
Received March 26, 2019, accepted April 6, 2019, date of publication April 11, 2019, date of current version April 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2910457

Fast Boolean Queries With Minimized Leakage
for Encrypted Databases in Cloud Computing
ZHIQIANG WU 1, KENLI LI 2, (Senior Member, IEEE), KEQIN LI 2,3, (Fellow, IEEE),
AND JIN WANG 1, (Senior Member, IEEE)
1School of Computer and Communication Engineering, Changsha University of Science and Technology, Hunan 410114, China
2National Supercomputing Center in Changsha, College of Information Science and Engineering, Hunan University, Hunan 410082, China
3Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

Corresponding author: Jin Wang (jinwang@csust.edu.cn)

This work was supported in part by the Key Program of National Natural Science Foundation of China under Grant 61432005, and in part
by the National Natural Science Foundation of China under Grant 61772454, Grant 61811530332, and Grant 61811540410.

ABSTRACT This research revisits the fundamental problem of processing privacy-preserving Boolean
queries over outsourced databases on untrusted public clouds. Much current searchable encryption (SE)
schemes try to seek an appropriate trade-off between security and efficiency, yet most of them suffer from
an unacceptable query leakage due to their conjunctive/disjunctive terms that are processed individually.
We show, however, this trade-off still can be deeply optimized for more security. We consider a Boolean
formula as a set of deterministic finite automatons (DFAs) and propose a novel approach to running an
encrypted DFA, which can be effectively and efficiently processed by the cloud. We give three constructions
for conjunctive, disjunctive, and Boolean queries, respectively. Their notable advantages are single-round,
highly-efficient, adaptively-secure, and leakage-minimized. A lot of experiments aremade to evaluate overall
efficiency. Testing results show that the schemes achieve enhanced security almost without sacrificing
anything of search efficiency.

INDEX TERMS Cloud computing, privacy preserving, searchable encryption.

I. INTRODUCTION
Cloud computing enables ubiquitous, convenient, cost-
effective, and on-demand network access. Outsourcing data
and computing services to clouds becomes popular. However,
the key roadblock of cloud computing is data privacy. Clouds
are not fully trusted since the servers might be broken by
hackers or malicious cloud managers. They can illegally use
the private data that is outsourced by data owners or sell
users’ privacy for money. To preserve data privacy in cloud
computing, researchers proposed searchable encryption (SE),
which encrypts the private data in such a way that the data
can still be queried efficiently. The cloud now can provide
search services directly over encrypted data without learning
any sensitive information.

Encrypted Boolean computation is a fundamental func-
tionality of database systems. A Boolean query is a series
of intersection, union, or negative operations of multi-
dimensional condition strings, in which each condition can

The associate editor coordinating the review of this manuscript and
approving it for publication was Cristina Rottondi.

match zero or more results. Consider the following Boolean
query ϕ = (w1,1 ∨ w1,2 ∨ · · · ) ∧ (w2,1 ∨ w2,2 ∨ · · · ) · · · ∧
(wu,1 ∨ wu,2 ∨ · · · ). A data owner encrypts her documents
into a set of encrypted files and outsources the files to the
cloud. To quickly match the data, the owner also creates an
encrypted index for her documents. The encrypted files and
the index constitute an encrypted data table on the public
cloud. The owner and data users share a set of secret keys K ,
which can encrypt the Boolean query ϕ into TK (ϕ). The data
user sends TK (ϕ) to the cloud to quickly search the data
table to get a set of file identifiers DB(ϕ) that matches ϕ.
We assume the owner and the users are trusted, but the
cloud is not fully trusted. The cloud may attempt to obtain
information about the content of files and queries from the
clients’ requests when performing any operations. The cloud
needs to return all results accurately while being prohibited
from learning any private data.

If the returned file identifiers are in encrypted form when
being sent back to the users, we call this scheme response-
hiding [28]. We use DB∗(ϕ) to denote a set of encrypted
results for ϕ. If the result identifiers are in plain-text, we call

49418
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-9227-3062
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0001-5473-8738


Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

this scheme response-revealing. Let DB(ϕ) denote a set of
unencrypted result identifiers. In a response-hiding scheme,
if the result sets are not paddedwith dummy values, generally,
we have |DB∗(ϕ)| = |DB(ϕ)|.
Ideally, we want the cloud to do anything yet we wish the

cloud to learn nothing. It seems like a paradox that cannot
be well addressed since any operations over encrypted data
will induce knowledge that can be learned by the cloud.
We call this knowledge leakage. The target of a well-designed
SE scheme is to minimize the leakage and retain good search
performance.

There are two difficulties when we handle the follow-
ing encrypted SQL query, ‘‘select * from users where
name=‘Tom’ or name=‘Jerry’ and gender=‘Male’ ’’. First,
if a sub-linear single-keyword SE scheme is not optimized
for the efficiency of Boolean queries, the query will turn out
to be a linear search of the data table. Thus, most single-
keyword SE schemes don’t work well with Boolean queries.
Second, if an SE scheme is not optimized for query leakage,
its procedure will leak almost half of the records of the data
table according to their access pattern.

It is urgent to design an efficient and practical conjunc-
tive/Boolean query SE scheme that provides strong privacy
guarantee, since most of the range, substring, wildcard,
multi-keyword, and phrase queries can be constructed from
Boolean queries. Recent state-of-the-art tree-based SE works
are capable of processing conjunctive queries with sub-linear
search complexity, such as KRB proposed by Kamara and
Papamanthou in [9], PBTree in PVLDB’14 [11], IBTree
introduced by Li and Liu in ICDE’17 [25], and VBTree
introduced by Wu and Li in VLDBJ’19 [43]. However, their
query leakage is not well-studied. Consider such a conjunc-
tive query, a∧b∧ c. In the above schemes, according to their
access pattern, the cloud has extra knowledge DB(a), DB(b),
DB(c), DB(a∧b), DB(b∧c), and DB(a∧c). In fact, we want
the cloud only to learnDB(a∧b∧c). If we convert the schemes
into response-hiding ones (remapping file identifiers to other
forms at the client-side), they still leak size patterns: |DB(a)|,
|DB(b)|, etc.

Is there a more efficient and secure solution to handling
Boolean queries? Our target is to minimize the leakage and
improve the overall performance of the index.

A. SECURITY MODEL
We adopt the IND-CKA2 security (i.e., the adaptive
IND-CKA) definition proposed by Curtmola et al. in
CCS’06 [4], to evaluate the security strength of an SE scheme.
The security is parameterized by a leakage function L that
will output all knowledge induced by setup, search, and
update operations.

When the encrypted database is initialized, we refer to
knowledge of the cloud (the adversary) that comes from
the outsourced database as setup leakage (i.e., L(EDB)).
If EDB leaks one or more properties of keywords, such
as term frequency, distance related information, and order
information [15], we call the scheme property-preserving,

otherwise it is non-property-preserving. All IND-CKA or
IND-CKA2 schemes should be non-property-preserving.
When an encrypted query Q is issued, we refer to knowl-
edge induced by queries as query leakage (i.e., L(Q)). The
query leakage mainly consists of two parts, search pattern
(i.e., the repetition of queries using the same keywords) and
access pattern (i.e., the result sets of queries or some infor-
mation for accessing the encrypted data). If the query leakage
contains information correlated to some unqueried keywords
(contents that have not been submitted by the users) with non-
negligible probability, we say that the leakage is uncontrol-
lable. Otherwise, it is controllable [5]. The leakage L of all
IND-CKA or IND-CKA2 schemes should be controllable.

B. LIMITATION OF PRIOR ART
We classify all single-round searchable encryption solutions
into three categories, tree-based ones [9], [11], [25], [43],
inverted-index-based ones [26], [28], and other ones [2], [35].

First, in most of current tree-based single-round searchable
encryption schemes, when a user submits a Boolean query to
the cloud, the cloud learns extra statistical information about
the query in addition to the query result, because the cloud can
use parts of the trapdoor to query the index with additional
results matched. The cloud learns more information than
necessary.

Second, the inverted-index-based single-round SE schemes,
such as OXT [26] and BIEX [28], enjoy a non-optimized
leakage profile. Consider the disjunctive query a∨b∨c. They
leak |DB(a)|, |DB(b)|, |DB(c)|, and etc. In fact, the user wants
the cloud only to learn |DB(a∨b∨c)|. The key problem of this
leakage is that it enables the cloud to learn which term is the
main factor that causes the final result. OXT and BIEX still
suffer from the s-term problem. An s-term of the conjunctive
query is the termwhose result set is the smallest among all the
query terms. In short, the s-term problem denotes that their
search efficiency of a ∧ b is not equal to that of b ∧ a, and
the complexity of (a ∨ b) ∧ (c ∨ d) is not equal to that of
(c ∨ d) ∧ (a ∨ b).
Third, many searchable encryption schemes, such as

the public-key encryption scheme [35], are linear-search
solutions.

C. PROPOSED APPROACH
We introduce the novel forward/intersection/backward token
concepts, to avoid a term of a Boolean formula to be handled
individually by the cloud because this is the key drawback of
most of Boolean SE schemes. A Boolean query is encrypted
into these three tokens. We describe the cloud on how to
handle the encrypted Boolean query at a high level. The user
creates and submits these three types of tokens to the cloud,
where the intersection token is dependent on the computa-
tional result of the forward token, and the backward token
also depends on computational results of the intersection
tokens. The computational result of the backward token will
yield one or two new forward tokens. Thus, the cloud can
recursively apply this rule, until it reaches a final result.

VOLUME 7, 2019 49419



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

This computation looks like accessing encrypted linked lists.
We note that in such a process, the query leakage is extremely
minimal (level-2-revealing).

We propose an approach to handling and running determin-
istic finite automatons (DFAs) over encrypted data. We first
precompute all DFA transition states that will be used in
future, encrypt and put them into each tree node of a tree-
based index [43]. When we search on a tree from top to
bottom, a Boolean query is considered as a set of encrypted
DFAs, where each DFA will be computed in each accessed
tree node. The forward/intersection/backward tokens can also
help the DFAs to be recursively processed. The notable
advantage of the encrypted DFAs is that a DFA-state can be
obliviously and efficiently changed from one state to another.

With the above approaches, we present three schemes:
VBT-1, VBT-2, and VBT-3 for conjunctive, disjunctive, and
Boolean queries, respectively. These three solutions share the
same search algorithm. Their difference is that in each tree
node, each DFA is constructed particularly. Note that, this
DFA is only a logical concept since it is always in encrypted
forms in any queries. All DFA-states don’t exist alone at all.

D. KEY CONTRIBUTIONS
We summarize our contributions in four aspects.

First, we propose ideal/real encrypted Boolean function
(IEBF/REBF) concepts to help one to seek an optimal
trade-off between security and efficiency for a single-round
Boolean SE scheme. An adaptively-secure level-2-revealing
construction is an optimal security-efficiency trade-off that
we pursue.

Second, we show how to encrypt a deterministic finite
automaton (DFA). We also give a novel approach to process-
ing the DFA over encrypted data. We apply this approach to
building sub-linear Boolean SE schemes.

Third, we present three SE schemes that support building
an adaptively-secure leakage-minimized sub-linear-search-
efficiency encrypted index. As far as we know, VBT-1 is
the first single-round sub-linear level-2-revealing conjunctive
SE scheme with scalable index size. VBT-2 is the first single-
round sub-linear level-2-revealing disjunctive SE scheme.
VBT-3 is the first single-round sub-linear level-2-revealing
Boolean SE scheme.

Fourth, VBT-3 can hide inner operators of an encrypted
Boolean query, such as ∧ and ∨.
We note that the basic tree structure (VBTree) used here is

not the key contribution of this paper. For ease of illustrating
the overall design, we modify the definition of VBTree and
detail it in Section 3. As stated in the security analysis,
VBTree in [43] and other trees (e.g., PBTree, IBTree) are
much weaker than the proposed solutions.

II. RELATED WORK
Searchable symmetric and structured encryption has been
studied for a long time [2]–[6], [9], [12]. And much progress
has been made in current researches, including scalability
improvement [18], update privacy [19], [20], [24], [40], [41],

expressiveness improvement [11], [25], [26], [28], [29], [43],
locality [42], and index rebuilding [38]. Searchable encryp-
tion can also be implemented with functional encryp-
tion [10], property-preserving encryption [15], secure
multi-computation [23], [30], homomorphic encryption [14],
and ORAM [17], [22], [45]. These solutions can be applied
to encrypted databases [7] [8].

All searchable encryptions can be classified into two cat-
egories, non-interactive constructions and interactive ones
(e.g., Oblivious RAMs [45]). The second is, in general,
much stronger than the first at the cost of high commu-
nication overhead or additional computation, since much
private-computing work has been done by the client or other
parties. Blind Seer in S&P ’14 [29] gave an interactive
approach to run Boolean queries based on Yao’s Garbled
Circuits [30], [36]. Since a Garbled Circuit can be used only
one time, this makes the scheme highly-interactive.

In SIGMOD ’09, Wong et al. proposed a secure distance-
computing scheme, called KNN computation [13]. The
advantage of secure KNN is that it can partially hide the
distances of the points. To some extent, the secure KNN can
be considered as an SE scheme whose keywords are a set
of converted points. Unfortunately, the secure KNN has a
notable drawback that its query leakage is uncontrollable.
A secure-KNN computation will leak a set of formulas that
are correlated to some unqueried keywords (points). This
leakage will enable the adversary to distinguish the simulated
view from the real view. More disastrously, in the following
years, most of secure-KNN-based SE schemes cannot be
proven secure under the IND-CKA (or, IND-CPA) model,
such as [31], [32]. Chosen-plaintext attacks against secure
KNN were proposed in [33] and [34]. A remedy is to convert
the numeric comparison tests to equality tests like the work
in ICDE ’17 [37].

III. SECURE BOOLEAN COMPUTATION AND RELATED
DEFINITIONS
We present the ideal/real encrypted Boolean function con-
cepts, to accurately describe the query-leakage level of
Boolean SE schemes. Theywill help us to seek a practical and
acceptable trade-off between security and overall efficiency.

A. IDEAL ENCRYPTED BOOLEAN COMPUTATION
Definition 3.1: (Ideal Encrypted Boolean Function). Let

∏
=

(Setup,Trapdoor, Search) be an L-adaptively-secure single-
round Boolean searchable encryption scheme. Let ϕ be a
Boolean query (Q is its encrypted form). Assuming the user
submit the query only one times, we observe the search
leakage Lsearch(ϕ). We say f = Search is an ideal encrypted
Boolean function (IEBF) if the search leakage profile
Lsearch(ϕ) can be written as L′(Q,DB(ϕ)) or L′(Q,DB∗(ϕ))),
where L′ is a stateless function. If f is an IEBF, then we call∏

level-1-revealing.
The computation can be expressed as f (Q,EDB) = DB(ϕ).

Unfortunately, in reality, it still is a difficulty to build an IEBF,
since the query is handled by the cloud itself, and then the

49420 VOLUME 7, 2019



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

cloud learns not only the input and output but also interme-
diate results because the results are generated step by step.
Thus, all Boolean computationwill induce leakage that can be
learned by the cloud. Although we cannot avoid the leakage,
this information can be reduced to an acceptable level.

Note that, the function f is computed in untrusted envi-
ronments. If the algorithms require the cloud to send Q and
EDB back to the client or trusted hardware for computation,
it will deviate from the intention of designs. The design goal
of IEBF is to make maximum use of cloud resources and
reveal as little information as possible.
Theorem 3.1 (IEBF implementation). If there are a random

oracle H , and an RCPA-secure private-key encryption algo-
rithm Enc, then there exists an IEBF f .

Proof: Given a random oracle H , we use the fol-
lowing naive idea to construct an IEBF. We consider all
u-dimensional Boolean queries as single-keyword strings.
The data owner precomputes all available Boolean conditions
9 that can be issued in the future, converts them into single-
keyword strings, and puts them into the index. The encrypted
index can be written as I = {(H (ϕ),Enc(DB(ϕ)) : for all
ϕ ∈ 9}. Now, an encrypted database EDB = (I ,D) is
created, and an ideal Boolean function f is constructed, such
that for any input ϕ, we have f (H (ϕ),EDB) = Enc(DB(ϕ)).
Obviously, the index size of this scheme turns out to be

�(
∑

i 2
mi ), where mi is the number of distinct keywords

in the i-th data file. Even for supporting two-dimensional
queries, the index size is not acceptable. We should make this
construction practical.

B. REAL ENCRYPTED BOOLEAN COMPUTATION
We present subquery-privacy concept to describe the query
leakage. Let ϕ be an unencrypted Boolean query (Q is its
encrypted form). We call subqueries of ϕ subq(ϕ), which
denotes all possible Boolean queries that consist of query
terms which come from the original ϕ (e.g., subq(a ∨
b) = {a, b, a ∧ b, a ∨ b}). We call subquery privacy of
ϕ ∂(ϕ) = {|DB(q)| : for all q ∈ subq(ϕ) and q 6= ϕ}

(e.g., ∂(a ∨ b) = {|DB(a)|, |DB(b)|, |DB(a ∧ b)|}).
Subquery privacy is useful information that can be uti-

lized by attackers [44]. Almost all single-round Boolean
SE schemes partially or fully leak this information. So we
need to minimize it if we can do well.
Definition 3.2: (Real Encrypted Boolean Function). Let∏
= (Setup,Trapdoor, Search) be an L-adaptively-secure

single-round Boolean searchable encryption scheme. Let ϕ
be a Boolean query. Assuming the user submit the query only
one times, we observe the search leakage Lsearch(ϕ). We say
f = Search is a real encrypted Boolean function (REBF)
if the leakage profile Lsearch(ϕ) don’t contain any subquery
privacy ∂(ϕ). If f is a REBF, then we call

∏
level-2-revealing.

The REBF notation (level-2-revealing) guarantees that
except for the final results, no vital privacy is revealed to the
cloud when Boolean queries are issued. REBF is a strong
security notation. As far as we know, there are no single-
round Boolean SE schemes that achieve level-2-revealing.

For example, we cannot construct a REBF from the
OXT scheme [26], since when w1 ∧ w2 ∧ w3 is issued
in OXT, the cloud learns |DB(w1 ∧ w2)|, |DB(w1 ∧ w3)|, and
|DB(w1)|.
A level-2-revealing solution is a wonderful security-

efficiency trade-off for a single-round SE scheme since we
can implement a REBF efficiently bymany approaches. If the
leakage Lsearch(ϕ) of a single-round L-adaptively-secure
SE scheme contains more information than that in a level-
2-revealing one, we label the scheme as level-2+-revealing.

IV. VBT-1: AN ADAPTIVELY-SECURE CONJUNCTIVE
SCHEME
Let’s study conjunctive queries first. If a REBF supports
only conjunctive queries, we call it a real encrypted conjunc-
tive function (RECF). We now propose an adaptively-secure
level-2-revealing conjunctive scheme called VBT-1. The
construction consists of three polynomial-time algorithms
VBT -1 = (Setup,Trapdoor, Search), where the algorithms
are based on the tree data structure [43] for sub-linear search
efficiency.

A. OVERVIEW OF THE DESIGN
We logically consider a conjunctive/Boolean query as a set of
deterministic finite automatons (DFAs), where each DFA can
be used to match a unique keyword set. All data files are put
into a tree-based index, where each tree node corresponds to
the keyword set. If one DFA can efficiently match the key-
word set, all the DFAs can be recursively processed among
all the tree nodes.
Encrypting and Running a DFA:We precompute all DFAs

and put them into each tree node of the tree-based index.
We consider simple DFAs first in this section. A simple DFA
is an automaton that has only two or several DFA-states x, y.
The owner (user) initially stores c = w ⊕ x on the cloud.
Thus c has been learned by the cloud, and w and x are hidden.
If the user sends a mask x ⊕ y to the cloud, the DFA-state
x can be obliviously changed to y, yet the cloud learns only
w ⊕ x ⊕ x ⊕ y = w ⊕ y. We refer to w ⊕ x and w ⊕ y
as encrypted DFA-states of x and y, respectively. In such
a process, the cloud learns nothing about {w, x, y}. If we
recursively apply this approach, the DFA can be obliviously
changed from one state to another. To eliminate correlations
of all DFAs, each DFA corresponds to a unique path value.
With this approach, we can encrypt and run all DFAs with
minimized leakage.

B. INDEX SETUP
We first should employ a tree-based index. To introduce the
tree structure in [43], we review three related concepts.
Full Binary Tree. A full binary tree is a binary tree with

2L − 1 tree nodes and 2L−1 leaves, where L (root L = 1) is
the height of the tree.
Path(v). Let v be a non-terminal tree node. Path(v) is a root-

to-node-v path string, where each left-side branch is ‘0’ and
right-side branch is ‘1’.

VOLUME 7, 2019 49421



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

FIGURE 1. An example tree.

Nodes(i). Let i ∈ [0, 2L−1 − 1], and leafi denote the i-th
leaf in the tree. Nodes(i) denotes a set of tree nodes along the
root-to-leafi path.
Definition 4.1: (VBTree [43]). A virtual binary tree

(VBTree) is an encrypted full binary tree with the following
properties:

1) Each tree node contains zero or more different
encrypted keywords.

2) The encrypted tree contains only keywords. The tree
nodes and branches are not explicitly stored in the tree.

3) To index a keywordw of the i-th file (i ∈ [0, 2L−1−1]),
the keyword is inserted into each tree node of Nodes(i).
The inserted items are {EK (Path(v),w)}v∈Nodes(i),
where K is a set of secret keys of the data owner, and
E is a deterministic encryption algorithm that takes as
input a path value Path(v), a keyword w and K , and
outputs a set of binary strings.

Figure 1(a) shows a logical view of a virtual binary tree
with height L = 3. Path(leaf1) denotes string ‘01’. Nodes(1)
is a set of tree nodes of paths {‘′, ‘0′, ‘01′}. To locally add
a file {‘a’,‘b’} at node ‘f1’, we should insert the keywords
into these three tree nodes. Figure 1(b) is a physical view
of the tree, where T1 and T2 are two hash tables. For easily
encrypting the tree, items and branches are stored separately
in (T1, T2), respectively, where each entry should be identified
by the corresponding path string. The entry (a, ‘00’, ‘01’)
denotes that the children of the current node are ‘00’ and ‘01’,
and so on.

Let W (v) denote a set of keywords in node v. For any
nonterminal node v, if vl is its left child node and vr is its
right child node, we can prove that the keyword set of v are
W (v) = W (vl) ∪ W (vr ). To create a nearly-balanced tree, n
files are inserted into the leaves varying from leaf0 to leafn−1.
We define two operations to handle a hash table T for

managing the tree: ‘<<’ and ‘>>’. Let T << (k, x) denote
inserting an encrypted key-value pair (k, x) into the hash
table T within two steps. Note that, it is NOT T [k] = x.
First, the value k is split into two parts (k1, k2) in fixed sizes
(k1 is the high bits, and k2 is the low bits). Second, let
T [k1] ← x ⊕ k2. Let T >> (k, x) denote retrieving an
encrypted key-value pair (k, x) from the hash table T by
the key k with the value x returned within two steps. First,
the value k is split into two parts (k1, k2) in fixed sizes. Sec-
ond, let x ← T [k1]⊕ k2. We use T << {(k, x), (k ′, x ′), · · · }
to denote an insertion of a set of key-value pairs.

We now present a concrete instance of the tree. Let F,P,V
be three keyed pseudo-random functions, and H1 and H2
be two collision-resistant hash functions modeled as random
oracles, where F,P : {0, 1}l × {0, 1}∗ → {0, 1}l , V :
{0, 1}l × {0, 1}∗ → {0, 1}s,H1 : {0, 1}∗ → {0, 1}2l , and
H2 : {0, 1}∗ → {0, 1}3l . Let the left child of the tree
node v be vl , and the right child of the tree node v be vr .
A virtual binary tree has been put into two hash tables T1
and T2. We define the above function EK (Path(v),w) as the
following algorithm. To index a keyword w at a non-terminal
tree node v, the data owner uses two operations: T1 <<

(H1(FK (w||1) ⊕ PK (Path(v))),FK (w||2) ⊕ PK (Path(v))),
and T2 << (H2(FK (w||3) ⊕ PK (Path(v))), ((FK (w||4) ⊕
PK (Path(vl))); (FK (w||4) ⊕ PK (Path(vr ))))). If the tree node
is a leaf, we put the corresponding encrypted identifier IDi
into the leaf as a result, i.e., T2 << (H2(FK (w||3) ⊕
PK (Path(v))), (IDi; 0)), where the concatenated zero denotes
the leaf reached, and IDi is the i-th identifier that is encrypted
by (Enc, Dec), a CPA-secure private-key scheme.
VBT-1.Setup: gives the pseudo-code of building an

encrypted index for a set of files based on the tree. Given a
set of n files, the algorithm outputs an encrypted index, where
File(i) denotes a set of distinct keywords of the i-th file, idi
denotes the plain-text identifier of the i-th file with IDi the
encrypted form.

VBT-1.Setup()
1: initialize T1 = {};T2 = {}
2: for i = 0 to n− 1 do
3: for all w in File(i) do
4: for all v in Nodes(i) do
5: k1← H1(FK (w||1)⊕ PK (Path(v)))
6: x ← FK (w||2)⊕ PK (Path(v))
7: insert T1 << (k1, x)
8: k2← H2(FK (w||3)⊕ PK (Path(v)))
9: if v is a leaf then
10: IDi← EncK (idi;VK (idi||w))
11: insert T2 << (k2, (IDi; 0))
12: else
13: randomly generate a bit, b

$
← {0, 1}

14: if b is 1 then
15: (t1; t2)← PK (Path(vl))||PK (Path(vr ))
16: else
17: (t1; t2)← PK (Path(vr ))||PK (Path(vl))
18: end if
19: y← (FK (w||4)⊕ t1;FK (w||4)⊕ t2)
20: insert T2 << (k2, y)
21: end if
22: end for
23: end for
24: end for
25: output I = (T1,T2)

The index size of VBT-1 is O(NL) ≈ O(N log n), and
the construction time is O(NL) ≈ O(N log n). The index

49422 VOLUME 7, 2019



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

size of T2 is slightly larger than that of T1. Let W denote
a set of keywords that can be queried. We assume N =∑

w∈W |DB(w)|. In the best case, if all of the files are the
same (except for the file identifiers), the index size is O(N ).
In the worst case, if all of the keywords in all documents are
different, the index size is O(NL) ≈ O(N log n).

C. TRAPDOOR COMPUTATION
To search over the encrypted index, the data user creates a
trapdoor and sends it to the cloud. The trapdoor is a set of
encrypted conditions constructed from the query. Let p be a
string of L − dlog ne − 1 zeros to denote the start path of the
search process (we assume the user learns the value n, i.e., the
number of files outsourced to the cloud). Note that, the search
begins from the node of path p instead of the root. Given a u-
dimensional conjunctive keyword query q = w1∧w2∧ · · ·∧

wu, the trapdoor is T (q) = (ft, it, bt), whose first element
is ft = FK (w1||1) ⊕ PK (p), whose second element is it =
{FK (wi||2)⊕ FK (wi+1||1)}i∈[1,u−1], and whose third element
is bt = {bt1, bt2} = {FK (wu||2) ⊕ FK (wu||3),FK (wu||4) ⊕
FK (w1||1)}.
Forward/intersection/backward tokens: The forward token

ft is an encrypted block to get the next token that can be
XORed with the intersection token. The intersection token
it is a set of tokens that are used to test whether the keywords
are in the current tree node or not. The backward token bt
is the encrypted blocks for accessing both the left and right
child tree nodes of the current tree node. The whole trapdoor
consists of these three parts: forward token ft , intersection
token it , and backward token bt . Any matched final results
depend on these three tokens. Without any part of the trap-
door, the result cannot be correctly computed.

D. SEARCHING OVER VBT-1
There are two kinds of operations on the tree: search pro-
cessing at a non-terminal tree node, and search processing at
a leaf. VBT-1.Search recursively invokes the sub-algorithms
Search and Test to traverse over a tree with the search begin-
ning on the tree node that is designated by the user.

At a non-terminal node v, the search process test whether
the first term w1 is in the tree node by checking T1 >>

(H1(ft), x). If w1 is not in this node, x will be nothing, which
means the search algorithm returns ‘not-found’ immediately,
otherwise, the value x can be XORed by each individual
intersection token. If x is XORed by an individual intersection
token, a new forward token x ⊕ iti, which is the forward
token of w2, will be generated, where iti is the i-th inter-
section token. Repeatedly applying this, the cloud can learn
whether the keywords {w2,w3, · · · ,wu} are in the current tree
node or not. If one of the keywords is not in this tree node,
the search returns ‘not-found’ immediately. If they all exist in
this tree node, the cloud takes the lastly returned value of the
termwu, i.e,T1 >> (H1(y), z), where y is the forward token of
wu, and z is the lastly returned value of all intersection tokens.
The value zwill be used to access the hash table T2 for search-
ing for the left-side or right-side tree node. If z is XORed by

the first element of the backward token bt1, i.e., z′← (z⊕bt1),
the cloud now has the token z′ to access the hash table T2. The
search algorithm runs T2 >> (H2(z′), (t1; t2)), and the value
(t1; t2) will be outputted, where t1 and t2 can also be XORed
by bt2. We now have ft1 ← t1 ⊕ bt2, and ft2 ← t2 ⊕ bt2.
In fact, the values {ft1, ft2} are the next forward tokens of
w1 to access the left and right (or the right and left) subtrees
of the current tree node, respectively. The cloud uses tokens
(ft1, it, bt) and (ft2, it, bt) as new trapdoors to recursively
traverse the subtrees.

If the search process reaches a leaf, which can be checked
by testing whether the value ft2 is zero or not, the search
algorithm considers IDi ← ft1 as an encrypted file identifier
and outputs a result. The cloud recursively runs this, until all
results are matched.

We note that given a query ϕ to search over the tree,
an encrypted result IDi at a leaf node is outputted, if and
only if the accessed leaf matches the query ϕ. There are three
occasions. 1) If a search completes in a non-terminal node,
it cannot get the final result certainly, because all subtree
nodes are encrypted by the information that comes from
their father nodes. 2) Consider a search reaches a leaf node,
assuming the query doesn’t match the leaf. So the search will
complete in one of the intersection token processing. The
search doesn’t have the encrypted key to access T2 to get
the final encrypted result IDi, because IDi is encrypted by
the backward token and the prior information. 3) Consider a
search reaches a leaf, and the query also matches the leaf.
Certainly, IDi can be correctly outputted. In this occasion,
the accessed path forms a decrypted linked list beginning
from the root to the leaf.

E. CORRECTNESS ANALYSIS
Let’s consider an example in a tree node. We assume the tree
node of path p contains keywords ‘a’ and ‘b’. If the cloud
runs a query a ∧ b, we now show Test Procedure how to
work. The trapdoor of a∧b is {FK (a||1)⊕PK (p), {FK (a||2)⊕
FK (b||1)}, {FK (b||2)⊕FK (b||3),FK (b||4)⊕FK (b||1)}}. The
cloud first searches on T1 by FK (a||1) ⊕ PK (p), and x ←
FK (a||2)⊕PK (p) will be returned. Then, the cloud computes
x ⊕ it[0] = FK (a||2) ⊕ PK (p) ⊕ (FK (b||1) ⊕ FK (a||2)) =
FK (b||1)⊕PK (p), which is the forward token of keyword ‘b’.
The cloud runs T1 >> (H1(FK (b||1) ⊕ PK (p)), z)), and
z = FK (b||2) ⊕ PK (p) will be returned. The value z can be
XORed by bt1, i.e., z′ = (z ⊕ bt1) = FK (b||2) ⊕ PK (p) ⊕
(FK (b||2) ⊕ FK (b||3)) = FK (b||3) ⊕ PK (p). Now, the cloud
has the token z′ to access the hash table T2. The cloud searches
on T2, by T2 >> (H2(z′), (t1; t2)), and (t1; t2) = (FK (b||4)⊕
PK (p1);FK (b||4)⊕PK (p2)) will be returned. The cloud com-
putes (t1⊕ bt2, t2⊕ bt2) = (FK (b||4)⊕PK (p1)⊕FK (b||4)⊕
FK (a||1),FK (b||4) ⊕ PK (p2) ⊕ FK (b||4) ⊕ FK (a||1)) =
(FK (a||1) ⊕ PK (p1),FK (a||1) ⊕ PK (p2) = (ft1, ft2). They
are two new forward tokens to search on its two subtrees
respectively.

The above computation can be viewed as a DFA that has
only two transition states, ‘0’ and ‘1’. If the DFA matches

VOLUME 7, 2019 49423



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

//User
VBT-1.Trapdoor(ϕ = w1 ∧ w2 · · · ∧ wu)

1: ft ← FK (w1||1)⊕ PK (p)
2: it ← {FK (wi||2)⊕ FK (wi+1||1)}i∈[1,u−1]
3: bt ← {FK (wu||2)⊕FK (wu||3),FK (wu||4)⊕FK (w1||1)}.

4: build T (ϕ) = (ft, it, bt) and send it to the cloud
//Cloud
VBT-1.Search(T (ϕ); T1,T2)
1: parse T (ϕ) as (ft, it, bt).
2: invoke (bi, ft1, ft2)←Test((ft, it, bt); T1,T2)
3: if bi = false, then return ‘not found’
4: if the current node is a leaf by checking ft2, then parse ft1

as a file identifier id and return one encrypted result.
5: invoke, Search((ft1, it, bt); T1,T2)
6: invoke, Search((ft2, it, bt); T1,T2)

//Cloud
VBT-1.Test((ft, it, bt); T1,T2)
1: read x: T1 >> (H1(ft), x)
2: if x is empty, return (false, 0, 0)
3: for all iti ∈ it do
4: y← x ⊕ iti
5: read z: T1 >> (H1(y), z)
6: if z is empty, return (false, 0, 0)
7: x ← z
8: end for
9: parse bt as (bt1, bt2)
10: z′← z⊕ bt1
11: read (t1; t2), i.e., T2 >> (H2(z′), (t1; t2))
12: if (t1; t2) is empty, return (false, 0, 0)
13: compute (ft1, ft2)← (t1 ⊕ bt2, t2 ⊕ bt2)
14: return (true, ft1, ft2)

the tree node, the accepted state is ‘1’, otherwise ‘0’. We will
extend this DFA in the next sections.

The forward token has two purposes. One is to test whether
a keyword is in a tree node or not, and the other is to generate
the next forward token. If an intersection token is XORed
by the output of the forward token, a new forward token
will be generated. Thus, the cloud learns whether all queried
conjunctive terms exist in this tree node or not. To access the
subtrees, the cloud requires two new forward tokens, which
can be created from the output of the final intersection token
and the backward token. The first element of the backward
token enables the cloud to access T2, and the second element
is for accessing the subtrees.

F. SEARCH COMPLEXITY
The search complexity is O(uminw∈ϕ |DB(w)| log n), where
ϕ = w1 ∧ w2 ∧ · · · ∧ wu is a conjunctive query. The
query time consists of two parts: one is for traversing all
target tree nodes, and the other is the query time in each tree
node.

To get all the final results, in the worst case, the search
process will traverse the tree nodes whose size is the smallest
among all the individual queries {O(|DB(wi)| log n)}i∈[1,u],
because if a tree node doesn’t match the conjunctive query,
the search procedure of the current subtree will return imme-
diately. In reality, sinceminw∈ϕ |DB(w)| � n, the conjunctive
query time is sub-linear.

V. VBT-2: AN ADAPTIVELY-SECURE DISJUNCTIVE
SE SCHEME
In PBTree [11] and IBTree [25], they convert the numeric
comparison tests to equality tests and consider a numeric
range query as a disjunctive query. We now study the weak-
ness of range queries and show how to build an adaptively-
secure level-2-revealing disjunctive SE scheme.

A. STATISTICAL INFORMATION OF RANGE SE SCHEMES
A numeric range query can be considered as a disjunc-
tive query using prefix encoding [11]. According to their
design, a number is converted to a set of prefix strings,
and a numeric range query is converted to a disjunctive
query. Their target is to use this range to match the stored
encrypted prefix strings. For example, number 6 is considered
as {‘0011’,‘001*’,‘00**’,‘0***’,‘****’}, where each string
denotes a range string that matches number 6. Given a range
query, say [0,8], it is converted into {‘0***’,‘1000’}, where
‘0***’ means a range [0, 7] and ‘1000’ means a hex string
of 8. The value 6 will be matched by [0, 8] correctly since
they share the common string ‘0***’.

We use R(e) to denote a set of prefix strings that are
converted from the integer e, where e ∈ [0,B], and use
R([a, b]) to denote a set of prefix strings that are converted
from the range [a, b]. We can conclude that for any e, e is in
[a, b], if and only if R(e)

⋂
R([a, b]) 6= ∅ [11].

The problem of the above schemes, such as PBTree and
IBTree, is that they are level-2+-revealing. They leak all
individual queries (i.e., DB(‘0***’) and DB(‘1000’)), and
the cloud learns the main factor that causes the final result
(i.e., DB(‘0***’)). The more disastrous thing is that the cloud
learns |DB(‘0∗∗∗

′)|
|DB(‘1000′)| , which is exactly 8, only if the distribution

of the result set is uniform.
Generally, given a range query [a, b], we define its one-

dimensional statistical feature as

SF([a, b]) =
{
|DB(w1)|

ε
, · · · ,

|DB(wt )|
ε

}
,

where ε = min |DB(wi)|i∈[1,t], ε 6= 0, and R([a, b]) =
{w1, · · · ,wt }. Although the cloud learns nothing about [a, b],
it has SF([a, b]), which perhaps leads to a severe break-
age [16], [21], [39], [44]. So we need to eliminate it if we
can do well.

B. OVERVIEW OF VBT-2
Compared with conjunctions, it is harder to protect subquery
privacy of disjunctive queries, since the result set of disjunc-
tions, generally, is larger than that of conjunctive queries.

49424 VOLUME 7, 2019



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

If we use the same indexing algorithm as VBT-1 for dis-
junctive queries, the result cannot be computed with level-
2-revealing. The problem is that this will enable the cloud
to learn the selectivity of each disjunction. We address this
problem by trading storage complexity for more privacy.

We now show how to protect the subquery privacy of the
disjunctive or range queries. We should modify the indexing
algorithm in VBT-1 and the indexing elements in each tree
node because, in VBT-1, the DFA has only one transition
state (except the accepted state). In VBT-2, given a tree node
with path p, the DFA has two transition states PK (p||0),
which logically denotes ‘0’, and PK (p||1), which logically
denotes ‘1’. If the cloud can compute DFAs ‘0 ∨ 0 = 0’,
‘0 ∨ 1 = 1’, ‘1 ∨ 0 = 1’, and ‘1 ∨ 1 = 1’, without learning
‘1’ or ‘0’, the cloud will handle more complex disjunctive
queries based on these operations. Our approach is to precom-
pute all related transition states and store them in each tree
node.

C. INDEXING DISJUNCTIVE ELEMENTS
We first give the keyword indexing algorithm for a tree
node. A DFA-state is an encrypted block constructed from
a node path and a value of true or false. Given a tree
node v with path p = Path(v), the value that denotes
false in this node is encoded as PK (p||0), called state-0,
and the value that denotes true in this node is encoded as
PK (p||1), called state-1. Given a keyword w, it has five
encrypted states FK (w||0), FK (w||1), FK (w||2), FK (w||3)
and FK (w||4). A keyword state is an encrypted block con-
structed from the keyword and its sequence number. If w
is in this tree node, we insert four values into the hash
table, T1 << {(k00, x0), (k01, x1), (k10, x1), (k11, x1)}, where
kij ← H1(FK (w||i) ⊕ PK (p||j)) (i, j ∈ {0, 1}), and xi ←
FK (w||2)⊕ PK (p||i) (i ∈ {0, 1}). (k10, x1) means that state-0
is altered to state-1 when w is in this tree node. (k11, x1)
means that state-1 is still not changed when w is in this tree
node. (k00, x0) and (k01, x1) mean the operations to initialize
the keyword states. Similarly, if w is not in this tree node,
we should still insert four values into the hash table, T1 <<
{(k00, x0), (k01, x0), (k10, x0), (k11, x1)}. (k10, x0) means that
state-0 is not changed whenw is not in this tree node. (k11, x1)
means that state-1 is not changed even if w is not in this tree
node. (k00, x0) and (k01, x0) mean state initializing. Suppose
the left child of v is vl and the right child is vr , then the
state-1s of vl and vr are t1 ← PK (Path(vl)||1) and t2 ←
PK (Path(vr )||1), respectively. For accessing the child tree
nodes, we should insert items related to w into the hash table
T2 like the procedure in VBT-1, i.e., T2 << (k2, y), where
k2 ← H2(FK (w||3) ⊕ PK (p||1)) and y ← (FK (w||4) ⊕
t1;FK (w||4) ⊕ t2) or y ← (FK (w||4) ⊕ t2;FK (w||4) ⊕ t1).
In the special case, if v is a leaf, we do the same work like
in VBT-1.

Next, given the i-th file, for any tree node v ∈ Nodes(i), and
any keyword w ∈ W , we use the above algorithm to process
all keywords. Repeat this procedure until all files have been
processed. The pseudo-code is shown in VBT-2.Setup.

Let m denote the dictionary size (i.e., m = |W |). Since
all tree items are nearly balanced, the index size can be
considered as O(mn), which is a trade-off between query
privacy and storage overhead.

D. SEARCHING OVER VBT-2
The searching algorithm is the same as that in VBT-1. The
user builds a search trapdoor (ft, it, bt) for w1 ∨ · · · ∨ wu
and sends it to the cloud. The procedure will output a set of
encrypted file identifiers that match the disjunctive query.

Let ’s consider an example. Let p be the start path. Suppose
keyword b exists only in the first file and keywords a and c
are not exist. If the user queries a ∨ b ∨ c, the trapdoor is
(ft, it, bt), where ft = FK (a||0)⊕PK (p||1), it = {FK (a||2)⊕
FK (b||1),FK (b||2) ⊕ FK (c||1)}, and bt = {FK (c||2) ⊕
FK (c||3),FK (c||4) ⊕ FK (a||0)}. The cloud first computes
T1 >> (ft, x), and x = FK (a||2)⊕PK (p||0) will be outputted.
Since a is not in this tree node, x is related to state-0. Next,
the cloud computes x ⊕ it[0] = FK (a||2) ⊕ PK (p||0) ⊕
FK (a||2) ⊕ FK (b||1) = FK (b||1) ⊕ PK (p||0), which is the
forward token of b. The cloud computes T1 >> (FK (b||1)⊕
PK (p||0), x ′), and x ′ = FK (b||2)⊕PK (p||1) will be outputted.
x ′ is related to state-1 and it can still be XORed by it[1].
The cloud computes T1 >> (FK (c||1) ⊕ PK (p||0), x ′′), and
x ′′ = FK (c||2) ⊕ PK (p||1) will be outputted. x ′′ is related to
state-1. With x ′′ and bt , the cloud searches T2, and it will get
two new forward tokens of keyword a for both subtrees. The
cloud can recursively apply this algorithm.

In the above searching process, the DFA-states do not exist
alone, and they are always encrypted by mask values, which
are keyword states. The keyword states still do not exist
alone. Therefore, the cloud learns nothing about which term
is the main factor that causes the result from a query. In the
above example, the cloud learns nothing about DB(a) = ∅,
|DB(b)| = 1 and DB(c) = ∅, and it learns only |DB(a ∨ b ∨
c)| = 1.
The search complexity of VBT-2 is O(u|DB(ϕ)| log n).

E. LEVEL-2-REVEALING RANGE QUERIES
We now do the attractive thing: level-2-revealing numeric
range queries. Recall that a range query can be considered
as a disjunctive query. We first convert all integers that exist
in files into prefix keywords and put them into the index.
Next, we can use range queries to search over the outsourced
database.

Given a range query [a, b], in a level-2+-revealing disjunc-
tive SE scheme, SF([a, b]) contains much information, yet in
VBT-2, SF([a, b]) = ∅ (if |R([a, b])| ≥ 2).

VI. VBT-3: AN ADAPTIVELY-SECURE BOOLEAN SE
SCHEME
A. OVERVIEW OF VBT-3
Given a tree node with path p, the DFA has many transi-
tion states with the form of PK (p||x), which denotes state-x.
State-1 means ‘1’, and state-0 means ‘0’, and etc. If the cloud

VOLUME 7, 2019 49425



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

VBT-2.Setup()
1: initialize T1 = {};T2 = {}
2: for i = 0 to n− 1 do
3: for all w ∈ W do
4: for all v ∈ Nodes(i) do
5: k00← H1(FK (w||0)⊕ PK (Path(v)||0))
6: k01← H1(FK (w||0)⊕ PK (Path(v)||1))
7: k10← H1(FK (w||1)⊕ PK (Path(v)||0))
8: k11← H1(FK (w||1)⊕ PK (Path(v)||1))
9: x0← FK (w||2)⊕ PK (Path(v)||0)
10: x1← FK (w||2)⊕ PK (Path(v)||1)
11: if w ∈ File(i) then
12: T1 << {(k00, x0), (k01, x1), (k10, x1), (k11, x1)}
13: else
14: T1 << {(k00, x0), (k01, x0), (k10, x0), (k11, x1)}
15: end if
16: let k2← H2(FK (w||3)⊕ PK (Path(v)||1))
17: if v is a leaf then
18: IDi← EncK (idi;VK (idi||w))
19: insert T2 << (k2, (IDi; 0))
20: else
21: randomly generate a bit, b

$
← {0, 1}

22: if b is 1 then
23: t1← PK (Path(vl)||1)
24: t2← PK (Path(vr )||1)
25: else
26: t1← PK (Path(vr )||1)
27: t2← PK (Path(vl)||1)
28: end if
29: y← (FK (w||4)⊕ t1;FK (w||4)⊕ t2)
30: insert T2 << (k2, y)
31: end if
32: end for
33: end for
34: end for
35: output I = (T1,T2)

can compute simple Boolean expressions, such as ‘(0 ∨ 0)∧
(1 ∨ 0) = 0’, ‘(0 ∨ 1) ∧ (1 ∨ 1) = 1’, without leaning
‘1’ or ‘0’, the cloud will obliviously handle more complex
Boolean queries based on these operations.

Like in VBT-2, our approach is to precompute all transition
states that will be used in the future and store them in each tree
node. For simplicity, we assume the queries are in conjunctive
normal form (CNF). If a CNF formula consists of only 0, 1,
parenthesis, ∧, and ∨, we call it a simple CNF.
A simple CNF formula is a deterministic finite automaton

(DFA) that consists of a 5-tuple, (S,
∑
, δ, s0, sa), where S is

a finite set of DFA-states;
∑

is a finite set of input symbols
called the alphabet; δ is a transition function, δ:S ×

∑
→

S; s0 is an initial state, s0 ∈ S; and sa is a set of accepted
states, sa ⊆ S. An encrypted Boolean computation is, in fact,
an array of encrypted DFA computations. Table 1 shows the
transition table of the DFA, where S = {0, 1, ‘0 ∧ (0′, ‘0 ∧

//User
VBT-2.Trapdoor(ϕ = w1 ∨ w2 · · · ∨ wu)

1: ft ← FK (w1||0)⊕ PK (p||1)
2: it ← {FK (wi||2)⊕ FK (wi+1||1)}i∈[1,u−1]
3: bt ← {FK (wu||2)⊕FK (wu||3),FK (wu||4)⊕FK (w1||0)}.

4: build T (ϕ) = (ft, it, bt) and send it to the cloud
//Cloud
VBT-2.Search(T (ϕ); T1,T2)
1: invoke, VBT-1.Search(T (ϕ); T1,T2)

(1′, ‘1∧ (0′, ‘1∧ (1′},
∑
= {‘0′, ‘1′, ‘∨ 0′, ‘∨ 1′, ‘∨ 0)′, ‘∨

1)′, ‘∧ (0′, ‘∧ (1′}, s0 is 0 or 1, and sa = {0, 1}. For example,
δ(‘1 ∧ (0′, ‘ ∨ 0)′) = 0, and δ(‘1 ∧ (0′, ‘ ∨ 0′) = ‘1 ∧ (0′.
To reduce the index size, this table shows only the simplified
states. The query x ∧ y is converted into x ∧ (y ∨ y) to be
suitable for this table. For easily expressing keyword states,
we write a DFA transition as d = δ(a, (b, c)), where a is a
DFA-state, b is a string that is related to a keyword, d is a
result state, and c is 1 or 0, which denotes the keyword of the
symbol is in the current tree node or not. (b, c) will output a
valid symbol.

B. PRECOMPUTING AND STORING ALL DFAS
To run the above DFAs obliviously, for each tree node and
each keyword, we precompute |S||

∑
| − 20 = 28 key-

value pairs (referring to Table 1) and put them into T1 like
the approach mentioned in VBT-2. The sub-procedure of
the setup is shown in VBT-3.Indexword, where FK (bw||1)
denotes a keyword state for keyword w to precompute
the DFAs, and bw is a string consisting of an opera-
tor, a bracket or the keyword. The function Replace is a
string-replacing algorithm (e.g., Replace(b,‘#’, c) =‘∨1’ if
b =‘∨#’ and ‘c = 1’). The pseudo-code to update T2 is the
same as that in VBT-2. For each keyword w inW , each file i,
and each node v in Nodes(i), the setup procedure repeatedly
invokes Indexword(i,w, v) to build the index. The index size
of VBT-3 is O(βmn), where β = |S||

∑
|.

One symbol in {0, 1} denotes an operation to initialize a
DFA-state. The other symbols are used to run the CNF query.
In the simple DFA, the operators such as ∧,∨, and ∧) are
all considered as parts of keywords. Thus, a Boolean query is
converted into an array of keywords first. This conversionwill
help us to hide all the Boolean operators. Note that, an invalid
state is ignored since a CNF query doesn’t have such a state
(e.g., ‘0 ∨ (0’).

C. LEVEL-2-REVEALING BOOLEAN QUERIES
Consider a CNF query ϕ = ϕ1 ∧ · · · ∧ ϕu, where each
disjunction ϕi = wi,1 ∨ · · · ∨ wi,l(i). The user first serializes
ϕ into an array of keywords (w1, · · · ,wt ). For example,
(a ∨ b) ∧ (c ∨ d) is serialized into (‘a’,‘∨b’,‘∧(c’,‘∨d)’).
Meanwhile, remove all operators and generate an array

49426 VOLUME 7, 2019



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

TABLE 1. State transition table of simple CNF computations.

of keywords (a1, · · · , at ) (e.g., (‘a’,‘b’,‘c’,‘d’)). Let p be
the start path. Next, let ft ← FK (w1||1) ⊕ PK (p||1), let
it ← {FK (wk ||2) ⊕ FK (ak+1||1)}k∈[1,t−1], and let bt ←
{FK (wt ||2)⊕FK (wt ||3),FK (wt ||4)⊕FK (w1||1)}. Third, build
T (ϕ) = (ft, it, bt) and send it to the cloud. Fourth, the cloud
invokes VBT-1.Search(T (ϕ);T1,T2). Its search efficiency is
O(umini∈[1,u] |DB(ϕi)| log n).
We show an example to run a Boolean query ϕ = (a ∨

b)∧ (c∨ d) in a tree node of path p, assuming there logically
exists a DFA for this node. Suppose a and c are not in this
tree node, and b and d are in this tree node. For simplicity, let
b∗ = ‘∨ b′, c∗ = ‘∧ (c′, and d∗ = ‘∨ d)′. ϕ is split into four
parts (a, b∗, c∗, d∗). The trapdoor is (ft, it, bt), where ft =
FK (a||1)⊕PK (p||1), it = {FK (a||2)⊕FK (b∗||1),FK (b||2)⊕
FK (c∗||1),FK (c||2) ⊕ FK (d∗||1)}, and bt = {FK (d ||2) ⊕
FK (d ||3),FK (d ||4) ⊕ FK (a||1)}. First, the cloud computes
T1 >> (ft, x), and then it has x = FK (a||2) ⊕ PK (p||0).
The DFA-state is initialized with PK (p||0) (state-0), since a
is not in the node. It computes x ⊕ it[0] = FK (b∗||1) ⊕
PK (p||0) = ftb. Second, it computes T1 >> (ftb, x ′), and
x ′ = FK (b||2) ⊕ PK (p||1) will be yielded, since b is in
this tree node. The DFA-state is obliviously changed from
PK (p||0) to PK (p||1) (state-1). Third, it computes x ′⊕ it[1] =
FK (b||2)⊕ PK (p||1)⊕ FK (b||2)⊕ FK (c∗||1) = FK (c∗||1)⊕
PK (p||1) = ftc. Third, it computes T1 >> (ftc, x ′′), and it has
x ′′ = FK (c||2) ⊕ PK (p||‘1 ∧ (0′). The DFA-state is changed
from PK (p||1) to PK (p||‘1∧ (0′) (state-‘1∧ (0′). It computes
x ′′ ⊕ it[2] = FK (d∗||1) ⊕ PK (p||‘1 ∧ (0′) = ftd . Fourth,
it computes T1 >> (ftd , x ′′′), and it has x ′′′ = FK (d ||2) ⊕
PK (p||1). The DFA-state is changed from PK (p||‘1 ∧ (0′) to
PK (p||1) (state-1). With bt and x ′′′, the cloud can access T2
and the subtrees like in VBT-1.

A DFA-state can be obliviously changed from one state
to another by a symbol. Repeatedly run the transitions, until
reaching a final accepted state. The final accepted state is
1 or 0, which denotes the query matches this tree node or not.
In the above process, all transition states are hidden from the
cloud, and the cloud learns only the encrypted accepted state.

VII. SECURITY ANALYSIS
A. LEAKAGE FUNCTION
To formally describe the leakage of the schemes, we ana-
lyze the search and access patterns. Let Q denote a two-
dimensional array that stores all historical Boolean queries
issued in order of arrival, e.g., Q[0][0]=‘a’, Q[0][1]=‘∨b’,

VBT-3.Indexword(i,w,v)
1: if w ∈ File(i), then c← 1, otherwise c← 0
2: initialize A = {‘#′,∨#′, ‘ ∨ #)′, ‘ ∧ (#′}.
3: for all a ∈ S do
4: for all b ∈ A do
5: replace # with c in b, i.e.,

b′← Replace(b, ‘#′, c).
6: d ← δ(a, b′); if d is empty, continue;
7: replace string # with w in b,

i.e., bw← Replace(b, #,w)
8: k1← H1(FK (bw||1)⊕ PK (Path(v)||a))
9: x ← FK (w||2)⊕ PK (Path(v)||d)
10: insert T1 << (k1, x)
11: end for
12: end for
13: Insert items into T2; the same as the lines 16∼31 of VBT-

2.Setup

Q[0][2]=‘∧(c’, and Q[0][3]=‘∨d)’ for the 0-th Boolean
query (a ∨ b) ∧ (c ∨ d). Given a Boolean query ϕ, the set
of all tree nodes that the search process needs to traverse is
denoted by tn(ϕ). The search pattern of a query consists of
four parts: SP1(ϕ) = {i : for all Q[i][0] = ϕ[0]}, SP2(ϕ) =
{(i, j, k) : for all Q[i][j] = ϕ[k] and Q[i][j+ 1] = ϕ[k + 1]},
SP3(ϕ) = {i : for all Q[i].last = ϕ.last}, and SP4(ϕ) =
{(i, j, k, v) : for all Q[i][j] = ϕ[k] and v ∈ tn(Q[i])}, where
ϕ.last denotes the last item in this array. In fact, SP1 is due
to the forward token, SP2 is due to the intersection token,
SP3 is due to the backward token, and SP4 is due to all the
tokens. The access pattern is some information that is used
for accessing the index and the encrypted files. It includes two
parts. The access pattern for a node v is AP(ϕ, v) = {(dfav, x):
if ϕ matches v then x ← 1, else x ← 0}, where dfav
denotes the final encrypted accepted DFA-state of node v,
and the access pattern for the encrypted files is DB∗(ϕ).
Note that {AP(ϕ, v)}v∈tn(ϕ) means the query will reveal all
DFA encrypted-accepted-states (not accepted-states) of all
accessed tree nodes tn(ϕ).

We now have the leakage function of VBT-3: L =

(L1,L2) = (LSetup,LSearch), where
L1 = LSetup(I ,D) = (M1,M2,L, n, sizes, ids), and
L2 = LSearch(T (ϕ)) =
({SP1, SP2, SP3, SP4}, {AP(ϕ, v)}v∈tn(ϕ),DB∗(ϕ)).
Given an encrypted tree I = (T1,T2) and a set of encrypted

files D, L1 leakage contains (M1,M2), i.e., the number of
entries in the hash tables (T1,T2) respectively, L, i.e., the
height of the tree, and n, i.e., the number of files. sizes and ids
are size information and identifiers respectively, which come
from the set of files encrypted by a CPA-secure scheme.

Given a Boolean query T (ϕ), L2 leakage function outputs
the search and access patten. The length of Boolean queries u
is also in this leakage. L2 leakage is unavoidable in a single-
round SE scheme. Note that, SP2 and SP4 are very small
compared with SP(ϕ) = {(i, j, k) : for all Q[i][j] = ϕ[k]}

VOLUME 7, 2019 49427



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

in [25] and [43]. AP(ϕ, v) is also very small compared with
{DB(w)}w∈ϕ in [25] and [43], whose subquery privacy is not
well protected. Another notice is that the real path value of v
doesn’t equal Path(v) since the real paths are disordered when
the index is initialized.

B. LEAKAGE ANALYSIS
Wenow show howVBT-3 achievesminimized leakage. There
are three occasions in the searching process. The search com-
pletes in a non-terminal tree node. The algorithm completes in
a leaf, but it doesn’t match the leaf. The algorithm completes
in a leaf, and it matches the leaf. Only on the last occasion,
as mentioned in VBT-1, can the encrypted results be correctly
outputted. Since the search path from the root to the leaf forms
an encrypted linked list, without any parts of the linked list,
the cloud cannot get the final correct results. Thus, the access
pattern for the files is only DB∗(ϕ). This is the significant
difference with the state of the arts [25], [26], [28], [43].

The access pattern for node v {AP(ϕ, v)}v∈tn(ϕ) denotes,
in fact, the DFA whether matches v or not. This is just an
optimal point of the security-efficiency trade-off we seek.
With this leakage, VBT-3 degrades to a level-2-revealing
scheme.

We note that VBT-3 achieves only level-2-revealing (can-
not achieve level-1-revealing). This is, however, the best one
can do in a single-round SE scheme. For simplicity, we write
Llevel22 to denote this leakage is level-2-revealing.

C. IND-CKA2 SECURITY
Theorem 8.1: (IND-CKA2 Security). If F,P and V are
pseudo-random functions, and H1 and H2 are different ran-
dom oracles, then VBT-3 is IND-CKA2 (L1,Llevel22 )-secure
against an adaptive adversary.

Proof: We prove the scheme security at a high level.
Let’s consider such a stateful and efficient simulator S,
who can adaptively simulate the adversary’s view including
historical queries, the encrypted index, and files, by using
only the leakage L. We now prove that the adversary A
cannot distinguish the real view from the simulated view with
non-negligible probability. The simulation includes two parts
(I∗,D∗) and Q∗.

S creates a set of simulated files D∗ and a simulated index
I∗ = (T ∗1 ,T

∗

2 ) by using random values, since S has the L1
leakage.

S adaptively simulates the search trapdoorQ = {ft, it, bt}.
Consider the query at a start node v. First,S builds a simulated
trapdoorQ∗ = (ft∗, it∗, bt∗) = (ft∗, {it∗i }i∈[0,u−2], {bt

∗

1 , bt
∗

2 })
by using random values with the same size as Q since
S has L2 leakage. Second, S randomly chooses a key-
value pair (ft∗∗, x∗∗) from T ∗1 , and programs the random
oracle H1 such that T ∗1 >> (ft∗, x∗) (i.e., H1(ft∗) =
(ft∗∗; x∗⊕ x∗∗)). The following variables are similar to these
ones. Third, S randomly chooses a set of key-value pairs
{(b∗∗1 , y

∗∗

1 ), (b∗∗2 , y
∗∗

2 ), · · · , (b∗∗u−1, y
∗∗

u−1)} from T ∗1 and pro-
grams the random oracle H1, such that b∗1 ← x∗ ⊕ it∗[0],
T ∗1 >> (b∗1, y

∗

1), b
∗

2 ← y∗1 ⊕ it∗[1], T ∗1 >> (b∗2, y
∗

2), · · · ,

b∗u−1 ← y∗u−2 ⊕ it∗[u − 2], and T ∗1 >> (b∗u−1, y
∗

u−1).
Fourth, according to the access pattern of L2, S knows that
Q∗ matches v or not. If Q∗ doesn’t match v, S ignores this
value (don’t simulate the query processing in the subtrees),
otherwise S randomly chooses a pair (c∗∗, (z∗∗1 ; z

∗∗

2 )) from T ∗2
and programs the random oracle H2 such that c∗ ← y∗u−1 ⊕
bt∗1 , and T

∗

2 >> (c∗, (z∗1; z
∗

2)). S randomly chooses two pairs
{(ft∗∗l , x

∗∗
l ), (ft∗∗r , x

∗∗
r )} from T ∗1 for accessing the subtrees. S

programs the random oracle H1 such that ft∗l ← z∗1 ⊕ bt∗2 ,
T ∗1 >> (ft∗l , x

∗
l ), ft

∗
r ← z∗2 ⊕ bt∗2 , and T

∗

1 >> (ft∗r , x
∗
r ).

S recursively runs the above procedure until all subtrees are
simulated. If the search process reaches a leaf, S uses the
access pattern DB∗(ϕ) for simulation. If a part of search
tokens have appeared before, according to the search pattern,
S chooses the corresponding pairs that have been used before
for simulation. The simulated trapdoorQ∗ will yield the same
output as the original one Q.
According to the pseudo-random functions and the CPA-

secure encryption algorithm, the simulated index and the
original index, the simulated files and the original files, and
the adaptively simulated search trapdoors and the original
search trapdoors cannot be distinguished in polynomial time
with non-negligible probability. This implies that except for
the leakage L, the adversary A learns nothing about the
encrypted index, the encrypted files, and the trapdoors. Thus,
VBT-3 is secure against an adaptive adversary. Furthermore,
sinceL2 contains nothing of ∂(ϕ), VBT-3 is level-2-revealing.

VIII. EXPERIMENTAL EVALUATIONS
Level-2-revealing Boolean computation brings some draw-
backs, such as index size blowing up especially in a disjunc-
tive scheme. In this section, we perform some experiments to
evaluate overall performance.

A. EXPERIMENTAL METHODOLOGY
DataSets:We choose the Enron email dataset [1] to evaluate
VBT-1. This unstructured dataset consists of 517,401 email
files in total, with sizes varying from 1 KB to 391 KB.
To evaluate VBT-2 and VBT-3, we create an index for two
data columns (age,gender) of a relational data table, where
age∈[0,100] and gender∈ {male, female}. We randomly gen-
erate 100,000 records and insert them into the table. To create
an index for a relational data table, we use the prefix encoding
approach and convert the table to a set of unstructured data
files [43].
Implementation Details: We conduct our experiments on

a desktop computer running Windows 10 Enterprise Edi-
tion with 64GB memory and an Intel(R) Core(TM) i7-6700
CPU @ 3.40GHz processor. We choose Blake2b as the
pseudo-random functions. The schemes are fully imple-
mented in C++. We also write several testing cases to output
experimental data.

The height of the tree L is set to 32. H1 outputs 40 bytes,
withH2 60 bytes. Themaximum load factor of the hash tables
is set to α = 80%. In VBT-1, a keyword of a tree node
consumes 100 bytes (40 bytes in T1 and 60 bytes in T2) only if

49428 VOLUME 7, 2019



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

FIGURE 2. Index size (VBT-1).

FIGURE 3. Index size (VBT-2,3).

FIGURE 4. Index time (VBT-1).

this keyword is in this node. Thus, the index size of VBT-1 is
five times that of [43]. In VBT-2, a keyword of a tree node
occupies 220 bytes (160 bytes in T1 and 60 bytes in T2) even
if this keyword is not in this tree node. VBT-3 consumes more
disk space than other two, yet it is just our trade-off.

For simplicity, we write DB(w)= 15 to denote a query with
15 results. We ignore all communication time and identifier-
decrypting time. In all experiments, the indexes are loaded
into memory first.

B. INDEX CONSTRUCTION EVALUATIONS
Figure 2 and Figure 4 show the index size and time of
VBT-1 are practically acceptable. Although the index size
of VBT-1 is five times that of [43], it is still scalable even
for an unstructured dataset, which means that the size of the
keyword space m is dynamically changed with the number of
files n growing.
Figure 3 and Figure 5 show that VBT-2 and VBT-3 are

more suitable for a fixed-size dictionary (keyword space).

FIGURE 5. Index time (VBT-2,3).

FIGURE 6. Conj. queries.

Although they consume much disk space or memory, we can
use them to protect those frequently-used keywords, since
most of these keywords are much weaker than infrequently-
used ones [16].

C. QUERY PROCESSING EVALUATIONS
Experimental results in Figures 6 and 7 demonstrate that
these three solutions are highly-efficient, and their query
processing time in the millisecond scale. The data also shows
that the s-term problem that exists in OXT [26] and BIEX [28]
has been well addressed. Figures 6 and 7 give the conjunctive
query time and disjunctive query time, respectively, with the
number of files n growing.

Figure 8 demonstrates that the Boolean query of VBT-3
is highly-efficient and it is scalable in the final result set
size, where ‘‘age∈[20,30] ∧ g.=male’’ denotes that all users
whose age are between 20 and 30, andwhose gender aremale.
This figure implies that VBT-3 supports multi-dimensional
range/keyword Boolean queries. It will take 96.3 ms to search
over 100,000 records by using a Boolean query consisting
of range-query terms and string terms with 5000 results
matched.

D. COMPARED WITH IBTREE AND VBTREE
Experimental results in Figures 9 demonstrate that VBT-1
is more efficient than IBTree [25] and is almost as effi-
cient as VBTree [43]. We conduct these experiments over
1 million files. All the trees can be optimized with traversal
width or height by using their proposed approaches in [25]
and [43]. Thus, we generate a set of queries that are all in
the worst-case distribution (random distribution). IBTree is

VOLUME 7, 2019 49429



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

FIGURE 7. Disj. queries.

FIGURE 8. Boolean queries including ranges.

FIGURE 9. Compared with IBTree and VBTree.

slower than the other two due to two facts. First, the number
of non-contiguous memory accesses (locality [42]) of IBTree
is k in a tree node, where k is the number of hash functions
in a Bloom filter. Second, the number of pseudo-random
computations of IBTree is k in a tree node, whereas the other
two have only one or two locality or computations in a tree
node.

To support dynamic updates with forward and backward
privacy [19] [27], we use the version control repository
(VCR) proposed in [43]. All forward tokens are marked with
different versions. This will be left to our future work.

IX. CONCLUSIONS
In this paper, we propose ideal/real encrypted Boolean
function concepts to mark all single-round Boolean-query
SE schemes with different security levels. We present a
novel approach to encrypt and run deterministic finite
automatons (DFAs) on untrusted clouds. Based on this fun-
damental component, we give three SE constructions for

conjunctive/disjunctive/Boolean queries, respectively. Their
advantage is that they achieve sub-linear search complexity
and enhanced security that we call level-2-revealing. The
experimental results show that these solutions support effi-
cient Boolean queries and can be used for building an index
for private encrypted databases. Our future work includes
1) designing rich database queries based on the encrypted
DFA computation; 2) optimizing the index size of VBT-3;
3) developing new level-2-revealing DFA-query schemes.

REFERENCES
[1] (2015). Enron Email Dataset. [Online]. Available: http://www.

cs.cmu.edu/~nron/
[2] E. J. Goh, ‘‘Secure indexes,’’ IACR ePrint Cryptogr. Arch., Tech. Rep.

2003/216, 2003. [Online]. Available: http://eprint.iacr.org/2003/216
[3] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches

on encrypted data,’’ in Proc. IEEE Symp. Secur. Privacy (S&P), May 2000,
pp. 44–55.

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable symmet-
ric encryption: Improved definitions and efficient constructions,’’ in Proc.
13th ACM Conf. Comput. Commun. Secur. (CCS), 2006, pp. 79–88.

[5] M. Chase and S. Kamara, ‘‘Structured encryption and controlled disclo-
sure,’’ in Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur. (ASIACRYPT).
Berlin, Germany: Springer, 2010, pp. 577–594.

[6] S. Kamara, C. Papamanthou, and T. Roeder, ‘‘Dynamic searchable sym-
metric encryption,’’ in Proc. ACM Conf. Comput. Commun. Secur. (CCS),
Oct. 2012, pp. 965–976.

[7] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, ‘‘CryptDB:
Protecting confidentiality with encrypted query processing,’’ in Proc.
23rd ACM Symp. Operating Syst. Princ. (SOSP), 2011, pp. 85–100.

[8] S. Bajaj and R. Sion, ‘‘TrustedDB: A trusted hardware based database
with privacy and data confidentiality,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data (SIGMOD), 2011, pp. 205–216.

[9] S. Kamara and C. Papamanthou, ‘‘Parallel and dynamic searchable sym-
metric encryption,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur.
Berlin, Germany: Springer, Apr. 2013, pp. 258–274.

[10] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public
key encryption with keyword search,’’ in Proc. Int. Conf. Theory Appl.
Cryptograph. Techn. Berlin, Germany: Springer, May 2004, pp. 506–522.

[11] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, ‘‘Fast range
query processing with strong privacy protection for cloud computing,’’
in Proc. Int. Conf. Very Large Data Bases (VLDB), vol. 7, no. 14, 2014,
pp. 1953–1964.

[12] B. Bezawada A. X. Liu, B. Jayaraman, A. L. Wang, and R. Li, ‘‘Privacy
preserving string matching for cloud computing,’’ in Proc. IEEE 35th Int.
Conf. Distrib. Comput. Syst., Jun./Jul. 2015, pp. 609–618.

[13] W. K. Wong, D. W.-L. Cheung, B. Kao, and N. Mamoulis, ‘‘Secure kNN
computation on encrypted databases,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2009, pp. 139–152.

[14] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ‘‘Fully homo-
morphic encryption over the integers,’’ in Proc. Annu. Int. Conf. The-
ory Appl. Cryptograph. Techn. Berlin, Germany: Springer, May 2010,
pp. 24–43.

[15] C. Mavroforakis, N. Chenette, A. O’Neill, G. Kollios, and R. Canetti,
‘‘Modular order-preserving encryption, revisited,’’ inProc. ACMSIGMOD
Int. Conf. Manage. Data, 2015, pp. 763–777.

[16] M. Naveed, S. Kamara, and C. V. Wright, ‘‘Inference attacks on property-
preserving encrypted databases,’’ in Proc. 22nd ACM SIGSAC Conf. Com-
put. Commun. Secur. (CCS), 2015, pp. 644–655.

[17] Z. Chang, D. Xie, and F. Li, ‘‘Oblivious RAM:Adissection and experimen-
tal evaluation,’’ in Proc. VLDB Endowment, vol. 9, no. 12, pp. 1113–1124,
2016.

[18] D. Cash et al., ‘‘Dynamic searchable encryption in very-large databases:
Data structures and implementation,’’ in Proc. NDSS, vol. 14, 2014,
pp. 23–26.

[19] R. Bost, ‘‘Σoϕoς : Forward secure searchable encryption,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2016, pp. 1143–1154.

[20] M. Naveed, M. Prabhakaran, and C. A. Gunter, ‘‘Dynamic searchable
encryption via blind storage,’’ in Proc. IEEE Symp. Secur. Privacy (S&P),
May 2014, pp. 639–654.

49430 VOLUME 7, 2019



Z. Wu et al.: Fast Boolean Queries With Minimized Leakage for Encrypted Databases in Cloud Computing

[21] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, ‘‘Generic attacks
on secure outsourced databases,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur. (CCS), 2016, pp. 1329–1340.

[22] S. Garg, P. Mohassel, and C. Papamanthou, ‘‘TWORAM: Efficient obliv-
ious RAM in two rounds with applications to searchable encryption,’’ in
Proc. Annu. Int. Cryptol. Conf. (Crypto). Berlin, Germany: Springer, 2016,
pp. 563–592.

[23] A. Ben-David, N. Nisan, and B. Pinkas, ‘‘FairplayMP: A system for secure
multi-party computation,’’ in Proc. 15th ACM Conf. Comput. Commun.
Secur. (CCS), Oct. 2008, pp. 257–266.

[24] E. Stefanov, C. Papamanthou, and E. Shi, ‘‘Practical dynamic search-
able encryption with small leakage,’’ in Proc. NDSS, vol. 71, Feb. 2014,
pp. 72–75.

[25] R. Li and A. X. Liu, ‘‘Adaptively secure conjunctive query processing over
encrypted data for cloud computing,’’ in Proc. IEEE 33rd Int. Conf. Data
Eng. (ICDE), Apr. 2017, pp. 697–708.

[26] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. C. Roşu, and
M. Steiner, ‘‘Highly-scalable searchable symmetric encryption with sup-
port for Boolean queries,’’ in Proc. Annu. Cryptol. Conf. (Crypto). Berlin,
Germany: Springer, Aug. 2013, pp. 353–373.

[27] Y. Zhang, J. Katz, and C. Papamanthou, ‘‘All your queries are belong to
us: The power of file-injection attacks on searchable encryption,’’ in Proc.
25th USENIX Secur. Symp. (USENIX), 2016, pp. 707–720.

[28] S. Kamara and T.Moataz, ‘‘Boolean searchable symmetric encryption with
worst-case sub-linear complexity,’’ in Proc. Annu. Int. Conf. Theory Appl.
Cryptograph. Techn. Cham, Switzerland: Springer, Apr. 2017, pp. 94–124.

[29] V. Pappas et al., ‘‘Blind seer: A scalable private DBMS,’’ in Proc. IEEE
Symp. Secur. Privacy (S&P), May 2014, pp. 359–374.

[30] A. C. Yao, ‘‘Protocols for secure computations,’’ in Proc. FOCS, vol. 82,
Nov. 1982, pp. 160–164.

[31] Z. Xia, X. Wang, X. Sun, and Q. Wang, ‘‘A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 2, pp. 340–352, Jan. 2016.

[32] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘‘Privacy-preserving multi-
keyword ranked search over encrypted cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 222–233, Jan. 2014.

[33] B. Yao, F. Li, and X. Xiao, ‘‘Secure nearest neighbor revisited,’’ in Proc.
IEEE 29th Int. Conf. Data Eng. (ICDE), Apr. 2013, pp. 733–744.

[34] G. Chunsheng and G. Jixing, ‘‘Known-plaintext attack on secure kNN
computation on encrypted databases,’’ Secur. Commun. Netw., vol. 7,
no. 12, pp. 2432–2441 2014.

[35] D. Boneh and B. Waters, ‘‘Conjunctive, subset, and range queries
on encrypted data,’’ in Proc. Theory Cryptogr. Conf. (Crypto). Berlin,
Germany: Springer, Feb. 2007, pp. 535–554.

[36] M. Bellare, V. T. Hoang, and P. Rogaway, ‘‘Foundations of garbled cir-
cuits,’’ in Proc. ACM Conf. Comput. Commun. Secur. (CCS), Oct. 2012,
pp. 784–796.

[37] X. Lei, A. X. Liu, and R. Li, ‘‘Secure KNN queries over encrypted data:
Dimensionality is not always a curse,’’ in Proc. IEEE 33rd Int. Conf. Data
Eng. (ICDE), Apr. 2017, pp. 231–234.

[38] S. Kamara, T. Moataz, and O. Ohrimenko, ‘‘Structured encryption and
leakage suppression,’’ in Proc. Annu. Int. Cryptol. Conf. (Crypto). Cham,
Switzerland: Springer, Aug. 2018, pp. 339–370.

[39] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, ‘‘Leakage-abuse attacks
against searchable encryption,’’ in Proc. 22nd ACM SIGSAC Conf. Com-
put. Commun. Secur. (CCS), Oct. 2015, pp. 668–679.

[40] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, ‘‘Forward secure
dynamic searchable symmetric encryption with efficient updates,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 1449–1463.

[41] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, ‘‘Forward private
searchable symmetric encryption with optimized I/O efficiency,’’ IEEE
Trans. Depend. Sec. Comput., to be published.

[42] D. Cash and S. Tessaro, ‘‘The locality of searchable symmetric encryp-
tion,’’ in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn. Berlin,
Germany: Springer, May 2014, pp. 351–368.

[43] Z. Wu and K. Li, ‘‘VBTree: Forward secure conjunctive queries over
encrypted data for cloud computing,’’ VLDB J., vol. 28, no. 1, pp. 25–46,
2019.

[44] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and V. Shmatikov,
‘‘The tao of inference in privacy-protected databases,’’ in Proc. VLDB
Endowment, vol. 11, no. 11, pp. 1715–1728, 2018.

[45] E. Stefanov et al., ‘‘Path ORAM: An extremely simple oblivious RAM
protocol,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS),
Nov. 2013, pp. 299–310.

ZHIQIANG WU is currently pursuing the Ph.D.
degree with Hunan University, China. He has
authored several papers in international journals.
His research interests include network security,
data encryption, embedded systems, software
architecture, high-performance computing, and
big data computing.

KENLI LI received the Ph.D. degree in computer
science from the Huazhong University of Science
and Technology, China, in 2003. He was a Visiting
Scholar with the University of Illinois at Urbana-
Champaign, from 2004 to 2005. He is currently a
Full Professor of computer science and technology
with Hunan University and the Deputy Director of
the National Supercomputing Center, Changsha.
He has authored over 150 papers in international
conferences and journals, such as the IEEE-TC,

the IEEE-TPDS, and the IEEE-TSP. His major research includes parallel
computing, cloud computing, and big data computing. He is an Outstanding
Member of CCF. He is currently serving on the editorial boards of the
IEEE TRANSACTIONS ON COMPUTERS and the International Journal of Pattern
Recognition and Artificial Intelligence.

KEQIN LI is currently a Distinguished Profes-
sor of computer science with the State Univer-
sity of New York. He is also a Distinguished
Professor with Hunan University, China. He has
published over 630 journal articles, book chap-
ters, and refereed conference papers. His current
research interests include cloud computing, fog
computing and mobile edge computing, energy-
efficient computing and communication, embed-
ded systems and cyberphysical systems, heteroge-

neous computing systems, big data computing, high-performance comput-
ing, CPU-GPU hybrid and cooperative computing, computer architectures
and systems, computer networking, machine learning, and intelligent and
soft computing. He has received several best paper awards. He currently
serves or has served on the editorial boards of the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON COMPUTERS,
the IEEE TRANSACTIONS ON CLOUD COMPUTING, the IEEE TRANSACTIONS ON

SERVICES COMPUTING, and the IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING.

JIN WANG received the B.S. and M.S. degrees
from the Nanjing University of Posts and
Telecommunications, China, in 2002 and 2005,
respectively, and the Ph.D. degree from Kyung
Hee University, South Korea, in 2010. He is cur-
rently a Professor with the Changsha University
of Science and Technology. He has published
more than 300 international journal and confer-
ence papers. His research interests mainly include
wireless sensor networks, network performance

analysis, and optimization. He is a member of ACM.

VOLUME 7, 2019 49431


	INTRODUCTION
	SECURITY MODEL
	LIMITATION OF PRIOR ART
	PROPOSED APPROACH
	KEY CONTRIBUTIONS

	RELATED WORK
	SECURE BOOLEAN COMPUTATION AND RELATED DEFINITIONS
	IDEAL ENCRYPTED BOOLEAN COMPUTATION
	REAL ENCRYPTED BOOLEAN COMPUTATION

	VBT-1: AN ADAPTIVELY-SECURE CONJUNCTIVE SCHEME
	OVERVIEW OF THE DESIGN
	INDEX SETUP
	TRAPDOOR COMPUTATION
	SEARCHING OVER VBT-1
	CORRECTNESS ANALYSIS
	SEARCH COMPLEXITY

	VBT-2: AN ADAPTIVELY-SECURE DISJUNCTIVE SE SCHEME
	STATISTICAL INFORMATION OF RANGE SE SCHEMES
	OVERVIEW OF VBT-2
	INDEXING DISJUNCTIVE ELEMENTS
	SEARCHING OVER VBT-2
	LEVEL-2-REVEALING RANGE QUERIES

	VBT-3: AN ADAPTIVELY-SECURE BOOLEAN SE SCHEME
	OVERVIEW OF VBT-3
	PRECOMPUTING AND STORING ALL DFAS
	LEVEL-2-REVEALING BOOLEAN QUERIES

	SECURITY ANALYSIS
	LEAKAGE FUNCTION
	LEAKAGE ANALYSIS
	IND-CKA2 SECURITY

	EXPERIMENTAL EVALUATIONS
	EXPERIMENTAL METHODOLOGY
	INDEX CONSTRUCTION EVALUATIONS
	QUERY PROCESSING EVALUATIONS
	COMPARED WITH IBTREE AND VBTREE

	CONCLUSIONS
	REFERENCES
	Biographies
	ZHIQIANG WU
	KENLI LI
	KEQIN LI
	JIN WANG


