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Abstract
Before service providers build up an mobile edge computing (MEC) platform,
an important issue that needs to be considered is the configuration of comput-
ing resources on edge servers. Since the computing resources on an edge server
are limited compared with a cloud server and the service provider’s deployment
budget is limited, it would be unrealistic to equip all edge servers with abundant
computing resources. In addition, the edge servers have different computation
demands due to their different geographies. Therefore, this article investigates
the problem of server configuration optimization in an MEC environment based
on a given computation demand statistics of the selected deployment loca-
tions. Our strategy is to treat each edge server as an M/M/m queueing model,
and then establish the performance and cost models for the system. Two opti-
mization problems, including cost constrained performance optimization, and
performance constrained cost optimization are formulated based on our models
and solved by a series of fast numerical algorithms. We also conduct extensive
numerical simulation examples to show the effectiveness of the proposed algo-
rithms. MEC service providers can use our strategy to get the appropriate type
of processor and obtain the optimal processor number for each edge server to
achieve two different goals: (1) deliver the highest-quality services with a given
cost constraint; (2) minimize the investment cost with a service-quality guar-
antee. Our research is of great significance for service providers to control the
tradeoff between investment cost and service quality.

K E Y W O R D S

cost-performance tradeoff, edge server, mobile edge computing, queueing model, server
configuration

1 INTRODUCTION

1.1 Motivation

In recent years, mobile applications have greatly facilitated people’s daily life. People use various portable services
provided by mobile applications to socialize with others, conduct business transactions, handle official business, and
entertain themselves.1 In conjunction with this, mobile devices (MDs, including smartphones, handheld computers, and
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other vertical application devices) have been becoming increasingly smarter and powerful to provide more computing
capability for mobile applications. Nevertheless, the computing capability of MDs is still limited due to the constraints
of portable devices in terms of space, battery capacity, weigh, and heat dissipation.2 With the increasing demand for
complex functionalities of portable services, mobile applications have been becoming gradually energy-hungry and
computation-intensive.3,4 Offloading the computation-intensive tasks of mobile applications from MDs to resource-rich
clouds is an effective approach to address this problem, such that mobile users can obtain the high-performance services
and at the same time effectively extend the battery life of devices.

However, the data centers of clouds are usually located at the core of the Internet which are geographically far away
from mobile users, the increasing mobile data traffic make huge burden on the backbone network.5 With the prevalence
of MDs and mobile applications, the transmission delays introduced by the network have become a new obstacle.6 This is
unbearable for some powerful mobile applications (e.g., multiplayer online games, large-scale image processing, personal
assistant) that are sensitive to task response time. In fact, this challenge will be more severe. According to a recent forecast
by Cisco, the total number of mobile users will grow from 5.1 billion (66% of the global population) in 2018 to 5.7 billion
(71% of the global population) by 2023.7

As a promising computing paradigm, mobile edge computing (MEC) has been proposed to overcome this challenge.
MEC offers high-quality, high-bandwidth, and low-latency services at the edge of mobile networks by deploying edge
servers within or in close proximity to mobile base stations.8,9 MDs connect directly to edge servers through mobile net-
works, and offload parts of their tasks (i.e., offloadable tasks) to edge servers within one hop, thus releasing the load on
the backbone network and extending their battery life.10 The services provided by an MEC platform have unparalleled
quality of experience when compared to the services provided by a cloud computing platform.11,12 Therefore, MEC is
attracting increasing attention from academia and industry.

Before service providers build up an MEC platform, an important issue that needs to be considered is the configura-
tion of computing resources on edge servers.13 Since the computing resources on an edge server are limited compared
with a cloud server14 and the service provider’s deployment budget is limited, it would be unrealistic to equip all edge
servers with abundant computing resources. In addition, edge servers have different computation demands due to their
different geographies. Some available computing resources will be idling when the computing resources equipped by the
edge server exceed its computing requirements. These idle computing resources will generate a lot of wasteful power
consumption, thereby increasing the operating cost of the service provider. According to a recent study, the basic energy
consumption of the server in the idle state accounts for more than 60% of the server energy consumption in the full state.15

Therefore, how to optimize the computing resource configuration of edge servers (i.e., server configuration optimization)
is of great significance for MEC service providers to control the tradeoff between investment cost and service quality, and
is a critically key problem to be solved in the development of MEC.

1.2 Our contributions

In this article, we investigate the problem of server configuration optimization in an MEC environment, where the main
objective is to optimize the number and type of processors that will be configured on edge servers based on a given
computation demand statistics. We consider such a typical application scenario from the perspective of a service provider
that we will deploy edge servers at selected base stations to establish an MEC platform. Our investment budget is limited,
and we hope that the system can provide a service-quality guarantee after it is established. Therefore, we mainly consider
two key factors, namely, the system performance and the investment cost.

We only focus on system performance rather than application performance in this work. This is mainly because the
portable services provided by mobile applications are various in an MEC environment, and the MEC service provider
need to consider the performance from an overall perspective, that is, system performance. We use the average response
time as the system performance metric. On the other hand, the service provider’s investment cost consists of multiple
parts, such as equipment purchases, operating cost, maintenance cost, utility cost, and so on. These costs have different
dimensional units. In order to solve this problem, we assume that the economic life of an MEC platform is 3 years, and
then use the unit cost as the investment cost metric in this article.

However, optimizing both performance and cost may be conflicting requirements. The improvement of performance
is often accompanied by an increase in power consumption, and the power consumption is an important part of our
investment cost. Hence, we consider the tradeoff between investment cost and system performance, that is, minimization
of average response time with a given system unit cost constraint, and minimization of system unit cost with a given
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average response time constraint. The fundamental purpose of our study is to find an optimal configuration for edge
servers to reduce redundant investment cost and energy consumption caused by idle computing resources, and to meet
the potential computation demands of different deployment locations as much as possible to reduce communication delay
caused by task migration among multiple edge servers.

It should be noted that the computation demand statistics of different deployment locations are assumed to be known
in this work. Although the workloads of edge servers are different and dynamically changed due to their different geogra-
phies and the mobility of MDs, we think that a time-series analysis of the historical mobile data traffic of base stations
can be used to predict the stable computation demands of edge servers over a long period of time, which is not within
the scope of this article. In fact, our strategy is to solve a static optimization problem of server configuration in order to
obtain the optimal server configuration scheme before system deployment, and we can use the scheme for a long time
until the environment changes significantly. When the computation demands faced by edge servers have changed a lot
after a period of time, we can reuse the strategy to obtain another scheme and use it again.

Our major contributions in this article can be summarized as follows.

• We establish an M/M/m queueing model with infinite waiting queue capacity to characterize multiple heterogeneous
edge servers, and then establish a performance model and a cost model for the MEC system respectively, such that the
performance and investment cost of the system can be calculated analytically.

• We formulate two optimization problems, that is, cost constrained performance optimization (i.e., minimization of
average response time with a given system unit cost constraint), and performance constrained cost optimization (i.e.,
minimization of system unit cost with a given average response time constraint), such that the server configuration opti-
mization problem of edge servers from the perspective of cost-performance tradeoff can be studied. We also extend these
two problems to the case where the service provider has multiple types of processors provided by different hardware
suppliers for selection before constructing the MEC system.

• We design a series of fast numerical algorithms based on the bisection algorithm to address the above problems. MEC
service providers can use our algorithms to get the appropriate type of processor and obtain the optimal processor
number for each edge server to achieve two different goals: (1) deliver the highest-quality services with a given cost
constraint; (2) minimize the investment cost with a service-quality guarantee.

• We also conduct extensive numerical simulation examples to show the effectiveness of the proposed algorithms.

To the best of our knowledge, this work is the first research of server configuration optimization in MEC which con-
siders the cost-performance tradeoff. Therefore, the results of our research provide theoretical and practical contributions
for the computing resource configuration problem in MEC, which can be applied to the deployment of MEC platforms.

The rest of the article is arranged as follows. In Section 2, we review related work and summarize the unique fea-
tures of our research. In Section 3, we define two optimization problems (i.e., cost constrained performance optimization
and performance constrained cost optimization) to be studied in the context of server configuration and then establish sys-
tem models based on queuing theory. In Sections 4, we formulate the above optimization problems, and then develop a
numerical method and a series of algorithms for each problem. In Sections 5, we conduct extensive numerical simulation
examples to demonstrate the effectiveness of the proposed algorithms. In Section 6, we conclude this article and show
some prospects for future study.

2 RELATED RESEARCH

MEC has two fundamental purposes, namely, improving performance and reducing cost or power consumption,16 since
low performance can limit the functionality of mobile applications and reduce the quality of user experience, while high
energy consumption can cause severe economic losses and environmental problems. Specifically, there are several essen-
tial factors that can affect the performance and power consumption of an MEC platform, such as the amount of available
computing resources, the amount of idle computing resources, the amount of task offloading, the scheduling of offloading
tasks, the CPU-cycle frequencies of edge servers and MDs, and the transmission/communication speed for computation
offloading, and so on. Therefore, there is a huge body of literature studied how to optimize performance and energy con-
sumption by considering different factors from different entry points, such as computation offloading optimization, power
allocation optimization, dynamic resource allocation optimization, and so on. In this section, we mainly review related
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research from these three entry points. The reader is referred to References 11-15,17,18 for related research based on other
entry points and detailed surveys.

Computation offloading optimization. The principle of computation offloading is to weigh the benefits of executing
tasks on MDs and edge servers to partition, schedule tasks reasonably, thereby speeding up computing and saving energy.6
There is a lot of literature studied this issue with respect to task partitioning, allocation, and execution. Lyu et al.19 studied
computation offloading strategy on a three-layer architecture of cloud, edge server, and devices. The authors developed
a computation offloading algorithm that can minimizes the energy consumption of devices while meeting the latency
requirements of MDs. Tham et al.20 proposed a load balancing scheme in an MEC environment to minimize the response
time of offloadable tasks while still satisfying the wireless channel capacity and link contention constraints. In Reference
21, the authors implemented a task offloading strategy based on power consumption and bandwidth capacity of different
time slots by using KKT conditions. In Reference 22, the authors designed a distributed algorithm for multiuser compu-
tation offloading to minimize the system-wide computation overhead. Huang et al.23 designed a computation offloading
algorithm to minimize system power consumption while ensuring the quality of service. A similar problem were studied
in References 24,25. In Reference 26, Li established an M/G/1 queueing model with infinite waiting queue capacity to
characterize multiple heterogeneous MDS and edge servers, such that the performance and energy consumption of the
MEC platform can be calculated analytically. He studied computation offloading strategy optimization in an MEC envi-
ronment to balance power and performance. This work used two different CPU core speed models, that is, the idle-speed
model and the constant-speed model, to analyze the energy consumption of MDs, thereby increasing the application scope
the strategy. He also studied computation offloading strategy in the case of multiple mobile users playing noncooperative
game in an MEC environment, and designed an algorithm that can find the Nash equilibrium to address this problem.27

Power allocation optimization. In an MEC environment, it is important to focus not only on the energy consumption
of remote infrastructures but also on the energy consumption of MDs which is related to their battery life. Therefore,
it is necessary to make reasonably power allocation for both edge servers and MDs. Mao et al.28 developed an effective
strategy aimed at improving system performance and achieving green computing to jointly obtain optimal scheduling for
offloadable tasks, optimal power allocation for MDs, and optimal transmission power allocation. Their algorithms are
implemented by dynamically adjusting the CPU-cycle frequencies of MDs, the offloading decision, and transmit power
of MDs. In Reference 29, the authors proposed an optimization framework of offloading which jointly optimizes the task
allocation and the CPU-cycle frequencies of MDs to minimize both response time and MD’s power consumption. Zhang
et al.30 developed a task scheduling algorithm to jointly obtain optimal frequencies for MDs’ processor and optimal trans-
mission power allocation, thereby managing the power-performance tradeoff. Li16 established an M/G/1 queueing model
to characterize multiple MDs and an M/G/m queueing model to characterize an edge server. He conducted a quantitative
study on the stabilization of a competitive mobile edge computing environment by established a noncooperative game
framework. In his work, all MDs and the mobile edge cloud can obtain an optimal action that minimize their payoff by
dynamically adjusting the CPU-cycle frequencies, the offloading decision, and transmission power allocation.

Dynamic resource allocation optimization. Dynamic resource allocation optimization in MEC is also an effective way
to improve performance and reduce cost. There are many types of resources that can be dynamically allocated in an MEC
environment, including server caches, communication resource (e.g., wireless bandwidth, communication channel), and
computing resource (e.g., containers and virtual machines). Zhang et al.31 proposed a strategy to manage the tradeoff
between energy and latency in the MEC network through joint optimization of computation and communication resource
allocation. Xu et al.32 studied the problem of service caching optimization in the MEC network and implemented an
algorithm to determine which services need to be cached on edge servers to improve system performance with a given
energy consumption constraint. In Reference 33, the authors developed an algorithm to improve offloading gains by
jointly optimizing task scheduling, transmission power of MDs, and resource allocation of edge servers. However, the
computing resource only abstractly represented by computational rates of edge servers in their work. Ma et al.34 designed
an algorithm of optimal resource provisioning which jointly determines the utilization of cloud resources and the optimal
edge computation capacity to minimize the cost of service provisioning. However, this work only uses a simple parameter
to abstract edge computation capacity. Mao et al.35 developed an algorithm of dynamic resource allocation to jointly obtain
optimal transmit power and bandwidth allocation for computation offloading to make task offloading effective. Zhou
et al.36 designed a strategy to maximize energy efficiency and minimize SLA violation rates by dynamically adjusting CPU
and memory resources during VM deployment. Paščinski et al.37 designed a new autonomic orchestration architecture
and implemented a global cluster manager (GCM) to monitor the selected QoS metrics of related applications in real
time, thereby automatically selecting the best geographically available computing resources within the software-defined
data centers (SDDCs), and finally achieving high QoS.
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T A B L E 1 A comparative table with existing research

Applicable stage Main constraints Optimization objectives

Computation offloading
optimization

MEC has been
established

Performance constraint, energy
consumption constraint

Amount of task offloading, scheduling of
offloading tasks, offloading decision

Power allocation
optimization

MEC has been
established

Performance constraint, energy
consumption constraint

CPU-cycle frequencies, transmit power of MDs

Dynamic resource
allocation optimization

MEC has been
established

Resource constraint,
performance constraint,
energy consumption constraint

Service caching policies, channel allocation,
placement or capability of VMs or containers

Our investigation Before deployment Performance constraint, cost
constraint

Number and type of processors that will be
configured on all edge servers

From the above literature review, we find that most of existing research focus on different optimization objectives
based on the premise that the MEC platform has been deployed. Our work is different from the above studies in that
we consider server configuration strategy from the perspective of a service provider before system deployment. In order
to clearly position our investigation and highlight the difference between our study and existing research, we make a
comparison in Table 1.

Our investigation has the following unique features.

• We consider an application scenario from the perspective of service providers, that is, we will deploy multiple edge
servers in selected base stations to build up an MEC platform. Since our investment budget is limited and the system
needs to provide a service-quality guarantee after it is established, we need to obtain the optimal number and type
of processors that will be configured on edge servers based on a well-analyzed and predicted computation demand
statistics.

• We establish an M/M/m queueing model to characterize multiple edge servers, such that to conduct a rigorous analysis
of the average response time of offloading tasks, including task waiting time and task processing time.

• We analyze the investment cost from multiple aspects including equipment purchases (i.e., processors), utility cost,
maintenance cost, and operating cost (i.e., energy consumption of edge servers’ processors), and use unit cost to unify
the different dimensional units of these costs.

• Our strategy can provide an optimal server configuration scheme to reduce redundant investment cost and energy
consumption caused by idle computing resources, and communication delay caused by task migration among multiple
edge servers.

We would like to mention that our strategy does not conflict with other optimization methods (including computation
offloading optimization, power allocation optimization, and dynamic resource allocation optimization), since our strat-
egy and other optimization methods are applied in different stages of the MEC system implementation. Before system
deployment, MEC service providers can control the tradeoff between investment cost and system performance according
to our strategy, and can quantitatively analyze the performance and cost of the system. After all edge servers are deployed
with appropriate computing resources (i.e., the MEC platform has been established), other optimization methods can be
applied to further improve system performance or save energy based on other footholds.

3 PROBLEM DEFINITION AND MODELS

3.1 Problem definition

We consider such a typical application scenario from the perspective of a service provider that we will deploy n edge
servers S1, S2, … , Sn at the n selected base stations to establish an MEC platform. In addition, we assume that the stable
computation demand statistics of n base stations 𝜆1, 𝜆2, … , 𝜆n are obtained through a time-series prediction analysis
based on the historical mobile data traffic. Our investment budget is limited, and we hope that the system can provide a
service-quality guarantee after it is established. We aim to address the following two problems.
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• Cost constrained performance optimization. Under the given cost constraint C̃ and the above conditions, find the optimal
number and type of processors that will be configured on each edge server, such that the average response time of the
system is minimized.

• Performance constrained cost optimization. Under the given performance constraint T̃ and the above conditions, find
the optimal number and type of processors that will be configured on each edge server, such that the unit cost of system
is minimized.

For example, Figure 1 indicates a small MEC environment. In the environment, we will deploy two edge servers
(represented by S1 and S2 in Figure 1) at the selected base stations (represented by A and B in Figure 1) to establish
the system. These selected base stations are located at regions with high population density (such as commercial and
residential areas) and have higher potential computation demands. The base stations (represented by C and D in Figure 1)
that do not deploy edge servers will migrate tasks from MDs within their coverage to the nearest edge server for computing
(illustrated by the red dotted arrows in Figure 1). Assume that the stable computation demand of A (including the task
migration of C) is 𝜆A, and the stable computation demand of B (including the task migration of D) is 𝜆B. Our main objective
is to find the optimal number and type of processors for the two edge servers based on its potential computing demands
𝜆A, 𝜆B, such that the average response time of the system is minimized while the investment cost does not exceed the
given cost constraint, or the unit cost of system is minimized while the average response time does not exceed the given
performance constraint.

In order to solve the above two problems, and to conduct a rigorous analysis of the performance and investment cost
of the MEC platform, we first need to establish mathematical models.

3.2 Edge server model

In the MEC environment, each edge server is configured with different numbers of processors and has different comput-
ing capabilities, thus the edge servers are heterogeneous. We use an M/M/m queueing model to characterize multiple
heterogeneous edge servers. Taking mi as the number of identical processors configured on server Si, that is, server pro-
cessors have the same execution speed s, which is measured in units of billion instructions per second (BIPS). The edge
servers are modeled as follows.

Each edge server maintains a first-in-first-out (FIFO) queue with infinite capacity to cache waiting tasks when the
server is busy and adopts the first-come-first-served (FCFS) queueing discipline for arrival tasks. Since the memory
of servers has become more and more sufficient with the development of modern computer technology, and the task
response times in an MEC system are not very large, the overflow of server buffer might be ignored to certain extent. In
addition, the arrival time of offloadable tasks are randomness, and it is difficult to clearly know their probability distri-
bution. However, the occurrence of many things in nature obeys the Poisson distribution, and many other probability
distributions can also be approximated by the Poisson distribution. Thus, we assume that each edge server accepts an

F I G U R E 1 An example of an
MEC environment
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independent stream of tasks (including user tasks within its coverage area and the tasks migrated from other base sta-
tions) with a Poisson distribution, that is, the average arrival rate of tasks to Si is 𝜆i and the interarrival times of tasks to
Si are a sequence of independent and identically distributed (i.i.d.) exponential random variables with the average value
1∕𝜆i. The number of instructions (measured in units of billion instructions) to be executed for offloadable tasks are a
sequence of i.i.d. exponential random variables r with the average value r. Thus, the task execution times of processors
(measured in seconds) have an average value of x = r∕s, that is, an offloadable task is assigned to an idle processor for
execution until it is completed.

According to queuing theory, we can get the average service rate of each edge server as 𝜇 = 1∕x = s∕r. The value of 𝜇
represents the average number of executed tasks per processor per second. We also obtain the server utilization of Si as:

𝜌i =
𝜆i

mi𝜇
= 𝜆ix

mi
= 𝜆ir

mis
, (1)

which represents the average fraction of the time that Si is busy. Notice that the value of mi𝜌i = 𝜆ix = 𝜆ir∕s represents the
average number of processors on Si that are executing tasks.

3.3 Performance model

In this section, we discuss how to characterize the performance of an MEC system. Specifically, we use the average
response time as the performance metric.

According to queuing theory [ 38, p. 102], the probability that there are k tasks with the states of waiting or executing
in the M/M/m queueing system for the server Si is

pi,k =
⎧⎪⎨⎪⎩

pi,0
(mi𝜌i)k

k!
, k ≤ mi;

pi,0
mmi

i 𝜌k
i

mi!
, k ≥ mi;

(2)

where

pi,0 =

(mi−1∑
k=0

(mi𝜌i)k

k!
+ (mi𝜌i)mi

mi!
⋅

1
1 − 𝜌i

)−1

. (3)

Then, we obtain the probability that a newly arrived task must be queued as

Pq,i =
∞∑

k=mi

pi,k =
pi,mi

1 − 𝜌i
= pi,0

mi
mi

mi!
⋅

𝜌i
mi

1 − 𝜌i
. (4)

Let Li denote the average number of tasks in Si. Then we have

Li =
∞∑

k=0
kpi,k = mi𝜌i +

𝜌i

1 − 𝜌i
Pq,i. (5)

Applying Little’s law, the average task response time of Si is

Ti =
Li

𝜆i
= x +

Pq,i

mi (1 − 𝜌i)
x = x

(
1 +

Pq,i

mi(1 − 𝜌i)

)
. (6)

Through the above analysis, we can get the average response time of the system (measured in seconds) as

T =
n∑

i=1

𝜆i

𝜆
Ti =

𝜆1

𝜆
T1 +

𝜆2

𝜆
T2 + … + 𝜆n

𝜆
Tn, (7)

Notice that Equation (7) is actually a function of server sizes m1, m2, … , mn, that is, T (m1,m2, … ,mn).



HE et al. 1875

3.4 Cost model

In this section, an analytical model is established to characterize the investment cost of an MEC system.
The investment cost mainly consists of two parts, namely, the static cost and the dynamic cost. The static cost mainly

comes from the purchase of hardware equipments and the site rentals of edge servers, which also includes maintenance
cost and utility (such as A/C) cost. However, we do not consider the impact of the site rentals. This is mainly because the
site rentals are determined when the deployment locations are selected. The dynamic cost mainly comes from the energy
consumption of edge servers’ processors. Notice that the static cost and dynamic cost have different dimensional units. In
order to solve this problem, we assume that the economic life of an MEC platform is 3 years. We use the unit cost of the
system as the cost metric in this article.

Let Cs denote the static cost of the system. We have

Cs = (1 + 𝜔)cp

n∑
i=1

mi, (8)

where cp denotes the price of the processor with speed s (measured in CNY) and 𝜔 denotes the ratio coefficient of main-
tenance and utility costs (i.e., the maintenance and utility costs are linearly related to the sizes of edge servers). Thus, the
static unit cost of the system is

Cs = (1 + 𝜔)cp

n∑
i=1

mi ⋅
1
𝜅
, (9)

where 𝜅 = 94,608, 000 is a constant (3 years ⋅ 365 days ⋅ 24 h ⋅ 60 min ⋅ 60 s) denotes the total number of seconds in 3 years.
The processor power consumption mainly consists of three parts, namely, dynamic, static, and short-circuits power

dissipation. The dynamic power consumption is the dominant component and can be approximated as

Pd = aCesVp
2fp,

where a is an activity factor, Ces, V p, and f p are the effective switching capacitance, supply voltage, and clock frequency
of the processor, respectively.39 For the processor speed s, we have s∝ f p. Since Pd ∝ f 𝛼p where 𝛼 is approximately equal to
3,40 we use s𝛼 to denote the dynamic power consumption of the processor with speed s for ease of discussion. Notice that
we set 𝛼 = 3 in all numerical examples in this article.

In addition, the dynamic power consumption of processor is related to its working model. According to some existing
research,26,41,42 processors generally have two working modes namely, the idle-speed model and the constant-speed model.
When there is no task to execute, the processor speed is zero for the idle-speed model, but is s for the constant-speed
model. Since the processor type/working model that the service provider intend to use are uncertain, we use the two types
of core speed models in this article to improve the applicability of our strategy.

Based on Equation (1), we formulate the average power consumption of a processor with speed s (measured in
watts/second) as

Pi = mi(𝜌is𝛼 + P∗) = 𝜆irs𝛼−1 + miP∗, (10)

for the idle-speed model and as

Pi = mi(s𝛼 + P∗), (11)

for the constant-speed model, where P* denotes the basic power of the processor with speed s (including static and
short-circuits power dissipation). Notice that the processor speed in Equation (10) is zero when the processor is idle, since
s𝛼 is multiplied by the utilization of Si. Hence, we can get the dynamic unit cost of the system as

Cd = ce

n∑
i=1

Pi, (12)



1876 HE et al.

where ce expresses the price of electricity per watt per second (measured in CNY). According to the above discussion, we
can get the unit cost of the system (measured in CNY per second) as

C = Cs + Cd = (1 + 𝜔)cp

n∑
i=1

mi ⋅
1
𝜅
+ ce

n∑
i=1

Pi. (13)

By straightforward algebraic manipulation, we get

C =
n∑

i=1

( (1 + 𝜔)micp

𝜅
+
(
𝜆irs𝛼−1 + miP∗) ce

)
=

n∑
i=1

mi ⋅
( (1 + 𝜔)cp

𝜅
+ ceP∗

)
+ 𝜆rs𝛼−1ce, (14)

for the idle-speed model and

C =
n∑

i=1

( (1 + 𝜔)micp

𝜅
+ mi (s𝛼 + P∗) ce

)
=

n∑
i=1

mi ⋅
( (1 + 𝜔)cp

𝜅
+ (s𝛼 + P∗) ce

)
, (15)

for the constant-speed model, where 𝜆 = 𝜆1 + 𝜆2 + … + 𝜆n denotes the total task arrival rate of the system. Notice that
Equations (14) and (15) is actually the functions of server sizes m1, m2, … , mn, that is, C (m1,m2, … ,mn).

The mathematical notation that will be used throughout the following sections are shown in Table 2.

Symbol Definition

n Number of edge servers

S1, S2, … , Sn Edge servers

mi Number of processors configured on Si

s Processor speed

𝜆i Arrival rate of offloadable tasks to Si

𝜆 Total task arrival rate of the system

r Average task size

x = r∕s Average task execution time of processors

𝜇 = 1∕x Average service rate

𝜌i = 𝜆ix∕mi Utilization of Si, where 𝜌i < 1, for all 1≤ i≤n

pi, k Probability that Si has k tasks

Pq, i Probability of queueing for Si

Ni Average number of tasks in Si

Ti Average task response time of Si

T 𝜆1
𝜆

T1 +
𝜆2
𝜆

T2 + … 𝜆n
𝜆

Tn.

cp Price of the processor with speed s

ce Price of electricity per watt per second

𝜔 Ratio coefficient of maintenance and utility costs

P* Basic power of the processor

𝜅 94,608,000

C Unit cost of the system

C̃ System unit cost constraint

T̃ Average response time constraint

T A B L E 2 Mathematical notations
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4 OUR SOLUTIONS

In this section, we formulate the two optimization problems and develop a numerical method and a series of algorithms
to solve each problem.

4.1 Cost constrained performance optimization

In this section, we solve the problem of cost constrained performance optimization, that is, to minimize

T (m1,m2, … ,mn) =
n∑

i=1

𝜆i

𝜆
Ti =

𝜆1

𝜆
T1 +

𝜆2

𝜆
T2 + … + 𝜆n

𝜆
Tn

(which represents the weighted mean of the task response time of all edge servers), subject to the constraints 𝜌i < 1 (since
the load of each edge server must not exceed its capacity), for all 1≤ i≤n, that is, mi > 𝜆ix = 𝜆ir∕s; and C = C̃ (which
represents the investment cost must be close to the given cost constraint).

In order to facilitate the derivation, we make a simple transformation of Equations (14) and (15), and use a new
function G (m1,m2, … ,mn) to represent C = C̃, namely,

G (m1,m2, … ,mn) =
n∑

i=1
mi =

C̃ − 𝜆rs𝛼−1ce
(1+𝜔)cp

𝜅
+ ceP∗

, (16)

for the idle-speed model, and

G (m1,m2, … ,mn) =
n∑

i=1
mi =

C̃
(1+𝜔)cp

𝜅
+ (s𝛼 + P∗) ce

, (17)

for the constant-speed model.
We utilize the Lagrange multiplier method to solve this optimization problem. However, this method views the server

sizes m1, m2, … , mn, as a series of continuous values, but the number of processors can only be a positive integer. We will
discuss how to solve this problem in the algorithm design, and temporarily treat the server size as a continuous variable.

Using the Lagrange multiplier method, we derive the Lagrange function of the optimization problem as

∇T (m1,m2, … ,mn) = 𝜙∇G (m1,m2, … ,mn) ,

that is, n equations

𝜕T (m1,m2, … ,mn)
𝜕mi

= 𝜙
𝜕G (m1,m2, … ,mn)

𝜕mi
,

for all 1≤ i≤n, where 𝜙 is a Lagrange multiplier. Based on Equations (7), (16), and (17), we have

𝜕T
𝜕mi

= 𝜆i

𝜆
⋅
𝜕Ti

𝜕mi
= 𝜙, (18)

for all 1≤ i≤n. Notice that the above 𝜕G/𝜕mi = 1, which is the same for both the idle-speed model and the constant-speed
model.

We directly use the result from a previous work,43 that is,

𝜕Ti

𝜕mi
= − r

s
⋅

√
2𝜋mi (1 − 𝜌i)

(
e𝜌i

e𝜌i

)mi
(

𝜌i+3
2

− mi (1 − 𝜌i) ln 𝜌i

)
+ 1

mi2(1 − 𝜌i)2
(√

2𝜋mi (1 − 𝜌i)
(

e𝜌i

e𝜌i

)mi
+ 1

)2 (19)
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(In order to ensure the readability of this article, we provide the detailed derivation of the above equation in
the Appendix).

Based on Equations (18) and (19), we can get

𝜕T
𝜕mi

= −𝜆ir
𝜆s

⋅

√
2𝜋mi (1 − 𝜌i)

(
e𝜌i

e𝜌i

)mi
(

𝜌i+3
2

− mi (1 − 𝜌i) ln 𝜌i

)
+ 1

mi2(1 − 𝜌i)2
(√

2𝜋mi (1 − 𝜌i)
(

e𝜌i

e𝜌i

)mi
+ 1

)2 = 𝜙. (20)

It suffices to show that T is a descending function of mi (i.e., 𝜕T/𝜕mi < 0), since each part of Equation (20) is positive
except for the minus sign at the beginning, that is, 𝜆ir∕𝜆s > 0,

√
2𝜋mi (1 − 𝜌i) > 0, (e𝜌i∕e𝜌i)mi > 0, (𝜌i + 3) ∕2 > 0, and

−mi (1 − 𝜌i) ln 𝜌i > 0, where 𝜌i < 1 (i.e., 1 − 𝜌i > 0 and ln 𝜌i < 0).
In addition, based on Equations (14) and (15), it is clear that C is an increasing function of mi. Therefore, with the

increase of mi, the performance of the system will improve, but the investment cost will increase.
Notice that Equation (20) is actually a function of mi, namely, 𝜙 (mi). It is difficult to get the inverse function of 𝜙 (mi).

However, from our observations, we find that T is a convex function of mi and 𝜙 (mi) is an increasing function of mi, since
the growth rate of the numerator is lower than that of the denominator in Equation (20), and 𝜕T/𝜕mi < 0.

To further illustrate the above observations, we take the second partial derivative 𝜕2T∕𝜕mi
2, that is,

𝜕2T
𝜕mi2

= −𝜆ir
𝜆s

(
2Fi

𝜕Fi

𝜕mi
Qi + Fi

2 𝜕Qi

𝜕mi

)
, (21)

where

Qi =
√

2𝜋mi (1 − 𝜌i)Hi

(
𝜌i + 3

2
− mi (1 − 𝜌i) ln 𝜌i

)
+ 1. (22)

Since

𝜕Fi

𝜕mi
= −Fi

2Qi,

Equation (21) can rewrite as

𝜕2T
𝜕mi2 = −𝜆ir

𝜆s

(
−2Fi

3Qi
2 + Fi

2 𝜕Qi

𝜕mi

)
. (23)

It is clear that

𝜕Qi

𝜕mi
=
√

𝜋

2mi
(1 − 𝜌i)Hi

(
𝜌i + 3

2
− mi (1 − 𝜌i) ln 𝜌i

)
+

√
2𝜋mi𝜌i

mi
Hi

(
𝜌i + 3

2
− mi (1 − 𝜌i) ln 𝜌i

)
− Hi ln 𝜌i ⋅

√
2𝜋mi (1 − 𝜌i)

(
𝜌i + 3

2
− mi (1 − 𝜌i) ln 𝜌i

)
+
(

1 − ln 𝜌i −
𝜌i (2mi + 1)

2mi

)√
2𝜋mi (1 − 𝜌i)Hi. (24)

In fact, 𝜕2T∕𝜕mi
2 is a function of mi. However, it is difficult to analyze the positive–negative of 𝜕2T∕𝜕mi

2 based on
mathematical derivation. Therefore, we assign 2.0 to 𝜆1, 4.0 to 𝜆2, … , 10.0 to 𝜆5, respectively, that is, 𝜆 = 30, and then
obtain the corresponding 𝜕2T∕𝜕mi

2 in the range of mi from
⌈
𝜆ir∕s

⌉
(since mi > 𝜆ir∕s) to 50. By drawing the points on the

coordinate axis, we get Figure 2. We can observe that 𝜕2T∕𝜕mi
2 approaches gradually to 0 from a positive value, with the

increases of mi. It is consistent with our previous observations.
Since it is difficult to obtain a closed-form solution for the optimization problem, in this section, we propose a

numerical solution based on the bisection algorithm to search 𝜙 and mi within a certain range, respectively.
From Equation (1), we get mi > 𝜆ir∕s for all 1≤ i≤n. Thus, the lower bound of mi is

lbi =
⌈
𝜆ir∕s

⌉
.



HE et al. 1879

F I G U R E 2 Several examples of
𝜕2T∕𝜕mi

2

Since 𝜙 (mi) is an increasing function of mi, let lbmax denote the maximum of lbi, that is,

lbmax = max
1≤i≤n

(lbi) ,

based on Equation (20), we obtain the lower bound of 𝜙 as

lb𝜙 = 𝜙 (lbmax) .

The upper bound of mi (namely, ubi) and the upper bound of 𝜙 (namely, ub𝜙) can be obtained by doubling the
corresponding lower bound repeatedly until C > C̃.

Summarizing the above discussion, given n, 𝜆i, s, r, cp, ce,𝜔, P*, and C̃, our algorithms for finding the optimal processor
configuration m1, m2, … , mn to minimize the average response time of the system with the given cost constraint C̃ can
be described by Algorithms 1–4.

Algorithm 1 describes the steps that find the lower bound of 𝜙, that is, lb𝜙, and provides a basis for the subsequent
algorithms.

Algorithm 1. Find lb𝜙

1: Input: n, 𝜆1, 𝜆2, · · · , 𝜆n, s, r̄.
2: Output: lb𝜙.
3: lb𝜙, lbmax ← 0; 𝜆 ← 𝜆1 + 𝜆2 + · · · + 𝜆n; //Initialize the parameters
4: for i in range(n): //Find the maximum of lbi, for all 1 ≤ i ≤ n
5: lbi ← ⌈𝜆ir̄∕s⌉;
6: if lbi>lbmax:
7: lbmax ← lbi;
8: end if
9: end for

10: lb𝜙 ← 𝜙 (lbmax); //This value is calculated by Eq. (20), where mi ← lbmax
11: return lb𝜙. //Return the lower bound of 𝜙
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Algorithm 2. Find mi with 𝜙

1: Input: 𝜆i, s, r̄, 𝜙.
2: Output: mi.
3: 𝜀 ← a very small quantity; lbi,ubi ← ⌈𝜆ir̄∕s⌉; //Initialize 𝜀, lbi, and ubi
4: while 𝜙 (ubi)<𝜙: //The value of 𝜙 (ubi) is calculated by Eq. (20), where mi ← ubi
5: ubi ← 2ubi; //Find the upper bound of mi by doubling itself until the calculated value of 𝜙 is greater than the given

value
6: end while
7: while ubi − lbi>𝜀: //Search mi in

[
lbi,ubi

]
through the bisection algorithm

8: mid ← (lbi + ubi) ∕2;
9: if 𝜙 (mid)<𝜙: //The value of 𝜙 (mid) is calculated by Eq. (20), where mi ← mid

10: lbi ← mid;
11: else:
12: ubi ← mid;
13: end if
14: end while
15: mi ← (lbi + ubi) ∕2;
16: return mi. //Return the processor number of Si when 𝜙 is given

Algorithm 3. Find_config_with_cost_constraint

1: Input: C̃,n, 𝜆1, 𝜆2, · · · , 𝜆n, s, r̄, cp, ce, 𝜔,P∗, idle. //The idle is a Boolean representing the working model of the
processor

2: Output: m1,m2, · · · ,mn. //A server configuration scheme with a set of continuous values
3: 𝜀 ← a very small quantity; lb𝜙, 𝜙 ← Find_lb𝜙(n, 𝜆1, 𝜆2, · · · , 𝜆n, s, r̄); C̄ ← 0; //Initialize the parameters
4: while C̄<C̃: //Find the upper bound of 𝜙 by doubling itself until system unit cost exceeds the given cost constraint
5: 𝜙 ← 𝜙∕2; //Since 𝜙<0, the doubling operation is actually a division by 2.
6: for i in range(n):
7: mi ← Find_mi_with_𝜙(𝜆i, s, r̄, 𝜙);
8: end for
9: C̄ ← idle ? the value calculated by Eq. (14) ∶ the value calculated by Eq. (15);

10: end while
11: ub𝜙 ← 𝜙;
12: while ub𝜙 − lb𝜙>𝜀: //Search 𝜙 in [lb𝜙,ub𝜙] through the bisection algorithm
13: mid ←

(
lb𝜙 + ub𝜙

)
∕2;

14: for i in range(n): //Obtain the server configuration scheme according to the new value of 𝜙 (i.e., mid)
15: mi ← Find_mi_with_𝜙(𝜆i, s, r̄,mid);
16: end for
17: C̄ ← idle ? the value calculated by Eq. (14) ∶ the value calculated by Eq. (15);
18: if C̄>C̃:
19: ub𝜙 ← mid;
20: else:
21: lb𝜙 ← mid;
22: end if
23: end while
24: 𝜙 ←

(
lb𝜙 + ub𝜙

)
∕2;

25: for i in range(n): //Obtain the server configuration scheme according to the determined 𝜙

26: mi ← Find_mi_with_𝜙(𝜆i, s, r̄, 𝜙);
27: end for
28: return m1,m2, · · · ,mn.



HE et al. 1881

Algorithm 4. Discretize_config_and_Calculate_T

1: Input: m1,m2, · · · ,mn, C̃,n, 𝜆1, 𝜆2, · · · , 𝜆n, s, r̄, cp, ce, 𝜔,P∗, idle.
2: Output: m1,m2, · · · ,mn. //The final server configuration scheme
3: 𝜆 ← 𝜆1 + 𝜆2 + · · · + 𝜆n; //Initialize the parameters
4: for i in range(n):
5: mi ← ⌊mi⌋;
6: end for
7: do: //Get the final configuration
8: mi ← Sort_by_Ti_desc(m1,m2, · · · ,mn)[0]; //The value of Ti is calculated by Eq. (A7)
9: mi ← mi + 1;

10: C̄ ← idle ? the value calculated by Eq. (14) ∶ the value calculated by Eq. (15);
11: while C̄<C̃ //Increase the number of processors system unit cost exceeds the given cost constraint
12: T ← 𝜆1

𝜆
T1 +

𝜆2
𝜆

T2 + · · · + 𝜆n
𝜆

Tn; //The value of Ti is calculated by Eq. (A7)
13: return m1,m2, · · · ,mn, and T.

Algorithm 2 describes the details regarding how to find mi for Si (i.e., the processor number of Si) through the bisection
algorithm (lines 7–15) according to 𝜙. In the algorithm, we obtain lbi by lbi =

⌈
𝜆ir∕s

⌉
(line 3), and get ubi by doubling

itself until 𝜙 (ubi) > 𝜙 (lines 4–6).
The details regarding how to find the server configuration scheme to optimize performance with the given cost con-

straint are described in Algorithm 3. The process of finding the lower and upper bounds of 𝜙 is described by lines 3–11.
We obtain ub𝜙 by doubling itself until C > C̃ (i.e., we obtain the upper bound of 𝜙 by doubling itself until system unit
cost exceeds the given cost constraint). The algorithm searches for 𝜙 in an interval [lb𝜙,ub𝜙] by using bisection algorithm
(lines 12–24), and gets the processor configuration by lines 25–28. It should be noted that the conditional operator “?” in
lines 9 and 17 calculates system unit cost based on the value of idle, since the energy consumption of processors is dif-
ferent under the two different working models. When idle is true, the processor working model supports the idle-speed
model, otherwise only the constant-speed model is supported.

Notice that the output of Algorithm 3 is a set of continuous values, that is, a set of decimals. Such a result is not achiev-
able in application environment. Therefore, we provide Algorithm 4 to discretize the configuration further. Basically, the
main idea of the algorithm is to round down m1, m2, … , mn (lines 4–6, the cost will be decreased and the response time
will be increased), and then increase the number of processors on the edge server with the highest task response time
repeatedly until C > C̃ (lines 7–11). Sort_by_Ti_desc(m1, m2, … , mn) is a sorting function (line 8) that calculates the task
response time of each edge server Ti according to mi and sorts in descending order.

4.2 Performance constrained cost optimization

In this section, we solve the problem of performance constrained cost optimization, that is, to minimize

C =
n∑

i=1
mi ⋅

( (1 + 𝜔)cp

𝜅
+ ceP∗

)
+ 𝜆rs𝛼−1ce,

for the idle-speed model (which represents the unit cost of MEC system when the processors support the idle-speed
model), and

C =
n∑

i=1
mi ⋅

( (1 + 𝜔)cp

𝜅
+ (s𝛼 + P∗) ce

)
,

for the constant-speed model (which represents the unit cost of MEC system when the processors only support the
constant-speed model), subject to the constraints 𝜌i < 1 (since the load of each edge server must not exceed its capacity),
for all 1≤ i≤n, that is, mi > 𝜆ix = 𝜆ir∕s; and T = T̃ (which represents the system performance must be close to the given
performance constraint).
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In order to facilitate the derivation, we use a new function J (m1,m2, … ,mn) to represent T = T̃, namely,

J (m1,m2, … ,mn) =
𝜆1

𝜆
T1 +

𝜆2

𝜆
T2 + … + 𝜆n

𝜆
Tn − T̃.

We also use the method of Lagrange multiplier to solve this optimization problem, we have

∇C (m1,m2, … ,mn) = 𝜂∇J (m1,m2, … ,mn) ,

that is, n equations

𝜕C (m1,m2, … ,mn)
𝜕mi

= 𝜂
𝜕J (m1,m2, … ,mn)

𝜕mi
,

for all 1≤ i≤n, where 𝜂 is a Lagrange multiplier. Taking the partial derivative 𝜕C∕𝜕mi, we obtain

𝜕C
𝜕mi

=
(1 + 𝜔)cp

𝜅
+ ceP∗, (25)

for the idle-speed model, and

𝜕C
𝜕mi

=
(1 + 𝜔)cp

𝜅
+ (s𝛼 + P∗) ce, (26)

for the constant-speed model. Taking the partial derivative 𝜕J/𝜕mi, we get

𝜕J
𝜕mi

= 𝜆i

𝜆
⋅
𝜕Ti

𝜕mi
= 𝜕T

𝜕mi
. (27)

Based on Equations (20), (25), (26), and (27), we have

(1+𝜔)cp

𝜅
+ ceP∗

𝜂
= −𝜆ir

𝜆s
⋅

√
2𝜋mi (1 − 𝜌i)

(
e𝜌i

e𝜌i

)mi
(

𝜌i+3
2

− mi (1 − 𝜌i) ln 𝜌i

)
+ 1

mi2(1 − 𝜌i)2
(√

2𝜋mi (1 − 𝜌i)
(

e𝜌i

e𝜌i

)mi
+ 1

)2 , (28)

for the idle-speed model, and

(1+𝜔)cp

𝜅
+ (s𝛼 + P∗) ce

𝜂
= −𝜆ir

𝜆s
⋅

√
2𝜋mi (1 − 𝜌i)

(
e𝜌i

e𝜌i

)mi
(

𝜌i+3
2

− mi (1 − 𝜌i) ln 𝜌i

)
+ 1

mi2(1 − 𝜌i)2
(√

2𝜋mi (1 − 𝜌i)
(

e𝜌i

e𝜌i

)mi
+ 1

)2 , (29)

for the constant-speed model. Notice that Equations (28) and (29) are the functions of mi.
Let us rewrite Equation (28) as

𝜂 =
( (1 + 𝜔)cp

𝜅
+ ceP∗

)⎛⎜⎜⎜⎝−
𝜆ir
𝜆s

⋅

√
2𝜋mi (1 − 𝜌i)

(
e𝜌i

e𝜌i

)mi
(

𝜌i+3
2

− mi (1 − 𝜌i) ln 𝜌i

)
+ 1

mi2(1 − 𝜌i)2
(√

2𝜋mi (1 − 𝜌i)
(

e𝜌i

e𝜌i

)mi
+ 1

)2

⎞⎟⎟⎟⎠
−1

, (30)

namely, 𝜂idle (mi). Also, Equation (29) becomes

𝜂 =
( (1 + 𝜔)cp

𝜅
+ (s𝛼 + P∗) ce

)⎛⎜⎜⎜⎝−
𝜆ir
𝜆s

⋅

√
2𝜋mi (1 − 𝜌i)

(
e𝜌i

e𝜌i

)mi
(

𝜌i+3
2

− mi (1 − 𝜌i) ln 𝜌i

)
+ 1

mi2(1 − 𝜌i)2
(√

2𝜋mi (1 − 𝜌i)
(

e𝜌i

e𝜌i

)mi
+ 1

)2

⎞⎟⎟⎟⎠
−1

, (31)



HE et al. 1883

namely, 𝜂constant (mi). According to our analysis in Section 4.1, it is clear that 𝜂idle (mi) and 𝜂constant (mi) are decreasing
functions of mi.

Similarly, we use the bisection algorithm to search 𝜂 and mi within a certain range to obtain a numerical solution.
Since the lower bound of mi is

lbi =
⌈
𝜆ir∕s

⌉
,

we get the upper bound of 𝜂 is

ub𝜂 =

{
𝜂idle (lbmax) , the idle-speed model;
𝜂constant (lbmax) , the constant-speed model;

where

lbmax = max
1≤i≤n

(lbi) .

The lower bound of 𝜂 (namely, lb𝜂) can be obtained by halving ub𝜂 repeatedly until T < T̃, since T is a descending function
of mi.

Summarizing the above discussion, given n, 𝜆i, s, r, cp, ce,𝜔, P*, and T̃, our algorithms for finding the optimal processor
configuration m1, m2, … , mn to minimize the unit cost of the system with the performance constraint T̃ can be described
by Algorithms 5–8.

Algorithm 5 describes the steps that find the upper bound of 𝜂, that is, ub𝜂 , and provides a basis for the subsequent
algorithms. We also use the Boolean idle to distinguish the two working modes of the processors (line 11), and calculate
the upper bound of 𝜂 through conditional operator.

Algorithm 6 describes the details regarding how to find mi for Si (i.e., the processor number of Si) through the bisection
algorithm (lines 9–19) according to 𝜂. In the algorithm, we obtain lbi by lbi =

⌈
𝜆ir∕s

⌉
(line 3), and get ubi by doubling

itself until 𝜂cal < 𝜂 (lines 4–8) (i.e., find the upper bound of mi by doubling itself until the calculated value of 𝜂 is less than
the given value).

The details regarding how to find the server configuration scheme to optimize cost with the given performance con-
straint are described in Algorithm 7. The process of finding the lower and upper bounds of 𝜂 is described by lines 4–12.
We obtain lb𝜂 by halving itself until T < T̃ (i.e., we obtain the lower bound of 𝜂 by halving itself until system performance
meets the performance constraint). The algorithm searches for 𝜂 in an interval [lb𝜂,ub𝜂] by using bisection algorithm
(lines 13–25), and gets the processor configuration by lines 26–29.

Algorithm 8 describes the steps that get the final configuration. The main idea of Algorithm 8 is to round up
m1, m2, … , mn (lines 4–6, the cost will be increased and the response time will be decreased), and then decrease
the number of processors on the edge server with the lowest task response time repeatedly until T > T̃ (lines 7–11).

Algorithm 5. Find ub𝜂

1: Input: n, 𝜆1, 𝜆2, · · · , 𝜆n, s, r̄, cp, ce, 𝜔,P∗, idle.
2: Output: ub𝜂 .
3: ub𝜂, lbmax ← 0; 𝜆 ← 𝜆1 + 𝜆2 + · · · + 𝜆n; //Initialize the parameters
4: for i in range(n): //Find the maximum of lbi, for all 1 ≤ i ≤ n
5: lbi ← ⌈𝜆ir̄∕s⌉;
6: if lbi>lbmax:
7: lbmax ← lbi;
8: end if
9: end for

10: //The values of 𝜂idle (lbmax) and 𝜂constant (lbmax) are calculated by Eqs. (30) and (31), respectively, where mi ← lbmax
11: ub𝜂 ← idle ? 𝜂idle (lbmax) ∶ 𝜂constant (lbmax);
12: return ub𝜂 . //Return the upper bound of 𝜂
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Algorithm 6. Find mi with 𝜂

1: Input: 𝜆i, s, r̄, cp, ce, 𝜔,P∗, 𝜂, idle.
2: Output: mi.
3: 𝜀 ← a very small quantity; lbi,ubi ← ⌈𝜆ir̄∕s⌉ //Initialize 𝜀, lbi, and ubi
4: do:
5: ubi ← 2ubi;
6: //The values of 𝜂idle (ubi) and 𝜂constant (ubi) are calculated by Eqs. (30) and (31), respectively, where mi ← ubi
7: 𝜂cal ← idle ? 𝜂idle (ubi) ∶ 𝜂constant (ubi)
8: while 𝜂cal>𝜂 //Find the upper bound of mi by doubling itself until the calculated value of 𝜂 is less than the given value
9: while ubi − lbi>𝜀: //Search mi in

[
lbi,ubi

]
through the bisection algorithm

10: mid ← (lbi + ubi) ∕2;
11: //The values of 𝜂idle (mid) and 𝜂constant (mid) are calculated by Eqs. (30) and (31), respectively, where mi ← mid
12: 𝜂cal ← idle ? 𝜂idle (mid) ∶ 𝜂constant (mid)
13: if 𝜂cal>𝜂:
14: lbi ← mid;
15: else:
16: ubi ← mid;
17: end if
18: end while
19: mi ← (lbi + ubi) ∕2;
20: return mi. //Return the processor number of Si when 𝜂 is given

Sort_by_Ti(m1, m2, … , mn) is also a sorting function (line 8) that calculates the task response time of each edge server
according to mi and sorts in ascending order. The expression Sort_by_Ti(m1, m2, … , mn)[0] is refers to taking the first
element after sorting, that is, obtaining the edge server with the best performance per cycle, and reducing its number of
processors by one (lines 8–9).

4.3 Processor selection

In this section, we extend these two problems to the case where the service provider has multiple types of processors
provided by different hardware suppliers for selection before constructing the MEC system, that is, each type of processor
has different speed, price, and basic power. We give Algorithm 9 to solve the problem.

Let x denote the number of selectable processor types. Then, we use s1, s2, … sx; c1
p, c2

p, … , cx
p; and P∗

1 ,P∗
2 , … ,P∗

x ; rep-
resenting the speeds, prices, and basic powers of processors with different types, respectively. The outline of our algorithm
can be described as follows:

• Firstly, for each type of processor, we can use the algorithms of performance constrained cost optimization or the
algorithms of cost constrained performance optimization to obtain an optical processor configuration scheme;

• Secondly, for the optimal configuration of each type of processor, we can calculate the average task response time and
unit cost of the system, correspondingly;

• Finally, we can determine the processor type with the highest performance or the lowest unit cost according to these
performance and cost metrics.

Specifically, we use a boolean parameter op_performance to control the algorithm outputs, that is, the algorithm out-
puts the processor type and configuration with the best performance under the given cost constraint when op_performance
is true, and the algorithm outputs the processor type and configuration with the lowest cost under the given per-
formance constraint when op_performance is false. Ti and C

i
represent the average task response time and the unit

cost of the system, respectively, after using the ith type of processor. The expressions Sort_Ti(T1, T2, … , Tx)[0] and
Sort C

i
(C

1
,C

2
, … ,C

x
)[0] refer to sorting the input parameters and returning the index of the first element.
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Algorithm 7. Find_config_with_performance_constraint

1: Input: T̃,n, 𝜆1, 𝜆2, · · · , 𝜆n, s, r̄, cp, ce, 𝜔,P∗, idle. //The idle is a Boolean representing the working model of the
processor

2: Output: m1,m2, · · · ,mn. //A server configuration scheme with a set of continuous values
3: //Initialize the parameters
4: 𝜀 ← a very small quantity; ub𝜂, 𝜂 ← Find_ub𝜂(n, 𝜆1, 𝜆2, · · · , 𝜆n, s, r̄, cp, ce, 𝜔,P∗, idle); T ← a very big quantity;
5: while T>T̃: //Find the lower bound of 𝜂 by halving itself until system performance meets the performance constraint
6: 𝜂 ← 2𝜂; //Since 𝜂<0, the halving operation is actually a multiplication by 2.
7: for i in range(n):
8: mi ← Find_mi_with_𝜂(𝜆i, s, r̄, cp, ce, 𝜔,P∗, 𝜂, idle);
9: end for

10: T ← 𝜆1
𝜆

T1 +
𝜆2
𝜆

T2 + · · · + 𝜆n
𝜆

Tn; //The value of Ti is calculated by Eq. (A7)
11: end while
12: lb𝜂 ← 𝜂;
13: while ub𝜂 − lb𝜂>𝜀: //Search 𝜂 in [lb𝜂,ub𝜂] through the bisection algorithm
14: mid ←

(
lb𝜂 + ub𝜂

)
∕2;

15: for i in range(n): //Obtain the server configuration scheme according to the new value of 𝜂 (i.e., mid)
16: mi ← Find_mi_with_𝜂(𝜆i, s, r̄, cp, ce, 𝜔,P∗,mid, idle);
17: end for
18: T ← 𝜆1

𝜆
T1 +

𝜆2
𝜆

T2 + · · · + 𝜆n
𝜆

Tn; //The value of Ti is calculated by Eq. (A7)
19: if T>T̃:
20: ub𝜂 ← mid;
21: else:
22: lb𝜂 ← mid;
23: end if
24: end while
25: 𝜂 ←

(
lb𝜂 + ub𝜂

)
∕2;

26: for i in range(n): //Obtain the server configuration scheme according to the determined 𝜂

27: mi ← Find_mi_with_𝜂(𝜆i, s, r̄, cp, ce, 𝜔,P∗, 𝜂, idle);
28: end for
29: return m1,m2, · · · ,mn.

Algorithm 8. Discretize config and Calculate C

1: Input: m1,m2, · · · ,mn, T̃,n, 𝜆1, 𝜆2, · · · , 𝜆n, s, r̄, cp, ce, 𝜔,P∗, idle.
2: Output: m1,m2, · · · ,mn. //The final server configuration scheme
3: 𝜆 ← 𝜆1 + 𝜆2 + · · · + 𝜆n; //Initialize the parameters
4: for i in range(n):
5: mi ← ⌈mi⌉;
6: end for
7: do: //Get the final configuration
8: mi ← Sort_by_Ti(m1,m2, · · · ,mn)[0]; //The value of Ti is calculated by Eq. (A7)
9: mi ← mi − 1;

10: T ← 𝜆1
𝜆

T1 +
𝜆2
𝜆

T2 + · · · + 𝜆n
𝜆

Tn; //The value of Ti is calculated by Eq. (A7)
11: while T<T̃
12: C̄ ← idle ? the value calculated by Eq. (14) ∶ the value calculated by Eq. (15);
13: return m1,m2, · · · ,mn, and C̄.
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Algorithm 9. Processor_selection

1: Input:
2: C̃, T̃, n, 𝜆1, 𝜆2, · · · , 𝜆n, r̄, ce, 𝜔, idle, op_performance, x, s1, s2, · · · sx, c1

p, c2
p, · · · , cx

p, P∗
1 ,P∗

2 , · · · ,P∗
x ;

3: Output:
4: index; //The selected processor type (1 ≤ index ≤ x)
5: m1,m2, · · · ,mn. //The server configuration scheme with the selected processor
6: 𝜆 ← 𝜆1 + 𝜆2 + · · · + 𝜆n; //Initialize the parameters
7: for i in range(x):
8: if op_performance:
9: m1,m2, · · · ,mn ← Algorithm 3; //With si, ci

p, P∗
i

10: m1,m2, · · · ,mn ← Algorithm 4; //With si, ci
p, P∗

i
11: Ti ← 𝜆1

𝜆
T1 +

𝜆2
𝜆

T2 + · · · + 𝜆n
𝜆

Tn; //The value of Ti is calculated by Eq. (A7)
12: else:
13: m1,m2, · · · ,mn ← Algorithm 7; //With si, ci

p, P∗
i

14: m1,m2, · · · ,mn ← Algorithm 8; //With si, ci
p, P∗

i
15: C̄i ← idle ? the value calculated by Eq. (14) ∶ the value calculated by Eq. (15);
16: end if
17: end for
18: index ← op_performance ? Sort_Ti(T1,T2, · · · ,Tx)[0] ∶ Sort_C̄i(C̄1, C̄2, · · · , C̄x)[0];
19: return index, m1,m2, · · · ,mn.

5 NUMERICAL EXAMPLES

In this section, we illustrate some numerical examples to show the effectiveness of algorithms proposed above. Notice
that all the parameters used in the examples are for illustrative purposes only, and they can be changed to any other actual
values. Since our parameters have specific physical meanings and can be obtained through statistical methods. Therefore,
our strategy has guiding significance for actual implementation.

5.1 The parameters

Let us consider an example scenario from the perspective of a service provider that we need to deploy edge servers in 20
selected mobile base stations to build an MEC system. We mainly consider two critical constraints, that is, the unit cost
of the system needs to be close to 0.004 CNY per second, and the average task response time of the system needs to be
close to 1.01 s. In addition, an important factor we consider is that there may be multiple types of processors provided
by different hardware suppliers to choose from before building up an MEC system. Our parameter settings are shown in
Tables 3 and 4.

T A B L E 3 The parameters of an example scenario

Parameters Explanation

C̃ = 0.004 The unit cost of the system needs to be close to 0.004 CNY per second

T̃ = 1.01 The average task response time of the system needs to be close to 1.01 s

n= 20 We have 20 edge servers that need to be deployed in the selected base stations

r = 2 The average task size is two billion instructions.

ce = 0.8/1000/3600 The price of electricity per watt per second (measured in CNY)

𝜔 = 0.3 The ratio coefficient of maintenance and utility costs is 0.3

𝜆1, 𝜆2, … , 𝜆n are a group
of random numbers

The arrival rate of offloadable tasks to edge servers is a set of random numbers from a normal
distribution with mean 15 and standard deviation 6
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T A B L E 4 The parameters of three selectable processors

Processor type Speed Price Basic power Working model

Processor I 2 BIPS 400 CNY 2 W The processor only supports the constant-speed model

Processor II 3 BIPS 700 CNY 3 W The processor supports the idle-speed model

Processor III 3.9 BIPS 900 CNY 6 W The processor supports the idle-speed model

5.2 Examples for minimizing average response time with unit cost constraint

In this section, we respectively show numerical data of server configuration schemes based on the above parameters for
minimizing average response time with unit cost constraint. In the three numerical examples, the task arrival rates of
edge servers are the same.

Tables 5, 6, and 7 respectively illustrate the server configuration scheme of 20 edge servers with Processor I, II, and III.
Through Algorithms 1–3, we obtain the optimal configuration schemes for 20 edge servers that make the system have the
best performance when the unit cost of the system is close to 0.004 CNY per second. However, the number of processors
can only be a positive integer, such configuration schemes cannot be implemented in an actual environment. Through
Algorithm 4, we obtain a set of positive integer results for the processor configuration of edge servers at the cost of a slight
decrease in performance, that is, the average response time changes from 1.000140950 to 1.000148059 s when Processor I
is selected for configuration, from 0.677000832 to 0.677493237 s when Processor II is selected for configuration, and from
0.900150395 to 0.992104602 s when Processor III is selected for configuration. It is reasonable because we considered the

T A B L E 5 Numerical data for minimizing average response time with unit cost constraint (configure with Processor I)

i 𝝀i mi (Algorithm 3) mi (round down m1, m2, … , mn) mi (Algorithm 4)

1 12.49945292 24.50535645 24 25

2 14.66239904 27.56910580 27 27

3 2.18282343 7.81499493 7 9

4 24.84162485 41.28288538 41 41

5 4.23938649 11.69081052 11 12

6 9.94951581 20.78450309 20 21

7 18.01728850 32.19686218 32 32

8 7.52827148 17.09917763 17 18

9 8.65228669 18.83243993 18 19

10 9.54595431 20.18215459 20 20

11 18.30872427 32.59296512 32 32

12 28.75324808 46.34957365 46 46

13 15.24923636 28.38850033 28 28

14 8.29244733 18.28220921 18 19

15 18.23434992 32.49196032 32 32

16 11.42304180 22.95105727 22 23

17 14.88521702 27.88077014 27 28

18 22.05000732 37.60963971 37 37

19 10.51277430 21.61846768 21 22

20 15.05415151 28.11661704 28 28

The unit cost C 0.004 0.003921042 0.004005946

The average task response time T 1.000140950 1.000220429 1.000148059
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T A B L E 6 Numerical data for minimizing average response time with unit cost constraint (configure with Processor II)

i 𝝀i mi (Algorithm 3) mi (round down m1, m2, … , mn) mi (Algorithm 4)
1 12.49945292 13.19975695 13 13

2 14.66239904 15.02722553 15 15

3 2.18282343 3.60478329 3 5

4 24.84162485 23.32746889 23 23

5 4.23938649 5.74844003 5 7

6 9.94951581 10.99902184 10 11

7 18.01728850 17.80884326 17 17

8 7.52827148 8.84476715 8 9

9 8.65228669 9.85433876 9 10

10 9.54595431 10.64500661 10 11

11 18.30872427 18.04796402 18 18

12 28.75324808 26.43037190 26 26

13 15.24923636 15.51800460 15 15

14 8.29244733 9.53310694 9 10

15 18.23434992 17.98697479 17 18

16 11.42304180 12.27771779 12 12

17 14.88521702 15.21380327 15 15

18 22.05000732 21.08855491 21 21

19 10.51277430 11.49026596 11 12

20 15.05415151 15.35507054 15 15
The unit cost C 0.004 0.003897131 0.004010270
The average task response time T 0.677000832 0.682492201 0.677493237

T A B L E 7 Numerical data for minimizing average response time with unit cost constraint (configure with Processor III)

i 𝝀i mi (Algorithm 3) mi (round down m1, m2, … , mn) mi (Algorithm 4)
1 12.49945292 7.09249965 7 7

2 14.66239904 8.25845826 8 8

3 2.18282343 2.00000000 2 2

4 24.84162485 13.70178861 13 14

5 4.23938649 3.00000000 3 3

6 9.94951581 6.00000000 6 6

7 18.01728850 10.05921700 10 10

8 7.52827148 4.39020035 4 5

9 8.65228669 5.00481823 5 5

10 9.54595431 5.49174025 5 6

11 18.30872427 10.21527914 10 10

12 28.75324808 15.78081950 15 16

13 15.24923636 8.57406358 8 9

14 8.29244733 5.00000000 5 5

15 18.23434992 10.17545715 10 10

16 11.42304180 6.51041473 6 7

17 14.88521702 8.37832532 8 8

18 22.05000732 12.21445238 12 12

19 10.51277430 6.01704917 6 6

20 15.05415151 8.46917735 8 8
The unit cost C 0.004 0.003926927 0.004009128
The average task response time T 0.900150395 1.753751666 0.992104602
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performance balance of all edge servers, that is, the computing resources of the edge servers with lower performance are
increased.

Through the data in Tables 5–7, we can observe that when the unit cost constraint is C̃ = 0.004, Processor II is the
best choice, which makes the system have the highest performance, that is, the average response time of all tasks is
0.677493237.

5.3 Examples for minimizing unit cost with average response time constraint

In this section, we respectively show numerical data of server configuration schemes for minimizing unit cost with average
response time constraint. In the following numerical examples, the task arrival rates of edge servers are the same as the
previous section.

Tables 8, 9, and 10 respectively illustrate the server configuration scheme of 20 edge servers with Processor I, II, and III.
Through Algorithms 5–7, we obtain the optimal configuration schemes for 20 edge servers that make the service provider
have the lowest investment cost when the average task response time of the system is close to 1.01 s. Similarly, such
configuration schemes cannot be implemented in an actual environment. Through Algorithm 8, we obtain a set of positive
integer results for the processor configuration of edge servers at the cost of a slight increase in investment cost, that is, the
unit cost of the system changes from 0.003096559 CNY to 0.003102872 CNY when Processor I is selected for configuration,
from 0.00318866 CNY to 0.003208016 CNY when Processor II is selected for configuration, and from 0.003971932 CNY
to 0.003995427 CNY when Processor III is selected for configuration. We also considered the performance balance of all

T A B L E 8 Numerical data for minimizing unit cost with average response time constraint (configure with Processor I)

i 𝝀i mi (Algorithm 7) mi (round up m1, m2, … , mn) mi (Algorithm 8)

1 12.49945292 18.72342979 19 19

2 14.66239904 21.38104858 22 21

3 2.18282343 4.92441938 5 5

4 24.84162485 33.50370378 34 33

5 4.23938649 7.96991813 8 8

6 9.94951581 15.53103398 16 16

7 18.01728850 25.43542011 26 25

8 7.52827148 12.41710829 13 13

9 8.65228669 13.87484029 14 14

10 9.54595431 15.01847436 16 15

11 18.30872427 25.78439593 26 26

12 28.75324808 38.05102575 39 37

13 15.24923636 22.09564394 23 22

14 8.29244733 13.41068489 14 14

15 18.23434992 25.69538139 26 26

16 11.42304180 17.38472873 18 18

17 14.88521702 21.65267309 22 22

18 22.05000732 30.22704434 31 30

19 10.51277430 16.24276115 17 16

20 15.05415151 21.85836685 22 22

The unit cost C 0.003096559 0.003172339 0.003102872

The average task response time T 1.01 1.007343592 1.010059071
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T A B L E 9 Numerical data for minimizing unit cost with average response time constraint (configure with Processor II)

i 𝝀i mi (Algorithm 7) mi (round up m1, m2, … , mn) mi (Algorithm 8)

1 12.49945292 9.28596191 10 9

2 14.66239904 10.80713281 11 11

3 2.18282343 2.00000000 2 2

4 24.84162485 17.90479710 18 18

5 4.23938649 3.38113867 4 4

6 9.94951581 7.48321097 8 8

7 18.01728850 13.15579450 14 13

8 7.52827148 6.00000000 6 6

9 8.65228669 6.56100564 7 7

10 9.54595431 7.19674087 8 7

11 18.30872427 13.35930687 14 13

12 28.75324808 20.61452130 21 21

13 15.24923636 11.21882124 12 11

14 8.29244733 6.30444399 7 7

15 18.23434992 13.30737758 14 13

16 11.42304180 8.52637651 9 9

17 14.88521702 10.96349537 11 11

18 22.05000732 15.96593261 16 16

19 10.51277430 8.00000000 8 8

20 15.05415151 11.08200627 12 11

The unit cost C 0.00318866 0.003280013 0.003208016

The average task response time T 1.01 0.876112985 1.013917482

edge servers in the algorithm, that is, we reduced the number of processors on the edge servers with higher performance
to save cost.

We can observe from Tables 8–10 that when the performance constraint is T̃ = 1.01, Processor I is the best choice,
which makes the system have the lowest cost, that is, the unit cost of the system is 0.003102872.

Observe the numerical data in Sections 5.2 and 5.3, we also get two significant observations as follows:

• Comparing the data in Tables 6 and 7, we find that the average response time of the system has not been reduced
by choosing a faster Processor III. In Table 10, we find that the average task response time of the system signifi-
cantly deviates from the performance constraint when the faster and more expensive Processor III are selected. This
is because increasing or decreasing the number of processors by only one can have a significant impact on overall per-
formance in some areas with higher computation demands. By analyzing the data in Tables 8–10, we find that the
system unit cost has increased due to the selection of Processor II and Processor III which have a higher price and
basic power than Processor I. In some cases, a slower, cheaper processor will yield better configuration because its
impact on overall performance and cost is limited. This also means that the speed of the processor is not the higher
the better.

• In this article, we assume that the sites of edge servers has been determined, which means that base stations with low
task arrival rate also need to deploy at least one edge server. It can be observed that it is inappropriate to deploy edge
servers in base stations with low task arrival rate. How to select the reasonable sites for MEC servers based on compu-
tation demand statistics of different geographies is also an important issue, and we will further solve this problem in
future research.
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T A B L E 10 Numerical data for minimizing unit cost with average response time constraint (configure with Processor III)

i 𝝀i mi (Algorithm 7) mi (round up m1, m2, … , mn) mi (Algorithm 8)

1 12.49945292 7.00000000 7 7

2 14.66239904 8.10973137 9 8

3 2.18282343 2.00000000 2 2

4 24.84162485 13.50819099 14 14

5 4.23938649 3.00000000 3 3

6 9.94951581 6.00000000 6 6

7 18.01728850 10.00000000 10 10

8 7.52827148 4.28362732 5 4

9 8.65228669 5.00000000 5 5

10 9.54595431 5.37173589 6 6

11 18.30872427 10.04908203 11 10

12 28.75324808 15.57253237 16 16

13 15.24923636 8.42238927 9 9

14 8.29244733 5.00000000 5 5

15 18.23434992 10.00959800 11 10

16 11.42304180 6.37914190 7 7

17 14.88521702 8.22847249 9 8

18 22.05000732 12.03205956 13 12

19 10.51277430 6.00000000 6 6

20 15.05415151 8.31847647 9 8

The unit cost C 0.003971932 0.004091328 0.003995427

The average task response time T 1.01 0.758340406 1.072924688

6 CONCLUSION

In this article, we have mentioned the significance of server configuration optimization in MEC. We have reviewed the
existing research and summarized the unique features of our research. From the perspective of cost-performance tradeoff,
we investigated the problem of server configuration optimization based on a given computation demand statistics. Two
optimization problems, including cost constrained performance optimization and performance constrained cost optimiza-
tion, are formulated by our models and solved by a series of fast numerical algorithms (since our algorithms only need to
be used once before system deployment, and can be reused when the environment changes significantly, the cost/energy
of our algorithms are not discussed in this article, and we think it can be ignored to certain extent). By solving the cost con-
strained performance optimization problem, MEC service providers can obtain a processor configuration of edge servers
that can deliver the highest quality of service with a given cost constraint. Service providers of MEC can obtain a processor
configuration of edge servers that can minimize the investment cost (including hardware cost and energy consumption
cost) with a service-quality guarantee by solving the performance constrained cost optimization problem. Finally, we ana-
lyzed and verified our approach based on numerical experiments. Our research results in this article provide theoretical
and practical insights into the configuration of computing resources on edge servers in MEC. In future work we will focus
on the problem on how to select the reasonable sites for MEC servers based on computation demand statistics.
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APPENDIX. DETAILED DERIVATION PROCESS

Let us rewrite Equation (6) as

Ti = x
(

1 +
Pq,i

mi(1 − 𝜌i)

)
= r

s

(
1 + pi,0

mi
mi−1𝜌i

mi

mi!(1 − 𝜌i)2

)
= r

s

(
1 +

pi,mi

mi(1 − 𝜌i)2

)
. (A1)

Notice that Equation (A1) contains the factorial of mi and thus its partial derivative cannot be obtained directly. In
order to take the partial derivative 𝜕Ti/𝜕mi, we use the Stirling’s approximation of mi!,44 that is,

mi! ≈
√

2𝜋mi

(mi

e

)mi
, (A2)

and the following closed-form approximation

mi−1∑
k=0

(mi𝜌i)k

k!
≈ emi𝜌i , (A3)

to obtain a closed-form approximation of pi, 0 as
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pi,0 ≈

(
emi𝜌i + (e𝜌i)mi√

2𝜋mi
⋅

1
1 − 𝜌i

)−1

, (A4)

and a closed-form approximation of pi,mi as

pi,mi ≈

(e𝜌i)mi√
2𝜋mi

emi𝜌i + (e𝜌i)mi√
2𝜋mi

⋅ 1
1−𝜌i

, (A5)

namely,

pi,mi ≈
1 − 𝜌i√

2𝜋mi (1 − 𝜌i)
(

e𝜌i

e𝜌i

)mi
+ 1

. (A6)

Hence, the average task response time of Si can be approximated as

Ti =
r
s

⎛⎜⎜⎜⎝1 + 1

mi(1 − 𝜌i)
(√

2𝜋mi (1 − 𝜌i)
(

e𝜌i

e𝜌i

)mi
+ 1

)⎞⎟⎟⎟⎠ . (A7)

Let us rewrite Ti as

Ti =
r
s
(1 + Fi) , (A8)

where

Fi =
1

mi(1 − 𝜌i)
(√

2𝜋mi (1 − 𝜌i)
(

e𝜌i

e𝜌i

)mi
+ 1

) . (A9)

It is clear that

𝜕Ti

𝜕mi
= r

s
⋅
𝜕Fi

𝜕mi
. (A10)

In order to take the partial derivative 𝜕Fi/𝜕mi, let us rewrite Fi as

Fi =
1

mi(1 − 𝜌i)
(√

2𝜋mi (1 − 𝜌i)Hi + 1
) , (A11)

where

Hi = (e𝜌i∕e𝜌i)mi , (A12)

that is,

Fi =
1√

2𝜋mi3∕2(1 − 𝜌i)2Hi + mi(1 − 𝜌i)
. (A13)

Since

ln Hi = mi ln (e𝜌i∕e𝜌i) = mi (𝜌i − ln 𝜌i − 1) ,
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we get

1
Hi

⋅
𝜕Hi

𝜕mi
= (𝜌i − ln 𝜌i − 1) + mi

(
1 − 1

𝜌i

)
𝜕𝜌i

𝜕mi
. (A14)

Notice that

𝜕𝜌i

𝜕mi
= − 𝜆ix

mi2
= − 𝜌i

mi
, (A15)

then, we have

𝜕Hi

𝜕mi
= −Hi ln 𝜌i. (A16)

Therefore, we get

𝜕Fi

𝜕mi
= −Fi

2
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𝜕

(√
2𝜋mi

3
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𝜌i + 3

2
− mi (1 − 𝜌i) ln 𝜌i

)
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)
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(A17)

Summarizing the above discussion, based on Equations (A10) and (A17), we get

𝜕Ti

𝜕mi
= − r

s
Fi

2
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2𝜋mi (1 − 𝜌i)
(
𝜌i + 3

2
− mi (1 − 𝜌i) ln 𝜌i

)(
e𝜌i

e𝜌i

)mi

+ 1
)
. (A18)


