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a b s t r a c t

In this paper, we address the problem of reducing Cloud datacenter high energy consumption with
minimal Service Level Agreement (SLA) violation. Although there are many energy-aware resource man-
agement solutions for Cloud datacenters, existing approaches focus on minimizing energy consumption
while ignoring the SLA violation at the time of virtual machine (VM) deployment. Also, they do not
consider the types of application running in the VMs and thus may not really reduce energy consumption
with minimal SLA violation under a variety of workloads. In this paper, we propose two novel adaptive
energy-aware algorithms for maximizing energy efficiency and minimizing SLA violation rate in Cloud
datacenters. Unlike the existing approaches, the proposed energy-aware algorithms take into account
the application types as well as the CPU and memory resources during the deployment of VMs. To study
the efficacy of the proposed approaches, we performed extensive experimental analysis using real-world
workload, which comes from more than a thousand PlanetLab VMs. The experimental results show that,
compared with the existing energy-saving techniques, the proposed approaches can effectively decrease
the energy consumption in Cloud datacenters while maintaining low SLA violation.
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1. Introduction

Cloud computing [1,2] has fundamentally transformed the way
IT infrastructure is delivered to meet the IT needs of businesses
and consumers. Generally, cloud computing delivery models are
classified into software as a service (SaaS), platform as a service
(PaaS), and infrastructure as a service (IaaS) [3]. By allowing on-
demand IT infrastructure provisioning model, Cloud computing
enables organizations to automatically scale up and down IT re-
sources usage based on their current and future needs. It also
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enables great improvement in business or mission proficiencies
without increasing in the corresponding resource (time, people or
money) requirements. Moreover, by allowing pay-as-you-go ser-
vicemodel, it eliminates high initial acquisition costs,maintenance
costs and costs associated with licensing of software.

Although Cloud computing enables organizations to realize
great benefits byminimizing operational and administrative costs,
it suffers from the problem of high energy consumption that could
negate its benefits [4]. For example, an average datacentre con-
sumes energy as much as 25000 households’ energy consump-
tions [5]. Such high energy consumption can lead to an increasing
Operational Cost (OC) and consequently reduce the Return on
Investment (ROI). The high energy consumption, apart from the
high OC and diminished ROI, results in much carbon dioxide (CO2)
emissions, which contributes to the global warming. Although
advances in physical infrastructure have partly addressed the high
energy consumption of datacentres issue, effective resource man-
agement is vital in further decreasing the high energy consumption
of datacentres.

An important question is how to minimize datacentre energy
consumption while ensuring the Quality of Service (QoS) deliv-
ered by the Cloud system. QoS is an important factor in Cloud
environment and can be defined in the form of SLA (Service Level
Agreement) [6,7]. The need to make datacentres efficient not only
in regards to performance factors but also in both energy and
emissions reduction have motivated a flurry of research recently.
Although a remarkable improvements in the hardware infras-
tructure has enabled techniques to improve energy consumption,
there are still lots of room for improvement. For instance, hosts
in datacentres operate only at 10%–50% utilization for most of the
time [8]. As the low utilization of hosts in datacentres results in
huge amount of energy wastage, improving host utilization level
in the datacentres can help decrease the energy consumption.
However, naively improving host utilization level can affect the
QoS delivered by the system. One way to effectively improve host
utilization in Cloud datacentres is by using dynamic consolidation
of VMs [9–11]. Dynamic VMs consolidation enables VMs to be
reallocated periodically from overloaded hosts by utilizing VMs
migration as well as minimize the number of hosts in datacen-
tres by switching idle hosts to low-power mode to save energy
consumption. Although dynamic consolidation of VMs have been
shown to be NP-hard problem [12,13], it has been shown to be
effective in minimizing energy consumptions [6].

Dynamic VMs consolidation generally involves the detection
of overloaded and underloaded hosts in the datacenter (i.e., over-
loaded hosts detection), choose VMs to be reallocated from an
overloaded host (i.e., VM selection) and select the receiving hosts
for the VMs marked for relocation from overloaded host (i.e., VM
deployment) [6]. Existing approaches only focus on one of the
sub-components (i.e., host overload detection algorithm or VM
selection algorithm or VM deployment algorithm). Moreover, they
only consider the CPU in the dynamic VMs consolidation process
and assume that the other system resources are not significant
thus leading to wrong VM allocation. In addition, the previous
works could not leverage the combination of energy efficiency
(energy consumption and SLA violations) and placement of VM.
For example, when VM is reallocated or migrated to another host,
the existing algorithms only consider minimizing the energy con-
sumption. But actually, SLA violation should also be considered
during the process of VM reallocation andmigration. Furthermore,
previous approaches do not take into account the types of appli-
cation running in the VMs and thus may not sufficiently reduce
energy consumption of the Cloud datacentre and minimize SLA
violation rate under a different workload.

In this paper, we propose a novel adaptive energy-aware algo-
rithm for maximizing energy efficiency and minimizing SLA violation

rate in Cloud datacenters. In order to adapt well to the dynamic and
unpredictable workload commonly running in Cloud datacentres,
the proposed energy-aware algorithm uses an adaptive three-
threshold framework for the classification of Cloud datacentre
hosts into four different classes (i.e., less loaded hosts, little loaded
hosts, normally loaded hosts, and overloaded hosts). It also uses
two VM selection policies for selecting VMs to migrate from an
overloaded hosts. These methods consider both CPU and memory
in the course of VM selection and deployment decision making.
Finally, a VM deployment policy that leverages the combination
of energy efficiency (energy consumption and SLA violations) and
placement of VM is presented. It also takes into account both CPU
andmemory utilization during VM deployment. All in all, themain
contributions of the paper can be summarized as follows:

(1) A framework that divides hosts in the datacentres, according
to the different workload running on the hosts, into less
loaded hosts, little loaded hosts, normally loaded hosts, and
overloaded hosts.

(2) We put forward an adaptive three-threshold framework,
which is different from the existing two-threshold frame-
work. The adaptive three-threshold can adapt well to the
dynamic and unpredictable workload commonly running in
Cloud datacentres. A new algorithm, based on the adaptive
three-threshold framework, for host state (e.g., overloaded)
detection is presented.

(3) To handle the CPU intensive task and I/O intensive task,
we present two VM selection methods from the overloaded
hosts. The methods consider both CPU and memory utiliza-
tion in decision making.

(4) We present VM selection methods for VM migration from
the overloaded hosts. The methods consider both CPU and
memory utilization in decision making.

(5) A new VM deployment policy that maximizes energy effi-
ciency (i.e., energy consumption and SLA violation) is pre-
sented.

(6) We evaluate the algorithms proposed in this paper by using
real-world workload, which comes from more than a thou-
sand PlanetLab VMs hosted on 800 hosts located in more
than 500 places across the world.

The rest of the paper is organized as follows: In Section 2, we
present the related work. Adaptive three-threshold VM placement
framework is proposed in Section 3. Experimental results and per-
formance analysis are presented in Section 4. Section 5 concludes
the paper.

2. Related work

The prior works concerning the energy consumption man-
agement in data centers can be broadly divided into four cat-
egories: dynamic performance scaling (DPS) [14–22], threshold-
based heuristics [4,6,23–31], decision-making based on statistical
analysis of historical data [32–35] and other methods [36–38]. In
DPS [14–22], the system components are capable of dynamically
adjusting their performance to save energy consumption. For ex-
ample, the clock frequency of CPU can be gradually reduced or
increased along with the change of the supply voltage. DPS can
save substantial energy consumptionwhen the resource is not fully
utilized. A case in point of adopting DPS is DVFS (Dynamic Volt-
age and Frequency Scaling) technique. DVFS can be divided into
three categories [14]: interval-based [15–18], inter-task [19,20]
and intra-task methods [21,22]. Interval-based methods leverage
the knowledge of past periods of CPU utilization to predict the
utilization in the future, thus adjusting the processor frequency.
Prior works [17,18] investigated the speed scaling methods in
multi-core computer system and found that they were better
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than the optimal offline algorithm. In contrast to interval-based
methods, inter-taskmethods distinguish different tasks and assign
them different speed of a processor (CPU). The method is simple
and effective, especially when the workload is known in advance.
However, it is not suitable for using the methods when workload
is irregular. Different from inter-task methods, intra-task methods
utilize the knowledge of structure of programs, consequently ad-
justing the processor frequency within the tasks to save energy
consumption. Existing DSP-based works depend on using DVFS
technique to save energy consumption. Although the method has
improved consumption of energy, the overall datacenter energy
consumption remain high.

Threshold-based heuristics [4,6,23–31] improve the utilization
rate of resources by setting threshold, thus reducing the energy
consumption and meeting the QoS delivered by cloud system.
For example, Buyya et al. [23] proposed a method named Single
Threshold (ST) algorithm. ST sets a utilization threshold to keep
all hosts’ CPU utilization in data centers below this value, con-
sequently control the migration of VM. ST algorithms can save
more energy compared to DVFS algorithms. Later, Beloglazov and
Buyya [24] presented Double Thresholds (DT) algorithm, which
sets two thresholds (one is low utilization threshold and the other
is upper utilization threshold) to control all hosts’ CPU utilization
between the two thresholds. When some hosts’ CPU utilization
does not fall into these two thresholds, these hosts should be
migrated to other hosts to reduce energy consumption and SLA
violations. Beloglazov and Buyya [25] put forward a decentralized
architecture of energy saving management system composed of
three stages for optimizing VM placement, selection of VMs for
migration, finding new hosts to accommodate the VMs, and op-
timizing the virtual network topologies. Beloglazov and Buyya [4]
proposed an energy-saving allocation heuristics to improve the en-
ergy efficiency. They also presented three VMs selection policies:
(1) minimization of migrations approach; (2) the highest potential
growth approach; and (3) the random choice approach. Beloglazov
and Buyya [6] focused on the overloaded host detection. For any
known stationaryworkload, authors utilizedmaximizing themean
intermigration time to tackle it based on Markov chain model.
As for the unknown non-stationary workloads, authors used the
Multisize SlidingWindowworkload estimationmethod to address
it.

Li et al. [26] designed a new VM placement algorithm called
Modified Particle Swarm Optimization (MPSO) based on DT with
multi-resource utilization. The MPSO approach avoids local opti-
mization. Experimental results show that MPSO decreases both
the number of active hosts and VMs migration. Fu and Zhou [27]
investigated the problem of energy efficiency in data centers and
put forward a novel VM selection method based on DT. Their
algorithm considers the CPU utilization as well as the degree of
resource satisfaction. Zhu et al. [28] explored the problem of VMs
consolidation and set a static upper threshold of 85% for CPU
utilization. The threshold value of 85% is mainly used to judge
whether a host is overloaded. The static upper threshold of 85% for
CPU utilization is put forward and justified for the first time in [29].
Similarly, VDPM (VMware Distributed Power Management) set a
static utilization threshold of 81% [30] for CPU utilization. Jung
et al. [14] studied the problem of consolidation of VMs, which run
multitier web application to optimize the global utility function,
while ensuring theQoS. In the paper, theQoS is definedby response
time for computing each transaction type of the applications. The
method proposed in the paper can yield significant saving in power
consumption despite the workload is specific. In our previous
study [31], we proposed a static three-threshold algorithm for
VM placement, and justified the optimal threshold interval is 40%
considering energy efficiency (energy consumption and SLA vio-
lations). All these works based on threshold heuristics can bring

substantial saving in energy consumption. However, they are not
suitable for variable and unknown workload.

To further save on energy consumption, decision-making based
on statistical analysis of historical data [32–35] is an effective
method to improve the energy efficiency in data centers. Specifi-
cally, authors in [32] developed an adaptive double-threshold algo-
rithm based on characteristics of the distribution over some recent
period. Although the method is promising, the effect of saving
energy consumption in data centers still need to be improved.
Later, authors [33] put forward somemodification to their adaptive
double-threshold algorithms by using the historical data of CPU
utilization. Guenter et al. [34] leveraged the weighted linear re-
gression to predict the future workload and optimize the resource
allocation. Themethod is similar to Local Regression (LR) proposed
in [33]. In our previous study [35], we investigated the problem of
VM placement to improve the energy efficiency in data centers.
However, the approach proposed in the paper did not consider
the workload type such as I/O bound tasks. Moreover, during the
process of VM placement, the approach proposed in the paper
only considers minimizing energy consumption, while ignoring
the energy efficiency (energy consumption and SLA violations).
All these works based on statistical analysis of historical data can
bring considerable saving in energy consumption. However, they
did not consider the workload type and only consider minimizing
the energy consumption during the allocation and placement of
VMs. However, another factor such as SLA violations should also
be considered.

Other methods [36–38] include optimizing energy consump-
tion of disk subsystems [36,37], and datamanagement system [38]
to reduce energy consumption in data centers, while ensuring the
QoS delivered by cloud system. Specifically, to deal with the miss-
ing data blocks led to the problem of performance degradation,
Higai et al. [36] put forward two replica reconstruction approaches
to balance the workloads of replication processes. For the problem
of read-performance of duplicate, Mao et al. [37] proposed a new
method to build a special data region by using the SSD (solid-
state drive), aiming at improving the read performance of the
deduplication-based storage systems in the cloud. A VM schedul-
ing algorithm based on datacenter thermal model that considers
the temperature distribution of airflow and server CPU is discussed
in [39]. An algorithm for VM consolidation with multiple usage
prediction based on historical data of the long-term utilization of
datacenter resources is discussed in [40].

3. Adaptive three-threshold VM placement framework

In this section, we present the proposed resource management
algorithm along with its components for detecting and relieving
overloaded hosts by reallocating someVirtualMachines (VMs), de-
tecting underloaded hosts and perform consolidation, and allocat-
ing the VMs selected for relocation to other hosts in the datacenter
in a holistic manner. The main notations and their meanings used
in throughout the paper are listed in Table 1.

3.1. Adaptive three-threshold framework

To solve the problem of high energy consumption, we divide
the hosts into classes based on the CPU utilization. As shown
in Fig. 1, we set three thresholds of CPU utilization, Ta, Tb, and
Tc (0 ≤ Ta < Tb < Tc ≤ 1), resulting in the hosts of a data
center divided into four classes: less loaded hosts, little loaded hosts,
normally loaded hosts, and overloaded hosts. The CPU utilization of
the less loaded hosts is between ‘‘0’’ and ‘‘Ta’’; the CPUutilization of
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Table 1
Main symbols and their meaning.

Symbol Meaning

Ta , T b , T c Threshold values
Ui The CPU utilization of host i
M The number of hosts
D = {U1,U2,U3, . . . ,Un} CPU utilization at different time
k The number of cluster
Ri (1 ⩽ i ⩽ k) Number of the i cluster
MR = {MR1,MR2, . . . ,MRk} The set of midrange
IQR Interquartile range of theMR
TQ 3 The third quartiles of MR
TQ 1 The first quartile of MR
d Denotes the level of VMS consolidation
C i
VM (i = 1, 2, . . . , SVM ) The CPU utilization of the VM i

SVM The set of VMs of a host
M i

VM (i = 1, 2, . . . , SVM ) The memory utilization of the VM i

the little loaded hosts is between ‘‘Ta’’ and ‘‘Tb’’; the CPU utilization
of the normally loaded hosts is between ‘‘Tb’’ and ‘‘Tc ’’; and the CPU
utilization of the overloaded hosts is between ‘‘Tc ’’ and ‘‘1’’.

Fig. 2 shows the adaptive three-threshold framework (ATF). The
main idea of the ATF is as follows: for every host in the data center,
ATF firstly obtains its CPU utilization (Ui). It then classifies the
host as follows: (1) if Ui ⩾ Tc , the host is considered to be an
overloaded host. To avoid the high SLA violations, some VMs on
the host should bemigrated to a little loaded host with the highest
energy efficiency; (2) if Tb ≤ Ui < Tc , the host is considered to be
a normally loaded host. Since excessive VMs migration results in

Fig. 1. Classification of the host.

much more energy consumption and SLA violations [41], all VMs
on the host are kept unchanged; (3) if Ta ≤ Ui < Tb, the host
is considered to be a little loaded host. Based on the reason that
excessive VMsmigration leads to muchmore energy consumption
and SLA violations [41], all VMs on the host are kept unchanged;
(4) if Ui < Ta, based on the reason of saving power, all VMs
on the host are migrated to a little loaded host with the highest
energy efficiency, the idle host are switched to low-power mode,
thus reducing the static energy consumption. When the demand
increases, the host can be reactivatedwithin a short time to process
tasks.

However, there are two problems that should be addressed in
ATF. The first one is how to determine the value of the three thresh-
olds (Ta, Tb, and Tc), and the issue will be handled in Section 3.2.
The second one is how to select VMs from the overloaded hosts,
especially for processing the CPU intensive task or I/O intensive
task, and the issue will be addressed in Section 3.3.

Fig. 2. Adaptive three-threshold framework (ATF).
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3.2. Determining threshold values

To determine the value of the three thresholds (Ta, Tb, and
Tc), we use a novel algorithm which refer to as a KMI (K-Means
clustering algorithm-Midrange-Interquartile range). Let H =

{h1, h2, . . . , hM} be a set of M hosts in the Cloud datacenter. Let
D = {U1,U2, . . . ,Un} be a dataset such that Ut ∈ D (1 ≤ t ≤ n) is
the CPU utilization of a host hf ∈ H at time t . Algorithm 1 shows
the pseudo-code of KMI.

In the algorithm, the function Cluster (D, k) is a K-Means cluster-
ing algorithm that partitions D into k clusters: R1, R2, . . . , Rk such
that:

• Ri = {UPi−1+1,UPi−1+2, . . . ,UPi} ∈ D ,
• 0 = P0 < P1 < P2 < P3 < P4 < . . . < Pi = n, and
• Ri ∩Rj = Φ for 1 ⩽ i, j ⩽ k (the value of k can be set by using

empirical approach).

For each cluster Ri, the algorithm obtains the midrange as
follows:

MRi =
Max (Ri) + Min (Ri)

2
, 1 ≤ i ≤ k. (1)

In Eq. (1), the parameter Max (Ri) refers to the maximum value
of the Ri cluster and the parameter Min (Ri) is the minimum
value of the Ri cluster. The function of Eq. (1) is to obtain
the midrange value (MR i) of the i cluster. This step will pro-
duce MR = {MR1,MR2,MR3, . . . ,MRi, . . . ,MRk}. The algorithm
then obtains the Interquartile Range (IQR) of the set MR =

{MR1,MR2,MR3, . . . ,MRi, . . . ,MRk} as follows:

IQR = TQ3 − TQ1 (2)

where parameter TQ 3 is the third quartiles ofMRwhile parameter
TQ 1 refers to the first quartile ofMR. The aim of Eq. (2) is to get IQR
of the set MR. The adaptive three thresholds (Ta, Tb, and Tc) in ATF
are defined as follows:

Tc = (1 − d · IQR) (3)

Tb =
9
10

(1 − d · IQR) (4)

Ta =
5
10

(1 − d · IQR) (5)

where the parameter d corresponds to how aggressively the sys-
tem consolidates VMs. For instance, the smaller the value of pa-
rameter d the less the energy consumption and high SLA viola-
tions, and vice versa. The value of the parameter d is addressed
in Sections 4.6.2 and 4.6.3. By defining Eqs. (3)–(5), the adaptive
three thresholds (Ta, Tb, and Tc) can be obtained. Therefore, the
three thresholds (Ta, Tb, and Tc) have beendeterminedbyusingKMI

algorithm. The complexity of KMI is O(k×n× t), parameter k is the
number of cluster; parameter n is the data size and parameter t is
the number of iterations.

3.3. VM selection methods from overloaded hosts

We now present our approach for selecting VMs from the
overloaded hosts for migration. We assume that the workload is
either CPU intensive (i.e., CPU-bound tasks) or I/O intensive (i.e., I/O
bound tasks). An application is considered CPU intensive when
the time for it to complete a task is determined principally by the
speed of the central processor. Different from the CPU intensive
task, the I/O intensive refers to a condition in which the time it
takes to complete a computation is determined principally by the
period spent waiting for input/output operations to be completed.
In other words, more time is spent requesting (waiting) for data
than processing it. In this case, the computer component such as
both CPU and memory consume substantial energy consumption.

Let SVM be the set of VMs currently running in a given over-
loaded host. Let U i

VM and M i
VM represent the CPU and mem-

ory utilization of i VM respectively, where 1 ≤ i ≤ SVM .
Let C e

VM and Me
VM refer to CPU and memory utilization of

any VM e (1 ≤ e ≤ SVM and e ̸= i), respectively.

MRCUmethod: We propose a new VMs selection method named
MRCU (Maximum ratio of CPU utilization to memory utilization)
to select VMs for migration when a host is overloaded by CPU
intensive tasks. The MRCU method selects a VM v for migration
from the host that meets the following condition:

Cv
VM

Mv
VM

>
C e
VM

Me
VM

, v ∈ SVM and ∀e ∈ SVM and v ̸= e. (6)

For the case where the host is overloaded by CPU intensive tasks,
the energy consumption of CPU accounts for the most part of the
total energy consumption relative to other components (such as
memory). Eq. (6) shows that the higher the Cv

VM value and the
lower Mv

VM value, the higher the Cv
VM

Mv
VM

value is. Therefore, Eq. (6)

selects a VM with the highest value of Cv
VM

Mv
VM

to migrate, because
higher CPU utilizationmeans consumingmore energy, while lower
memory utilization means less energy consumption of by VM
migration. MRCU method considers both CPU factor and memory
factor during migrating potential VMs.

MPCU method: When a host is overloaded by I/O intensive task,
to reduce the potential SLA violations, we propose a novel VMs
selection method named MPCU (Minimum the product of a CPU
utilization and a memory utilization) to deal with it. The MPCU
method selects a VM v that meets the following condition for
migration to another host:(

Cv
VM × Mv

VM

)
<

(
C e
VM × Me

VM

)
| v ∈ SVM

and ∀e ∈ SVM and v ̸= e. (7)

For the host is overloaded by I/O intensive task, both CPU and
memory consume large amounts of energy consumption, that is
to say CPU factor and memory factor are equally important. Eq. (7)
selects the VM with the minimum product of CPU utilization and
memory utilization to migrate, because the minimum product of
CPU utilization and memory utilization means the less energy
consumption of migration, the corresponding performance degra-
dation caused by VM migration will decrease, thus reducing the
potential SLA violations. MPCU method considers both CPU factor
and memory factor during migrating potential VMs.
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3.4. VM placement with maximizing energy efficiency

In this subsection, we describe a new VM placement policy
that takes into account both the least increase of energy consump-
tion and SLA violation. We refer to this policy as VM placement
withmaximizing energy efficiency (VPME). Algorithm 2 shows the
pseudo-code of VPME. In the algorithm, the ‘‘vmlist’’ is the set of
VMswhile the ‘‘hostlist’’ refers to the set of hosts in the datacentre.
The parameters Ta, Tb, and Tc are the three thresholds previously
discussed. We also define a variable ‘‘minEnergyEfficiency’’ and
assign a minimum value to it.

VPME firstly sorts all VMs in decreasing order according to their
CPU utilization (Line 1). Then for every host in the datacenter (Line
5), we check whether the current host meets requirement of the
VM such as available CPU capacities and memory size (Line 6). If
it is, we get the host’s CPU utilization after an allocation of the
VM (see variable CpuUtilize in Line 7). Line 8 is to keep the host
with little load. Line 9–Line 11 is to get the power difference before
and after an allocation of the VM. Line 12–Line 14 determine the
first SLA violations difference before and after an allocation of
the VM (for the definition of the first SLA violation see Eq. (8) in
Section 4.4).

Line 15–Line 17 refer to the second SLA violations difference
before and after an allocation of the VM (for the definition of the
second SLA violation sees Eq. (9) in Section 4.4). Line 18 is to
define the SLA violation (the definition of the SLA violation sees in
Section 4.4), while Line 19 means to define the energy efficiency
(the definition sees Eq. (11) in Section 4.5). Line 20–Line 23 find
a host with the highest energy efficiency due to the allocation of
a VM, while Line 25 is to complete the allocation of the VM. The
complexity of VPME isO(M×N), variableM is the number of hosts,
while variable N refers to the number of VMs.

3.5. VM placement optimization

VM placement optimization is also very important to improve
the utilization of resources in data centers, thus reducing the
energy consumption and SLA violation delivered by cloud system.
Thepseudo-code of VMplacement algorithm is shown in algorithm
3. The input to the algorithm are the three thresholds (Ta, Tb, and
Tc), the VM and host lists. The algorithm first obtains the CPU
utilization of the hosts (Line 2) and determines if a given host is
overloaded. Line 3–Line 6 choose VMs through using VM selection
policy (see Section 3.3) from the host, and migrates the selected
VMs to another host with the highest energy efficiency. Line 7–
Line 10 refer to all VMs on normally loaded host or little loaded
host keeping unchanged. Line 11–Line 16 are to select all VMs on
the less loaded host, and migrate them to another host with the
highest energy efficiency. The complexity of Algorithm 3 is O(M),
variableM is the number of hosts.

4. Experimental results and performance analysis

In this section, after presenting some basic definitions (includ-
ing energy consumption model, SLA violation metrics, and energy
efficiency metric), we will focus on the experimental results and
performance analysis. The experiment in the paper includes three
parts: (1) the first part only evaluates the performance of VPME
algorithm (see Section 3.4), which places VMwith the aims ofmax-
imizing energy efficiency. However, the existing algorithms only
place VM with minimizing energy consumption. Since VM place-
ment is very important and is a part of an energy-aware algorithm,
wewill discuss it in Section 4.6.1; (2) the second part is to evaluate
the energy-aware algorithm proposed in this paper for processing
CPU intensive task, we will deal with it in Section 4.6.2; (3) the
third part is to evaluate the energy-aware algorithm proposed in
this paper for processing I/O intensive task, we will address it in
Section 4.6.3. Each experiment was repeated at least 10 times and
the average of the 10 results are reported.

Table 2
Configuration of hosts.

Hosts CPU type Frequency (GHz) Cores RAM (GB)

HP Proliant G4 Intel Xeon 3040 1.86 2 4
HP Proliant G5 Intel Xeon 3075 2.66 2 4

Table 3
Four kinds of VM types.

VM type CPU (MIPS) RAM (GB)

High-CPU medium instance 2500 0.85
Extra large instance 2000 3.75
Small instance 1000 1.70
Micro instance 500 0.61

Table 4
Characteristics of the workload data (CPU utilization).

Date Number of VMs Mean Quartile 1 Quartile 3

03/March/2011 1052 12.31% 2% 15%
06/March/2011 898 11.44% 2% 13%
09/March/2011 1061 10.70% 2% 13%
22/March/2011 1516 9.26% 2% 12%
25/March/2011 1078 10.56% 2% 14%
03/April/2011 1463 12.39% 2% 17%
09/April/2011 1358 11.12% 2% 15%
11/April/2011 1233 11.56% 2% 16%
12/April/2011 1054 11.54% 2% 16%
20/April/2011 1033 10.43% 2% 12%

4.1. Experiment setup

It is essential to evaluate and compare the proposed algorithms
on a large-scale virtualized data center infrastructure. Consider-
ing the repeatability of experiments and the advantages of the
CloudSim toolkit [42] such as allowing themodeling the virtualized
environments and supporting on-demand resource provisioning,
the CloudSim toolkit is chosen to implement and analyze the
proposed algorithm.We simulate a data centerwhich includes 800
physical hosts, half of which is HP Proliant G4, the other half is
HP Proliant G5. The specific parameters of these hosts are listed
in Table 2. Characteristics of the VMs correspond to Amazon EC2
VM types [43], which is depicted in Table 3. There are four kinds
of VMs in Table 3, that is High-CPU Medium Instance, Extra Large
Instance, Small Instance, and Micro Instance.

4.2. Workload data

It is necessary and important to do experiments using real
workload data. In our experiment, we use the workload derived
from a CoMon project. The function of CoMon is to monitor in-
frastructure for PlanetLab [44]. We use the data from more than
a thousand VMs’ CPU utilization and the VMs were placed at
more than 500 places throughout the world. Table 4 depicts the
characteristics of the data [33].

4.3. Energy consumption model

Recent studied [45,46] show that the energy is consumed by
hosts in datacentres related to its CPU and memory utilization,
even when the DVFS technique is applied. However, with the
equipment ofmulticore CPUs, large-capacitymemory, andbig hard
disk, the traditional linearmodel is not capable of depicting the en-
ergy consumption of a host accurately. To accurately describe the
energy consumption, we use the real data of energy consumption,
all of which derive from SPECpower benchmark (http://www.spec.
org/powerssj2008/). We have selected two hosts equipped with
dual-core CPU, one ofwhich is namedHPProliant G4with 1.86GHz
(dual-core), 4 GB RAM, the other is HP Proliant G5 with 2.66 GHz
(dual-core), 4 GB RAM. The details of energy consumption for the
two hosts under different load is illustrated in Table 5 [33].

http://www.spec.org/powerssj2008/
http://www.spec.org/powerssj2008/
http://www.spec.org/powerssj2008/
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4.4. SLA violations metrics

SLA violations is an important factor for any VMs deployment.
There are two basic methods to depict an SLA violations [33]:

SVTAH (SLA Violation Time per Active Host): SVTAH represents
that the SLAviolation time accounts for the total timeof active host.
The SLA violation timemeans the CPU utilization of active host has
reached 100% during the time. All in all, the SVTAH can be defined
as follows:

SVTAH =
1
M

M∑
i=1

TVi
Tai

(8)

where parameter M is the number of hosts in a data center; pa-
rameter TVi represents total time during which the CPU utilization
of host i has reached 100%, parameter Tai means the total time of
host i being in active state (that is to say host i provides service to
its VMs). Eq. (8) illustrates that when a host’s CPU utilization has

Table 5
Energy consumption at different CPU utilization.

CPU utilization (%) Power consumption (W)

HP Proliant G4 HP Proliant G5

0 86 93.7
10 89.4 97
20 92.6 101
30 96 105
40 99.5 110
50 102 116
60 106 121
70 108 125
80 112 129
90 114 133

100 117 135

reached 100%, the VMs belong to the host cannot get the requested
CPU capacity, thus resulting in the SLA violations.

PDCVM (Performance Degradation Caused by VM Migration):
VM migration can bring negative impact on the performance of
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application that runs on a VM with a short time. The performance
degradation caused by VM j can be defined as follows:

PDCVM =
1
N

N∑
i=1

Pdj
prj

(9)

where parameter N corresponds to the number of VMs; parameter
Pdj represents the estimate of the performance degradation caused
by VM j; parameter prj means that the total CPU capacity requested
by VM j during its lifetime. Since both SVTAH and PDCVM metrics
are of equal important to independently measure the SLA viola-
tions, the SLA violation can be defined as follows:

SLA = SVTAH × PDCVM. (10)

4.5. Energy efficiency metric

Energy efficiency metric includes two aspects: energy con-
sumption and SLA violation. Based on the previous definition, the
energy efficiency (EE) can be defined as follows:

EE =
1

ppower × SLA
(11)

where parameter ppower represents the energy consumption, while
parameter SLA means the SLA violations. Eq. (11) illustrates that
the higher the EE value, the more the energy efficiency.

4.6. Discussion and analysis

4.6.1. The evaluation and analysis of VPME
SinceVMplacement is very important and is a part of an energy-

aware algorithm, this part we will evaluate the performance of
VPME algorithm (see Section 3.4). Different from the existing al-
gorithms only place VM with minimizing energy consumption,
VPME places VM with maximizing energy efficiency (including
both energy consumption and SLA violation). The selected data
set is ‘‘03/March/2011’’ (see Table 4 in Section 4.2), and the com-
parison algorithms are KAM-MMS-2.0 [35] and KAI-MMS-1.0 [35].
As both KAM-MMS-2.0 and KAI-MMS-1.0 place VM aiming at

Fig. 3. The comparison of energy efficiency.

minimizing energy consumption, we put the combination of KAM-
MMS-2.0 and VPME denoted by KAM-MMS-2.0-EE (KAM-MMS-
2.0-EE = KAM-MMS-2.0 + VPME); that is to say, KAM-MMS-2.0-
EE places VM aiming at maximizing energy efficiency, while KAM-
MMS-2.0 places VM aiming atminimizing energy consumption. By
the same method, we put the combination of KAI-MMS-1.0 and
VPME denoted by KAI-MMS-1.0-EE (KAI-MMS-1.0-EE = KAI-MMS-
1.0 + VPME).

Figs. 3 and 4 show the relative performance of the VM place-
ment algorithm with respect to energy efficiency and energy
consumption respectively. Fig. 3 shows that KAM-MMS-2.0-EE is
better than KAM-MMS-2.0. This can be explained by the fact that
KAM-MMS-2.0-EE optimizes the deployment of VM to maximize
the energy efficiency, while KAM-MMS-2.0 considers only mini-
mizing the energy consumption and thus ignoring the SLAviolation
during the deployment of VMs. For KAI-MMS-1.0-EE and KAI-
MMS-1.0, KAI-MMS-1.0-EE has a better performance than KAI-
MMS-1.0 for the same reason as above.

Figs. 4–6 display energy consumption, SLA violations and SV-
TAH. The results show that KAM-MMS-2.0-EE has better perfor-
mance than KAM-MMS-2.0. The reason is that KAM-MMS-2.0-EE
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Fig. 4. The comparison of energy consumption.

Fig. 5. The comparison of SLA violations.

Fig. 6. The comparison of SVTAH.

improves the efficiency of VMmigration, decreasing the number of
‘‘thrashing of VMmigration’’ (‘‘thrashing of VMmigration’’means a
VM frequentlymigrated fromahost to another host), thus reducing
the energy consumption, SLA violations, and SVTAH. By the same
reason, in terms of energy consumption, SLA violations and SVTAH,
KAI-MMS-1.0-EE has better performance than KAI-MMS-1.0.

Figs. 7 and 8 show the relative performance of the VM place-
ment algorithm with respect to PDCVM and the number of VM
migrations respectively. Regarding PDCVM, Fig. 7 show that the
two group algorithms (KAM-MMS-2.0-EE and KAM-MMS-2.0, KAI-
MMS-1.0-EE and KAI-MMS-1.0) lead to the same result. As for the

Fig. 7. The comparison of PDCVM.

Fig. 8. The number of VMmigrations.

number of VMmigration in Fig. 8, the results show that KAM-MMS-
2.0-EE has better performance than KAM-MMS-2.0. The reason is
that KAM-MMS-2.0-EE improves the efficiency of VM migration,
thus reducing the number of VMmigration. In terms of the number
of VM migration, KAI-MMS-1.0-EE is better than KAI-MMS-1.0
since KAI-MMS-1.0-EE improves the efficiency of VM migration,
thus reducing the number of VMmigration.

Regardless of the energy efficiency, energy consumption, SLA
violations, SVTAH, and the number of VMmigration, Figs. 3–8 show
that the algorithm with maximizing the energy efficiency has the
better performance than the algorithmwithminimizing the energy
consumption.

4.6.2. Analysis of CPU intensive task
Considering the characteristics of data set in Table 4 in Sec-

tion 4.2, we choose ‘‘03/March/2011’’ data set as the CPU in-
tensive task. The comparison algorithms are NPA (None Power
Aware) [42], DVFS [15], THR-MMT-1.0 [33], THR-MMT-0.8 [33],
MAD-MMT-2.5 [33], IQRMMT-1.5 [33], KAM-MMS-2.0 [35], and
KAI-MMS-1.0 [35]. Before making a comparison among these
energy-aware algorithms, we need to determine the value of pa-
rameter d for KMI (see Section 3.2) to process the CPU intensive
task. How to determine the value of parameter d? We put the
combination of ATF (see Section 3.1), KMI (see Section 3.2), MRCU
(see Section 3.3), VPME (see Section 3.4), and parameter d denoted
by KMI-MRCU-d . By the same reason, we put the combination of
ATF (see Section 3.1), KMI (see Section 3.2), MPCU (see Section 3.3),
VPME (see Section 3.4), and parameter d denoted by KMI-MPCU-d.
KMI-MRCU-d is for CPU intensive task,while KMI-MPCU-d is for I/O
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Fig. 9. Energy efficiency under different value of d.

Fig. 10. Energy consumption under different value of d.

Fig. 11. SLA violations under different value of d.

intensive task (the evaluation of KMI-MPCU-dwill be presented in
Section 4.6.3). In the experiments,we varied the value of parameter
d for KMI-MRCU-d from 0.5 to 3.0 increased by 0.5. Figs. 9–14 show
the experimental results under different value of d.

Figs. 9–14 illustrate the energy efficiency (Eq. (11) in
Section 4.5), energy consumption, SLA violations (Eq. (10) in Sec-
tion 4.4), SVTAH (Eq. (8) in Section 4.4), PDCVM (Eq. (9) in Sec-
tion 4.4) and number of VM migrations under different value of d,
respectively. In terms of energy consumption in Fig. 10, the mini-
mum value is obtained when parameter d = 2.0. However, Fig. 11

Fig. 12. SVTAH under different value of d.

Fig. 13. PDCVM under different value of d.

Fig. 14. Number of VMmigration under different value of d.

shows that a minimum value of SLA violations is obtained when
parameter d = 1.0. Considering both energy consumption and
SLA violations (that is energy efficiency), the optimum value for
energy efficiency can be got when parameter d = 1.0 (see Fig. 9).
Therefore,we use KMI-MRCU-1.0 tomake a comparisonwith other
energy-aware algorithms. Table 6 shows the experimental results
compared with the other baseline algorithms.

Table 6 illustrates the energy efficiency, energy consumption,
SLA violations, SVTAH, PDCVM, and number of VM migrations for



846 Z. Zhou et al. / Future Generation Computer Systems 86 (2018) 836–850

Table 6
Comparison with other energy-aware algorithms.

Algorithms Energy efficiency Energy consumption (kWh) SLA violations (10−7) SVTAH (%) PDCVM (%) Number of VMmigrations

NPA – 2410.8 – – – –
DVFS – 803.91 – – – –
THR-MMT-1.0 38 99.95 2613 26.97 0.10 19852
THR-MMT-0.8 170 119.40 492 4.99 0.10 26567
MAD-MMT-2.5 169 114.27 518 5.24 0.10 25923
IQR-MMT-1.5 166 117.08 514 5.08 0.10 26420
KAM-MMS-2.0 9 231 83.33 13 1.73 0.01 6808
KAI-MMS-1.0 6 393 104.28 15 2.03 0.01 7519
KMI-MRCU-1.0 28484 87.77 4 0.90 0.004 2821

NPA (None Power Aware) [42], DVFS [15], THR-MMT-1.0 [33], THR-
MMT-0.8 [33], MAD-MMT-2.5 [33], IQRMMT-1.5 [33], KAM-MMS-
2.0 [35], KAI-MMS-1.0 [35], and KMI-MRCU-1.0. In terms of energy
efficiency, the higher the value of the energy efficiency, the better.
As for energy consumption, SLA violations, SVTAH, and PDCVM,
the less the value the better. For the number of VM migrations,
excessive or too little VM migration is bad for energy efficiency.
NPA does not take any measure during processing tasks. It con-
sumes 2410.8 kWh. DVFS takes dynamic voltage and frequency
scaling technique to reduce energy consumption, it consumes
803.91 kWh. Comparedwith NPA, DVFS is effective. However, both
NPA and DVFS do not involve themigration of VM, we use notation
‘‘—’’ to express nonexistence energy efficiency, SLA violations, SV-
TAH, PDCVM, and number of VMmigrations.

Compared with THR-MMT-1.0, THR-MMT-0.8, MAD-MMT-2.5,
and IQR-MMT-1.5, algorithm KMI-MRCU-1.0 improves energy ef-
ficiency by more than 10 times, reduces energy consumption by
more than 10%, SLA violations by more than 10 times, SVTAH by
more than 5 times, PDCVM by more than 10 times, number of
VM migration by more than 9 times. The reason can be explained
as follows: (1) the four algorithms (THR-MMT-1.0, THR-MMT-0.8,
MAD-MMT-2.5, and IQR-MMT-1.5) are based on two-threshold
framework, while algorithm KMI-MRCU-1.0 is based on adaptive
three-threshold framework. In our previous study such as [31],
we have identified that the adaptive three-threshold algorithm
is more effective than two-threshold algorithm; (2) the four al-
gorithms (THR-MMT-1.0, THR-MMT-0.8, MAD-MMT-2.5, and IQR-
MMT-1.5) consider minimizing the energy consumption during
theVMplacement,while algorithmKMI-MRCU-1.0 considersmax-
imum energy efficiency. The experimental results in Section 4.6.1
have been proved that the latter has better performance than
the former; (3) for the overloaded host detection algorithm, the
four algorithms (THR-MMT-1.0, THR-MMT-0.8, MAD-MMT-2.5,
and IQR-MMT-1.5) leverage the statistical analysis of historical
data, while algorithm KMI-MRCU-1.0 utilizes K -Means cluster al-
gorithm before using the historical data; (4) during selection of
VMs, the four algorithms (THR-MMT-1.0, THR-MMT-0.8, MAD-
MMT-2.5, and IQR-MMT-1.5) consider single factor such as CPU
or memory utilization, while algorithm KMI-MRCU-1.0 considers
both CPU and memory utilization.

Compared with KAM-MMS-2.0 and KAI-MMS-1.0, algorithm
KMI-MRCU-1.0 improves energy efficiency by more than 3 times
by keeping almost equal energy-consumption, reduces SLA viola-
tions by more than 3 times, SVTAH by more than 2 times, PDCVM
by more than 2 times, and the number of VM migration by more
than 2 times. The reason can be concluded as follows: (1) the
two algorithms (KAM-MMS-2.0 and KAI-MMS-1.0) consider min-
imizing the energy consumption during the VM placement, while
algorithm KMI-MRCU-1.0 considers maximum energy efficiency.
The experimental results in Section 4.6.1 have been proved that the
latter has better performance than the former; (2) for processing
CPU intensive task, the host overloaded algorithm and VM selec-
tion policy of KMI-MRCU-1.0 is more effective than KAI-MMS-1.0
and KAM-MMS-2.0, the reason can be explained by the fact that

Fig. 15. Energy efficiency under different value of d.

KMI-MRCU-1.0 considers both CPU and memory factors. Based on
Table 6, a conclusion can be drawn that KMI-MRCU-1.0 is more
effective than other energy-aware algorithms.

4.6.3. Analysis of I/O intensive task
Taking into account the characteristics of data set at Table 4

in Section 4.2, for example, the mean, quartile 1, and quartile 3
of CPU utilization are the lowest in all of the data set. Therefore,
we select ‘‘22/March/2011’’ data set as the I/O intensive task. The
comparison algorithms are also NPA (None Power Aware) [42],
DVFS [15], THR-MMT-1.0 [33], THR-MMT-0.8 [33], MAD-MMT-
2.5 [33], IQRMMT-1.5 [33], KAM-MMS-2.0 [35], and KAI-MMS-
1.0 [35]. As with Section 4.6.2, we put the combination of ATF (see
Section 4.1), KMI (see Section 4.2), MPCU (see Section 4.3), VPME
(see Section 4.4), and parameter d denoted by KMI-MPCU-d (KMI-
MPCU-d is for I/O intensive task). In the experiment, the value of
parameter d was varied from 0.5 to 3.0 increased by 0.5. Figs. 15–
20 show the experimental results as a function of different value
of d.

Figs. 15–20 display the energy efficiency (Eq. (11) in Sec-
tion 4.5), energy consumption, SLA violations (Eq. (10) in Sec-
tion 4.4), SVTAH (Eq. (8) in Section 4.4), PDCVM (Eq. (9) in Sec-
tion 4.4) and the number of VM migrations under different value
of d , respectively. As shown in Fig. 16 KM1-MPCU-2.0 obtains the
minimum energy consumption value when parameter d = 1.5.
However, in Fig. 17, SLA violations can get a minimum value when
parameter d = 3.0. Considering both energy consumption and
SLA violations (that is energy efficiency), the optimum value for
energy efficiency can be got when parameter d = 2.0 (see Fig. 15).
Therefore, we use KMI-MPCU-2.0 tomake a comparisonwith other
energy-aware algorithms.

Table 7 illustrates the experimental results compared with the
other baseline algorithms. Table 7 shows the energy efficiency,
energy consumption, SLA violations, SVTAH, PDCVM, and number
of VM migrations for NPA (None Power Aware) [42], DVFS [15],
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Table 7
Comparison with other energy-aware algorithms.

Algorithms Energy efficiency Energy consumption (KWh) SLA violations (10−7) SVTAH (%) PDCVM (%) Number of VMmigrations

NPA – 2410.80 – – – –
DVFS – 1014.21 – – – –
THR-MMT-1.0 32 101.62 3115 27.72 0.11 25560
THR-MMT-0.8 136 120.91 609 5.49 0.11 33417
MAD-MMT-2.5 148 117.88 574 5.35 0.11 32795
IQR-MMT-1.5 134 121.11 615 5.46 0.11 33061
KAM-MMS-2.0 4922 84.65 24 2.03 0.01 8736
KAI-MMS-1.0 4612 103.26 21 1.80 0.01 8190
KMI-MPCU-2.0 5694 67.55 26 2.90 0.01 12607

Fig. 16. Energy consumption under different value of d.

Fig. 17. SLA violations under different value of d.

Fig. 18. SVTAH under different value of d.

Fig. 19. PDCVM under different value of d.

Fig. 20. Number of VMmigration under different value of d.

THR-MMT-1.0 [33], THR-MMT-0.8 [33], MAD-MMT-2.5 [33], IQR-
MMT-1.5 [33], KAM-MMS-2.0 [35], KAI-MMS-1.0 [35], and KMI-
MPCU-2.0. As for energy efficiency, the higher value of energy
efficiency, the better. In terms of energy consumption, SLA vio-
lations, SVTAH, and PDCVM, the less value, the better. For the
number of VM migrations, excessive or too little VM migration is
bad for energy efficiency. NPA do not take any measure to save
power during processing tasks, it consumes 2410.8 kWh. DVFS
takes dynamic voltage and frequency scaling technique to reduce
energy consumption, it consumes 1014.21 kWh. In contrast toNPA,
DVFS is effective. However, both NPA and DVFS do not involve the
migration of VM, we use notation ‘‘—’’ to express energy efficiency,
SLA violations, SVTAH, PDCVM, and number of VMmigrations.

In contrast to THR-MMT-1.0, THR-MMT-0.8, MAD-MMT-2.5,
and IQR-MMT-1.5, algorithm KMI-MPCU-2.0 improves energy ef-
ficiency by more than 10 times, reduces energy consumption by
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more than 40%, SLA violations by more than 10 times, SVTAH by
more than 40%, PDCVM by more than 10 times, number of VM
migration by more than 2 times. The reason can be explained
as follows: (1) the four algorithms (THR-MMT-1.0, THR-MMT-0.8,
MAD-MMT-2.5, and IQR-MMT-1.5) are based on two-threshold
framework, while algorithm KMI-MPCU-2.0 is based on adaptive
three-threshold framework. In our previous study such as [31],
we have identified that the adaptive three-threshold algorithm
is more effective than two-threshold algorithm; (2) the four al-
gorithms (THR-MMT-1.0, THR-MMT-0.8, MAD-MMT-2.5, and IQR-
MMT-1.5) consider minimizing the energy consumption during
theVMplacement,while algorithmKMI-MRCU-1.0 considersmax-
imum energy efficiency. The experimental results in Section 4.6.1
have been proved that the latter has better performance than the
former; (3) for the overloadedhost detection algorithm, the four al-
gorithms (THR-MMT-1.0, THR-MMT-0.8, MAD-MMT-2.5, and IQR-
MMT-1.5) leverage the statistical analysis of historical data, while
algorithm KMI-MRCU-1.0 utilizes K-Means cluster algorithm be-
fore using the historical data; (4) during selection VMs, the four al-
gorithms (THR-MMT-1.0, THR-MMT-0.8, MAD-MMT-2.5, and IQR-
MMT-1.5) consider single factor such as CPUormemoryutilization,
while algorithm KMI-MRCU-1.0 considers both CPU and memory
utilization.

Compared with KAI-MMS-1.0 and KAM-MMS-2.0, algorithm
KMI-MPCU-2.0 improves energy efficiency by more than 20% and
reduces energy consumption by more than 20% under keeping al-
most equal SLA violations. The reason can be concluded as follows:
(1) the two algorithms (KAI-MMS-1.0 andKAM-MMS-2.0) consider
minimizing the energy consumption during the VM placement,
while algorithm KMI-MPCU-2.0 considers maximum energy effi-
ciency. The experimental results in Section 4.6.1 have been proved
that the latter has better performance than the former; (2) for pro-
cessing I/O intensive task, the host overloaded algorithm and VM
selection policy of KMI-MPCU-2.0 ismore effective than KAI-MMS-
1.0 andKAM-MMS-2.0, the reason is KMI-MPCU-2.0 considers both
CPU and memory factors. Based on Table 7, a conclusion can be
drawn that KMI-MPCU-2.0 is more effective than other energy-
aware algorithms.

5. Conclusion

This paper puts forward two energy-aware algorithms (KMI-
MRCU-1.0 and KMI-MPCU-2.0) based on the adaptive three-
threshold framework (ATF), KMI algorithm, VM selection policies
(MRCU, MPCU), and maximum energy efficiency placement of
VM (VPME) according to the difference of workload. The exper-
imental results show that: (1) regarding the energy efficiency,
the algorithm with maximizing the energy efficiency (VPME) has
a better performance than the algorithm with minimizing the
energy consumption during the placement of VM; (2) during the
selection of a VM, considering both CPU andmemory factor ismore
effective than a single factor such as CPU.Moreover, the algorithms
proposed in this paper are more effective than the other energy-
aware algorithms regardless the workload types. We are planning
to implement the proposed algorithms on real-world cloud plat-
forms and study how much energy efficiency improvements and
reduction in the operation cost is obtained.

Acknowledgments

Thisworkwas donewhile the first author had a visiting position
at the School of Information Technology, Deakin University, Aus-
tralia. This work was supported by the National Natural Science
Foundation of China (nos. 61572525, 61373042, and 61404213),
and China Scholarship Council. This work was also supported par-
tially by Deakin University and the Deanship of Scientific Research
at King Saud University, Riyadh, Saudi Arabia through the research
group project No RGP-VPP-318. The help of Maliha Omar is also
sincerely appreciated.

References

[1] R. Wang, P. Shang, J. Zhang, Q. Wang, T. Liu, J. Wang, MAR: A novel power
management for cmp systems in data-intensive environment, IEEE Trans.
Comput. 65 (6) (2016) 1816–1830.

[2] Y. Chen, J.M. Chang, EMaaS: Cloud-based energy management service for
distributed renewable energy integration, IEEE Trans. Smart Grid 6 (6) (2015)
2816–2824.

[3] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility, Future Gener. Comput. Syst. 25 (6) (2009) 599–616.

[4] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing, Future
Gener. Comput. Syst. (FGCS) 28 (5) (2012) 755–768.

[5] J.M. Kaplan, W. Forrest, N. Kindler, Revolutionizing Data Center Energy Effi-
ciency; technical Report, McKinsey& Company: New York, NY, USA, 2008.

[6] A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic consolidation
of virtual machines in cloud data centers under quality of service constraints,
IEEE Trans. Parallel Distrib. Syst. (TPDS) 24 (7) (2013) 1366–1379.

[7] Jemal H. Abawajy, Mohd Farhan Md Fudzee, MohammadMehedi Hassan, Ma-
jed A. Alrubaian, Service level agreement management framework for utility-
oriented computing platforms, J. Supercomput. 71 (11) (2015) 4287–4303.

[8] L.A. Barroso, U. Holzle, The case for energy-proportional computing, Computer
40 (12) (2007) 268–280.

[9] M.R.V. Kumar, S. Raghunathan, Heterogeneity and thermal aware adaptive
heuristics for energy efficient consolidation of virtual machines in infrastruc-
ture clouds, J. Comput. System Sci. 82 (2) (2016) 191–212.

[10] G. Han,W.Que, G. Jia, L. Shu, An efficient virtualmachine consolidation scheme
for multimedia cloud computing, Sensors 16 (2) (2016) 1–17.

[11] S.B. Shaw, A.K. Singh, Use of proactive and reactive hotspot detection tech-
nique to reduce the number of virtual machine migration and energy con-
sumption in cloud data center, Comput. Electr. Eng. 47 (1) (2015) 241–254.

[12] A. Verma, P. Ahuja, A. Neogi, pMapper: Power and migration cost aware
application placement in virtualized systems, in: Proc. NinthACM/IFIP/USENIX
Int’l Conf. Middleware, 2008, pp. 243–264.

[13] G. Jung, M.A. Hiltunen, K.R. Joshi, R.D. Schlichting, C. Pu, Mistral: Dynamically
managing power, performance, and adaptation cost in cloud infrastructures,
in: Proc. 30th Int’l Conf. Distributed Computing Systems, ICDCS, 2010, pp. 62–
73.

[14] G. Buttazzo, Scalable applications for energy-aware processors, in: Embedded
Software, in: ser. Lecture Notes in Computer Science, vol. 2491, Springer Berlin
Heidelberg, 2002, pp. 153–165.

[15] H. Hanson, S.W. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, J. Rubio, Thermal
response to DVFS: analysis with an Intel Pentium M, in: Proceedings of the
International Symposium on Low Power Electronics and Design, ISLPED ’07,
Aug, 2007, pp. 219–224.

[16] C.M. Wu, R.S. Chang, H.Y. Chan, A green energy-efficient scheduling algorithm
using the DVFS technique for cloud datacenters, Future Gener. Comput. Syst.
37 (1) (2014) 141–147.

[17] A. Wierman, L.L. Andrew, A. Tang, Power-aware speed scaling in processor
sharing systems, in: Proceedings of the 28th Conference on Computer Com-
munications, INFOCOM, 2009, pp. 2007–2015.

[18] L.L. Andrew, M. Lin, A. Wierman, Optimality, fairness, and robustness in speed
scaling designs, in: Proceedings of the ACM International Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS, 2010, pp. 37–48.

[19] K. Flautner, S. Reinhardt, T. Mudge, Automatic performance setting for dy-
namic voltage scaling, Wirel. Netw. 8 (5) (2002) 507–520.

[20] A. Weissel, F. Bellosa, Process cruise control: event-driven clock scaling for
dynamic power management, in: Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, 2002, pp.
238–246.

[21] S. Lee, T. Sakurai, Run-time voltage hopping for low-power real-time systems,
in: Proceedings of the 37thAnnual ACM/IEEE Design Automation Conference,
DAC, 2000, pp. 806–809.

[22] J.R. Lorch, A.J. Smith, Improving dynamic voltage scaling algorithmswith PACE,
ACM SIGMETRICS Perform. Eval. Rev. 29 (1) (2001) 50–61.

[23] R. Buyya, R. Ranjan, R.N. Calheiros, Modeling and simulation of scalable cloud
computing environments and the CloudSim toolkit: challenges and opportu-
nities, in: Proceedings of the International Conference on High Performance
Computing and Simulation, HPCS ’09, 2009, pp. 1–11.

[24] A. Beloglazov, R. Buyya, Energy efficient allocation of virtualmachines in cloud
data centers, in: IEEE TCSC Doctoral Symposium, Proceedings of the 10th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
CCGrid 2010, Melbourne, Australia, May, 2010, pp. 577–578.

http://refhub.elsevier.com/S0167-739X(17)31605-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb1
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb2
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb2
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb2
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb2
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb2
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb3
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb3
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb3
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb3
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb3
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb4
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb4
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb4
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb4
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb4
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb6
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb7
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb7
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb7
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb7
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb7
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb8
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb8
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb8
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb9
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb9
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb9
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb9
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb9
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb10
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb10
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb10
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb11
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb11
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb11
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb11
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb11
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb14
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb14
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb14
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb14
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb14
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb16
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb16
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb16
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb16
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb16
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb19
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb19
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb19
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb22
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb22
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb22


Z. Zhou et al. / Future Generation Computer Systems 86 (2018) 836–850 849

[25] A. Beloglazov, R. Buyya, Energy efficient resource management in virtualized
cloud data centers, in: IEEE TCSCDoctoral Symposium, Proceedings of the 10th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
CCGrid 2010, Melbourne, Australia, May, 2010, pp. 17–20.

[26] H. Li, G. Zhu, C. Cui, H. Tang, Y. Dou, C. He, Energy-efficient migration and con-
solidation algorithm of virtual machines in data centers for cloud computing,
Computing 98 (3) (2016) 303–317.

[27] X. Fu, C. Zhou, Virtual machine selection and placement for dynamic consoli-
dation in Cloud computing environment, Front. Comput. Sci. 9 (2) (2015) 322–
330.

[28] X. Zhu, et al., 1000 Islands: Integrated capacity and workload management
for the next generation data center, in: Proc. Fifth Int’l Conf. Autonomic
Computing, ICAC, 2008, pp. 172–181.

[29] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, A. Kemper, An inte-
grated approach to resource poolmanagement: Policies, efficiency and quality
metrics, in: Proc. IEEE 38th Int’l Conf. Dependable Systems andNetworks, DSN,
2008, pp. 326–335.

[30] VMware Distributed Power Management Concepts and Use, Information
Guide, VMware Inc. 2010.

[31] Z. Zhou, Z.G. Hu, T. Song, J.Y. Yu, A novel virtualmachine deployment algorithm
with energy efficiency in cloud computing, J. Cent. South Univ. 22 (3) (2015)
974–983.

[32] A. Beloglazov, R. Buyya, Adaptive threshold-based approach for energy-
efficient consolidation of virtualmachines in clouddata centers, in: Proceedings
of the 8th International Workshop on Middleware for Grids, Clouds and E-
Science (MGC 2010), ACM, Bangalore, India, 2010.

[33] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of
virtual machines in cloud data centers, Concurr. Comput.: Pract. Exper. (CCPE)
24 (13) (2012) 1397–1420.

[34] B. Guenter, N. Jain, C. Williams, Managing cost performance and reliability
tradeoffs for energy-aware server provisioning, in: Proc. IEEE INFOCOM, 2011,
pp. 1332–1340.

[35] Z. Zhou, Z. Hu, K. Li, Virtual machine placement algorithm for both energy-
awareness and SLA violation reduction in cloud data centers, Sci. Program.
2016 (1) (2016) 1–11.

[36] A. Higai, A. Takefusa, H. Nakada, M. Oguchi, A study of effective replica re-
construction schemes at node deletion for HDFS, in: Proceedings of IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, 2014, pp.
512–521.

[37] B. Mao, H. Jiang, S. Wu, Y. Fu, L. Tian, Read-performance optimization for
deduplication-based storage systems in the cloud, ACM Trans. Storage 10 (2)
(2014) 1–44.

[38] T. Gunarathne, J. Qiu, D. Gannon, Towards a collective layer in the big data
stack, in: Proceedings of IEEE/ACM International SymposiumonCluster, Cloud,
and Grid Computing, 2014, pp. 236–245.

[39] Xiang Li, Peter Garraghan, Xiaohong Jiang, Zhaohui Wu, Jie Xu, Holistic virtual
machine scheduling in cloud datacenters towards minimizing total energy,
IEEE Trans. Parallel Distrib. Syst. (2017). http://dx.doi.org/10.1109/TPDS.2017.
2688445. 28 March.

[40] Nguyen, Trung Hieu, Mario Di Francesco, Antti Yla-Jaaski, Virtual machine
consolidation with multiple usage prediction for energy-efficient cloud data
centers, IEEE Trans. Serv. Comput. (2017). http://dx.doi.org/10.1109/TSC.2017.
2648791. 05 January.

[41] W. Voorsluys, J. Broberg, S. Venugopal, R. Buyya, Cost of virtual machine
live migration in clouds: a performance evaluation, in: Cloud Computing:
First International Conference, CloudCom 2009, Beijing, China, December 1–4,
2009. Proceedings, in: LectureNotes in Computer Science, vol. 5931, Springer,
Berlin, Germany, 2009, pp. 254–265.

[42] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F.D. Rose, R. Buyya, CloudSim: A
toolkit for modeling and simulation of Cloud computing environments and
evaluation of resource provisioning algorithms, Softw. - Pract. Exp. 41 (1)
(2011) 23–50.

[43] F. Durao, J.F.S. Carvalho, A. Fonseka, V.C. Garcia, A systematic review on cloud
computing, J. Supercomput. 68 (3) (2014) 1321–1346.

[44] K.S. Park, V.S. Pai, CoMon: a mostly-scalable monitoring system for planetLab,
Oper. Syst. Rev. 40 (1) (2006) 65–74.

[45] X. Fan, W.D. Weber, L.A. Barroso, Power provisioning for a warehouse-sized
computer, in: Proceedings of the 34th Annual International Symposium on
Computer Architecture, (ISCA’07), ACM, 2007, pp. 13–23.

[46] D. Kusic, J.O. Kephart, J.E. Hanson, N. Kandasamy, G. Jiang, Power and per-
formance management of virtualized computing environments via lookahead
control, Cluster Comput. 12 (1) (2009) 1–15.

Zhou Zhou received the Ph.D. degree from Central South
University, Changsha, China, in 2017, majoring in com-
puter science. He is currently a lecturer at Changsha Uni-
versity. Also, he has accepted a post-doctoral position in
Hunan University for two years (from 2017–2019). His
research interests include Cloud computing, energy con-
sumption model, energy-efficient resource management,
and virtual machine deployment.

Jemal Abawajy (SM’11) is a full professor at Faculty of Sci-
ence, Engineering and Built Environment, Deakin Univer-
sity, Australia. Prof. Abawajy has delivered more than 50
keynote and seminars worldwide and has been involved
in the organization of more than 300 international confer-
ences in various capacity including chair and general co-
chair. He has also served on the editorial-board of numer-
ous international journals including IEEE Transaction on
CloudComputing. Prof. Abawajy is the author/co-author of
more than 250 refereed articles and supervised numerous
Ph.D. students to completion.

Morshed Chowdhury received his Ph.D. degree in Com-
puting from Monash University, Australia in 1999. He is
a Senior Lecturer in the School of Information Technol-
ogy, Deakin University, Burwood, Australia. He has more
than 12 years of industry experiences and has published
more than one hundred research papers. He has organized
a number of international conferences and served as a
member of program committees of several international
conferences. He has also acted as reviewer of many IEEE
and Elsevier journal papers.

Zhigang Hu received his M.S. degree and Ph.D. degree
in Central South University in 1988, 2002 respectively.
Now, He is a professor at the School of Software, Central
South University. His research interests include high per-
formance computing, Cloud computing, energy-efficient
resource management, and virtual machine deployment.

Keqin Li is a SUNY distinguished professor of computer
science. He is also an Intellectual Ventures endowed vis-
iting chair professor at Tsinghua University, China. His
research interests mainly include design and analysis of
algorithms, parallel and distributed computing, and com-
puter networking. He hasmore than 290 refereed research
publications. He is currently or has served on the editorial
board of IEEE Transactions on Parallel and Distributed Sys-
tems, IEEE Transactions on Computers, IEEE Transactions
on Cloud Computing, Journal of Parallel and Distributed
Computing, International Journal of Parallel, Emergent and

Distributed Systems, International Journal of High Performance Computing and
Networking, International Journal of BigData Intelligence, andOptimization Letters.
He is a senior member of the IEEE.

Hongbing Cheng received his Ph.D. degree in Network
and Information Security from Nanjing University of Posts
& Telecommunications in 2008. Heworked as research fel-
low in Nanjing University, China; University of Stavanger,
Norway and Manchester University, England from 2010
to 2013. He is a Professor of College of Computer and
Software, Zhejiang University of Technology, Hangzhou,
China. He has authoredmore than 50 refereed journal and
conference papers. His research interests include cloud
computing, information and network security, big data
security, and wireless sensor networks. Dr. Cheng is an

http://refhub.elsevier.com/S0167-739X(17)31605-9/sb26
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb26
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb26
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb26
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb26
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb27
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb27
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb27
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb27
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb27
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb31
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb31
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb31
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb31
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb31
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb32
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb33
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb35
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb35
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb35
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb35
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb35
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb37
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb37
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb37
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb37
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb37
http://dx.doi.org/10.1109/TPDS.2017.2688445
http://dx.doi.org/10.1109/TPDS.2017.2688445
http://dx.doi.org/10.1109/TPDS.2017.2688445
http://dx.doi.org/10.1109/TSC.2017.2648791
http://dx.doi.org/10.1109/TSC.2017.2648791
http://dx.doi.org/10.1109/TSC.2017.2648791
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb41
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb41
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb41
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb41
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb41
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb41
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb41
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb41
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb41
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb42
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb42
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb42
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb42
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb42
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb42
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb42
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb43
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb43
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb43
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb44
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb44
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb44
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb45
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb45
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb45
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb45
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb45
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb46
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb46
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb46
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb46
http://refhub.elsevier.com/S0167-739X(17)31605-9/sb46


850 Z. Zhou et al. / Future Generation Computer Systems 86 (2018) 836–850

Associate Editor of Journal of Network and Information Security. He has served as
Symposium Chair and Session Chair for several international conferences.

Abdulhameed Alelaiwi is a faculity member of Software
Engg. Department, at the College of Computer and In-
formation Sciences, King Saud University. Riyadh, Saudi
Arabia. He received his Ph.D. degree in Software Engi-
neering from the College of Engineering, Florida Insti-
tute of Technology-Melbourne, USA. He has authored
and co-authored many publications including refereed
IEEE/ACM/Springer journals, conference papers, books,
and book chapters. His research interest includes software
testing analysis and design, cloud computing, and multi-
media. He is a member of IEEE.

Fangmin Li received the Ph.D. degree from Zhejiang Uni-
versity, Hangzhou, China, in 2001, majoring in computer
science. He is currently a Professor at ChangshaUniversity.
He has authored several books on embedded systems and
over 30 academic papers in wireless networks, and also
holds ten Chinese patents. His current research interests
include cloud computing, wireless communications and
networks, and energy-efficient resource management.


	Minimizing SLA violation and power consumption in Cloud data centers using adaptive energy-aware algorithms
	Introduction
	Related work
	Adaptive three-threshold VM placement framework
	Adaptive three-threshold framework
	Determining threshold values
	VM selection methods from overloaded hosts
	VM placement with maximizing energy efficiency
	VM placement optimization

	Experimental results and performance analysis
	Experiment setup
	Workload data
	Energy consumption model
	SLA violations metrics
	Energy efficiency metric
	Discussion and analysis
	The evaluation and analysis of VPME
	Analysis of CPU intensive task
	Analysis of I/O intensive task


	Conclusion
	Acknowledgments
	References


