
experiments based on the real-world private car trajectory
data. Large volumes of SAW data collected from two cities
in five weeks are used as the experiment dataset. According
to the experimental results, we clearly observe the formation
and disappearance of the dynamic aggregation effect. This
reveals that the spatiotemporal features of the SAW data
are particularly helpful for understanding the time-varying
aggregation effect. Moreover, the results demonstrate that our
proposed method outperforms current methods in terms of the
KL divergence, MAE and RMSE.

The remainder of this paper is organized as follows.
In Section II, we present an overview of the proposed
method. The details of the proposed method are presented in
Section III. Section IV gives the experimental data and results.
Finally, Section V concludes the paper.

II. METHOD OVERVIEW

To investigate the aggregation effect, we propose a learning
strategy to predict the SAW density based on the private car
trajectory data in urban environments, the structure of which
is given in Fig. 1. Let Sd

u denote the SAW data for the d-th
day on the u-th week, where S = {(xi , yi , ti )}i=1,......n , with n
being the number of SAW points; xi and yi denote the latitude
and longitude of the i -th SAW point, respectively; and ti is
the timestamp for (xi , yi ).

Our goal is to obtain the predicted density distribution
for Sd+1

u , namely, P̂d+1
u , by learning from the historical

SAW data. We use a total of T days of historical SAW
data to predict the future density distribution. To achieve
this, we construct a 3D-KDE model wherein the historical
SAW data sequence S, i.e.,

{
Sd

u , Sd−1
u , . . . , Sd−(T −2)

u , Sd+1
u−1

}
,

is taken as Input 1 (see in Fig. 1) and used to train the
model. Then, we obtain the corresponding output of the
3D-KDE model, namely, the density distributions P , which

Fig. 1. Block diagram of SAW density prediction.

can be expressed by
{

Pd
u , Pd−1

u , . . . , Pd−(T −2)
u , Pd+1

u−1

}
. Apart

from the historical SAW data, the predicted P̂d+1
u is highly

related to the weight coefficients E = {
e0 ,..., eT −1

}
, which

are used to evaluate the impact of each day’s SAW data
in the training sequence. To achieve the optimal E , we use
the SAW data of the previous week to conduct the para-
meter selection. In detail, as shown in Fig. 1, Input 2 is
denoted by

{
Sd+1

u−1 , Sd
u−1, Sd−1

u−1 , . . . , Sd−(T −2)
u−1 , Sd+1

u−2

}
, where

Sd
u−1, Sd−1

u−1 , . . . , Sd−(T −2)
u−1 , Sd+1

u−2 can be used to obtain the
predicted SAW density distribution P̂d+1

u−1 with the weight
parameter, and the true SAW data Sd+1

u−1 can be used to
generate the true density distribution Pd+1

u−1 . During the para-
meter training process, we use the MIW-PSO method to
select the optimal E , which is used to guarantee that P̂d+1

u−1
is sufficiently close to the true Pd+1

u−1 based on the output{
Pd

u−1, Pd−1
u−1 , . . . , Pd−(T −2)

u−1 , Pd+1
u−2

}
of the 3D-KDE model.

The details of the proposed approach are presented in the next
section.

III. THE PROPOSED ALGORITHM FOR SAW DISCOVERY

A. 3D Kernel Density Estimation

The proposed approach based on Three-Dimensional Kernel
Density Estimation (3D-KDE) is designed to identify the
spatiotemporal correlation in the SAW data, which can be
used to generate a density surface from a set of SAW points
located in a geographic space at any time. The approach can
be implemented by bandwidth selection and kernel functions.
Generalized SAW data in S containing three basic elements,
(x, y, t), namely, the latitude and longitude of the SAW points
and the timestamp. For each voxel given the coordinates
(vx, vy, vt) in our research 3D region, its density is estimated
based on the surrounding points

(
x j , y j , t j

)
in S, the transform

formula can be expressed as

f (vx, vy, vt) = 1

nh2
s ht

∑
j |d j<hs, t j<ht

ks

(
vx − x j

hs
,
vy − y j

hs

)

×kt

(
vt − t j

ht

)
, (1)

where f is the SAW density estimate function at the location
(vx, vy, vt), n is the number of SAW points, and hs denotes
the spatial bandwidth that forms a circle, whereby the temporal
bandwidth ht extends the circle to a cylinder based on the
spatiotemporal orthogonal relationship, as shown in Fig. 2. The
spatial and temporal distances between the voxel and SAW
points are given by d j and t j . More importantly, the Gaussian
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Fig. 2. The computation of 3D-KDE in a space-time cube.

kernel is used in defining the functions ks and kt . Based on
Silvermans’ rule of thumb, the computational formula of the
bandwidth selection for the Gaussian kernel can be written as
follows [27]: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

hs =
(

4σ̂1
5

3n

) 1
5

ht =
(

4σ̂2
5

3n

) 1
5

,

(2)

where σ̂1 and σ̂2 are the standard deviation of the SAW data
in the space and time dimension, respectively.

According to the above analysis, the SAW points of a given
day can be used to build a density distribution model based
on the 3D-KDE method, namely, P . Then, we can predict
the SAW density distribution P̂ in the future by combining
with the historical density distributions and the corresponding
weight E.

To improve the comparability, we extract some fixed sam-
pling voxels using an appropriate set of dx ,dy,dt to divide
our research 3D region into na×nb×nc space-time cubes,
as shown in Fig. 2. Therefore, the value of the center point in
the cube (see the red voxel in Fig. 2) can be computed by (3)
based on (1) and (2):

Pa,b,c(xma, ymb, tmc) = f

(
x0+ 2a−1

2
×dx, y0+ 2b − 1

2
×dy,

t0 + 2c − 1

2
×dt

)
(3)

where Pa,b,c represents the SAW density estimation for
the space-time cube in (a, b, c) from the 3D region,
(xma, ymb, tmc)|a=1,...,na ,b=1,...,nb,c=1,...,nc denotes the coordi-
nates of the space-time cube center, and (x0, y0, t0) represents
the starting point.

B. Optimization of Parameter Selection
in SAW Density Prediction

To achieve the optimal E , we use the SAW density dis-
tributions of the last week to forecast the known density
distribution through the weight parameter training. In detail,
let E = {

e0 ,..., eT −1
} ∈ [0, 1] denote the vector of weight

coefficients; e0 represents the weight value of Pd+1
u−2 ; and the

remaining e1, e2, . . . , eT −1 are the corresponding weights of

Pk
u−1|k=d,d−1,...,d−(T −2). Then, the predicted distribution can

be expressed by

P̂d+1
u−1 = e0×Pd+1

u−2 +
T −1∑
i=1

ei×Pd−i+1
u−1 . (4)

Selecting the optimal E requires a huge amount of com-
puting work, especially for multidimensional and multi-
modal data. To obtain the weights with high precision
and fast convergence, we design the MIW-PSO method
to achieve the appropriate E to minimize the differences
between the true and predicted SAW density distributions.
The proposed MIW-PSO method prevents the algorithm
from falling into a local optimum and achieves fast con-
vergence. The search space is shaped by all possible val-
ues from the T -dimensional vector within the range [0, 1].
The m-th particle of the swarm can be denoted by Em =(
em0 , em1 , . . . , emT −1

)
to represent its position change. The

lb pm = (
lb pm0, lb pm1, . . . ., lb pmT −1

)
is used to record the

best position of the m-th particle; the best position of all
particles is gb pg = (

gb pg0, gb pg1, . . . ., gb pgT−1

)
. Similarly,

the velocity can be described by another T -dimensional vector
Vm = (

vm0 , vm1,..., vmT −1

)
. According to [28], the update

formula of the velocity and position at the k-th iteration of
each particle can be written as

V k+1
mt

= wk
m V k

mt
+ C1 R1

(
lbpk

mt
− Ek

mt

)
+ C2 R2

(
gb pgt − Ek

mt

)
, (5)

Ek+1
mt

= Ek
mt

+ V k+1
mt

, (6)

where m denotes the m-th particle of the swarm and
m = 1, . . . , Nsize and Nsize is the total number of particles.
The wk

m in MIW-PSO is not a fixed constant and changes
continuously to balance the global and local search ability for
the purpose of speeding up convergence and avoiding local
optima.

Using the KL divergence [29], we define a fitness function
to measure the distribution difference between the true SAW
density distribution and the predicted SAW density distribu-
tion. Combining with (3) and (4), the fitness function can be
written as follows:

F
(

Ek
m

)
=

∑
a,b,c

Pd+1
u−1 (a, b, c) log

Pd+1
u−1 (a, b, c)

P̂d+1
u−1 (a, b, c) |km

. (7)

A nonnegative F is equal to 0 only if P = P̂ , where the
predicted density distribution is the same as the actual density
distribution according to (7). When P = 0 or P̂ = 0, we add
a very small number epsilon = 1.e − 12 to P or P̂ , which
will not affect the results. Here, P̂d+1

u−1 (a, b, c) |km represents
the calculated value at the k-th iteration for the m-th particle
of the swarm.

Based on the aforementioned definitions and formulas,
the weight for the m-th particle at the k-th iteration can be
deduced as

wk
m = 1(

1 + e−�F
) , (8)

�F = F
(

Ek−1
m

)
− F

(
Ek−2

m

)
, (9)
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where the value of w is limited to the range of [0, 1], and
it is randomly generated when k is less than 2. Meanwhile,
�F denotes the change in the fitness value. When �F is
relatively large, its weight increases while also increasing the
global search ability. When the value of �F is relatively small,
this leads to an enhancement in the local search capability.

C. SAW Discovery Algorithm

The SAW discovery procedure based on 3D-KDE with
MIW-PSO is presented in Algorithm 1. Considering the
dependence of the SAW density distributions on time, the
3D-KDE-based model is designed to transform the space-
time SAW data into 3D density distributions, which can
reveal the variations of the aggregation effect. Based on the
assumption that the SAW of the current day is related to
historical days of the current week and the current day of
the previous week, the relevance is described by the weight
coefficient parameter. We use the MIW-PSO algorithm to
efficiently search for the optimal parameter. After a certain
number of iterations, the weight coefficients are altered to
achieve better results regarding the fitness function until
the end of the optimization. Combining the historical SAW
density distribution with the optimal parameter, the predicted
density estimation of the predicted day (i.e., P̂d+1

u ) can be
obtained.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct experiments based on the real-
world trajectory data to evaluate the performance of the SAW
prediction. First, we give a brief introduction of the private
car trajectory data that we have collected from real urban
environments. Then, we retrieve the SAW points from the
trajectory data. Finally, we conduct a comparative study by
applying the proposed method and current methods to the
SAW data. In addition to the KL divergence, we evaluate
the performance in terms of MAE and RMSE for some fixed
sampling voxels, which are expressed as follows:

M AE = 1

N

∑
a,b,c

∣∣∣P̂a,b,c − Pa,b,c

∣∣∣, (10)

RM SE =
√√√√ 1

N

∑
a,b,c

(P̂a,b,c − Pa,b,c)2. (11)

Based on (3), Pa,b,c and P̂a,b,c denote the true SAW density
and the predicted SAW density value for the space-time cube
in (a, b, c) from the 3D region (see in Fig. 2). N is equal
to na × nb × nc. When we calculate the MAE and RMSE at
a specific moment, c is a fixed value. Hence, the N can be
obtained as na × nb.

A. Private Car Trajectory Data

In our previous work [30], we presented a vehicle trajec-
tory data collection method based on a low-cost on-board
unit (OBU), which offers a feasible method for large-scale
trajectory acquisition and is particularly suitable for private
cars. We adopt the device in [30] to obtain the position of the

Algorithm 1 SAW Discovery Based on 3D-KDE
With MIW-PSO
Input: SAW dataset obtained from private car trajectory data
Output: The predicted density distribution of Pd+1

u , namely,
P̂d+1

u
1: Set the initial value ht , hs and the k kernel function;

meanwhile, set a group (dx, dy, dz), determine population
of particle pairs (C1, C2), random position Vm and Em ; and
set the initial parameters Nmaxiter, Nsize, u, d , w, k = 1.

2: Obtain the density distribution P on every day based on
the 3D Kernel Density Estimation model.

3: while k <= Nmax iter do
4: for m = 1 to Nsize do
5: Calculate the fitness value F

(
Ek

m

)
of the new

6: particle based on (7).
7: if F

(
Ek

m

)
is better than F

(
lbpk

m

)
then

8: Set Ek
m to be lbpk

m
9: end if

10: if F
(

Ek
m

)
is better than F

(
gb pg

)
then

11: Set Ek
m to be gbpg

12: end if
13: Compute wk

m according to (8)
14: end for
15: if F is not relatively changed then
16: Output the optimal E set
17: else
18: Let k = k + 1
19: end if
20: end while
21: Provide the optimal E set;
22: Compute P̂d+1

u based on (4).

vehicle and read the driving status information through the
on-board diagnostics (OBD) interface. Moreover, this device
can record the position and time when the vehicle starts and
shuts off the engine. We have thus generated a large-scale
trajectory dataset, for which the trajectory data of more than
50000 private cars were collected from two cities in China:
Shenzhen and Shanghai. In particular, the trajectory point is
taken as the SAW point when the vehicle stops at a specific
location and shuts off the engine for over five minutes. In other
words, we define that the time interval of SAW should be
longer than five minutes; thereby, the SAW dataset can be
retrieved from large-scale private car trajectories. This can
rule out certain sudden flameout points caused by unexpected
factors. We perform the experiments using the SAW data for
five weeks (excluding weekends and public holidays) from
Shenzhen and Shanghai. Specifically, as shown in Table I,
we select the SAW data collected from the Luohu District,
Shenzhen, from January 4, 2016 to February 5, 2016 and the
SAW data from Pudong District in Shanghai from June 25,
2018 to July 27, 2018 to perform the experiments.

For the SAW density prediction, the training data and testing
data are set up according to Fig. 3. For instance, in Fig. 3(a),
we use the SAW density distributions of January 20,
January 25 and January 26 with corresponding weights to pre-
dict the SAW density of January 27 (Wednesday). The SAW
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Fig. 3. SAW data for five weeks. (a) Shenzhen. (b) Shanghai.

TABLE I

THE SELECTED SAW DATA FROM SHENZHEN AND SHANGHAI

data of January 13, January 18, January 19 and January 20 are
applied to train the weight value for the prediction model.
Specifically, we utilize the SAW data of this Monday and
Tuesday as well as the last Wednesday with corresponding
weight coefficients to predict the SAW density of the present
Wednesday. In Fig. 3(b), we use the SAW densities of July 11,
July 16 and July 17 to predict the SAW data of July 18
(Wednesday). For the training, the SAW data of July 9,
July 10 and July 11 on the last week with the data from
July 4 before the last Wednesday are used to train the weight
parameter. In a similar manner, we can obtain the predicted
density distributions of every Wednesday, Thursday, and Fri-
day. Finally, we adopt the expectation maximization (EM)
algorithm [31] and Voronoi method [22] for the comparative
study.

Fig. 4. Original SAW data from Luohu District, Shenzhen, 8:00 on
January 27, 2016.

Fig. 5. Density estimation of SAW data from Luohu District, Shenzhen,
8:00 on January 27, 2016.

B. Results and Evaluation

Fig. 4 presents the original SAW points at 8:00 on Janu-
ary 27, 2016 for Luohu District, Shenzhen. Fig. 5 presents
the results of the density distribution of the SAW behaviors,
in which we normalize the density value to within [0,1] to
avoid stretching effects. The bar graph on the right in Fig. 5 is
used to describe the varying of the SAW density. The deep
green denotes an area with a high SAW density, which
indicates the aggregation effect and the forming of a hot
zone. The deep red represents a low SAW density for the
corresponding areas.

To illustrate the evolution of SAW, we plot the dynamic
SAW density at three special moments, 8:00, 12:00 and
19:00, which are given in Fig. 6. Given the work schedules
and lifestyles characterizing the Luohu District of Shenzhen,
China, 8:00 is considered as rush hour; thus, we observe
several aggregation areas, and hence, hot zones are forming.
At 12:00, people go out for lunch, and most of them walk
because they would not choose a far-off location. Furthermore,
we can see that the degree of the aggregation effect decreases
since the SAW density in the aggregation area at 12:00 is
smaller than that at 8:00. Note that the rush hour in the
afternoon is over by approximately 19:00 because it usually
takes place from 17:30 to 18:30. As a result, the traffic
situation is acceptable, and the SAW density is relatively
low in the beginning of the evening (i.e., 19:00). In a word,
the traffic congestion in the selected area has been greatly
alleviated, and the aggregation effect has been lessened when
comparing to that in the daytime.
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Fig. 6. Dynamic SAW at 8:00, 12:00 and 19:00 in Shenzhen.

Fig. 7. The predicted SAW density distribution at 8:00 on January 27, 2016 in
Shenzhen. (a) EM. (b) Voronoi. (c) Proposed. (d) True.

Fig. 7 presents the performance comparison of the predicted
density distributions at 8:00, January 27, 2016 in Shenzhen,
in which Fig. 7(a), Fig. 7(b) and Fig. 7(c) show the results
generated by EM, Voronoi and the proposed method, respec-
tively. It can be observed that the proposed method provides
higher prediction performance since the predicted results better
match the true SAW data, as shown in Fig. 7(d). In Fig. 7(a)
and Fig. 7(b), it is obvious that the EM and Voronoi methods
generate prediction errors, especially in locations where the
SAW density is high (as shown in the black boxes). Moreover,
the result of the Voronoi method is not smooth and is overly
abrupt since the division of time and space makes it ignore
density changes in neighboring spatio-temporal cubes [32].

Fig. 8 and Fig. 9 present the results of the SAW
density prediction at 12:00 and 19:00, respectively, on
January 27, 2016 for Shenzhen. In Fig. 8, it is shown that
the density distributions under the three methods are roughly
the same when comparing to that at 8:00 (see Fig. 7). The
reasons behind this are as follows. Many people, who are
living in various parts of the city, drive from home in the
morning and head to their destinations, which are likely
places of work such as the several aggregation areas shown in

Fig. 8. The predicted SAW density distribution at 12:00 on
January 27, 2016 in Shenzhen. (a) EM. (b) Voronoi. (c) Proposed. (d) True.

Fig. 9. The predicted SAW density distribution at 19:00 on
January 27, 2016 in Shenzhen. (a) EM. (b) Voronoi. (c) Proposed. (d) True.

Fig. 7 and Fig. 8. Once these people reach these places, they
stop their cars. As a result, by studying the SAW density
distribution, we can observe that the SAW data reflect the
aggregation effect, which leads to the formation of hot zones.
In most cases, people, i.e., the private car drivers, do not drive
in the daytime until they get off work and leave from their
places of work. Therefore, the SAW density distributions at
8:00 and 12:00 are similar. Based on Fig. 9, we determine that
an obvious change in SAW density at 19:00 occurs. On the one
hand, the number of hot zones is decreasing; on the other hand,
the degree of the aggregation effect is diminishing. This is
because people drive and leave these areas; therefore, the SAW
behaviors are reduced. The varying of the SAW behaviors is
also supported by Fig. 6.
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Fig. 10. KL divergence based on the SAW data in Shenzhen.

TABLE II

PREDICTION PERFORMANCE AT 8:00, 12:00 AND 19:00 ON
JANUARY 27, 2016 IN SHENZHEN

When we examine the prediction performance from
Fig. 8 and Fig. 9, the areas marked with black boxs in Fig. 8(a),
Fig. 8(b), Fig. 9(a), and Fig. 9(b) present obvious prediction
errors. In general, the proposed method can achieve a better
performance and make the predicted density distribution closer
to the true values, thereby better capturing the aggregation
effect.

To further evaluate the performance of the proposed method,
we adopt three metrics, the KL divergence, MAE and RMSE,
to conduct a quantitative study on the SAW density prediction.
Fig. 10 gives the results of the normalized KL divergence,
in which ‘0’ represents that the actual and predicted values
are the same and ‘1’ indicates that the predicted value is far
from the actual value. Compared with the EM method and
the Voronoi method, our proposed method can more quickly
converge to the real SAW density distribution.

Table II presents the prediction performance based on the
SAW data from Shenzhen at 8:00, 12:00 and 19:00. The
proposed method achieves smaller KL divergence, RMSE and
MAE when comparing with the EM method and Voronoi
method. For instance, at the 8:00 rush hour, the percentage
improvement of the three metrics can be found to be 61.59%,
50.35%, and 63.42% when comparing to the Voronoi method.
It can also be observed from Fig. 7 that the SAW density pre-
dicted by the Voronoi method has a larger deviation. Moreover,
the percentage improvements of the KL divergence, MAE
and RMSE under the proposed method are 18.42%, 17.70%,
and 21.28%, respectively, over the EM method. According to
Table III, in which the average prediction performance for

TABLE III

AVERAGE PREDICTION PERFORMANCE FOR THREE DAYS IN SHENZHEN

Fig. 11. Original SAW data from Pudong District, Shanghai at 8:00 on
July 18, 2018.

Fig. 12. Density estimation of SAW data from Pudong District, Shanghai at
8:00 on July 18, 2018.

Wednesdays, Thursdays and Fridays during three weeks is
given, our proposed method obtains a better performance than
the EM method and the Voronoi method.

Additionally, we collected SAW data for Pudong District
in Shanghai from June 25, 2018 to July 27, 2018. Fig. 11 and
Fig. 12 present the raw SAW points at 8:00 on July 18 and the
corresponding density estimation, respectively. Fig. 13 illus-
trates the dynamic SAW density at 8:00, 12:00 and 19:00.

Fig. 14 and Fig. 15 give the SAW density prediction
performance at 8:00 and 19:00, respectively. It can be found
that the proposed method generates better density distributions
than the comparative methods. Especially in the high-density
region (marked by black box), prediction errors are found
under the EM and Voronoi methods, whereas the proposed
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Fig. 13. Dynamic SAW at 8:00, 12:00 and 19:00 in Shanghai.

Fig. 14. The predicted SAW density distribution at 8:00 on July 18, 2018 in
Shanghai. (a) EM. (b) Voronoi. (c) Proposed. (d) True.

Fig. 15. The predicted SAW density distribution at 19:00 on July 18, 2018 in
Shanghai. (a) EM. (b) Voronoi. (c) Proposed. (d) True.

method can perfectly match the true density distribution.
Moreover, the results from Fig. 14 and Fig. 15 demonstrate
the formation and disappearance of hot zones. A similar

Fig. 16. KL divergence based on the SAW data in Shanghai.

TABLE IV

PREDICTION PERFORMANCE AT 8:00, 12:00 AND 19:00
ON JULY 18, 2018 IN SHANGHAI

TABLE V

AVERAGE PREDICTION PERFORMANCE FOR THREE DAYS IN SHANGHAI

phenomenon can be observed in Fig. 7, Fig. 8 and Fig. 9 when
we study the results from Shenzhen. In a word, the SAW
density changes over time, it gives rise to aggregation effects,
and it vividly reflects peoples’ daily lives.

Fig. 16 illustrates the KL divergence when we conduct
experiments based on the data from Shanghai. It is evident
that our proposed method can increase the convergence speed
and achieve higher prediction accuracies. However, the EM
and Voronoi methods show relatively large fluctuations during
100 iterations. Our proposed method converges to the true
SAW density in fewer than 50 iterations.

Table IV presents the performance comparison for the
EM method, Voronoi method and proposed method at 8:00,
12:00 and 19:00 on 18, 2018 in Shanghai. Table V presents
the average prediction performance for three days based on
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the SAW data from Shanghai. The results in Table IV show
that the errors for the EM method and Voronoi method are
relatively large at 8:00. Our method obtains an improvement in
term of the three criteria of up to 54.46%, 88.55%, and 34.69%
when compared to the Voronoi method. In addition, based on
the results in Table V, our proposed method outperforms the
comparison methods.

V. CONCLUSIONS

In this paper, to elucidate upon the time-varying aggregation
effect, we propose a 3D-KDE based prediction model to
characterize the dynamic spatiotemporal aggregation effect,
which stems from the inherent relationship between the present
SAW density and the future SAW aggregation. We conduct
experiments based on real-world large-scale private car SAW
data. The experimental results demonstrate that our proposed
method outperforms current methods according to three cri-
teria: the KL divergence, MAE and RMSE. Furthermore,
we clearly observe the formation and disappearance of the
aggregation effect during the experiments, which validates that
the SAW behavior is of special significance to characterizing
the dynamic aggregation effect. Summarizing, the current
work on trajectory data focuses on floating cars and seldom
consider private cars and their SAW behavior; our work
attempts to fill this gap and bring a new perspective for
studying aggregation effects based on large-scale private car
trajectory data. In the future, we will integrate our approach
with urban models to further explore human travel activities
and the evolution of traffic flow.
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