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Abstract—Both truth discovery and pattern analysis are effec-
tive methods for extracting valuable insights from data streams
in mobile crowdsensing. However, existing privacy-preserving
schemes either suffer from low data utility or provide high
utility at the cost of weak privacy protection. To address this
challenge, we introduce a robust privacy-preserving scheme that
facilitates high-utility truth discovery and pattern analysis over
mobile crowdsensing data streams. Concretely, we leverage the
Square Wave mechanism, a randomized reporting technique, to
perturb the data to prevent privacy breaches. To reduce the
utility loss caused by perturbation, we design a budget allocation
algorithm. This algorithm ensures that adjacent timestamps with
approximate data share a perturbed value derived from their
accumulated budgets. Furthermore, to facilitate robust pattern
analysis, we propose a data splitting method that divides the per-
turbed data into two parts: one part records patterns randomly,
while the other part recovers the perturbed values. Theoretical
analysis confirms that our scheme satisfies ω-event ε-differential
privacy level. Extensive experiments conducted on four real-
world datasets demonstrate that our scheme outperforms existing
schemes, delivering more accurate results for both truth discovery
and pattern analysis under the same privacy constraints.

Index Terms—Data streams, differential privacy, mobile
crowdsensing, patterns, truth discovery.

I. INTRODUCTION

MOBILE crowdsensing [1], [2] is a versatile and
expansive data collection paradigm organized as a

collaborative interaction between a central server and multiple
users. In this model, the server publishes tasks specifying the
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type and format of data to be collected, and users contribute
data that matches these requirements using their portable
mobile devices (e.g., smartphones). The collected data then
enables the server to assist users in making more informed
decisions. For example, GreenGPS [3] utilizes fuel consump-
tion data to recommend fuel-efficient routes for drivers, and
AirClowd [4] integrates fused sensor data to suggest travel
routes for users with lower PM2.5 exposure.

Among various data mining methods in mobile crowdsens-
ing, truth discovery and pattern analysis are two effective
approaches for extracting valuable information. The former
takes cross-sectional datasets collected in each round as input,
assigns a weight to each data source based on its reliability,
and derives the ground truth through weighted aggregation [5],
[6]. The latter, on the other hand, uses time-series datasets
as input and identifies temporal correlations by analyzing
the changes between consecutive data points [7]. As mobile
crowdsensing continues to evolve, privacy concerns have also
garnered increasing attention from both the public and the
research community. Mobile crowdsensing typically involves
continuous data collection, and data streams are more likely
to contain sensitive information, especially when linked to
personal attributes [8], [9]. If the server managing the data
is compromised or untrustworthy, it could lead to personal
privacy breaches. This risk may cause users to hesitate to share
their data, thereby limiting the potential growth of mobile
crowdsensing applications.

Many studies have discussed this issue and proposed
corresponding privacy-preserving solutions. Among them, dif-
ferential privacy is a widely adopted mechanism, as it provides
robust mathematical security guarantees with negligible addi-
tional computational overhead. Under this mechanism, users
submit perturbed data with noise instead of raw data. However,
the added noise will also result in computational errors, known
as utility loss, which is influenced by the privacy budget. Early
studies [10], [11], [12] primarily focused on one-time data
perturbation, overlooking the temporal correlation of the data.
These methods often introduced excessive noise, causing the
truth discovery results from the perturbed datasets to deviate
significantly from the ground truth. Wang et al. [13] recog-
nized this issue and were the first to explore privacy-preserving
streaming truth discovery. In their scheme, the published data
are selected from the current and previous perturbed data,
with the value closest to the local truth established by edge
servers. Similarly, Pang et al. [14] investigated a privacy-
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TABLE I
COMPARISON WITH EXISTING SCHEMES

preserving truth discovery framework for crowdsourced data
streams. They proposed a budget adjustment method and
a deviation-aware weighted aggregation strategy to enhance
truth discovery accuracy under different scales of noise. Build-
ing on these works, Gong et al. [15] further optimized the
budget allocation strategy and introduced a noise-aware error
adjustment approach to reduce the impact of noise. However,
none of these schemes consider the preservation of data
patterns, making the perturbed datasets less suitable for pattern
analysis.

To fill this gap, Wang et al. [7] were the first to pro-
pose a privacy-preserving scheme that retains data patterns.
They devised a pattern-aware sampling method to extract
remarkable points and perturb them using differential privacy,
while other data points are directly published with their true
values. Gao and Zhou [16] improved the sampling approach
by employing the Least Squares Segmented Linear Fit method
and using the Kalman filter for post-processing optimization
to enhance data utility. Similarly, unsampled data are released
without protection. Li et al. [17] further designed an adaptive
sampling method based on dynamic features to distinguish
between short-term and stable patterns. For each sampled
point, to prevent data distortion caused by perturbed data
exceeding the valid data range, they employed the Bounded
Laplace mechanism for data perturbation. A common char-
acteristic of these schemes is that the final published dataset
contains a certain proportion of real data. Undoubtedly, raw
values can preserve data patterns to the greatest extent, but they
also weaken privacy guarantees. In particular, for smooth data
streams, only a small fraction of the data may be perturbed.
Therefore, there remains a need to explore how to provide
robust privacy protection while ensuring high utility data for
truth discovery and pattern analysis.

In this paper, we propose a Privacy-Preserving scheme in
Mobile CrowdSensing (PPMCS) to address the aforemen-
tioned challenges. Specifically, we employ the Square Wave
(SW) randomization mechanism to perturb each data point to
prevent any real information from being exposed. To ensure
the accuracy of truth discovery, we design a budget allocation
algorithm that accumulates the budgets of adjacent proximate
data in a time series and then allows them to share a perturbed
value. For pattern analysis, we propose a data splitting method
that divides the perturbed data into two parts: one for recording
data patterns and the other for restoring the perturbed data.
Given that retaining the original pattern completely poses a
risk of inferring other data if any real data is leaked, we
use the piecewise linear approximation method to randomize
the output, with the original pattern serving as a baseline.

A comparison of our scheme with existing solutions in terms
of full data protection, truth discovery utility, and pattern
analysis utility is summarized in Table I. The contributions
to this paper are as follows:
• We propose a privacy-preserving scheme in mobile

crowdsensing that provides high utility for truth discovery
and pattern analysis without revealing any real data.

• To ensure the accuracy of truth discovery, we design a
budget allocation algorithm aimed at minimizing utility
loss. The core idea of the algorithm is to accumulate the
budgets of adjacent moments with proximate data and
allow these moments to share a value output by the SW
mechanism.

• To support pattern analysis, we propose a data splitting
method that divides a data stream into two parts: one for
recording the data patterns and the other for restoring the
perturbed data. To prevent attackers who might infer other
data through scaling relationships if they know any real
data, we use the piecewise linear approximation method
to randomize the original patterns.

• We conduct a theoretical analysis and extensive experi-
ments to validate our scheme. The final experimental data
demonstrate that our PPMCS can obtain more accurate
results in truth discovery and pattern analysis under the
same privacy constraints.

In the rest of this paper, we introduce the preliminaries in
Section II and then detail the proposed scheme in Section III.
After that, we present the theoretical analysis in Section IV and
provide the experimental analysis in Section V. The related
work is discussed in Section VI, and the conclusion is shown
in Section VII.

II. PRELIMINARIES

In this section, we briefly introduce some of the important
preliminaries used in this paper.

A. Mobile Crowdsensing

The mobile crowdsensing model discussed in this paper
consists of a central server and multiple user entities. Without
loss of generality, we assume that there are M users perform-
ing N tasks over T consecutive timestamps. At the initial
stage, the server publishes a set of tasks. Subsequently, for
any timestamp t ∈ [1,T ] in the time series, users uploads

the sensory data
n
dt

i, j

oN

j=1
to the server, where dt

i, j repre-
sents the answer to task j. The problem of truth discovery

is to infer results
n
zt

j

oN

j=1
that are close to the ground truths
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from
�n

dt
1, j

oN

j=1
,
n
dt

2, j

oN

j=1
, · · · ,

n
dt

N, j

oN

j=1

�
, where zt

j denotes

the discovered truth for task j at timestamp t. Furthermore,
let a pattern P =

n
d1

i, j, d
2
i, j, · · · , d

t
i, j

o
represents continuous data

points provided by worker i for task j. The problem of pattern
analysis is to learn meaningful trends from P, such as the
direction and rate of growth.

In our scheme, to protect individual privacy, users are

required to submit perturbed data, denoted as
�nedt

i, j

oN

j=1

�M

i=1
,

rather than the raw data. Our goal is to ensure that the results

of truth discovery and pattern analysis on
�n

dt
i, j

oN

j=1

�M

i=1
and�nedt

i, j

oN

j=1

�M

i=1
are close.

B. Differential Privacy

Differential privacy is a mathematical paradigm used to
quantify and limit the risk of individual privacy breaches
in public data. A common manifestation of differential pri-
vacy is ε-differential privacy, where ε represents the privacy
budget.

Definition 1 (ε-Differential Privacy [18]): A mechanismM
satisfies ε-differential privacy if for all outputs O ⊆ Range(M)
on any two neighboring datasets D1 and D2 that differ by at
most one record there are

Pr[M(D1) ∈ O] ≤ exp(ε)Pr[M(D2) ∈ O]. (1)

Another form of differential privacy for data streams is
known as ω-event ε-differential privacy (abbreviated as ω-
event privacy) [10]. It protects events within an arbitrary
window size of ω in a continuous time series. Let S 1 and
S 2 represent two prefix streams of length s. We define them
as ω-neighboring if, for any indices 1 ≤ i1 ≤ i2 ≤ s satisfying
S 1[i1] , S 2[i1] and S 1[i2] , S 2[i2], the condition i2−i1+1 < ω
holds. If a mechanism M can ensure ε-differential privacy
over any two ω-neighboring prefix streams S 1, S 2 of arbitrary
length, we say that M satisfies ω-event privacy. In general,
an ε-differential privacy mechanism can be adapted to sat-
isfy ω-event privacy by ensuring that the cumulative budget
consumed within any window of size ω does not exceed a
given ε.

C. Square Wave Mechanism

Square Wave is a numerical distribution domain recoverable
randomized reporting mechanism that satisfies the definition
of differential privacy. For any input v, SW ensures that the
output valueev lies within the interval [v−b, v+b] with higher
probability.

Definition 2 (Square Wave Mechanism [19]): Let D1 =

[0, 1] denote the input domain and D2 = [−b, 1 + b] denote
the output domain, an instance of the Square Wave mechanism
M : D1 → D2 ensures that for all v ∈ D1, its corresponding
output probability density function Mv(ev) satisfies

Mv(ev) =

(
p, if |v −ev| ≤ b;
q, otherwise,

(2)

TABLE II
SYMBOLS DESCRIPTION

where b, p, and q are calculated as

b =
εeε − eε + 1

2eε(eε − 1 − ε)
, p =

eε

2beε + 1
, q =

1
2beε + 1

. (3)

III. PROPOSED SCHEME

In this section, we first describe the workflow of PPMCS
through an overview, followed by detailed descriptions of its
components. Some frequently used symbols in this paper are
recorded in Table II.

A. Overview

The overview of PPMCS for user i at timestamp t is shown
in Fig. 1, where each process is described in the following:

: The server publishes a task, and user i collects data
dt

i, j corresponding to task j using carried mobile device.
To minimize the utility loss, the user accumulates the budgets
of subsequent adjacent moments with approximate data and
uses this accumulated budget as the current budget cost. Since
it is impractical to know the future data in advance in a
real-time scenario, the user uses a decay-aware least squares
method to fit the next l data based on historical data. Then, the
user counts the number of adjacent approximate data from the
fitted list (assuming there are k) and allocates the cumulative
budget εa proportionally from the remaining budget εr.

: Due to fitting errors, k may not always be accurate. For
example, the user might find that the fitted data from two
adjacent timestamps (e.g., t and t + 1) appear proximate, but
the actual data may not be. If the entire budget for timestamp
t + 1 is absorbed into timestamp t, there might be insufficient
budget left for timestamp t+1 to restart step . To avoid this
issue, the user reserves a portion of εa as the remaining budget.
This reserved proportion is calculated based on the last fitting
error and recycled budget from the k involved timestamps.
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Fig. 1. Overview of user i at timestamp t in PPMCS.

The remaining portion, ε t
i, j, is then used as the cost budget for

the current moment.
: Taking ε t

i, j and dt
i, j as input, the user runs the SW

mechanism to obtain the perturbed data edt
i, j.

: A data stream consisting of perturbed data can lose
its original pattern features. To preserve these patterns, the
user splits edt

i, j into two parts. The first part (i.e., edt
i, j1) is

a randomized output based on the original pattern, with its
randomization interval constrained by the piecewise linear
approximation method. The second part (i.e., edt

i, j2) is used
to recover edt

i, j1 to edt
i, j for truth discovery. Finally, the user

publishes both edt
i, j1 and edt

i, j2 to the server.

In general, the truth discovery and pattern analysis algo-
rithms executed by the server can include any existing
algorithms. The primary objective is to extract valuable infor-
mation from the published data to enable high-quality services.

B. Budget Allocation

A straightforward budget allocation method that satisfies
ω-events privacy is to allocate the same budget ε

ω
to each

timestamp. However, this approach often results in low utility
when ε is small. Observations reveal that, in a uniformly col-
lected data stream, adjacent values are likely to be approximate
with high probability. Instead of perturbing each data point
independently with a decentralized budget, we can accumulate
budgets for these approximate values and allow them to share a
common perturbed value. For example, consider the sequence
[18.0676, 18.0382, 18.0186, 17.9696], where each point has
a budget of 0.1. Assuming an approximation threshold of 0.5,
we can say that [18.0676, 18.0382, 18.0186] are approximate.
Consequently, we can perturb the first data point with a total
budget of 0.3, allowing the second and third points to use the
same perturbed value. Intuitively, this method offers higher
data utility compared to perturbing each data point individually
with a budget of 0.1.

To count the number of proximate data points, one would
usually need to traverse the sequence backward. Unfortunately,
in real-time data streams, knowing future data in advance is
impossible. A feasible approach is to use historical data as
a sample to fit future data. The least squares method [20] is
commonly used for curve fitting to provide the best estimate.
However, it is important to note that data in a time series
often exhibit noticeable decay characteristics, meaning that

data points further from the current moment are less reliable as
references. To address this issue, we introduce a decay factor
α ∈ (0, 1) and propose the Decay-aware Least Squares method
(DLS). The optimization problem for DLS is defined as

min
nX
i

ξi(yi − a ∗ xi − b)2, (4)

where ξi = α(1−α)n−i. Correspondingly, a and b are computed
as

a =

Pn
i (xi · yi · ξi) ·

Pn
i ξi −

Pn
i (xi · ξi) ·

Pn
i (yi · ξi)Pn

i (x2
i · ξi) ·

Pn
i ξi −

�Pn
i yi · ξi

�2 ,

b =

Pn
i (yi · ξi) − a ·

Pn
i (xi · ξi)Pn

i ξi
. (5)

With Eq. (5), at timestamp t, taking the time series as x and
the historical data as y, we fit the data at timestamp (t + 1)
as edt+1

i, j . After that, using bdt+1
i, j and the historical data as new

inputs, we can get the fitted data bdt+2
i, j . Let l ∈ [1, ω − 1]

represent the number of iterations, and we obtain the fitted
list {bdt+1

i, j ,
bdt+2

i, j , · · · ,
bdt+l

i, j }. Define β as the threshold, and then
we can find a prefix list {bdt+1

i, j ,
bdt+2

i, j , · · · ,
bdt+k

i, j }(0 ≤ k ≤ l),
where any data bdt′

i, j within the list satisfies |dt
i, j −

bdt′
i, j| ≤ β.

At this point, we consider the data for the next k timestamps
to be approximate to dt

i, j and compute the cumulative budget
εa to be

εa =
(k + 1) · εr

l + 1
, (6)

where εr =
�
ε −

Pω−1
o=1 ε

t−o
i, j

�
. Admittedly, εa can be directly

used as the cost budget ε t
i, j for the current timestamp, but

it is risky due to the inevitable fitting errors. One possible
scenario is that we observe |dt

i, j − dt′
i, j| > β at timestamp t′ =

t + k′(1 ≤ k′ ≤ k). In such cases, the fitting process needs to
be re-executed to select a new value for k. If we allocate the
entire εa to the current moment, there might be insufficient
budget remaining, or even none at all, for timestamp t′. To
solve this problem, we design a budget reservation method.
Specifically, for any data bdt′

i, j in the prefix list, we initialize
its reserved budget ct′ as εr/(2 · (l+ 1)). After that, we update
ct′ according to the recycled budget ε t′−ω

i, j to (ct′ − ε t′−ω
i, j ). The

exceeded recycled budget is denoted as δ and will be carried
over to the next timestamp. For example, suppose the recycled
budgets at time t1 and t2 are 0.9 and 0.1, respectively, and
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ct1 = ct2 = 0.5. We first withdraw 0.5 from 0.9 and update
ct1 = 0 and δt1 = 0.4. Then, for time t2, the available budget
is δt1 + 0.1 = 0.5, so we also have ct2 = 0. Based on this, we
define the reserved budget for the k′-th fitted point as

ct′ = max
�

0,
εr

2(l + 1)
− ε t′−ω

i, j − δ
t′−1
�
. (7)

Additionally, we further adjust the reserved budget based
on the fitting error. Generally, a larger fitting error indicates
that a more reserved budget is needed. Otherwise, we would
prefer to allocate more of the budget to the current time to
enhance utility. We use the Proportional-Integral-Derivative
(PID) formula [21] with a scaling factor to represent the fitting
error

τ =
k
k′

 
KpF t′

i + Ki

Pk′−1
o=1 F t+o

i

k′ − 1
+ Kd(F t′

i − F t′−1
i )

!
, (8)

where F t
i = |dt

i −
bdt

i | and Kp, Ki, and Kd are three proportional
factors. The first part of the formula represents the recent error,
the second part represents the integral of the error, and the
third part represents the derivative of the error with respect to
time. The coefficient k/k′ scales the observable error value to
the total error of the fitting list, based on the principle that
the closer tk′ is to t, the greater the overall error. We then
use an exponential function as the proportional function and
compute ε t

i, j as

ε t
i, j = εa − (1 − exp(−τ)) ·

kX
o=1

ct+o. (9)

Furthermore, selecting an appropriate l is crucial. In general,
there is no universal optimal value for l in complex application
scenarios. To handle this, we initialize l = 1 and dynami-
cally adjust it in a linear manner. For example, starting at
timestamp t, we check if |dt

i − dt+k′
i | ≤ β(1 ≤

k′ ≤ k) holds for the next k timestamps. If this
condition does not hold, we consider the fitting pro-
cess inaccurate and adjust l to l = max(1, bk/2c).
In other cases, if k = l, we increase l to l = min(l + 1, ω − 1);
otherwise, we keep l unchanged. The budget allocation pro-
cess for user i at timestamp t for task j is described in
Algorithm 1.

C. Data Perturbation

With ε t
i, j, we employ SW to randomize the data. Assuming

that the spatial domain of task j is [dlow, dup], for any data d,
we first normalize it as d′ = (d − dlow)/(dup − dlow). Then, we
compute b, p, and q from the allocated budget ε t

i, j and choose
a random value r ∈ [0, 1] to compute the output value ed′ as

ed′ =

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

r
q
− b, if 0 ≤ r ≤ d′ · q;

r − q · d′

p
+ d′ − b, ifd′ · q < r ≤ d′ · q

+2b · p;
r − q · d′ − 2b · p

q
+ d′ + b, otherwise.

(10)

Algorithm 1 Budget Allocation Algorithm
Require: The start timestamp t1 and count k1 of the last budget

allocation.
Ensure: The cost budget ε t

i, j.
1: Initialize ε t

i, j ← 0;
2: if t1 + k1 ≥ t and |dt1

i, j − dt
i, j| ≤ β then

3: return ε t
i, j.

4: else
5: if t1 + k1 < t and k1 == l then
6: l ← min(l + 1, ω − 1);
7: else if t1 + k1 ≥ t then
8: l ← max(1, bk1/2c);
9: end if

10: Initialize εa ← 0;
11: Initialize ctemp ← 0;
12: for i ∈ [1, l] do
13: Calculate bdt+i

i, j from Eq. (5);
14: if |dt

i, j −
bdt+i

i, j | > β then
15: break;
16: else
17: εa ← εa +

εr
l+1 ;

18: Calculate ct+i by using Eq. (7);
19: ctemp ← ctemp + ct+i;
20: end if
21: end for
22: Calculate τ by using Eq. (8);
23: ε t

i, j ← εa − (1 − exp(−τ)) · ctemp;
24: end if
25: return ε t

i, j.

After that, we map ed′ to the original field ed = d − (dup −

dlow)(d′ − ed′). With these operations, the raw data list {dt
i, j}

N
j=1

of worker i is perturbed into a randomized list {edt
i, j}

N
j=1.

D. Data Splitting

The SW mechanism effectively protects data privacy but,
unfortunately, disrupts patterns, making the published data
unusable for pattern analysis. Thus, we propose a pattern-
aware data splitting method. This method splits the perturbed
data into two parts: one part retains the data patterns for
pattern analysis, while the other part is used to recover the
perturbed data for truth discovery. Inspired by work [7], we
utilize the Piecewise Linear Approximation method to define
the pattern. Let lt1,t2 represents the slope of the line connecting
data points dt1 and dt2 , with llow and lup representing the lower
and upper bounds of the slope, respectively. Suppose the data
points within the time interval [t1, t − 1] belong to pattern P.
If the data point dt at timestamp t satisfies

llow ≤ lt1,t ≤ lup, (11)

we consider dt to also belong to pattern P. Meanwhile, we
compute l1 as the slope between dt1 and dt + θ, and l1 as the
slope between dt1 and dt + −θ, and subsequently update llow

and lup as

llow =max (llow, l1),
lup =min (lup, l2), (12)
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where θ is the tolerable error threshold. Otherwise, if
Eq. (11) does not hold, dt+1 is regarded as a new starting point.
Through this process, the original data stream is segmented
into multiple pattern fragments. Our goal is to ensure that
analysts obtain the same segmentation over the perturbed data
stream.

Concretely, for the perturbed data edt
i, j, we split it intoedt

i, j1 and edt
i, j2, which satisfy edt

i, j1+
edt

i, j2 = edt
i, j. A straightforward

way is to compute edt
i, j1 based on the scaling relationship

of raw data as (edt−1
i, j1 + dt

i, j − dt−1
i, j ). However, in this case,

just knowing any one of the real data allows one to infer
all the others. To avoid this risk, we use randomization to
compute edt

i, j1. Similarly, assuming that the data points within
the time interval [t1, t − 1] belong to pattern P. Then, we
first determine whether dt

i, j also belongs to pattern P using
Eq. (11). If so, we ensure that edt

i, j1 and the previous split data
also belong to the same pattern, and that the relative trend is
preserved. In this case, the slope elt1,t between the randomly
selected edt

i, j1 and edt1
i, j1 satisfies

elt1,t ∈ (�ellow,elt1,t−1� , if lt1,t−1 > lt1,t;�elt1,t−1,elup
�
, otherwise,

(13)

whereellow andelup are the lower and upper bounds maintained
on the released split data.

Algorithm 2 Data Splitting Algorithm
Require: The timestamp t1 of the last starting point, the upper

and lower boundaries lup and llow over the raw data stream,
and the upper and lower boundarieselup andellow over the
splitting data stream.

Ensure: The splitting data edt
i, j1 and edt

i, j2.
1: Calculate the slope lt1,t;
2: if lt1,t < llow then
3: Initialize d ← edt1

i, j +
ellow · (t − t1);

4: Choose a random edt
i, j1 from [d − θ, d);

5: else if lt1,t > lup then
6: Initialize d ← edt1

i, j +
elup · (t − t1);

7: Choose a random edt
i, j1 from [d, d + θ);

8: else
9: Initializeel ← 0;

10: Calculate the slopes lt1,t−1 andelt1,t−1;
11: if lt1,t > lt1,t−1 then
12: Choose a randomel from [elt1,t−1,elup];
13: else
14: Choose a randomel from [ellow,elt1,t−1);
15: end if
16: Calculate edt

i, j1 as edt1
i, j +

el · (t − t1);
17: end if
18: Update llow, lup,ellow, andelup by using Eq. (12);
19: Calculate edt

i, j2 as edt
i, j −

edt
i, j1;

20: return edt
i, j1 and edt

i, j2.

Conversely, if dt1
i, j and dt

i, j are not within the same pattern,
we will select edt

i, j1 from outside the boundaries and regard this
point as a new start point. The data splitting process for user i
at timestamp t for task j is shown in Algorithm 2. Ultimately,

the perturbed data list {edt
i, j}

N
j=1 of worker i is split into

{edt
i, j1}

N
j=1 and {edt

i, j2}
N
j=1.

IV. THEORETICAL ANALYSIS

In this section, we provide theoretical analyses of privacy
and efficiency.

A. Privacy Analysis

Theorem 1 (Sequential Composition [22]): Let M be
a combinatorial mechanism that performs M1,M2, · · · ,Mk

independently in turn, where Mi satisfies εi-differential pri-
vacy, then we can sayM satisfies

Pk
i=1 εi-differential privacy.

Theorem 2 (Parallel Composition [22]): Let D1, D2, · · · ,
Dk be subsets of the dataset D that satisfy ∪k

i=1Di = D and
Di ∩ D j = ∅(∀i , j), and M be a combinatorial mechanism
that executesM1,M2, · · · ,Mk in parallel, whereMi satisfies
εi-differential privacy and takes Di as input, then we can say
that M(D) satisfies max{ε1, ε2, · · · , εk}-differential privacy.

Theorem 3 (Post Processing [23]): LetM be a mechanism
that satisfies ε-differential privacy, and f denote an arbitrary
randomized mapping function, then f ◦ M also satisfies
ε-differential privacy. That is, post-processing operations on
the output do not result in any privacy loss.

Theorem 4: Our proposed PPMCS scheme satisfies
ω− event privacy.

Proof: First, we analyze the security of the data published
by user i for task j at timestamp t. Our scheme employs SW as
the randomization mechanism. Without loss of generality, SW
can be defined as a family of probability density functions
distributed over the output domain, where the probability
density function of any mapping v →ev can be expressed as
Mv(ev) = Pr[Ψ(v) =ev]. For any possible two values (v1, v2) in
the input domain and any possible set T in the output domain,
we have

Pr[S W(v1) ∈ T ]
Pr[S W(v2) ∈ T ]

=

Rev∈T Mv1 (ev)devRev∈T Mv2 (ev)dev ≤
Rev∈T p devRev∈T q dev = eε . (14)

This formula proves that the randomized output of data
dt

i, j with a privacy budget of ε t
i, j satisfies ε t

i, j-differential
privacy. To retain the data pattern, the randomized out-
put will be further divided into two parts. According to
Theorem 3, post-processing operations on the output do not
cause additional privacy loss, so the final published data of
task j at timestamp t still satisfies ε t

i, j-differential privacy.
Then, for task j, we define its SW mechanisms used

within any window of w timestamps as M1, M2, · · · , Mω.
According to Theorem 1, the privacy guarantee of mechanisms
M1,M2, · · · ,Mω is equivalent to a combinatorial mechanism
Ms that executes them sequentially. For any two neighboring
datasets D and D′, and all possible outputs T ∈ Range(Ms),
it holds that

Pr[Ms(D) ∈ T ]
= Pr[(M1(D),M2(D), · · · ,Mω(D)) ∈ T ]

=
X
Tt∈T

ωY
t

Pr[Mt(D) = Tt]
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≤
X
Tt∈T

ωY
t

eε
t
i, j Pr[Mt(D′) = Tt]

= e
Pω

t=1 ε
t
i, j
X
Tt∈T

ωY
t

Pr[Mt(D′) = Tt]

= e
Pω

t=1 ε
t
i, j Pr[Ms(D′) ∈ T ]. (15)

In our budget allocation algorithm, we strictly ensure that
the total consumption budget for any consecutive ω times-
tamps does not exceed ε, i.e.,

Pω
t=1 ε

t
i, j ≤ ε. Combined with

Eq. (15), we can say that the perturbation mechanisms of
task j within any window of w timestamps satisfy ε-differential
privacy.

Once again, by leveraging Theorem 1, we represent the
perturbation mechanisms for all tasks within any window of
ω timestamps as M1,M2, · · · ,Mq, where q = M × N and
M j ( j ∈ [1, q]) denotes the sequential composition mechanism
for task j. Then, according to Theorem 2, M1,M2, · · · ,Mq

can be reduced to a parallel combinatorial mechanism Mp.
Let D j denote the dataset of mechanismM j, D =

Sq
j=1 D j be

the union, and D′ be an adjacent dataset differing from D in
the k-th subset. For any possible output set T ∈ Range(Mp),
there exists

Pr[Mp(D) ∈ T ]
= Pr[(M1(D1),M2(D2), · · · ,Mq(Dq)) ∈ T ]

= Pr[Mk(Dk) ∈ Tk]
qY

j,k

Pr[M j(D j) ∈ T j]

≤ eεk Pr[Mk(D′k) ∈ Tk]
qY

j,k

Pr[M j(D j) ∈ T j]

= eεk Pr[(M1(D1), · · · ,Mk(D′k), · · · ,Mq(Dq)) ∈ T ]
= eεk Pr[Mp(D′) ∈ T ]

≤ emax(ε1,ε2,··· ,εq)Pr[Mp(D′) ∈ T ]. (16)

Based on the above analysis, we have ε1 = ε2 = · · · = εq = ε.
This means that Mp satisfies ε-differential privacy as well.
Consequently, we can say that the perturbation mechanisms
applied to all tasks within any window of ω timestamps satisfy
ε-differential privacy, which aligns with the definition of ω-
event ε-differential privacy. Therefore, we conclude that our
scheme satisfies ω-event privacy.

B. Efficiency Analysis

The operations on any sensing data dt
i, j primarily consist of

budget allocation, data perturbation, and data splitting. During
budget allocation, the user first fits the next l data points, where
each fitting step takes historical samples as input. Thus, this
part has a time complexity of O(lT ). Then, based on the fitted
list and the PID error, the user determines the privacy budget
for the current timestamp from the remaining budget, with a
time complexity of O(k). Notably, k ranges from 0 to l, while
l is dynamically adjusted within the range from 1 to ω. As a
result, the overall time complexity of budget allocation can be
expressed as O(ωT ). For data perturbation and data splitting,
since no loops are involved, their time complexity can be

considered constant. Particularly, if the previously perturbed
data remains available for the current timestamp, the budget
allocation and data perturbation steps can be skipped. Since
each user processes sensing data for N tasks simultaneously,
the time complexity at a given timestamp t is O(ωNT ), while
the total time complexity over the entire timeline is O(ωNT 2).
Furthermore, in our experiments, for simplicity, we simulate
each user using a sequential processing approach, leading to
an experimental time complexity of O(ωNMT 2). However,
in practical applications, as users operate independently, the
overall time complexity remains O(ωNT 2).

V. EXPERIMENTS

In this section, we evaluate our PPMCS on multiple datasets
and provide a comprehensive comparative analysis with exist-
ing works.

A. Experiment Settings

1) Datasets: We construct experimental datasets based on
four real-world datasets. The details are as follows.
• Intel Lab Data.1 The Intel Lab Data (abbreviated as Intel)

dataset consists of data collected by 54 sensors at the Intel
Berkeley Research Lab from February 28th to April 5th.
We extract a subset from this dataset as our experimental
dataset, which contains the temperature and humidity
collected by 27 sensors at 851 timestamps.

• Weather.2 The Weather dataset comprises weather data
for 30 major U.S. cities as reported by 18 websites
in March 2010. Excluding one invalid website, we
select the temperature for 23 cities from 17 websites at
144 timestamps as our experimental dataset.

• Stock.3 The Stock dataset records market data for
505 stocks from 2013 through 2018. Restricting the data
stream to the same length, we obtain our experimental
dataset containing the opening prices of 468 stocks at
1259 timestamps.

• PEMS08.4 The PEMS08 dataset contains traffic data
collected at 5-minute intervals over a 62-day period from
170 detectors in California. Each probe packet includes
three dimensions: flow rate, average speed, and average
occupancy. We intercept the first 1000 timestamps as our
experimental dataset.

2) Metrics: We evaluate the utility of truth discovery using
Mean Absolution Error (MAE) and Mean Relative Error
(MRE), which are formulated as

MAE(Z,eZ) =
1

T · N

TX
t=1

NX
j=1

|zt
j −ezt

j|,

MRE(Z,eZ) =
1

T · N

TX
t=1

NX
j=1

|zt
j −ezt

j|

max(zt
j, γ)

, (17)

1https://db.csail.mit.edu/labdata/labdata.html
2https://lunadong.com/fusionDataSets.htm
3https://www.kaggle.com/datasets/camnugent/sandp500
4https://www.kaggle.com/datasets/elmahy/pems-dataset
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where zt
j and ezt

j denote the truth discovery results with and
without differential privacy, respectively, and γ is a constraint
to mitigate the effects when values are too small. To demon-
strate the adaptability of our scheme, we will use two truth
discovery algorithms, namely CRH [24] and CATD [25], to
compute ezt

j, respectively. When discussing patterns, we are
more concerned with the trends in data rather than the data
values themselves. Therefore, we use the Mean Absolute Dif-
ference Error (MADE) as a utility metric for pattern analysis.
The formula for MADE is

MADE(D, eD)

=

PM
i=1
PN

j=1
PT

t=2 |(d
t
i, j − dt−1

i, j ) − (edt
i, j −

edt−1
i, j )|

M · N · (T − 1)
. (18)

To quantify the extent of real data leakage, we design a
simple data inference method. Let S = {d1, d2, · · · , dn}

denote a perturbed data sequence, and DFi denote the first-
order difference between two neighboring numbers, i.e., DFi =

di − di−1. We identify all remarkable points with the following
characteristics (

DFi > 0 and DFi−1 < 0
DFi < 0 and DFi−1 > 0,

(19)

and then mark all other data as true. By comparing these
with the raw data sequence, we obtain the Correct Labeling
Percentage (CLP). Intuitively, the larger the CLP value, the
lower the privacy guarantees.

3) Comparison: To validate the effectiveness of our budget
allocation and data splitting methods, we design two variants
of PPMCS, called PPMCS∗ and PPMCS†. In PPMCS∗, we
allocate the budget equally, with each data perturbed with
budget ε

ω
at every timestamp. In PPMCS†, we publish the

perturbed data without splitting. In addition, we also compare
PPMCS with BA [10], PPPTD [14], PriSTD [13], PriPTD
[15], PatternLDP [7], PPLDP [16], and ASRT [17]. In these
schemes, BA, PPPTD, PriPTD, and PriSTD use the Laplace
mechanism for data perturbation, whereas ASRT employs the
Bounded Laplace mechanism, and PatternLDP and PPLDP
adopt the randomization mechanism. Additionally, PPPTD is
designed to satisfy user-level differential privacy. For fairness,
we impose an upper bound on its budget to ensure that all
schemes adhere to ω-event privacy.

All programs are implemented by Python3. For more
details, please refer to our GitHub repository.5 To avoid
chance, all results are averages of data from 100 experiments.

B. Experiment Analysis

In this part, we analyze the effect of parameters α, β, ε,
ω, and θ on PPMCS across different datasets. The first four
parameters influence to the utility of truth discovery, while the
last one pertains to the utility in pattern analysis. Following
that, we compare the performance of PPMCS with that of
existing schemes. Considering that fitting based on a small
sample size introduces significant bias, we designate the first
10 timestamps as a preparation phase, during which the budget

5https://github.com/javadazhancjiajia/ppmcs.git

Fig. 2. The (a) MAE and (b) MRE metrics for β on the Intel dataset under
CRH and CATD algorithms.

of each timestamp is set to ε
ω

. Additionally, following previous
works, we set Kp = 0.8, Ki = 0.1, and Kd = 0.1.

1) Effect of α: We evaluate the average fitting error of
the Decay-aware Least Squares (DLS) method for different
values of α across four datasets. The parameter α is varied
incrementally from 0.1 to 0.9. For the n-th data, we use the first
n−1 data as input for fitting. We also apply the same procedure
to the classical Least Squares (LS) method for comparison.
The results for both methods are shown in Table III, from
which we can clearly see that (1) DLS significantly improves
fitting accuracy compared to LS. In the following experiments,
we use the optimal values of α for each dataset, as highlighted
in bold in Table III.

2) Effect of β: Since the data space size |D| differs across
tasks, using the same β value for all tasks is inappropriate.
Thus, we define β as a percentage, and the approximation
threshold is calculated as |D| · β. Fig. 2 illustrates the effect of
β ranging from 0.05 to 1 on the Intel dataset, with ε = 1
and ω = 50. From the results, we first observe that the
trends of MAE and MRE are similar, and the fluctuations in
MAE and MRE for the CATD algorithm are larger than those
for the CRH algorithm. Furthermore, we note that MAE and
MRE do not show a strong correlation with β. This indicates
that β does not have a universally optimal value across
datasets. In subsequent experiments, for the Intel dataset, we
set β to the best observed value from the results, which is 0.65
for CRH and 0.7 for CATD.

We also test the effect of β on the remaining three datasets.
Due to space limitations, we do not present the detailed data
here. As a result, the optimal values of β for the Weather,
Stock, and PEMS08 datasets under the CRH algorithm are
0.7, 0.8, and 0.6, respectively, while for the CATD algorithm,
they are 0.8, 0.35, and 0.3, respectively.

3) Effect of ε: We examine the utility effects of ε within
the range [0.05, 1], with ω set to 50 and ε increasing by 0.05
each time. To highlight the impact of the budget allocation
algorithm, we also test PPMCS∗ under the same settings. Fig. 3
presents the MAE results under the CRH algorithm across
four datasets. From these data, we can learn that (1) PPMCS
exhibits a significant utility improvement over PPMCS∗, indi-
cating that our budget allocation algorithm plays a crucial
role in enhancing the utility of truth discovery compared
to a simple uniform allocation approach. Furthermore, we
observe that (2) the utility of both schemes improves with
increasing ε. This reflects the nature of differential privacy:
a larger budget allows for higher utility but lower privacy
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TABLE III
COMPARISON OF AVERAGE FITTING ERRORS FOR LS AND DLS

Fig. 3. The MAE metric for different values of ε under the CRH algorithm across four datasets.

Fig. 4. The MAE metric for different values of ε under the CATD algorithm across four datasets.

Fig. 5. The MRE metric for different values of ε under the CRH algorithm across four datasets.

Fig. 6. The MRE metric for different values of ε under the CATD algorithm across four datasets.

guarantees. A similar experiment is conducted under the
CATD algorithm, with the results shown in Fig. 4, where

PPMCS also maintains a clear advantage. Figs. 5 and 6
illustrate the MRE results under CRH and CATD, respectively,
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Fig. 7. The MAE metric for different values of ω under the CRH algorithm across four datasets.

Fig. 8. The MAE metric for different values of ω under the CATD algorithm across four datasets.

Fig. 9. The MADE metric for different values of θ across four datasets.

showing trends and conclusions consistent with those of MAE.
In the rest of experiments, we set ε = 1 unless otherwise
specified.

4) Effect of ω: According to the definition of ω-event
privacy, the parameter ω determines the size of the event
window requiring continuous protection and also constrains
the maximum value of l in our scheme. Here, we test the
effects of ω on four datasets, varying ω from 5 to 100 in
increments of 5. Again, PPMCS∗ is used as a baseline for com-
parison. Figs. 7 and 8 depict the variations in the MAE metric
under the CRH and CATD algorithms, respectively. From these
figures, we can see that (1) PPMCS repeatedly outperforms
PPMCS∗, especially when ω is smaller. Theoretically, ε and
ω have opposing effects on the trade-off between utility and
privacy. When ε is fixed, a larger ω reduces the average
budget available per timestamp, thereby lowering utility. Since
the MRE metric still follows a similar pattern to the MAE
metric, its results are omitted for brevity. In the subsequent
experiments, we set ω = 50.

5) Effect of θ: Similar to β, we define θ as a percentage to
account for task variability and use it to calculate the slope
tolerance error as θ × C, where C represents the maximum
difference between adjacent values. The experimental range
for θ is set between [0.01, 0.1]. We use PPMCS† as a

TABLE IV

AVERAGE FITTING ERROR ON DLS

benchmark to highlight the data splitting method. The final
results are presented in Fig. 9. Notably, since PPMCS† is
independent of θ, its MADE results form a constant line
across all four datasets. From these curves, we observe
that (1) our PPMCS achieves better MADE results than
PPMCS† at smaller values of θ. This is because a smaller
θ indicates a smaller randomization interval, which helps
to avoid abrupt changes in the split data. However, it also
increases the risk that an attacker with knowledge of any real
data could infer a curve closer to the original, based on scaling
relationships. For the rest of experiments, we fix θ = 0.01.

Furthermore, to provide a more intuitive demonstration of
the improvement in pattern analysis accuracy achieved by our
method, we apply the DLS algorithm to the perturbed data
generated by PPMCS and PPMCS† for data fitting. Table IV
presents the average error between the fitting results and the
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TABLE V

COMPARISON OF SECURITY

Fig. 10. The MAE metric of ε under different schemes across four datasets. In particular, all data are results from a logarithmic transformation log10.

TABLE VI

COMPARISON OF UTILITY

real data. Evidently, our PPMCS yields more accurate fitting
results, thereby validating the effectiveness of our approach.

6) Comparison: Since that PPPTD and PriPTD are specif-
ically designed for the CRH algorithm, all MAE and MRE
metrics in this part are computed under the CRH algorithm.
We first compare our PPMCS with PatternLDP, PPLDP, and
ASRT in Table V, where CIP takes the maximum value among
the M×N data streams. As previously mentioned, a common
characteristic of these three schemes is that the released data
contains a certain proportion of raw data. Undoubtedly, this
results in high data utility, as reflected by the MAE metric in
the table. However, they are not secure. The CLP indicates
that an attacker could interpret the published data as near-
real datasets with minor anomalies, potentially compromising
user privacy, especially in PatternLDP and PPLDP. Although
ASRT reduces data leakage, it also substantially diminishes
utility in pattern analysis, as reflected in the MADE metric,
which is comparable to our proposed PPMCS. In summary,
we conclude that (1) our PPMCS provides better privacy
guarantees than existing high-utility schemes.

Next, we compare our PPMCS with BA, PrivSTD, PPPTP,
and PriPTD. All these schemes provide the same theoretical
privacy guarantees; therefore, we focus on evaluating their

utility in truth discovery and pattern analysis. Fig. 10 illustrates
the variation in MAE for different schemes as parameter ε
increases from 0.05 to 1. To better represent data with a
wide range of values, we apply a logarithmic transformation
log10. The results demonstrate that our PPMCS achieves the
best performance on the Intel and Weather datasets and the
second-best performance on the Stock and PEMS08 datasets.
To further clarify, Table VI presents the results of these
schemes under ε = 1, including MAE, MRE, and MADE
metrics. The data reveal that our scheme consistently achieves
the highest utility in terms of MAD and MRE in most cases.
Furthermore, in terms of MDRE, our approach consistently
outperforms all other schemes. These findings confirm that (2)
our scheme provides superior data utility than existing schemes
while maintaining the same level of privacy protection. In
other words, the PPMCS achieves a better trade-off between
privacy and utility.

VI. RELATED WORK

A. Privacy in Truth Discovery

The truth discovery problem was first formalized by
Yun et al. [26], in a scenario of choosing more trustwor-
thy websites than authority-based search engines. Numerous
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studies have since addressed this problem, proposing var-
ious iterative algorithms for different application scenarios
[5], [6], [27]. As privacy concerns have become increas-
ingly prominent, researchers have turned their attention to
privacy-preserving truth discovery. Depending on the privacy
protection technique employed, existing works can be broadly
categorized into two groups: (1) encryption-based schemes and
(2) differential privacy-based schemes.

In encryption-based schemes [28], [29], [30], [31], users
typically encrypt data locally and submit only the ciphertext,
while the server runs a specified truth discovery algorithm
using the ciphertext as input. However, cryptographic oper-
ations often introduce costly computation overhead, making
their schemes less practical for real-time and large-scale data
applications. Compared to cryptography, differential privacy
offers robust security with negligible additional overhead,
making it more widely adopted. In early studies on differential
privacy [18], [32], raw data were centrally perturbed by a
trusted server. However, constructing a fully trustworthy entity
proved to be a significant challenge. As an alternative, local
differential privacy was introduced to eliminate the need for
a central server by requiring users to locally perturb their
data [33], [34]. With this goal, Li et al. [11] proposed
a two-layer mechanism that allows users to sample their
own probabilities from a hyperdistribution to randomize their
reported answers. To reduce utility loss, they then extended
their work using the Gaussian mechanism [35]. Sun et al.
[12] highlighted the sparsity of uploaded data, where most
workers only answered a small subset of tasks. To address
this, they designed an efficient matrix factorization algorithm
using the Laplace mechanism for truth inference. Wang et al.
[13] first explored the privacy concerns of streaming truth
discovery. They proposed a budget recycling mechanism that
allows only a subset of points to consume a limited budget
for perturbation, while other points reuse the previously per-
turbed values. Pang et al. [14] also focused on data streams
and proposed a personalized privacy-preserving framework.
In their scheme, users initialized and adjusted their privacy
budgets based on individual needs. Additionally, Zhang et al.
[36] devised a scheme with solid privacy and utility guar-
antees. Users submitted only partially perturbed data, while
the server employed matrix factorization models to infer the
remaining data before conducting truth discovery. In recent
work, Gong et al. [15] proposed an outlier-aware privacy-
preserving scheme that evaluates user credibility weights by
analyzing data fluctuations and allocates the limited privacy
budget to more critical data points. Furthermore, they devised
a noise-aware error adjustment method to mitigate the bias
introduced by noise. However, none of these schemes take
into account the preservation of data patterns. The original
temporal patterns are disrupted after perturbation, preventing
the server from performing effective pattern analysis on the
released data.

B. Privacy in Pattern Analysis

Patterns are defined as the temporal correlations among
data points in a time series. Early studies on differentially

private time-series data primarily focused on statistical anal-
ysis, such as mean estimation [37], [38] and frequency
estimation [39], [40]. These approaches typically perturb each
data point independently, without considering the preservation
of patterns. Wang et al. [7] were the first to identify this
limitation and proposed a pattern-aware privacy-preserving
data collection framework. They introduced an importance-
aware remarkable point sampling method to capture pattern
features and applied a randomization mechanism to perturb
these remarkable points, while unselected data points were
uploaded in their original form. Gao and Zhou [16] improved
this framework. They leveraged both the fluctuation trend and
the fluctuation speed of real-time data streams to determine
whether a data point could accurately represent the underlying
pattern. The selected points were perturbed using a randomized
mechanism and then refined via Kalman filtering, while the
remaining points were directly released without perturbation.
Li et al. [17] designed a sampling method based on the
randomized response mechanism to capture sensitive patterns
in time-series data for mobile crowdsensing. Additionally,
they applied the Bounded Laplace mechanism to ensure that
the perturbed data values remained within the valid range.
However, all three schemes offer weak security, as a certain
proportion of the data remains unperturbed. How to perturb
all data points while still preserving the data patterns remains
an open problem worth exploring.

In addition to the aforementioned works, Ye et al. [41]
attempted to preserve temporal correlations by perturbing the
time sequence rather than the data values. Subsequently, they
improved their scheme with a two-way atomic operation,
which can eliminate missing, empty, or repeated values in
the released time series [42]. To extract frequent shapes from
perturbed data, Mao et al. [43] considered using time-series
transformation techniques to preserve data patterns. However,
these methods are not designed for real-time release, and
therefore cannot be directly applied to mobile crowdsensing.

VII. CONCLUSION

In mobile crowdsensing, to prevent untrustworthy entities
from learning sensitive information embedded in the data
stream, we employ the Square Wave mechanism to perturb
the raw data. However, this results in a reduction in data
utility, leading to lower accuracy in truth discovery and
pattern analysis on the perturbed datasets. To mitigate this
issue, we design a budget allocation algorithm to reduce the
utility loss and propose a data splitting method to preserve
patterns. Theoretical analysis proves that our scheme satisfies
ω-event privacy. Extensive experiments based on four real-
world datasets show that, while maintaining strong privacy
guarantees, our scheme produces more accurate results in truth
discovery and pattern analysis compared to existing schemes.

We note that despite the significant improvement in the
accuracy of aggregated results, they still fall short of meeting
the requirements of practical applications, especially in scenar-
ios where data changes lack clear patterns. Moving forward,
we aim to investigate more efficient approaches to further
reduce utility loss in numerical computations.
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