
Parallel Computing 100 (2020) 102699

Available online 2 October 2020
0167-8191/© 2020 Published by Elsevier B.V.

ImRP: A Predictive Partition Method for Data Skew Alleviation in Spark
Streaming Environment

Zhongming Fu a,b,c, Zhuo Tang a,b,*, Li Yang d, Kenli Li a,b, Keqin Li e

a College of Information Science and Engineering, Hunan University, China
b National Supercomputing Center in Changsha, Hunan, China
c College of Computer Science and Technology, University of South China, China
d College of Computer and Communication Engineering, Changsha University of Science and Technology, China
e Department of Computer Science, State University of New York, New Paltz, New York, USA

A R T I C L E I N F O

Keywords:
MapReduce
Data skew
Load imbalance
Spark Streaming

A B S T R A C T

Spark Streaming is an extension of the core Spark engine that enables scalable, high-throughput, fault-tolerant
stream processing of live data streams. It treats stream as a series of deterministic batches and handles them as
regular jobs. However, for a stream job responsible for a batch, data skew (i.e., the imbalance in the amount of
data allocated to each reduce task), can degrade the job performance significantly because of load imbalance. In
this paper, we propose an improved range partitioner (ImRP) to alleviate the reduce skew for stream jobs in
Spark Streaming. Unlike previous work, ImRP does not require any pre-run sampling of input data and generates
the data partition scheme based on the intermediate data distribution estimated by the previous batch pro-
cessing, in which a prediction model EWMA (Exponentially Weighted Moving Average) is adopted. To lighten the
data skew, ImRP presents a novel method of calculating the partition borders optimally, and a mechanism of
splitting the border key clusters when the semantics of shuffle operators permit. Besides, ImRP considers the
integrated partition size and heterogeneity of computing environments when balancing the load among reduce
tasks appropriately. We implement ImRP in Spark-3.0 and evaluate its performance on four representative
benchmarks: wordCount, sort, pageRank, and LDA. The results show that by mitigating the data skew, ImRP can
decrease the execution time of stream jobs substantially compared with some other partition strategies, espe-
cially when the skew degree of input batch is serious.

1. Introduction

Currently, data stream processing and analysis have become
increasingly urgent in many applications, such as ad-hoc queries, dy-
namic content delivery, and security event processing [1]. As an
emerging stream processing framework, Spark Streaming [2] is built on
top of Spark (a popular big data processing platform) [3] to support near
real-time distributed stream processing. Instead of processing stream
data one record at a time like traditional stream processing systems (e.g.,
Storm [4] and TelegraphCQ [5]), Spark Streaming processes many re-
cords together. These small sets of records are called micro-batches, and
each of them is sent to Spark engine to be processed as a normal job.

A typical Spark job contains two types of stages namely map stage
and reduce stage. Between them, the shuffle phase maintains the read/
write relationship in which the key/value tuples outputted by map tasks

are allocated to a certain partition and processed by relevant reduce
tasks. However, when the data allocation among the partitions is
imbalanced, it would lead to the load imbalance of reduce tasks because
of various input sizes. This is what we call the data skew or reduce skew
[6]. Data skew is one of the important performance bottlenecks of sys-
tems because the execution time of a stage may be delayed by the
overloaded task.

Hash and range partitioner are two methods provided by Spark,
which are responsible for assigning intermediate data according to their
keys. The hash partitioner uses a simple hash function, whereas the
range partitioner uses a set of partition borders to divide the key space of
entire intermediate data. Unfortunately, both of them easily cause the
reduce skew when the distribution of key/value tuples is non-uniform
(some keys appear more popular than others). As an example, Fig. 1
shows the statistics of partial word frequencies among 10 batches when

* Corresponding author.
E-mail address: ztang@hnu.edu.cn (Z. Tang).

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

https://doi.org/10.1016/j.parco.2020.102699
Received 13 January 2020; Received in revised form 8 July 2020; Accepted 24 September 2020

mailto:ztang@hnu.edu.cn
www.sciencedirect.com/science/journal/01678191
https://www.elsevier.com/locate/parco
https://doi.org/10.1016/j.parco.2020.102699
https://doi.org/10.1016/j.parco.2020.102699
https://doi.org/10.1016/j.parco.2020.102699
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2020.102699&domain=pdf

Parallel Computing 100 (2020) 102699

2

using the data set Wikipedia Corpus [7]. In fact, the word frequencies
obey the Zipf distribution in the real world (a very common distribution
of data generated by human society [8]). Therefore, when the words are
regarded as the keys of the intermediate data by the jobs, the data is
distributed non-uniformly and the reduce skew is prone to occur.

In Mapreduce-type frameworks, some useful partition methods were
proposed by previous work to resolve the data skew problem [9], [10],
[11], [12]. Most of them were designed for Hadoop and utilized the
system characteristics. However, being different from the implementa-
tion of Hadoop [13], Spark adopts the multi-stage execution model and
executes tasks stage by stage. Hence, the Hadoop-based approaches do
not necessarily apply to Spark systems. In recent years, several re-
searches optimized the partition methods of Spark [14], [15], but they
are not suitable for Spark Streaming computing environments. To
address this problem, in particular, Liu et al. [16] presented
SP-partitioner to balance the partitions for stream jobs effectively.
Nevertheless, the hash partition scheme cannot fit all types of jobs.

In the Spark engine, the shuffle operator (e.g., reduceByKey) in the
reduce stage causes the shuffle phase and is first performed on the
partitioned data [15]. However, only making the partition balance for
the shuffle operation does not guarantee the load balancing of reduce
tasks throughout their execution. Because the partition size may change
after the shuffle operation. Moreover, when the computing environment
in the real world is heterogeneous, the worker nodes can differ in the
capabilities of processing the tasks. Hence, a good partition strategy
should take these factors into consideration.

Motivated by the above work, this paper tries to relieve the data skew
specially in Spark Streaming. In order to generate the key allocation
strategy properly, it is necessary to know the distribution of interme-
diate data. But it is meaningless to count the key/value tuples after
processing all input data. Fortunately, in most stream computing ap-
plications, the data characteristics do not change frequently [16]. As
illustrated by Fig. 1, among the batches, the frequent keys always appear
frequently, and vice versa. This paper proposes to use the past inter-
mediate data of the previous batch processing to predict that of the
forthcoming job, then through the optimized data partition scheme, the
load of the reduce task can be balanced. The main contributions of this
paper are summarized below.

• A new architecture is designed to mitigate the reduce skew in the
shuffle phase of stream jobs, where the key distribution of the forth-
coming job is predicted by the EWMA (Exponentially Weighted Moving
Average) model. This step is separate from the normal job running and
without extra delay.

• An improved range partitioner (ImRP) is proposed. Thr-ough
comprehensively considering the partition balance before and after
the shuffle operation, and by optimizing the calculation of partition
borders, this partitioner can generate a more load-balanced partition
scheme.

• When the performance of computing nodes is heterogeneous,
ImRP can adjust its workload allocation accordingly; and when the se-
mantics of the shuffle operator allow, ImRP can support the split of key
cluster (all key/value tuples with the same key) to ensure the absolute
equality.

• We implement our proposals in Spark-3.0 and evaluate its per-
formance on several representative benchmarks. The experiment results
show that ImRP can improve the execution efficiency of jobs by
addressing the data skew successfully.

The rest of this paper is organized as follows. Section 2 surveys
related work on data skew mitigation over Mapreduce frameworks.
Section 3 introduces the system overview of ImRP. Section 4 presents the
intermediate data prediction, and Section 5 describes the design of our
partition method. Experiments and analysis are presented in Section 6.
Section 7 concludes this paper.

2. Related Work

There are many real world applications exhibiting significant data
skew, including parallel database operations (e.g., Join [17], Group [18],
and Aggregate [19]), and search engine applications (e.g., PageRank and
Inverted Index). In the past years, the problem of reduce skew has also
been studied in MapReduce environments after the release of Hadoop
[20], which is similar to our work:

Ibrahim et al. [21] proposed a novel algorithm called LEEN for
locality-aware and fairness-aware key partitioning in MapReduce. It
sorts all keys according to their fairness-locality values and uses a heu-
ristic method to choose the node with the maximum fairness score for a
reduce task to process the keys. Because the intermediate tuples are
tracked after the map phase, LEEN embraces an asynchronous map and
reduce scheme.

The main advantage of the work by Chen et al. [22] is LIBRA, a
lightweight strategy that uses an innovative sampling method to ascer-
tain the key distribution by sampling only a small fraction of the inter-
mediate data. On the basis of the estimation, LIBRA generates the range
partition scheme based on certain improvements, including chunk index
for decreasing partition time and large cluster split.

In [23], Gufler et al. presented two load balancing approaches: fine
partitioning and dynamic fragmentation. The former produces a fixed
number of data partitions, and the latter dynamically splits large par-
titions into smaller portions and replicates data if necessary. Moreover,
they define a new cost model to take into account non-linear reducer
tasks.

Taking advantage of Hadoop’s features, the above methods can
obtain pretty good performance. However, as mentioned in section 1,
they only balance the partitions of executing shuffle operation. While in
Spark, one stage contains one or more RDD operations. Thus the
Hadoop-based methods may not be competent for the work in Spark
environments. At present, several partition strategies were proposed for
Spark specifically.

Tang et al. [14] presented SCID, a splitting and combination algo-
rithm that conducts a pre-run on the sample of input data before the
normal job. Then by the statistics of keys, it forecasts the rough sizes of
all clusters which will be produced for the whole input. At last, SCID puts
the clusters into partitions and regards it as a bin-packing problem.
Later, Tang et al. [15] further proposed SKRSP, a key reassigning and
splitting partition algorithm. SKRSP designs two algorithms: hash based
key reassigning algorithm and range based key splitting algorithm.
Similar to [14], SKRSP uses a step-based algorithm for sampling the
input data to obtain the general key distribution of intermediate data.
Since the pre-run sampling job can postpone the main job, making them

Fig. 1. Word frequency statistics of the top 20 words among 10 batches, each
batch contains 3462 distinct words and about 9532980 records.

Z. Fu et al.

Parallel Computing 100 (2020) 102699

3

is not a good choice for stream computing.
In Spark Streaming, existing work for performance optimization

mainly includes the following aspects: adaptive batch size selection
[24], [25]; online performance tuning [26]; and dynamic resource
allocation [27]. However, there are few studies on the data skew. In
particular, Liu et al. [16] presented a stream data prediction partitioner
called SP-Partitioner. It uses the arrived batches of data as the prediction
of key distribution of next batches of data. Whereafter, according to the
prediction, SP-Partitioner generates a reference table to guide the allo-
cation of next batches of data evenly. Compared with our work,
SP-Partitioner relieves the reduce skew by improving the hash partition,
and as a new breakthrough in this study, we focus on the data skew
mitigation based on the range partition to balance the load of reduce
tasks.

3. System Overview

In the design of Spark Streaming, the batches of stream are treated as
traditional workloads, which are handled by the Spark engine to return
the results in a near real-time way [28]. To address the reduce-side data
skew for stream jobs, this paper optimizes the data assignment based on
the range partition. Because it is suitable for all types of jobs, whereas
the hash partition and other strategies can be applied to most jobs except
those that require sorting [22]. The architecture of our system is shown
in Fig. 2, which contains the following three steps:

Intermediate data prediction. In the proposed architecture, we use the
outputted intermediate data of previous jobs to predicate that of the
forthcoming job. During the shuffle phase of a batch processing, the
frequency of each key of the intermediate data is counted and tracked,
then we use the prediction model EWMA to forecast the size of key
clusters.

Partition method optimization. To relieve the load imbalance of reduce
tasks, a more reasonable data partition scheme is generated by ImRP. It
involves solving the following issues: (1) how to determine the partition
borders optimally; (2) how to split the border key cluster correctly when
the semantics allow; and (3) how to allocate the work properly when the
nodes are heterogeneous.

Intermediate data partition. When partitioning the intermediate data
of the forthcoming job really, the system uses the data partition scheme
obtained from the second step. In the shuffle phase, each key/value
tuple in the map output gets its partition ID and then is written to
relevant buffer array called buckets. In a map output, the key/value
tuples with partition ID j compose the jth bucket, which will become part
of the jth partition and be processed by the jth reducer.

We will describe the realization of each part in detail in the
following.

4. Intermediate Data Prediction

To ascertain the distribution of intermediate data is an inevitable
course to develop the balanced partition strategy [29]. For this purpose,
most partition methods either pre-run the sampling of input data [6],
[9], [14] or extract the intermediate data of partial map outputs for
analysis [21], [30]. However, this may bring extra overhead. Making use
of the data characteristics, this paper intends to forecast the key distri-
bution for the forthcoming job. For illustrative purposes, some signifi-
cant variables are declared in Table 1.

First of all, ImRP detects the key distribution of the intermediate data
of previous jobs. Without loss of generality, we denote the forthcoming
job as Jt that processes batch t, and the previous processed jobs as {Jt− 1,

Jt− 2, ..., J1|t > 1}. There are some specific data structures can be
formalized as follows:

(1) BM. A m × n matrix that denotes the outputs of all map tasks of a
previous job, where the element bi,j indicates the jth bucket whose data
come from the ith map task. Specifically, which bucket a key/value tuple
belongs to is determined by the function getPartitionID according to the
key, which can be formalized as:

bi,j = ⊎
kr∈KSi :getPartitionID(kr)=j

< kr, vr >, 1 ≤ i ≤ m, (1)

where < kr, vr > represents a key/value tuple, and KSi is the key space of
map output i.

(2) DM. A (t − 1) × u matrix that represents the key distribution of
the intermediate data of a series of previous jobs, which can be
formalized as:

DM =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(
Kt− 1

1 ,Ct− 1
1

) (
Kt− 1

2 ,Ct− 1
2

)
⋯

(
Kt− 1

u ,Ct− 1
u

)

(
Kt− 2

1 ,Ct− 2
1

) (
Kt− 2

2 ,Ct− 2
2

)
⋯

(
Kt− 2

u ,Ct− 2
u

)

⋮ ⋮ ⋱ ⋮
(
K1

1 ,C1
1

) (
K1

2 ,C
1
2

)
⋯

(
K1

u ,C1
u

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where Kl represents a key cluster, and Cl is the number of tuples in the
cluster of Kl. In particular, for the key distribution of Jt− 1: Dt− 1 = {(Kt− 1

1 ,

Ct− 1
1), (Kt− 1

2 ,Ct− 1
2), ..., (Kt− 1

u ,Ct− 1
u)}, ImRP designs a counter in each map

output [bi,1, bi,2, ..., bi,n] to record the frequency of each key of the key/
value tuples. After that, the key statistics of counters are combined to
obtain the general key distribution.

There are many prediction algorithms in the literature, such as
EWMA (Exponentially Weighted Moving Average) and CU-SUM [31].
Compared to the CUSUM model, the EWMA model gives different
weights to historical and current values, which helps to better capture
the changing trends. Moreover, because {(Kt− 1

l ,Ct− 1
l), (Kt− 2

l ,Ct− 2
l), ...,

(K1
l ,C

1
l)} are the typical time series data, it is more suitable to adopt the

time series data prediction algorithm EWMA. Therefor, in the prediction
of key cluster size for Jt, the frequency of a given key can be calculated as
follows:

D★
t .Cl = α × Dt− 1.Ct− 1

l + (1 − α) × D★
t− 1.Cl

= α ×
(
Dt− 1.Ct− 1

l + (1 − α) × Dt− 2.Ct− 2
l + ...

+(1 − α)t− 2
× D1.C1

l),

(2)

where Kl is shared by the key distribution Dt− 1 and the estimated key
distribution D*

t− 1, α ∈ [0, 1] reflects a tradeoff between stability and

Fig. 2. The framework overview of ImRP.

Table 1
Variable Declaration

m, m ≥ 1 the number of map tasks;
n, n ≥ 1 the number of reduce tasks;
u, u ≥ 1 the number of key clusters of the intermediate data.
< kr, vr > , r ≥ 1 a key/value tuple with key kr of the intermediate data;
bi,j, 1 ≤ i ≤ m the jth bucket whose data come from the ith map task;
(Kl, Cl), 1 ≤ l ≤ u a key cluster Kl whose number of key/value tuples is Cl;

Z. Fu et al.

Parallel Computing 100 (2020) 102699

4

responsiveness. In our implementation, we set α to be 0.4 according to
the evaluation result of section 7. In particular, if there is a key that is not
shared by Dt− 1 and D★

t− 1, the number of the un-contained part is set to 0.
When dealing with the initial batch (i.e., t = 1), ImRP uses the original
range partitioner for J1.

We conduct a group of experiments to show how effective the EWMA
model is. Considering the example of Fig. 1, we estimate the frequencies
of 3462 keys of the batches by using the EWMA and the prediction
model of SP-Partitioner [16] (directly use the previous batch as the
prediction of the forthcoming batch). Table 2 is the statistics of the root
mean square (rms) error of the key estimation for each batch, where rms

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1

Δ2
i

n

√

, n is the number of distinct keys, and Δ is the error between

the estimated and the true value. The results show that EWMA can
achieve higher accuracy than SP-Partitioner.

5. Partition Method Optimization

In this section, we generate the exact partition scheme based on the
key estimation. For the purpose of avoiding data skew, a series of
optimization measures are proposed, which involves the calculation of
partition borders, split of border key clusters, and consideration of
heterogeneous environments.

5.1. Calculation of Partition Borders

The data partition scheme of the range partitioner can be represented
as a set of partition borders: P = {Kp0 ,Kp1 ,⋯,Kpj ,⋯,Kpn}, where Kpj− 1 <

Kpj , and Kpj is a border key which represents the upper bound of the jth

partition. When the map tasks divide the intermediate data, the range of
a partition (Kpj− 1 ,Kpj] indicates that the key/value tuples whose keys
belonging to this range will be assigned to partition j. In particular, the
1st partition includes key Kp0 . Assume that there are v key clusters dis-
patched in partition j, represented as: {(K1, C1), (K2, C2), ..., (Kv, Cv)}, the
data size of partition j can be calculated as:

Sj =
∑v

l=1
Cl,Kpj− 1 < Kl ≤ Kp. (3)

In this method, our goal is to come up the partition borders appropri-
ately that can make the partitions equaling in size.

It is obvious that the location of border keys has a direct impact on
the balance of partitions. Here the original range partitioner takes a
greedy approach: firstly, it sorts the key clusters of D★

t in ascending
lexicographic order according to their keys, and then calculates the
average size of each partition. Thirdly, it puts the clusters of D★

t
sequentially into the partitions. In this process, if a cluster reaches or
exceeds the average size of the partition, the key of the cluster is set to
the partition border, and the next partition will be turned. However, the
partition borders generated in this way is simple but not optimal.

Fig. 3 shows a simple example that there is a key distribution D★
t , in

which the sorted key clusters are (A, 4), (C, 3), (E, 1), and (H, 2). The
number of partitions is set to 2, so the average partition size is (4+ 3+

1+ 2)/2 = 5. In accordance with the cutting method of the original
partitioner, cluster A and C will be assigned to partition 1, and cluster E
and H will be assigned to partition 2. The partition sizes are 7 and 3
respectively, as shown by Fig. 3 (a). However, we can easily find an
optimal scheme that assigns cluster A to partition 1, and C, E and H to
partition 2. The partition sizes are 4 and 6 respectively, as shown by
Fig. 3 (b). Clearly, the latter partition scheme is more uniform than the
former.

Moreover, the above schemes try to balance the partitions just for the
shuffle operation, which may not guarantee the load balancing of the
reducers throughout their execution. In the reduce stage, the execution
of a reduce task includes both the shuffle operation and the normal
operations [15]. As shown in Fig. 4, after the left-outer join operation,
the number of key/value tuples changes and the partitions become un-
balanced, even if the partition sizes are previously equal. Hence, it is
necessary to make a trade-off between the balance of shuffle operation
and that of normal operations.

To address these problems above, firstly, based on the points above,
we formulate the integrated data size (IS) of the partition as follows:

ISj = Sj + λ × H
(
Sj
)
, 1 ≤ j ≤ n, (4)

where Sj is the size of partition j for the shuffle operation, H(Sj) denotes
the partition size for the normal operations, and λ is the ratio of normal
operations workload to shuffle operation workload. There are many
factors that can affect workload, such as the tuple numbers and the
complexity of computation. Measuring the workload in a comprehensive
way will make the partition more balanced. For the sake of generality,
we set λ = 1, which means that we measure the workload solely based
on the number of key/value tuples. Further, H(Sj) can be estimated as:

H
(
Sj
)
= ratioj × Sj, 1 ≤ j ≤ n, (5)

Table 2
rms error of key frequency estimation for each batch

batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8 batch 9 batch 10 average
EWMA 375.4 315.5 182.4 214.2 568.1 364.9 189.2 247.8 296.3 306.0
SP-Partitioner 214.7 424.1 244.9 517.5 964.8 457.1 253.4 232.9 483.6 421.4

Fig. 3. Two different data partition schemes.

Fig. 4. Partition sizes before and after join operation.

Z. Fu et al.

ParallelComputing100(2020)102699

5

Require:
The sorted key cluster distribution: D?t = {(K1,C1), (K2,C2), · · · , (Ku,Cu)};
The number of partitions: n.

Ensure :
The border keys: P = {Kp0 ,Kp1 , · · · ,Kpn }.

1 initialize the first and last border keys: Kp0 = K1;Kpn = Ku;
2 int minS ize = 0,maxS ize = 0;
3 for l = 1; l ≤ u; l + + do
4 maxS ize+ = Cl + H(Cl);
5 end
6 while minS ize <= maxS ize do
7 midS ize = (minS ize + maxS ize)/2;
8 if check(midS ize,D?t , n) then
9 maxS ize = midS ize − 1;
10 end
11 else
12 minS ize = midS ize + 1;
13 end
14 end
15 int curS ize = 0, j = 1;
16 for l = 1; l ≤ u; l + + do
17 if curS ize +Cl + H(Cl) < minS ize then
18 curS ize+ = Cl + H(Cl);
19 end
20 else if curS ize +Cl + H(Cl) == minS ize then
21 Kp j = Kl; curS ize = 0; j + +;
22 end
23 else
24 Kp j = Kl−1; curS ize = Cl + H(Cl); j + +;
25 end
26 end
27 return P.

Algorithm 1. Calculation of Partition Borders

Z. Fu et al.

Parallel Computing 100 (2020) 102699

6

where ratioj denotes the ratio of the partition size after and before the
shuffle operation, which can be calculated by the partitions of Jt− 1.
Hence, H(Sj) can be calculated as:

H
(
Sj
)
= H

(
∑v

l=1
Cr

)

= ratioj ×
∑v

l=1
Cr =

∑v

l=1
ratioj × Cr.

(6)

On the other hand, H(
∑v

l=1Cr) =
∑v

l=1H(Cr). Here H(Cl) represents
the size of the key cluster after the shuffle operation, which can be
precisely defined by some specific shuffle operators. For example, for the
widely used self join operator, it can be estimated as: H(Cl) = (Cl)

2. And
for the reduceBykey operator, it can be defined as: H(Cl) = 1. Whereas
for the sort operator commonly seen in database applications, the
function can be defined as: H(Cl) = Cl. Because it does not change the
amount of data of partitions.

Secondly, we propose a novel method to calculate the partition
borders optimally. The integrated size of partition ISj is used in this
model. In the first place, because the execution time of parallel tasks is
usually decided by the most heavily loaded task, the partition balance
problem can be transformed as minimizing the maximum data size
among all the partitions. As a result, the objective function of this model
can be specified as:

min
{

max
j=1,2,⋯,n

ISj

}

= min

⎧
⎨

⎩
max

j=1,2,⋯,n

⎛

⎝
∑pj

l=pj− 1+1

⎛

⎝Cl + H(Cl)

⎞

⎠

⎞

⎠

⎫
⎬

⎭
.

(7)

This paper uses the dichotomy method to resolve the Maximum-
Minimum problem above. Algorithm 1 describes the process of calcu-
lating these partition borders. To elaborate the algorithm in detail, some
significant variables are explained as follows:

(1) maxSize. The maximum integrated data size of the partitions. At
this point, we put all the key clusters of D★

t into one partition.
(2) minSize. The minimum integrated data size of the partitions. This

means that we would not put any clusters into one of the partitions, so
the value of minSize is 0.

(3) midSize. The median of maxSize and minSize. The purpose of
setting this variable is to search for a suitable data size, which represents
the maximum amount of data each partition allowed to carry. Since if
this threshold is large, it does not need n partitions to accommodate all
the key clusters; and if this threshold is small, the number of partitions
required will be greater than n.

As shown in Algorithm 1, firstly, the algorithm determines the value
of maxSize and minSize, as lines 2-5; Secondly, it uses the dichotomy to
take the median of the two sizes (i.e., midSize) and uses the check
function to determine whether this value is adjusted up or down. The
details of the check function is shown by Algorithm 2. This process is
terminated until minSize equals maxSize, and then we obtain the suitable
size minSize, as lines 6-14; Thirdly, the algorithm uses minSize as the
threshold to divide the clusters into n partitions and calculate the
partition borders. In particular, it puts the clusters of D★

t sequentially
into partitions as much as possible, and ensuring that the size of each
partition does not exceed this threshold, as lines 15-26; Finally, return
the partition borders P. The average time complexity of Algorithm 1 is O
(ulog Sum(pi)), where u is the number of clusters of D★

t , and pi represents
the probability of each situation.

5.2. Split of Border Key Clusters

The range partitioner of Spark assigns a key cluster only to a parti-
tion, but this may yet lead to even the best data partition scheme cannot
make the partitions absolutely equal [22]. As the example of section 5.1,

R
eq
ui
re
: Th

e
in
te
rm
ed
ia
te
va
lu
e
of
th
e
si
ze
:m

id
S
iz
e;

Th
e
so
rte
d
ke
y
cl
us
te
rd
is
tri
bu
tio
n:
D
? t
;

Th
e
nu
m
be
ro
fp
ar
tit
io
ns
:n
.

E
ns
ur
e
: A

bo
ol
ea
n
va
lu
e.

1
in
tl
=
1,
nu
m
=
1,
cu
rS
iz
e
=
0;

2
w
hi
le
l<
=
u
do

3
if
cu
rS
iz
e
+
C
l
+
H
(C

l)
<
=
m
id
S
iz
e
th
en

4
cu
rS
iz
e+
=
C
l
+
H
(C

l);
l+
+
;

5
en
d

6
el
se
if
C
l
+
H
(C

l)
<
=
m
id
S
iz
e
th
en

7
nu
m
+
+
;c
ur
S
iz
e
=
C
l
+
H
(C

l);
l+
+
;

8
en
d

9
el
se

10
re
tu
rn

fa
ls
e;

11
en
d

12
en
d

13
re
tu
rn
nu
m
<
=
n.

A
lg

or
it

hm
 2

.
Th

e
ch

ec
k

fu
nc

tio
n

Z. Fu et al.

Parallel Computing 100 (2020) 102699

7

with this constraint, the sizes of two partitions are still unequal under
the optimal data partition scheme. Nevertheless, for some shuffle op-
erators, such as sort and union (the union of two sets) that treat each
intermediate key/value tuple independently in the reduce stage,
assigning the same keys to multiple partitions does not affect the final
result. Hence, in view of the great flexibility, we provide a mechanism of
splitting border key cluster in the range partition of Spark.

In ImRP, the partition border additionally comes with a proportion
value to split its cluster, i.e., border key Kpj becomes tuple (Kpj , fpj), 0 <
fpj ≤ 1, where fpj is the proportion of key cluster Kpj divided into parti-
tion j. For the example described in section 5.1, Fig. 5 shows the usage of
the cluster split to divide the two partitions evenly. The data partition
scheme is P = {(A,1), (C,1/3), (H,1)}, so the size of both two partitions
is 5. Consequently, when partitioning the intermediate data really, the
key/value tuple whose key is C will be assigned to partition j with the
probability of 1/3, and to the next partition with the probability of 2/3.
By this means, a large number of related tuples will be distributed
proportionally to the partitions, and the skewness can be eliminated
thoroughly.

It is worth noting that the split of key cluster can only be applicable
to these shuffle operators whose semantics allow, which can be decided
by setting a parameterized flag when the job begins execution.

Algorithm 3 shows how the partition borders are calculated with
cluster split, and we consider the integrated partition size. Firstly, the
algorithm calculates the total integrated data size and the average in-
tegrated size of the partitions (i.e., avgSize), as lines 3-6; Then it puts the
key clusters of D★

t into the partitions in order (starting with partition 1)
and records the size for the current partition (i.e., curSize). In this pro-
cess, if the current cluster is placed so that curSize is smaller than curSize,
continue to place the next cluster, as lines 7-11; Meanwhile, if the cur-
rent cluster is put so that curSize just reaches curSize, then the key of the
current cluster is set as the border key, and the proportion value is set to
1, as lines 12-14; Otherwise, set the key of the current cluster as the
border key, and calculate the corresponding proportion value, as lines
15-19; For the latter two cases, the next partition will be turned. Finally,
return the partition borders P, as line 20. The time complexity of algo-
rithm 3 is O(u), where u is the number of the key clusters in D★

t .

5.3. Consideration of Heterogeneous Environments

The data partition scheme generated so far, based on the assumption
of homogeneous environments, aims to make the partitions similar in
size, thus the reduce tasks with the same load can be completed at the
same time. While in a heterogeneous environment, the capabilities of
nodes can be different for various reasons, such as heterogeneous
resource capacity, resource competition, network congestion, etc [32].
Therefore, in such an environment, it is necessary to consider the node’s
performance in data assignment instead of always dividing them evenly.

The basic idea of ImRP is to allocate the quantity of data to reduce
tasks according to the capability of each node. It requires an indicator to
measure the performance of nodes appropriately. Previous researches
focusing on this point are mostly designed for Hadoop [30], [33], which
may be inaccurate for Spark tasks. In this paper, we use the average
processing speed of reduce tasks running on a node, which can be
formulated as:

Fig. 5. Split of border key cluster in data partition scheme.

R
eq
ui
re
: Th

e
so
rte
d
ke
y
cl
us
te
rd
is
tri
bu
tio
n:
D
? t
=
{(K

1,
C
1)
,(
K
2,
C
2)
,··
·,
(K

u,
C
u)
};

Th
e
nu
m
be
ro
fp
ar
tit
io
ns
:n
.

E
ns
ur
e
: Th

e
bo
rd
er
ke
ys
:P
=
{(K

p 0
,
f p
0
),
(K

p 1
,
f p
1
),
···
,(
K
p n
,
f p
n
)}.

1
in
iti
al
iz
e
th
e
fir
st
an
d
la
st
bo
rd
er
ke
ys
:K

p 0
=
K
1,
f p
0
=
1;
K
p n
=
K
u,
f p
n
=
1;

2
in
iti
al
iz
e
th
e
to
ta
li
nt
eg
ra
te
d
si
ze
an
d
av
er
ag
e
si
ze
:t
ot
al
S
iz
e
=
0;
av
gS
iz
e
=
0;

3
fo
r
l=

1;
l≤

u;
l+
+
do

4
to
ta
lS
iz
e+
=
C
l
+
H
(C

l);
5
en
d

6
av
gS
iz
e
=
to
ta
lS
iz
e/
n;

7
in
tc
ur
S
iz
e
=
0;
j=

1;
8
fo
r
l=

1;
l≤

u;
l+
+
do

9
if
cu
rS
iz
e
+
C
l
+
H
(C

l)
<
av
gS
iz
e
th
en

10
cu
rS
iz
e+
=
cu
rS
iz
e
+
C
l
+
H
(C

l);
11

en
d

12
el
se
if
cu
rS
iz
e
+
C
l
+
H
(C

l)
=
=
av
gS
iz
e
th
en

13
K
p
j
=
K
l;
f p
j
=
1;
cu
rS
iz
e
=
0;
j+
+
;

14
en
d

15
el
se

16
K
p
j
=
K
l;
f p
j
=
(a
vg
S
iz
e
−c

ur
S
iz
e)
/(
C
l
+
H
(C

l))
;

17
cu
rS
iz
e
=
C
l
+
H
(C

l)
−(
av
gS
iz
e
−c

ur
S
iz
e)
;
j+
+
;

18
en
d

19
en
d

20
re
tu
rn
P.

A
lg

or
it

hm
 3

.
Ca

lc
ul

at
io

n
of

 P
ar

tit
io

n
Bo

rd
er

s
w

ith
 C

lu
st

er
 S

pl
it

Z. Fu et al.

Parallel Computing 100 (2020) 102699

8

capabilityj =
data sizej

execution timej
, (8)

where data sizej denotes the total data size processed by the reduce
tasks, and execution timej denotes the total execution time of these
reduce tasks running on node j. In Spark Streaming, the capability of the
node can be calculated by the finished tasks of previous jobs.

Then we formulate the load balancing problem in heterogeneous
environments as follows: firstly, the relative capability of the node can
be defined as:

relative capabilityj =
capabilityi

avg capability
, (9)

where avg capability denotes the average capability of all the worker
nodes. Then, assume that partition j (processed by reduce task j) to be
handled on worker node j. As a result, the objective function of the
model is modified as:

min

{

max
j=1,2,⋯,n

ISj

relative capabilityj

}

= min

{

max
j=1,2,⋯,n

(
∑pj

l=pj− 1+1

(

Cl + H(Cl)

)

relative capabilityj

)}

.

(10)

For this Maximum-Minimum problem, we can use the same algorithm
described in section 5.1 to calculate the optimal data partition scheme in
the heterogeneous environment. Moreover, if the split of border key
cluster is allowed, the load of reduce tasks can be enhanced further.

6. Intermediate Data Partition

When partitioning the intermediate data of job t in the shuffle phase,
Algorithm 4 describes how the key/value tuples get their partition ID
according to the generated data partition scheme. For generality, the
partition borders without key cluster split can be regarded as a special
case of the partition borders with key cluster split, i.e., border key Kpj

can be seen as border key (Kpj , 1). The algorithm uses the sequential
search method to get the partition ID. For a specific key/vaule tuple (kr,
vr), it starts looking at partition border Kp1 until finds a partition border
that is larger than or equal to kr. Then, if kr less than Kpj , the partition ID
is set to j, as lines 2-5; Otherwise (i.e., kr equals Kpj), there are two cases:
first if fpj is 1, set the partition ID as j, as lines 6-9; otherwise it uses a
random number and the value of fpj to determine whether the tuple is
assigned to the current partition j or the next partition j + 1, as lines 10-
20; Finally, return the partition ID, as line 21. The time complexity of
algorithm 4 is O(n), where n is the number of partitions.

7. Evaluation

In this section, we evaluate the performance of the proposed parti-
tioner. We have implemented ImRP in the source codes of Spark-core 3.0
project. Hence, the task progress can use our achievement by invoking
the getPartitionID method provided by ImPR. The execution of the shuffle
phase still depends on Spark’s original mechanism.

7.1. Experiment Setting

Our test cluster consists of 9 physical machines. Each machine is
equipped with Intel Xeon processor E7-8867 v4, 2.4GHz, 64GB RAM and
512GB of disk. These physical machines are organized in three racks
connected by 1Gbps Ethernet and managed by OpenStack cloud oper-
ating system [34]. We use the KVM virtualization software [35] to

R
eq
ui
re
: Th

e
da
ta
pa
rti
tio
n
sc
he
m
e:
P
=
{(K

p 0
,
f p
0
),
(K

p 1
,
f p
1
),
···
,(
K
p n
,
f p
n
)};

Th
e
ke
y/
va
lu
e
tu
pl
e
to
be
pa
rti
tio
ne
d:
(k
r,
v r
).

E
ns
ur
e
: Th

e
pa
rti
tio
n
ID

fo
rt
up
le
(k
r,
v r
):
q.

1
//
ra
nd
om

()
re
tu
rn
sa

un
ifo
rm

[0
,1
]r
an
do
m
nu
m
be
r;

2
fo
r
in
t
j=

1;
j≤

n;
j+
+
do

3
if
k r
<
K
p
j
th
en

4
q
=
j;
br
ea
k;

5
en
d

6
el
se
if
k r
=
=
K
p
j
th
en

7
if
f p
j
=
=
1
th
en

8
q
=
j;
br
ea
k;

9
en
d

10
el
se

11
d
=
ra
nd
om

()
;

12
if
d
≤
f p
j
th
en

13
q
=
j;
br
ea
k;

14
en
d

15
el
se

16
q
=
j+

1;
br
ea
k;

17
en
d

18
en
d

19
en
d

20
en
d

21
re
tu
rn
q.

A
lg

or
it

hm
 4

.
G

et
 P

ar
tit

io
n

ID

Z. Fu et al.

Parallel Computing 100 (2020) 102699

9

construct medium sized VMs with 4 virtual cores, 8GB RAM, and 64 GB
of disk space. First of all, we conduct our experiments in a homogeneous
environment where each machine runs two virtual machines, and then
we create a heterogeneous environment for testing.

To estimate the performance, as shown in Table 3, two representa-
tive micro-benchmarks: WordCount and Sort, and two representative
macro-benchmarks: PageRank and LDA (Latent Dirichlet Allocation) are
selected. The application of micro-benchmarks contains one job with
two stages (i.e., map stage and reduce stage), so that we can easily
observe the effect of data partition on the execution time of reduce stage.
By contrary, the application of macro-benchmarks contains one or more
jobs with multiple stages.

In our experiments, the following data partition strategies are chosen
for comparison:

OrigRange: (The Original Range partitioner [36]). As one of the
default partition methods, OrigRange is suitable for all types of jobs and
can alleviate the reduce skew to some extent compared to the Hash
partitioner. It runs an extra job ahead of time to estimate the key dis-
tribution, but this occurs extra time overhead.

SASM: (Spark Adaptive Skew Mitigation [37]). From another point
of view, SASM mitigates skew of shuffle read and computation misdis-
tribution dynamically with metadata collected beforehand. When a new
task is registered, it re-partitions the unprocessed blocks of straggling
tasks to other idle tasks.

SP-Partitioner: (A stream data prediction partitioner [16]). It treats
the arrived batches as candidate samples and uses it to predict the
characteristics of intermediate data. According to this, SP-Partitioner
generates a reference table to guide the allocation of next batches of data

evenly. It is an improved hash partition.
The following indicators are used for performance evaluation:
• Job execution time: The time from the start to the end of a stream

job. Since there are some pre-work in the above strategies and the extra
overhead cannot be ignored, this indicator can reflect the overall per-
formance of different methods fairly.

• Reduce stage execution time: It refers to the time when the reduce
tasks start to fetch intermediate data in the shuffle phase to the end of
the task. In Spark, the tasks are executed stage by stage. This means that
the tasks of the child stage will not be started until the parent stage
complete execution.

• Coefficient of variation (CV): It is a common measurement for the

data skew: CV =
stddev(x→)

mean(x→)
, where x→ is a vector that contains the inte-

grated data size processed by each task [22]. Larger coefficient indicates
heavier skew.

To reduce the interference of variable environments, we take the
average of 60 consecutive stream jobs for the above indicators in Spark
Streaming.

7.2. Performance

7.2.1. Micro-Benchmarks
WordCount is widely used in Mapreduce system processing, which

counts the number of occurrences of each word in input data. We use the
groupByKey operator in the program. To test the performance under
different distribution of input batch, the synthetic data stream is used
and generated by RandomWriter whose data follows the Zipf distribution.
It can represent many real-world data distribution [38]. The Zipf dis-
tribution uses the parameter σ to control the skew degree: a larger σ
indicates a more uneven distribution of input batch. The data arrival
speed is set to 80MB/s and the batch interval is set to 2s for the stream
jobs.

Fig. 6 shows the performance comparison of different methods
(OrigRange, SASM, SP-Partitioner and ImRP) when σ varies from 0.2 to
1.2. As shown in Fig. 6(a), the job execution time of all methods

Table 3
Benchmarks and Application Types

Benchmarks Application types
WordCount Simple job
Sort Simple job
PageRank Search engine application
LDA Machine learning application

Fig. 6. Performance with different skew degrees of input batch under wordCount.

Fig. 7. Performance with different batch intervals under wordCount (σ = 0.2).

Z. Fu et al.

Parallel Computing 100 (2020) 102699

10

increases with the increase of σ, and ImRP can obtain better performance
than other methods. In particular, when σ is 1.2, ImRP can decrease the
job execution time by 35.7%, 25%, and 17.8% compared to OrigRange,
SASM, and SP-Partitioner, respectively. In this case, the maximum job
execution time of OrigRange, SASM, SP-Partitioner, and ImRP is 1238ms,
957ms, 784ms, and 646ms respectively, and the minimum job execution
time for these methods is 683ms, 567ms, 486ms, and 425ms respec-
tively. Further, Fig. 6(b) illustrates that the job performance gap is
mainly caused by the difference in the duration of reduce stage. It is
worth noting that the stage time of OrigRange is generally less than that
of SASM, but it takes more time to run the job because of the delay of
pre-run job. This also demonstrates the negligible extra overhead of
ImRP. Fig. 6(c) shows the coefficient of variation. It verifies that ImRP
can achieve good partition balance for reduce tasks through its data
partition scheme, which is the main factor in improving the
performance.

In order to estimate the performance of relevant methods under
different data volume, we also set up different batch intervals for the
stream jobs in the cases of slight (σ = 0.2) and severe (σ = 1.2) skewed
input batch. Fig. 7 depicts the experimental results when the batch

interval varies from 2s to 5s and σ = 0.2. Specifically, Fig. 7(a) and Fig. 7
(b) show that the job and reduce stage execution time of all methods
increase gradually as the data size increases, but ImRP performs best on
these two indicators. In particular, when the batch interval is 5s, ImRP
can reduce the reduce stage execution time by 11.8%, 9.1%, and 5.2%
compared to OrigRange, SASM, and SP-Partitioner, respectively. It ob-
serves that all the methods can balance the partitions well, as shown by
Fig. 7(c).

Fig. 8 shows the performance with different batch intervals under
heavily skewed input batch. The bars in Fig. 8(a) explain that ImRP and
SP-Partitioner can get lower job and reduce stage execution time than
OrigRange and SASM. However, ImRP still outperform SP-Partitioner. In
addition, when the batch interval equals or exceeds 4s, the job execution
time of SASM is greater than that of OrigRange. This reason can be
explained as SASM only re-assigns unprocessed data of slow tasks,
therefore, it cannot re-arrange the intermediate data when more and
more data is produced and handled. Fig. 8(c) shows that ImRP can
partition the data more evenly than others even under the serious
skewed input batch. Particularly, when the batch interval is 5s, the CV
value of OrigRange, SASM, SP-Partitioner, and ImRP is 1.64, 2.15, 1.45,
and 1.03 respectively, the maximum CV value of these methods is 2.13,
3.75, 1.88, and 1.46 respectively, and the minimum CV value of these
methods is 1.47, 1.89, 0.85 and 0.73 respectively.

Sort is common in the Spark workload testing that makes the data
objects orderly. In the Spark engine, only the range partition can
implement this function. Since SASM does not consider this type of jobs
and SP-Partitioner is based on the hash partitioner, they are not suitable
for the sort job. Moreover, to assess how the key cluster split can benefit
the performance, we set up a group of comparative experiments: ImRP
without the border key cluster split and with the border key cluster split
(marked as ImRP_CS). Like wordCount, the experiments run the syn-
thetic data stream, and the sortByKey shuffle operator is utilized in the
program. We set the data arrival speed to 60MB/s and the batch interval
to 2s for the stream jobs.

Fig. 9 (a) and Fig. 9(b) show that ImRP and ImRP_CS can perform
much better than OrigRange in terms of the job and reduce stage
execution time. Moreover, ImRP_CS with the border key cluster split can

Fig. 8. Performance with different batch intervals under wordCount (σ = 1.2).

Fig. 9. Performance with different skew degrees of input batch under sort.

Fig. 10. Performance with different data sets under pageRank.

Z. Fu et al.

Parallel Computing 100 (2020) 102699

11

improve the performance on the basis of ImRP: when σ = 1.2, ImRP_CS
can shorten the reduce stage time by 41.9% over ImRP. The reason
behind it is that ImRP_CS allowing key cluster split can ensure the par-
titions completely equal in the ideal case. As can be seen from Fig. 9(c),
the CV value of ImRP_CS is essentially constant in all cases and remains
at a low level.

7.2.2. Macro-Benchmarks
In these experiments, two real-world applications: pageRank and

LDA (Latent Dirichlet Allocation) are selected from the examples of
Spark for testing. We rewrite the two programs so that they can process
the batches of stream and return the results in a real-time fashion.
Because the applications contain one or more jobs with multiple stages,
we use the application execution time in the evaluation.

PageRank is a well-known algorithm in search domain that ranks
pages according to their importance. We run the experiments on three
real data sets: Web_Google, Web_BerkStan, and Web_Stanford from [39],
which are read as HDFS file streams. The data arrival speed is set to
1MB/s as it spends lots of time on iterative computation, and the batch
interval is set to 2s for the stream jobs. We set the parameter
numIterations = 10 in the program, so the application contains 1 job and
13 stages.

Fig. 10 shows us the experiment results of relevant methods. The
rectangles of Fig. 10(a) illustrate that ImRP can improve the application
performance effectively. In particular, on the Web_Google data set, ImRP
can finish applications 27.6%, 18.1% and 11% faster than OrigRange,
SASM and SP-Partitioner, respectively. Furthermore, to understand how
ImRP balances the partitions across the reducers, we observe one of the

reduce stages (i.e., the third stage of pageRank) that contains the join
operation and plot these stage execution time and CV of different
methods as Fig. 10(b) and Fig. 10(c), respectively. It further validates
that by optimizing the data partition scheme, ImRP can enhance the
execution efficiency of the stage than other methods.

LDA is an important algorithm in NLP (Natural Language Processing)
for topic modelling. It extracts some keywords that can express each
topic from a large number of documents. In these experiments, three
kinds of real data sets are used: Wikipedia Corpus [7], Blog Authorship
Corpus [40], and Twenty Newsgroups [41]. The program sets the number
of topics to 5 and numIterations = 10, so the application has 26 jobs, a
total of 90 stages. The data arrival speed is set to 1MB/s and the batch
interval is set to 2s for the stream jobs.

Fig. 11 (a) shows the application execution time of the methods.
Though some of the stages of LDA application are short, the cumulative
performance gains of many stages can improve the overall performance
obviously. As we can see, on the Wikipedia Corpus data set, ImRP can
finish applications 31.2%, 35.3% and 18.7% faster than OrigRange,

Fig. 11. Performance with different data sets under LDA.

Table 4
Heterogeneous Environment

Level Hosts VMs
2VMs/host 5 10
3VMs/host 3 9
4VMs/host 1 4
Total 9 23

Fig. 12. Performance in heterogeneous environments.

Fig. 13. rms error with different value of α.

Z. Fu et al.

Parallel Computing 100 (2020) 102699

12

SASM and SP-Partitioner, respectively. As before, we draw Fig. 11(b) and
Fig. 11(c) to analyze how ImRP behaves at the stage (i.e., the third stage
of the first job). The stage contains the reduceByKey operator that is often
used in practice. Since ImRP estimates the frequency of keys after the
map-side aggregation, it is more accurate than other algorithms. Hence,
the better partition balance can be obtained by ImRP.

7.2.3. Heterogeneous Environments
In these experiments, we evaluate the performance of the proposed

partitioner in heterogeneous environments. As shown in Table 4, the
Spark cluster is created by running different numbers of virtual ma-
chines on the 9 physical machines. Under such an environment, the
performance of the VMs can vary significantly due to the workloads
from the co-hosted VMs [30].

We run the wordCount benchmark on the synthetic data stream. For
comparison, two versions of ImRP are designed: ImRP without hetero-
geneity consideration and with heterogeneity consideration (marked as
ImRP_HC). Fig. 12 shows the results for the five methods (OrigRange,
SASM, SP-Partitioner, ImRP and ImRP_HC) when σ = 0.8. As we can see
from the figure, ImRP_HC with the consideration can finish jobs 24.3%
faster than ImRP. Moreover, it can finish jobs 37.9%, 21%, and 32.1%
faster than OrigRange, SASM, and SP-Partitioner, respectively. The ex-
periments indicate that ImRP fits well in the heterogeneous cluster.

7.3. Parameter Analysis

In section 4, we propose to utilize the EWMA model to predict the
size of the key clusters. The EWMA has a parameter α that reflects a
trade-off between the stability and responsiveness. In this section, we
evaluate the accuracy of the key estimation with different α values to see
the variance trends. The experiments run the wordCount benchmark on
the synthetic data stream (σ = 0.8). Fig. 13 shows the average rms error,
min rms error, and max rms error for the key frequency estimation of 10
jobs that process 10 batches. It can be seen that when α is set to 0.4, ImRP
obtains the lowest average rms error. So we empirically set the value of α
to 0.4. Besides, under this setting, the EWMA can be more accurate than
SP-Partitioner, which was verified by Table 2.

8. Conclusions

In Spark Streaming computing environments, the default partition
methods easily cause the load imbalance of reduce tasks in the inter-
mediate data allocation. This situation extends the execution time of
stages. This paper attempts to extenuate the data skew among the re-
ducers for stream jobs. First, it predicts the key distribution for the
forthcoming job according to the previous batch processing. Then it
generates the appropriate partition strategy, in which a series of opti-
mization measures are proposed, including calculating the partition
borders optimally, splitting the border key cluster if necessary, and
allocating the work properly when the nodes are heterogeneous.

The experiment results based on several representative ben-chmarks,
which are prone to data skew, verify that by considering the partition
balance before and after shuffle operation, the load imbalance of the
reduce tasks can be addressed by the proposed partitioner successfully.
Moreover, because the data partition scheme is produced in advance, it
has no extra delay for the job execution.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The work is supported by the National Key Research and

Development Program of China (2017YFB02018YFB1701400,
2018YFB0203804), the National Natural Science Foundation of China
(Grant Nos. 61873090, L1824034, L1924-056), Ministry of Education-
China Mobile Research Fund Proj-ect(MCM20170506), China Knowl-
edge Centre for Engineering Sciences and Technology Project(CKCEST-
2018-1-13, CKCE-ST-2019-2-13).

References

[1] W. Wingerath, F. Gessert, S. Friedrich, N. Ritter, Real-time stream processing for
big data, it - Information Technology 58 (4) (2016) 186–194.

[2] Spark streaming, https://spark.apache.org/streaming/.
[3] M. Zaharia, An architecture for fast and general data processing on large clusters,

in: Ph.D. thesis, EECS Department, University of California, Berkeley (Feb 2014).
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-12.html.

[4] Apache storm, http://storm.apache.org/.
[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein,

W. Hong, S. Krishnamurthy, S.R. Madden, F. Reiss, M.A. Shah, Telegraphcq:
continuous dataflow processing. ACM SIGMOD International Conference on
Management of Data, 2003.668–668

[6] Y. Xu, W. Qu, Z. Li, Z. Liu, C. Ji, Y. Li, H. Li, Balancing reducer workload for skewed
data using sampling-based partitioning, Computers & Electrical Engineering 40 (2)
(2014) 675–687.

[7] Wikipedia corpus, https://www.english-corpora.org/wiki/.
[8] J. Berlinska, M. Drozdowski, Comparing load-balancing algorithms for mapreduce

under zipfian data skews, Parallel Computing 72 (2018) 14–28, https://doi.org/
10.1016/j.parco.2017.12.003.

[9] Y. Xu, P. Zou, W. Qu, Z. Li, K. Li, X. Cui, Sampling-based partitioning in mapreduce
for skewed data, 2012, Chinagrid Conference. 1–8.

[10] Y.C. Kwon, M. Balazinska, B. Howe, J. Rolia, Skewtune:mitigating skew in
mapreduce applications, Proceedings of the Vldb Endowment 5 (12) (2012) 25–36.

[11] Y. Le, J. Liu, F. Ergun, D. Wang, Online load balancing for mapreduce with skewed
data input. INFOCOM, 2014 Proceedings IEEE, 2014, pp. 2004–2012.

[12] L. Chen, W. Lu, X. Che, W. Xing, L. Wang, Y. Yang, Mrsim: Mitigating reducer skew
in mapreduce. International Conference on Advanced Information NETWORKING
and Applications Workshops, 2017, pp. 379–384.

[13] Apache hadoop, http://hadoop.apache.org/.
[14] Z. Tang, X. Zhang, K. Li, K. Li, An intermediate data placement algorithm for load

balancing in spark computing environment, Future Generation Computer Systems
78 (2018) 287–301.Pt.1

[15] Z. Tang, W. Lv, K. Li, K. Li, An intermediate data partition algorithm for skew
mitigation in spark computing environment, IEEE Transactions on Cloud
Computing (2018), https://doi.org/10.1109/TCC.2018.2878838.1–1

[16] G. Liu, X. Zhu, W. Ji, D. Guo, W. Bao, G. Hui, Sp-partitioner: A novel partition
method to handle intermediate data skew in spark streaming, Future Generation
Computer Systems 86 (2018) 1054–1063.

[17] Y. Xu, P. Kostamaa, A new algorithm for small-large table outer joins in parallel
DBMS. Proceedings of the 26th International Conference on Data Engineering,
ICDE 2010, 2010, pp. 1018–1024.March 1-6, 2010, Long Beach, California, USA

[18] S. Acharya, P.B. Gibbons, V. Poosala, Congressional samples for approximate
answering of group-by queries. Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, May 16-18, 2000, 2000,
pp. 487–498, https://doi.org/10.1145/342009.335450.Dallas, Texas, USA.

[19] A. Shatdal, J. Naughton, Adaptive parallel aggregation algorithms, 1995, 24,
104–114, 10.1145/568271.223801.

[20] J. Dean, S. Ghemawat, Mapreduce: Simplified data processing on large clusters,
Commun. ACM 51 (2008) 107–113, https://doi.org/10.1145/1327452.1327492.

[21] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, S. Wu, Handling partitioning skew in
mapreduce using leen, Peer-to-Peer Networking and Applications 6 (4) (2013)
409–424.

[22] Q. Chen, J. Yao, Z. Xiao, Libra: Lightweight data skew mitigation in mapreduce,
IEEE Transactions on Parallel & Distributed Systems 26 (9) (2015) 2520–2533.

[23] B. Gufler, N. Augsten, A. Reiser, A. Kemper, Handling data skew in mapreduce.
Closer 2011 - Proceedings of the International Conference on Cloud Computing and
Services Science, Noordwijkerhout, Netherlands, 2012, pp. 574–583.7-9 May

[24] W. Li, D. Niu, Y. Liu, S. Liu, B. Li, Wide-area spark streaming: Automated routing
and batch sizing, 2017.

[25] D. Cheng, Z. Xiaobo, W. Yu, J. ChangJun, Adaptive scheduling parallel jobs with
dynamic batching in spark streaming, IEEE Transactions on Parallel & Distributed
Systems) 1–1.

[26] A. Gounaris, J. Torres, Big Data Research 11 (2018) 22–32, https://doi.org/
10.1016/j.bdr.2017.05.001.

[27] Y. Chen, J. Lu, C. Chen, M. Hoque, S. Tarkoma, Cost-effective resource provisioning
for spark workloads. Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, CIKM 2019, 2019, pp. 2477–2480,
https://doi.org/10.1145/3357384.3358090.Beijing, China, November 3-7, 2019.

[28] J. Liu, E. Pacitti, P. Valduriez, A survey of scheduling frameworks in big data
systems, 2018, 7, 2, 103–128.

[29] Z. Tang, W. Ma, K. Li, K. Li, A data skew oriented reduce placement algorithm
based on sampling, IEEE Transactions on Cloud Computing (99) (2016).1–1

[30] Q. Chen, C. Liu, Z. Xiao, Improving mapreduce performance using smart
speculative execution strategy, IEEE Transactions on Computers 63 (4) (2014)
954–967.

Z. Fu et al.

http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0001
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0001
https://spark.apache.org/streaming/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-12.html
http://storm.apache.org/
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0005
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0005
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0005
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0005
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0006
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0006
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0006
https://www.english-corpora.org/wiki/
https://doi.org/10.1016/j.parco.2017.12.003
https://doi.org/10.1016/j.parco.2017.12.003
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0010
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0010
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0011
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0011
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0012
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0012
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0012
http://hadoop.apache.org/
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0014
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0014
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0014
https://doi.org/10.1109/TCC.2018.2878838
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0016
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0016
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0016
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0017
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0017
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0017
https://doi.org/10.1145/342009.335450
https://doi.org/10.1145/1327452.1327492
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0021
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0021
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0021
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0022
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0023
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0023
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0023
https://doi.org/10.1016/j.bdr.2017.05.001
https://doi.org/10.1016/j.bdr.2017.05.001
https://doi.org/10.1145/3357384.3358090
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0029
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0029
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0030
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0030
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0030

Parallel Computing 100 (2020) 102699

13

[31] P.H. Ellaway, Cumulative sum technique and its application to the analysis of
peristimulus time histograms, Electroencephalography & Clinical Neurophysiology
45(2)0–304.

[32] Z. Fu, Z. Tang, Optimizing speculative execution in spark heterogeneous
environments, IEEE Transactions on Cloud Computing (2019), https://doi.org/
10.1109/TCC.2019.2947674.1–1

[33] X. Huang, L. Zhang, R. Li, L. Wan, K. Li, Novel heuristic speculative execution
strategies in heterogeneous distributed environments, Computers & Electrical
EngineeringS0045790615002177.

[34] Open stack cloud operating system, https://www.openstack.org/.
[35] A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, Kvm: the linux virtual machine

monitor, 2007.

[36] Range partitioner, http://spark.apache.org/docs/latest/api/java/org/apache/spa
rk/RangePartitioner.html.

[37] J. Yu, H. Chen, H. Fei, Sasm: Improving spark performance with adaptive skew
mitigation. 2015 IEEE International Conference on Progress in Informatics and
Computing (PIC), 2015.

[38] J. Lin, The curse of zipf and limits to parallelization: A look at the stragglers
problem in mapreduce (2012), 2009.

[39] Stanford large network dataset collection, http://snap.stanford.edu/data/index.ht
mlweb.

[40] Blog authorship corpus, http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm.
[41] Twenty newsgroups, https://archive.ics.uci.edu/ml/datasets/Twenty+Ne

wsgroups.

Z. Fu et al.

https://doi.org/10.1109/TCC.2019.2947674
https://doi.org/10.1109/TCC.2019.2947674
https://www.openstack.org/
http://spark.apache.org/docs/latest/api/java/org/apache/spark/RangePartitioner.html
http://spark.apache.org/docs/latest/api/java/org/apache/spark/RangePartitioner.html
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0037
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0037
http://refhub.elsevier.com/S0167-8191(20)30089-2/sbref0037
http://snap.stanford.edu/data/index.htmlweb
http://snap.stanford.edu/data/index.htmlweb
http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups

	ImRP: A Predictive Partition Method for Data Skew Alleviation in Spark Streaming Environment
	1 Introduction
	2 Related Work
	3 System Overview
	4 Intermediate Data Prediction
	5 Partition Method Optimization
	5.1 Calculation of Partition Borders
	5.2 Split of Border Key Clusters
	5.3 Consideration of Heterogeneous Environments

	6 Intermediate Data Partition
	7 Evaluation
	7.1 Experiment Setting
	7.2 Performance
	7.2.1 Micro-Benchmarks
	7.2.2 Macro-Benchmarks
	7.2.3 Heterogeneous Environments

	7.3 Parameter Analysis

	8 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References

