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A B S T R A C T   

Spark Streaming is an extension of the core Spark engine that enables scalable, high-throughput, fault-tolerant 
stream processing of live data streams. It treats stream as a series of deterministic batches and handles them as 
regular jobs. However, for a stream job responsible for a batch, data skew (i.e., the imbalance in the amount of 
data allocated to each reduce task), can degrade the job performance significantly because of load imbalance. In 
this paper, we propose an improved range partitioner (ImRP) to alleviate the reduce skew for stream jobs in 
Spark Streaming. Unlike previous work, ImRP does not require any pre-run sampling of input data and generates 
the data partition scheme based on the intermediate data distribution estimated by the previous batch pro-
cessing, in which a prediction model EWMA (Exponentially Weighted Moving Average) is adopted. To lighten the 
data skew, ImRP presents a novel method of calculating the partition borders optimally, and a mechanism of 
splitting the border key clusters when the semantics of shuffle operators permit. Besides, ImRP considers the 
integrated partition size and heterogeneity of computing environments when balancing the load among reduce 
tasks appropriately. We implement ImRP in Spark-3.0 and evaluate its performance on four representative 
benchmarks: wordCount, sort, pageRank, and LDA. The results show that by mitigating the data skew, ImRP can 
decrease the execution time of stream jobs substantially compared with some other partition strategies, espe-
cially when the skew degree of input batch is serious.   

1. Introduction 

Currently, data stream processing and analysis have become 
increasingly urgent in many applications, such as ad-hoc queries, dy-
namic content delivery, and security event processing [1]. As an 
emerging stream processing framework, Spark Streaming [2] is built on 
top of Spark (a popular big data processing platform) [3] to support near 
real-time distributed stream processing. Instead of processing stream 
data one record at a time like traditional stream processing systems (e.g., 
Storm [4] and TelegraphCQ [5]), Spark Streaming processes many re-
cords together. These small sets of records are called micro-batches, and 
each of them is sent to Spark engine to be processed as a normal job. 

A typical Spark job contains two types of stages namely map stage 
and reduce stage. Between them, the shuffle phase maintains the read/ 
write relationship in which the key/value tuples outputted by map tasks 

are allocated to a certain partition and processed by relevant reduce 
tasks. However, when the data allocation among the partitions is 
imbalanced, it would lead to the load imbalance of reduce tasks because 
of various input sizes. This is what we call the data skew or reduce skew 
[6]. Data skew is one of the important performance bottlenecks of sys-
tems because the execution time of a stage may be delayed by the 
overloaded task. 

Hash and range partitioner are two methods provided by Spark, 
which are responsible for assigning intermediate data according to their 
keys. The hash partitioner uses a simple hash function, whereas the 
range partitioner uses a set of partition borders to divide the key space of 
entire intermediate data. Unfortunately, both of them easily cause the 
reduce skew when the distribution of key/value tuples is non-uniform 
(some keys appear more popular than others). As an example, Fig. 1 
shows the statistics of partial word frequencies among 10 batches when 
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using the data set Wikipedia Corpus [7]. In fact, the word frequencies 
obey the Zipf distribution in the real world (a very common distribution 
of data generated by human society [8]). Therefore, when the words are 
regarded as the keys of the intermediate data by the jobs, the data is 
distributed non-uniformly and the reduce skew is prone to occur. 

In Mapreduce-type frameworks, some useful partition methods were 
proposed by previous work to resolve the data skew problem [9], [10], 
[11], [12]. Most of them were designed for Hadoop and utilized the 
system characteristics. However, being different from the implementa-
tion of Hadoop [13], Spark adopts the multi-stage execution model and 
executes tasks stage by stage. Hence, the Hadoop-based approaches do 
not necessarily apply to Spark systems. In recent years, several re-
searches optimized the partition methods of Spark [14], [15], but they 
are not suitable for Spark Streaming computing environments. To 
address this problem, in particular, Liu et al. [16] presented 
SP-partitioner to balance the partitions for stream jobs effectively. 
Nevertheless, the hash partition scheme cannot fit all types of jobs. 

In the Spark engine, the shuffle operator (e.g., reduceByKey) in the 
reduce stage causes the shuffle phase and is first performed on the 
partitioned data [15]. However, only making the partition balance for 
the shuffle operation does not guarantee the load balancing of reduce 
tasks throughout their execution. Because the partition size may change 
after the shuffle operation. Moreover, when the computing environment 
in the real world is heterogeneous, the worker nodes can differ in the 
capabilities of processing the tasks. Hence, a good partition strategy 
should take these factors into consideration. 

Motivated by the above work, this paper tries to relieve the data skew 
specially in Spark Streaming. In order to generate the key allocation 
strategy properly, it is necessary to know the distribution of interme-
diate data. But it is meaningless to count the key/value tuples after 
processing all input data. Fortunately, in most stream computing ap-
plications, the data characteristics do not change frequently [16]. As 
illustrated by Fig. 1, among the batches, the frequent keys always appear 
frequently, and vice versa. This paper proposes to use the past inter-
mediate data of the previous batch processing to predict that of the 
forthcoming job, then through the optimized data partition scheme, the 
load of the reduce task can be balanced. The main contributions of this 
paper are summarized below. 

• A new architecture is designed to mitigate the reduce skew in the 
shuffle phase of stream jobs, where the key distribution of the forth-
coming job is predicted by the EWMA (Exponentially Weighted Moving 
Average) model. This step is separate from the normal job running and 
without extra delay. 

• An improved range partitioner (ImRP) is proposed. Thr-ough 
comprehensively considering the partition balance before and after 
the shuffle operation, and by optimizing the calculation of partition 
borders, this partitioner can generate a more load-balanced partition 
scheme. 

• When the performance of computing nodes is heterogeneous, 
ImRP can adjust its workload allocation accordingly; and when the se-
mantics of the shuffle operator allow, ImRP can support the split of key 
cluster (all key/value tuples with the same key) to ensure the absolute 
equality. 

• We implement our proposals in Spark-3.0 and evaluate its per-
formance on several representative benchmarks. The experiment results 
show that ImRP can improve the execution efficiency of jobs by 
addressing the data skew successfully. 

The rest of this paper is organized as follows. Section 2 surveys 
related work on data skew mitigation over Mapreduce frameworks. 
Section 3 introduces the system overview of ImRP. Section 4 presents the 
intermediate data prediction, and Section 5 describes the design of our 
partition method. Experiments and analysis are presented in Section 6. 
Section 7 concludes this paper. 

2. Related Work 

There are many real world applications exhibiting significant data 
skew, including parallel database operations (e.g., Join [17], Group [18], 
and Aggregate [19]), and search engine applications (e.g., PageRank and 
Inverted Index). In the past years, the problem of reduce skew has also 
been studied in MapReduce environments after the release of Hadoop 
[20], which is similar to our work: 

Ibrahim et al. [21] proposed a novel algorithm called LEEN for 
locality-aware and fairness-aware key partitioning in MapReduce. It 
sorts all keys according to their fairness-locality values and uses a heu-
ristic method to choose the node with the maximum fairness score for a 
reduce task to process the keys. Because the intermediate tuples are 
tracked after the map phase, LEEN embraces an asynchronous map and 
reduce scheme. 

The main advantage of the work by Chen et al. [22] is LIBRA, a 
lightweight strategy that uses an innovative sampling method to ascer-
tain the key distribution by sampling only a small fraction of the inter-
mediate data. On the basis of the estimation, LIBRA generates the range 
partition scheme based on certain improvements, including chunk index 
for decreasing partition time and large cluster split. 

In [23], Gufler et al. presented two load balancing approaches: fine 
partitioning and dynamic fragmentation. The former produces a fixed 
number of data partitions, and the latter dynamically splits large par-
titions into smaller portions and replicates data if necessary. Moreover, 
they define a new cost model to take into account non-linear reducer 
tasks. 

Taking advantage of Hadoop’s features, the above methods can 
obtain pretty good performance. However, as mentioned in section 1, 
they only balance the partitions of executing shuffle operation. While in 
Spark, one stage contains one or more RDD operations. Thus the 
Hadoop-based methods may not be competent for the work in Spark 
environments. At present, several partition strategies were proposed for 
Spark specifically. 

Tang et al. [14] presented SCID, a splitting and combination algo-
rithm that conducts a pre-run on the sample of input data before the 
normal job. Then by the statistics of keys, it forecasts the rough sizes of 
all clusters which will be produced for the whole input. At last, SCID puts 
the clusters into partitions and regards it as a bin-packing problem. 
Later, Tang et al. [15] further proposed SKRSP, a key reassigning and 
splitting partition algorithm. SKRSP designs two algorithms: hash based 
key reassigning algorithm and range based key splitting algorithm. 
Similar to [14], SKRSP uses a step-based algorithm for sampling the 
input data to obtain the general key distribution of intermediate data. 
Since the pre-run sampling job can postpone the main job, making them 

Fig. 1. Word frequency statistics of the top 20 words among 10 batches, each 
batch contains 3462 distinct words and about 9532980 records. 
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is not a good choice for stream computing. 
In Spark Streaming, existing work for performance optimization 

mainly includes the following aspects: adaptive batch size selection 
[24], [25]; online performance tuning [26]; and dynamic resource 
allocation [27]. However, there are few studies on the data skew. In 
particular, Liu et al. [16] presented a stream data prediction partitioner 
called SP-Partitioner. It uses the arrived batches of data as the prediction 
of key distribution of next batches of data. Whereafter, according to the 
prediction, SP-Partitioner generates a reference table to guide the allo-
cation of next batches of data evenly. Compared with our work, 
SP-Partitioner relieves the reduce skew by improving the hash partition, 
and as a new breakthrough in this study, we focus on the data skew 
mitigation based on the range partition to balance the load of reduce 
tasks. 

3. System Overview 

In the design of Spark Streaming, the batches of stream are treated as 
traditional workloads, which are handled by the Spark engine to return 
the results in a near real-time way [28]. To address the reduce-side data 
skew for stream jobs, this paper optimizes the data assignment based on 
the range partition. Because it is suitable for all types of jobs, whereas 
the hash partition and other strategies can be applied to most jobs except 
those that require sorting [22]. The architecture of our system is shown 
in Fig. 2, which contains the following three steps: 

Intermediate data prediction. In the proposed architecture, we use the 
outputted intermediate data of previous jobs to predicate that of the 
forthcoming job. During the shuffle phase of a batch processing, the 
frequency of each key of the intermediate data is counted and tracked, 
then we use the prediction model EWMA to forecast the size of key 
clusters. 

Partition method optimization. To relieve the load imbalance of reduce 
tasks, a more reasonable data partition scheme is generated by ImRP. It 
involves solving the following issues: (1) how to determine the partition 
borders optimally; (2) how to split the border key cluster correctly when 
the semantics allow; and (3) how to allocate the work properly when the 
nodes are heterogeneous. 

Intermediate data partition. When partitioning the intermediate data 
of the forthcoming job really, the system uses the data partition scheme 
obtained from the second step. In the shuffle phase, each key/value 
tuple in the map output gets its partition ID and then is written to 
relevant buffer array called buckets. In a map output, the key/value 
tuples with partition ID j compose the jth bucket, which will become part 
of the jth partition and be processed by the jth reducer. 

We will describe the realization of each part in detail in the 
following. 

4. Intermediate Data Prediction 

To ascertain the distribution of intermediate data is an inevitable 
course to develop the balanced partition strategy [29]. For this purpose, 
most partition methods either pre-run the sampling of input data [6], 
[9], [14] or extract the intermediate data of partial map outputs for 
analysis [21], [30]. However, this may bring extra overhead. Making use 
of the data characteristics, this paper intends to forecast the key distri-
bution for the forthcoming job. For illustrative purposes, some signifi-
cant variables are declared in Table 1. 

First of all, ImRP detects the key distribution of the intermediate data 
of previous jobs. Without loss of generality, we denote the forthcoming 
job as Jt that processes batch t, and the previous processed jobs as {Jt− 1,

Jt− 2, ..., J1|t > 1}. There are some specific data structures can be 
formalized as follows: 

(1) BM. A m × n matrix that denotes the outputs of all map tasks of a 
previous job, where the element bi,j indicates the jth bucket whose data 
come from the ith map task. Specifically, which bucket a key/value tuple 
belongs to is determined by the function getPartitionID according to the 
key, which can be formalized as: 

bi,j = ⊎
kr∈KSi :getPartitionID(kr )=j

< kr, vr >, 1 ≤ i ≤ m, (1)  

where < kr, vr > represents a key/value tuple, and KSi is the key space of 
map output i. 

(2) DM. A (t − 1) × u matrix that represents the key distribution of 
the intermediate data of a series of previous jobs, which can be 
formalized as: 

DM =

⎡
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where Kl represents a key cluster, and Cl is the number of tuples in the 
cluster of Kl. In particular, for the key distribution of Jt− 1: Dt− 1 = {(Kt− 1

1 ,

Ct− 1
1 ), (Kt− 1

2 ,Ct− 1
2 ), ..., (Kt− 1

u ,Ct− 1
u )}, ImRP designs a counter in each map 

output [bi,1, bi,2, ..., bi,n] to record the frequency of each key of the key/ 
value tuples. After that, the key statistics of counters are combined to 
obtain the general key distribution. 

There are many prediction algorithms in the literature, such as 
EWMA (Exponentially Weighted Moving Average) and CU-SUM [31]. 
Compared to the CUSUM model, the EWMA model gives different 
weights to historical and current values, which helps to better capture 
the changing trends. Moreover, because {(Kt− 1

l ,Ct− 1
l ), (Kt− 2

l ,Ct− 2
l ), ...,

(K1
l ,C

1
l )} are the typical time series data, it is more suitable to adopt the 

time series data prediction algorithm EWMA. Therefor, in the prediction 
of key cluster size for Jt, the frequency of a given key can be calculated as 
follows: 

D★
t .Cl = α × Dt− 1.Ct− 1

l + (1 − α) × D★
t− 1.Cl

= α ×
(
Dt− 1.Ct− 1

l + (1 − α) × Dt− 2.Ct− 2
l + ...

+(1 − α)t− 2
× D1.C1

l ),

(2)  

where Kl is shared by the key distribution Dt− 1 and the estimated key 
distribution D*

t− 1, α ∈ [0, 1] reflects a tradeoff between stability and 

Fig. 2. The framework overview of ImRP.  

Table 1 
Variable Declaration  

m, m ≥ 1 the number of map tasks; 
n, n ≥ 1 the number of reduce tasks; 
u, u ≥ 1 the number of key clusters of the intermediate data. 
< kr, vr > , r ≥ 1 a key/value tuple with key kr of the intermediate data; 
bi,j, 1 ≤ i ≤ m the jth bucket whose data come from the ith map task; 
(Kl, Cl), 1 ≤ l ≤ u a key cluster Kl whose number of key/value tuples is Cl;  
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responsiveness. In our implementation, we set α to be 0.4 according to 
the evaluation result of section 7. In particular, if there is a key that is not 
shared by Dt− 1 and D★

t− 1, the number of the un-contained part is set to 0. 
When dealing with the initial batch (i.e., t = 1), ImRP uses the original 
range partitioner for J1. 

We conduct a group of experiments to show how effective the EWMA 
model is. Considering the example of Fig. 1, we estimate the frequencies 
of 3462 keys of the batches by using the EWMA and the prediction 
model of SP-Partitioner [16] (directly use the previous batch as the 
prediction of the forthcoming batch). Table 2 is the statistics of the root 
mean square (rms) error of the key estimation for each batch, where rms 

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1

Δ2
i

n

√

, n is the number of distinct keys, and Δ is the error between 

the estimated and the true value. The results show that EWMA can 
achieve higher accuracy than SP-Partitioner. 

5. Partition Method Optimization 

In this section, we generate the exact partition scheme based on the 
key estimation. For the purpose of avoiding data skew, a series of 
optimization measures are proposed, which involves the calculation of 
partition borders, split of border key clusters, and consideration of 
heterogeneous environments. 

5.1. Calculation of Partition Borders 

The data partition scheme of the range partitioner can be represented 
as a set of partition borders: P = {Kp0 ,Kp1 ,⋯,Kpj ,⋯,Kpn}, where Kpj− 1 <

Kpj , and Kpj is a border key which represents the upper bound of the jth 

partition. When the map tasks divide the intermediate data, the range of 
a partition (Kpj− 1 ,Kpj ] indicates that the key/value tuples whose keys 
belonging to this range will be assigned to partition j. In particular, the 
1st partition includes key Kp0 . Assume that there are v key clusters dis-
patched in partition j, represented as: {(K1, C1), (K2, C2), ..., (Kv, Cv)}, the 
data size of partition j can be calculated as: 

Sj =
∑v

l=1
Cl,Kpj− 1 < Kl ≤ Kp. (3)  

In this method, our goal is to come up the partition borders appropri-
ately that can make the partitions equaling in size. 

It is obvious that the location of border keys has a direct impact on 
the balance of partitions. Here the original range partitioner takes a 
greedy approach: firstly, it sorts the key clusters of D★

t in ascending 
lexicographic order according to their keys, and then calculates the 
average size of each partition. Thirdly, it puts the clusters of D★

t 
sequentially into the partitions. In this process, if a cluster reaches or 
exceeds the average size of the partition, the key of the cluster is set to 
the partition border, and the next partition will be turned. However, the 
partition borders generated in this way is simple but not optimal. 

Fig. 3 shows a simple example that there is a key distribution D★
t , in 

which the sorted key clusters are (A, 4), (C, 3), (E, 1), and (H, 2). The 
number of partitions is set to 2, so the average partition size is (4+ 3+

1+ 2)/2 = 5. In accordance with the cutting method of the original 
partitioner, cluster A and C will be assigned to partition 1, and cluster E 
and H will be assigned to partition 2. The partition sizes are 7 and 3 
respectively, as shown by Fig. 3 (a). However, we can easily find an 
optimal scheme that assigns cluster A to partition 1, and C, E and H to 
partition 2. The partition sizes are 4 and 6 respectively, as shown by 
Fig. 3 (b). Clearly, the latter partition scheme is more uniform than the 
former. 

Moreover, the above schemes try to balance the partitions just for the 
shuffle operation, which may not guarantee the load balancing of the 
reducers throughout their execution. In the reduce stage, the execution 
of a reduce task includes both the shuffle operation and the normal 
operations [15]. As shown in Fig. 4, after the left-outer join operation, 
the number of key/value tuples changes and the partitions become un-
balanced, even if the partition sizes are previously equal. Hence, it is 
necessary to make a trade-off between the balance of shuffle operation 
and that of normal operations. 

To address these problems above, firstly, based on the points above, 
we formulate the integrated data size (IS) of the partition as follows: 

ISj = Sj + λ × H
(
Sj
)
, 1 ≤ j ≤ n, (4)  

where Sj is the size of partition j for the shuffle operation, H(Sj) denotes 
the partition size for the normal operations, and λ is the ratio of normal 
operations workload to shuffle operation workload. There are many 
factors that can affect workload, such as the tuple numbers and the 
complexity of computation. Measuring the workload in a comprehensive 
way will make the partition more balanced. For the sake of generality, 
we set λ = 1, which means that we measure the workload solely based 
on the number of key/value tuples. Further, H(Sj) can be estimated as: 

H
(
Sj
)
= ratioj × Sj, 1 ≤ j ≤ n, (5) 

Table 2 
rms error of key frequency estimation for each batch   

batch 2 batch 3 batch 4 batch 5 batch 6 batch 7 batch 8 batch 9 batch 10 average 
EWMA 375.4 315.5 182.4 214.2 568.1 364.9 189.2 247.8 296.3 306.0 
SP-Partitioner 214.7 424.1 244.9 517.5 964.8 457.1 253.4 232.9 483.6 421.4  

Fig. 3. Two different data partition schemes.  

Fig. 4. Partition sizes before and after join operation.  
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Require:
The sorted key cluster distribution: D?t = {(K1,C1), (K2,C2), · · · , (Ku,Cu)};
The number of partitions: n.

Ensure :
The border keys: P = {Kp0 ,Kp1 , · · · ,Kpn }.

1 initialize the first and last border keys: Kp0 = K1;Kpn = Ku;
2 int minS ize = 0,maxS ize = 0;
3 for l = 1; l ≤ u; l + + do
4 maxS ize+ = Cl + H(Cl);
5 end
6 while minS ize <= maxS ize do
7 midS ize = (minS ize + maxS ize)/2;
8 if check(midS ize,D?t , n) then
9 maxS ize = midS ize − 1;
10 end
11 else
12 minS ize = midS ize + 1;
13 end
14 end
15 int curS ize = 0, j = 1;
16 for l = 1; l ≤ u; l + + do
17 if curS ize +Cl + H(Cl) < minS ize then
18 curS ize+ = Cl + H(Cl);
19 end
20 else if curS ize +Cl + H(Cl) == minS ize then
21 Kp j = Kl; curS ize = 0; j + +;
22 end
23 else
24 Kp j = Kl−1; curS ize = Cl + H(Cl); j + +;
25 end
26 end
27 return P.

Algorithm 1. Calculation of Partition Borders  
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where ratioj denotes the ratio of the partition size after and before the 
shuffle operation, which can be calculated by the partitions of Jt− 1. 
Hence, H(Sj) can be calculated as: 

H
(
Sj
)
= H

(
∑v

l=1
Cr

)

= ratioj ×
∑v

l=1
Cr =

∑v

l=1
ratioj × Cr.

(6) 

On the other hand, H(
∑v

l=1Cr) =
∑v

l=1H(Cr). Here H(Cl) represents 
the size of the key cluster after the shuffle operation, which can be 
precisely defined by some specific shuffle operators. For example, for the 
widely used self join operator, it can be estimated as: H(Cl) = (Cl)

2. And 
for the reduceBykey operator, it can be defined as: H(Cl) = 1. Whereas 
for the sort operator commonly seen in database applications, the 
function can be defined as: H(Cl) = Cl. Because it does not change the 
amount of data of partitions. 

Secondly, we propose a novel method to calculate the partition 
borders optimally. The integrated size of partition ISj is used in this 
model. In the first place, because the execution time of parallel tasks is 
usually decided by the most heavily loaded task, the partition balance 
problem can be transformed as minimizing the maximum data size 
among all the partitions. As a result, the objective function of this model 
can be specified as: 

min
{

max
j=1,2,⋯,n

ISj

}

= min

⎧
⎨

⎩
max

j=1,2,⋯,n

⎛

⎝
∑pj

l=pj− 1+1

⎛

⎝Cl + H(Cl)

⎞

⎠

⎞

⎠

⎫
⎬

⎭
.

(7) 

This paper uses the dichotomy method to resolve the Maximum- 
Minimum problem above. Algorithm 1 describes the process of calcu-
lating these partition borders. To elaborate the algorithm in detail, some 
significant variables are explained as follows: 

(1) maxSize. The maximum integrated data size of the partitions. At 
this point, we put all the key clusters of D★

t into one partition. 
(2) minSize. The minimum integrated data size of the partitions. This 

means that we would not put any clusters into one of the partitions, so 
the value of minSize is 0. 

(3) midSize. The median of maxSize and minSize. The purpose of 
setting this variable is to search for a suitable data size, which represents 
the maximum amount of data each partition allowed to carry. Since if 
this threshold is large, it does not need n partitions to accommodate all 
the key clusters; and if this threshold is small, the number of partitions 
required will be greater than n. 

As shown in Algorithm 1, firstly, the algorithm determines the value 
of maxSize and minSize, as lines 2-5; Secondly, it uses the dichotomy to 
take the median of the two sizes (i.e., midSize) and uses the check 
function to determine whether this value is adjusted up or down. The 
details of the check function is shown by Algorithm 2. This process is 
terminated until minSize equals maxSize, and then we obtain the suitable 
size minSize, as lines 6-14; Thirdly, the algorithm uses minSize as the 
threshold to divide the clusters into n partitions and calculate the 
partition borders. In particular, it puts the clusters of D★

t sequentially 
into partitions as much as possible, and ensuring that the size of each 
partition does not exceed this threshold, as lines 15-26; Finally, return 
the partition borders P. The average time complexity of Algorithm 1 is O 
(ulog Sum(pi)), where u is the number of clusters of D★

t , and pi represents 
the probability of each situation. 

5.2. Split of Border Key Clusters 

The range partitioner of Spark assigns a key cluster only to a parti-
tion, but this may yet lead to even the best data partition scheme cannot 
make the partitions absolutely equal [22]. As the example of section 5.1, 
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with this constraint, the sizes of two partitions are still unequal under 
the optimal data partition scheme. Nevertheless, for some shuffle op-
erators, such as sort and union (the union of two sets) that treat each 
intermediate key/value tuple independently in the reduce stage, 
assigning the same keys to multiple partitions does not affect the final 
result. Hence, in view of the great flexibility, we provide a mechanism of 
splitting border key cluster in the range partition of Spark. 

In ImRP, the partition border additionally comes with a proportion 
value to split its cluster, i.e., border key Kpj becomes tuple (Kpj , fpj ), 0 <
fpj ≤ 1, where fpj is the proportion of key cluster Kpj divided into parti-
tion j. For the example described in section 5.1, Fig. 5 shows the usage of 
the cluster split to divide the two partitions evenly. The data partition 
scheme is P = {(A,1), (C,1/3), (H,1)}, so the size of both two partitions 
is 5. Consequently, when partitioning the intermediate data really, the 
key/value tuple whose key is C will be assigned to partition j with the 
probability of 1/3, and to the next partition with the probability of 2/3. 
By this means, a large number of related tuples will be distributed 
proportionally to the partitions, and the skewness can be eliminated 
thoroughly. 

It is worth noting that the split of key cluster can only be applicable 
to these shuffle operators whose semantics allow, which can be decided 
by setting a parameterized flag when the job begins execution. 

Algorithm 3 shows how the partition borders are calculated with 
cluster split, and we consider the integrated partition size. Firstly, the 
algorithm calculates the total integrated data size and the average in-
tegrated size of the partitions (i.e., avgSize), as lines 3-6; Then it puts the 
key clusters of D★

t into the partitions in order (starting with partition 1) 
and records the size for the current partition (i.e., curSize). In this pro-
cess, if the current cluster is placed so that curSize is smaller than curSize, 
continue to place the next cluster, as lines 7-11; Meanwhile, if the cur-
rent cluster is put so that curSize just reaches curSize, then the key of the 
current cluster is set as the border key, and the proportion value is set to 
1, as lines 12-14; Otherwise, set the key of the current cluster as the 
border key, and calculate the corresponding proportion value, as lines 
15-19; For the latter two cases, the next partition will be turned. Finally, 
return the partition borders P, as line 20. The time complexity of algo-
rithm 3 is O(u), where u is the number of the key clusters in D★

t . 

5.3. Consideration of Heterogeneous Environments 

The data partition scheme generated so far, based on the assumption 
of homogeneous environments, aims to make the partitions similar in 
size, thus the reduce tasks with the same load can be completed at the 
same time. While in a heterogeneous environment, the capabilities of 
nodes can be different for various reasons, such as heterogeneous 
resource capacity, resource competition, network congestion, etc [32]. 
Therefore, in such an environment, it is necessary to consider the node’s 
performance in data assignment instead of always dividing them evenly. 

The basic idea of ImRP is to allocate the quantity of data to reduce 
tasks according to the capability of each node. It requires an indicator to 
measure the performance of nodes appropriately. Previous researches 
focusing on this point are mostly designed for Hadoop [30], [33], which 
may be inaccurate for Spark tasks. In this paper, we use the average 
processing speed of reduce tasks running on a node, which can be 
formulated as: 

Fig. 5. Split of border key cluster in data partition scheme.  
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capabilityj =
data sizej

execution timej
, (8)  

where data sizej denotes the total data size processed by the reduce 
tasks, and execution timej denotes the total execution time of these 
reduce tasks running on node j. In Spark Streaming, the capability of the 
node can be calculated by the finished tasks of previous jobs. 

Then we formulate the load balancing problem in heterogeneous 
environments as follows: firstly, the relative capability of the node can 
be defined as: 

relative capabilityj =
capabilityi

avg capability
, (9)  

where avg capability denotes the average capability of all the worker 
nodes. Then, assume that partition j (processed by reduce task j) to be 
handled on worker node j. As a result, the objective function of the 
model is modified as: 

min

{

max
j=1,2,⋯,n

ISj

relative capabilityj

}

= min

{

max
j=1,2,⋯,n

(
∑pj

l=pj− 1+1

(

Cl + H(Cl)

)

relative capabilityj

)}

.

(10) 

For this Maximum-Minimum problem, we can use the same algorithm 
described in section 5.1 to calculate the optimal data partition scheme in 
the heterogeneous environment. Moreover, if the split of border key 
cluster is allowed, the load of reduce tasks can be enhanced further. 

6. Intermediate Data Partition 

When partitioning the intermediate data of job t in the shuffle phase, 
Algorithm 4 describes how the key/value tuples get their partition ID 
according to the generated data partition scheme. For generality, the 
partition borders without key cluster split can be regarded as a special 
case of the partition borders with key cluster split, i.e., border key Kpj 

can be seen as border key (Kpj , 1). The algorithm uses the sequential 
search method to get the partition ID. For a specific key/vaule tuple (kr, 
vr), it starts looking at partition border Kp1 until finds a partition border 
that is larger than or equal to kr. Then, if kr less than Kpj , the partition ID 
is set to j, as lines 2-5; Otherwise (i.e., kr equals Kpj ), there are two cases: 
first if fpj is 1, set the partition ID as j, as lines 6-9; otherwise it uses a 
random number and the value of fpj to determine whether the tuple is 
assigned to the current partition j or the next partition j + 1, as lines 10- 
20; Finally, return the partition ID, as line 21. The time complexity of 
algorithm 4 is O(n), where n is the number of partitions. 

7. Evaluation 

In this section, we evaluate the performance of the proposed parti-
tioner. We have implemented ImRP in the source codes of Spark-core 3.0 
project. Hence, the task progress can use our achievement by invoking 
the getPartitionID method provided by ImPR. The execution of the shuffle 
phase still depends on Spark’s original mechanism. 

7.1. Experiment Setting 

Our test cluster consists of 9 physical machines. Each machine is 
equipped with Intel Xeon processor E7-8867 v4, 2.4GHz, 64GB RAM and 
512GB of disk. These physical machines are organized in three racks 
connected by 1Gbps Ethernet and managed by OpenStack cloud oper-
ating system [34]. We use the KVM virtualization software [35] to 
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construct medium sized VMs with 4 virtual cores, 8GB RAM, and 64 GB 
of disk space. First of all, we conduct our experiments in a homogeneous 
environment where each machine runs two virtual machines, and then 
we create a heterogeneous environment for testing. 

To estimate the performance, as shown in Table 3, two representa-
tive micro-benchmarks: WordCount and Sort, and two representative 
macro-benchmarks: PageRank and LDA (Latent Dirichlet Allocation) are 
selected. The application of micro-benchmarks contains one job with 
two stages (i.e., map stage and reduce stage), so that we can easily 
observe the effect of data partition on the execution time of reduce stage. 
By contrary, the application of macro-benchmarks contains one or more 
jobs with multiple stages. 

In our experiments, the following data partition strategies are chosen 
for comparison: 

OrigRange: (The Original Range partitioner [36]). As one of the 
default partition methods, OrigRange is suitable for all types of jobs and 
can alleviate the reduce skew to some extent compared to the Hash 
partitioner. It runs an extra job ahead of time to estimate the key dis-
tribution, but this occurs extra time overhead. 

SASM: (Spark Adaptive Skew Mitigation [37]). From another point 
of view, SASM mitigates skew of shuffle read and computation misdis-
tribution dynamically with metadata collected beforehand. When a new 
task is registered, it re-partitions the unprocessed blocks of straggling 
tasks to other idle tasks. 

SP-Partitioner: (A stream data prediction partitioner [16]). It treats 
the arrived batches as candidate samples and uses it to predict the 
characteristics of intermediate data. According to this, SP-Partitioner 
generates a reference table to guide the allocation of next batches of data 

evenly. It is an improved hash partition. 
The following indicators are used for performance evaluation: 
• Job execution time: The time from the start to the end of a stream 

job. Since there are some pre-work in the above strategies and the extra 
overhead cannot be ignored, this indicator can reflect the overall per-
formance of different methods fairly. 

• Reduce stage execution time: It refers to the time when the reduce 
tasks start to fetch intermediate data in the shuffle phase to the end of 
the task. In Spark, the tasks are executed stage by stage. This means that 
the tasks of the child stage will not be started until the parent stage 
complete execution. 

• Coefficient of variation (CV): It is a common measurement for the 

data skew: CV =
stddev( x→)

mean( x→)
, where x→ is a vector that contains the inte-

grated data size processed by each task [22]. Larger coefficient indicates 
heavier skew. 

To reduce the interference of variable environments, we take the 
average of 60 consecutive stream jobs for the above indicators in Spark 
Streaming. 

7.2. Performance 

7.2.1. Micro-Benchmarks 
WordCount is widely used in Mapreduce system processing, which 

counts the number of occurrences of each word in input data. We use the 
groupByKey operator in the program. To test the performance under 
different distribution of input batch, the synthetic data stream is used 
and generated by RandomWriter whose data follows the Zipf distribution. 
It can represent many real-world data distribution [38]. The Zipf dis-
tribution uses the parameter σ to control the skew degree: a larger σ 
indicates a more uneven distribution of input batch. The data arrival 
speed is set to 80MB/s and the batch interval is set to 2s for the stream 
jobs. 

Fig. 6 shows the performance comparison of different methods 
(OrigRange, SASM, SP-Partitioner and ImRP) when σ varies from 0.2 to 
1.2. As shown in Fig. 6(a), the job execution time of all methods 

Table 3 
Benchmarks and Application Types  

Benchmarks Application types 
WordCount Simple job 
Sort Simple job 
PageRank Search engine application 
LDA Machine learning application  

Fig. 6. Performance with different skew degrees of input batch under wordCount.  

Fig. 7. Performance with different batch intervals under wordCount (σ = 0.2).  
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increases with the increase of σ, and ImRP can obtain better performance 
than other methods. In particular, when σ is 1.2, ImRP can decrease the 
job execution time by 35.7%, 25%, and 17.8% compared to OrigRange, 
SASM, and SP-Partitioner, respectively. In this case, the maximum job 
execution time of OrigRange, SASM, SP-Partitioner, and ImRP is 1238ms, 
957ms, 784ms, and 646ms respectively, and the minimum job execution 
time for these methods is 683ms, 567ms, 486ms, and 425ms respec-
tively. Further, Fig. 6(b) illustrates that the job performance gap is 
mainly caused by the difference in the duration of reduce stage. It is 
worth noting that the stage time of OrigRange is generally less than that 
of SASM, but it takes more time to run the job because of the delay of 
pre-run job. This also demonstrates the negligible extra overhead of 
ImRP. Fig. 6(c) shows the coefficient of variation. It verifies that ImRP 
can achieve good partition balance for reduce tasks through its data 
partition scheme, which is the main factor in improving the 
performance. 

In order to estimate the performance of relevant methods under 
different data volume, we also set up different batch intervals for the 
stream jobs in the cases of slight (σ = 0.2) and severe (σ = 1.2) skewed 
input batch. Fig. 7 depicts the experimental results when the batch 

interval varies from 2s to 5s and σ = 0.2. Specifically, Fig. 7(a) and Fig. 7 
(b) show that the job and reduce stage execution time of all methods 
increase gradually as the data size increases, but ImRP performs best on 
these two indicators. In particular, when the batch interval is 5s, ImRP 
can reduce the reduce stage execution time by 11.8%, 9.1%, and 5.2% 
compared to OrigRange, SASM, and SP-Partitioner, respectively. It ob-
serves that all the methods can balance the partitions well, as shown by 
Fig. 7(c). 

Fig. 8 shows the performance with different batch intervals under 
heavily skewed input batch. The bars in Fig. 8(a) explain that ImRP and 
SP-Partitioner can get lower job and reduce stage execution time than 
OrigRange and SASM. However, ImRP still outperform SP-Partitioner. In 
addition, when the batch interval equals or exceeds 4s, the job execution 
time of SASM is greater than that of OrigRange. This reason can be 
explained as SASM only re-assigns unprocessed data of slow tasks, 
therefore, it cannot re-arrange the intermediate data when more and 
more data is produced and handled. Fig. 8(c) shows that ImRP can 
partition the data more evenly than others even under the serious 
skewed input batch. Particularly, when the batch interval is 5s, the CV 
value of OrigRange, SASM, SP-Partitioner, and ImRP is 1.64, 2.15, 1.45, 
and 1.03 respectively, the maximum CV value of these methods is 2.13, 
3.75, 1.88, and 1.46 respectively, and the minimum CV value of these 
methods is 1.47, 1.89, 0.85 and 0.73 respectively. 

Sort is common in the Spark workload testing that makes the data 
objects orderly. In the Spark engine, only the range partition can 
implement this function. Since SASM does not consider this type of jobs 
and SP-Partitioner is based on the hash partitioner, they are not suitable 
for the sort job. Moreover, to assess how the key cluster split can benefit 
the performance, we set up a group of comparative experiments: ImRP 
without the border key cluster split and with the border key cluster split 
(marked as ImRP_CS). Like wordCount, the experiments run the syn-
thetic data stream, and the sortByKey shuffle operator is utilized in the 
program. We set the data arrival speed to 60MB/s and the batch interval 
to 2s for the stream jobs. 

Fig. 9 (a) and Fig. 9(b) show that ImRP and ImRP_CS can perform 
much better than OrigRange in terms of the job and reduce stage 
execution time. Moreover, ImRP_CS with the border key cluster split can 

Fig. 8. Performance with different batch intervals under wordCount (σ = 1.2).  

Fig. 9. Performance with different skew degrees of input batch under sort.  

Fig. 10. Performance with different data sets under pageRank.  
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improve the performance on the basis of ImRP: when σ = 1.2, ImRP_CS 
can shorten the reduce stage time by 41.9% over ImRP. The reason 
behind it is that ImRP_CS allowing key cluster split can ensure the par-
titions completely equal in the ideal case. As can be seen from Fig. 9(c), 
the CV value of ImRP_CS is essentially constant in all cases and remains 
at a low level. 

7.2.2. Macro-Benchmarks 
In these experiments, two real-world applications: pageRank and 

LDA (Latent Dirichlet Allocation) are selected from the examples of 
Spark for testing. We rewrite the two programs so that they can process 
the batches of stream and return the results in a real-time fashion. 
Because the applications contain one or more jobs with multiple stages, 
we use the application execution time in the evaluation. 

PageRank is a well-known algorithm in search domain that ranks 
pages according to their importance. We run the experiments on three 
real data sets: Web_Google, Web_BerkStan, and Web_Stanford from [39], 
which are read as HDFS file streams. The data arrival speed is set to 
1MB/s as it spends lots of time on iterative computation, and the batch 
interval is set to 2s for the stream jobs. We set the parameter 
numIterations = 10 in the program, so the application contains 1 job and 
13 stages. 

Fig. 10 shows us the experiment results of relevant methods. The 
rectangles of Fig. 10(a) illustrate that ImRP can improve the application 
performance effectively. In particular, on the Web_Google data set, ImRP 
can finish applications 27.6%, 18.1% and 11% faster than OrigRange, 
SASM and SP-Partitioner, respectively. Furthermore, to understand how 
ImRP balances the partitions across the reducers, we observe one of the 

reduce stages (i.e., the third stage of pageRank) that contains the join 
operation and plot these stage execution time and CV of different 
methods as Fig. 10(b) and Fig. 10(c), respectively. It further validates 
that by optimizing the data partition scheme, ImRP can enhance the 
execution efficiency of the stage than other methods. 

LDA is an important algorithm in NLP (Natural Language Processing) 
for topic modelling. It extracts some keywords that can express each 
topic from a large number of documents. In these experiments, three 
kinds of real data sets are used: Wikipedia Corpus [7], Blog Authorship 
Corpus [40], and Twenty Newsgroups [41]. The program sets the number 
of topics to 5 and numIterations = 10, so the application has 26 jobs, a 
total of 90 stages. The data arrival speed is set to 1MB/s and the batch 
interval is set to 2s for the stream jobs. 

Fig. 11 (a) shows the application execution time of the methods. 
Though some of the stages of LDA application are short, the cumulative 
performance gains of many stages can improve the overall performance 
obviously. As we can see, on the Wikipedia Corpus data set, ImRP can 
finish applications 31.2%, 35.3% and 18.7% faster than OrigRange, 

Fig. 11. Performance with different data sets under LDA.  

Table 4 
Heterogeneous Environment  

Level Hosts VMs 
2VMs/host 5 10 
3VMs/host 3 9 
4VMs/host 1 4 
Total 9 23  

Fig. 12. Performance in heterogeneous environments.  

Fig. 13. rms error with different value of α.  
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SASM and SP-Partitioner, respectively. As before, we draw Fig. 11(b) and 
Fig. 11(c) to analyze how ImRP behaves at the stage (i.e., the third stage 
of the first job). The stage contains the reduceByKey operator that is often 
used in practice. Since ImRP estimates the frequency of keys after the 
map-side aggregation, it is more accurate than other algorithms. Hence, 
the better partition balance can be obtained by ImRP. 

7.2.3. Heterogeneous Environments 
In these experiments, we evaluate the performance of the proposed 

partitioner in heterogeneous environments. As shown in Table 4, the 
Spark cluster is created by running different numbers of virtual ma-
chines on the 9 physical machines. Under such an environment, the 
performance of the VMs can vary significantly due to the workloads 
from the co-hosted VMs [30]. 

We run the wordCount benchmark on the synthetic data stream. For 
comparison, two versions of ImRP are designed: ImRP without hetero-
geneity consideration and with heterogeneity consideration (marked as 
ImRP_HC). Fig. 12 shows the results for the five methods (OrigRange, 
SASM, SP-Partitioner, ImRP and ImRP_HC) when σ = 0.8. As we can see 
from the figure, ImRP_HC with the consideration can finish jobs 24.3% 
faster than ImRP. Moreover, it can finish jobs 37.9%, 21%, and 32.1% 
faster than OrigRange, SASM, and SP-Partitioner, respectively. The ex-
periments indicate that ImRP fits well in the heterogeneous cluster. 

7.3. Parameter Analysis 

In section 4, we propose to utilize the EWMA model to predict the 
size of the key clusters. The EWMA has a parameter α that reflects a 
trade-off between the stability and responsiveness. In this section, we 
evaluate the accuracy of the key estimation with different α values to see 
the variance trends. The experiments run the wordCount benchmark on 
the synthetic data stream (σ = 0.8). Fig. 13 shows the average rms error, 
min rms error, and max rms error for the key frequency estimation of 10 
jobs that process 10 batches. It can be seen that when α is set to 0.4, ImRP 
obtains the lowest average rms error. So we empirically set the value of α 
to 0.4. Besides, under this setting, the EWMA can be more accurate than 
SP-Partitioner, which was verified by Table 2. 

8. Conclusions 

In Spark Streaming computing environments, the default partition 
methods easily cause the load imbalance of reduce tasks in the inter-
mediate data allocation. This situation extends the execution time of 
stages. This paper attempts to extenuate the data skew among the re-
ducers for stream jobs. First, it predicts the key distribution for the 
forthcoming job according to the previous batch processing. Then it 
generates the appropriate partition strategy, in which a series of opti-
mization measures are proposed, including calculating the partition 
borders optimally, splitting the border key cluster if necessary, and 
allocating the work properly when the nodes are heterogeneous. 

The experiment results based on several representative ben-chmarks, 
which are prone to data skew, verify that by considering the partition 
balance before and after shuffle operation, the load imbalance of the 
reduce tasks can be addressed by the proposed partitioner successfully. 
Moreover, because the data partition scheme is produced in advance, it 
has no extra delay for the job execution. 
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