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Abstract—As an emerging computing paradigm, cloud-edge col-
laborative computing (CECC) combines computing resources at
the back-end and the edge of the network to provide more flexible
service delivery, thus striking a good balance between abundant
computing resources and high responsiveness. However, mobile
devices (MDs) must make strategic offloading decisions in such
an environment. Although existing research has made remarkable
progress in computation offloading strategies, most works ignore
multi-priority settings in complex application scenarios. In this
article, we focus on the impact of multi-priority settings and mixed
queue disciplines on offloading decisions in CECC. First, we uti-
lize queueing models to characterize all computing nodes in the
environment and establish mathematical models to describe the
considered scenario. Second, we formulate offloading decisions of
the target MD into three multi-variable optimization problems
to investigate the cost-performance tradeoff. Third, we propose
numerical algorithms based on the Karush-Kuhn-Tucke conditions
to address these problems. Finally, we construct numerical exam-
ples, a comparative experiment, and a simulation experiment to
demonstrate the effectiveness of our methods. Our work provides
important insights into the optimization of computation offloading
for MDs in complex application scenarios, which can help achieve
a better cost-performance tradeoff in CECC.

Index Terms—Cost-performance tradeoff, cloud-edge
collaborative computing, offloading optimization, queue
disciplines, task priorities.

I. INTRODUCTION

A. Motivation

IN RECENT years, the contradiction between service demand
and resource supply has gradually intensified with the popu-

larization of mobile devices (MDs, e.g., smartphones, wearable

Manuscript received 23 February 2023; revised 7 July 2023; accepted 15 July
2023. Date of publication 18 July 2023; date of current version 13 December
2023. This work was supported in part by the Applied Basic Research Foun-
dation of Yunnan Province under Grants 202301AT070194, 202201AT070156,
202201AT070203, and 202301AT070422, in part by the National Natural Sci-
ence Foundation of China under Grants 62172151 and 62162067, in part by
the Major Science and Technology Projects in Yunnan Province under Grants
202202AD080002 and 202202AE09002105. Recommended for acceptance by
J. Kolodziej. (Corresponding author: Mingxiong Zhao.)

Zhenli He, Mingxiong Zhao, and Wei Zhou are with the Engineering
Research Center of Cyberspace, School of Software, Yunnan University,
Kunming 650091, China (e-mail: hezl@ynu.edu.cn; mx_zhao@ynu.edu.cn;
zwei@ynu.edu.cn).

Yanan Xu is with the College of Electronics and Information Engineering,
Shenzhen University, Shenzhen 518060, China (e-mail: bfg_xyn@163.com).

Keqin Li is with the Department of Computer Science, State University of
New York, New Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TSC.2023.3296601, provided by the authors.

Digital Object Identifier 10.1109/TSC.2023.3296601

devices, and handheld computers) and the increasing demand
for mobile services. Achieving a balance between supply and
demand is challenging using only the cloud or edge computing
paradigm. In the cloud computing paradigm, the centralized ag-
gregation of mobile network traffic puts tremendous pressure on
the network core, causing some services to fail to respond within
the time required by users. In the edge computing paradigm,
the limited resources of an edge server (a.k.a. edge node, EN)
compared to a data center (DC) make it difficult to meet service
demands anywhere, anytime [1].

To address this challenge, cloud-edge collaborative comput-
ing (CECC) emerges as the times require [2]. In a CECC en-
vironment, MDs can offload computation-intensive and power-
hungry tasks to either DCs or ENs based on system utilization,
task characteristics, etc. Such an approach enables the comput-
ing platform to fully leverage the computing resources of the
network back-end and edge to provide more flexible service
delivery with a tradeoff between abundant computing resources
and high responsiveness. It also means that MDs in such environ-
ments must make strategic offload decisions to achieve specific
optimization objectives, such as reducing energy consumption
or task response time.

In this context, computation offloading strategies in CECC
environments has recently attracted much attention. There are
mainly two optimization objectives for offloading decisions: per-
formance and cost, where the performance is usually measured
in terms of latency (e.g., response latency and communication
latency), and the cost metric refers to energy consumption and
monetary cost [1]. While performance and cost are critical for
MDs, these two metrics are often contradictory and, in many
cases, need to make a tradeoff between them. There are typi-
cally three ways to tradeoff performance and cost: performance
optimization with cost constraint, cost optimization with perfor-
mance constraint, and joint optimization of performance and cost
(e.g., minimizing the weighted sum of cost and performance) [3],
[4].

Although many researchers have conducted exciting research
on these optimization objectives, there is still an overlooked
problem: computing nodes in some complex scenarios often re-
quire different service rules to accommodate the varying urgency
of heterogeneous tasks [5]. For example, in scenarios involving
vehicles or unmanned aerial vehicles (UAVs) as ENs for offload-
ing [6], [7], the most urgent tasks are related to flight or vehicle
control. These tasks need to take priority over computing tasks
offloaded by other MDs to ensure the safety of flight or driving
operations. In a CECC environment with a private cloud [8],
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the DC gives preferential treatment to tasks offloaded within its
institution and only serves tasks offloaded by other MDs when
it is not occupied. Similarly, MDs may have non-offloadable
urgent tasks, such as system-level tasks related to embedded
systems. Additionally, tasks can be prioritized based on their
specific characteristics and the offloading scenarios to better
fulfill the diverse demands of heterogeneous tasks [9], [10]. It is
important to recognize that high-priority tasks cannot be treated
as mere background load. The execution of high-priority tasks
not only consumes resources but also inevitably interferes with
the execution of other tasks due to their interleaved nature.

In summary, in a CECC environment, the offloading strategy
must balance performance and cost while considering support
for different queue disciplines. Such a strategy will enable MDs
to efficiently leverage the CECC resources to meet the growing
demand for mobile services.

B. Our Contributions

This paper focuses on a CECC environment that accommo-
dates multiple mixed priority tasks, where each computing node
requires the support of different queue disciplines. This is a
complex environment, as all computing nodes may have tasks of
different priorities at the same time. We investigate and propose
an offloading scheme for the MDs to achieve a tradeoff between
performance and cost. To achieve this tradeoff, we formulate and
solve three optimization problems, including minimizing aver-
age response time (ART) under a cost constraint, minimizing
average monetary cost (AMC, including MD’s energy consump-
tion and service fees in computing and communication) under a
performance constraint, and minimizing cost-performance ratio.
Our contributions are summarized as follows:
� We formulate the system models of the MD, ENs, and the

DC as M/G/1 and M/G/m queueing systems, respectively,
and construct a set of mathematical models to characterize
the CECC environment.

� We conduct rigorous mathematical analysis and derive
the ART of the MD’s offloadable tasks and the MD’s
AMC. Then, we formulate offloading decisions into three
different multi-variable optimization problems based on
different tradeoff criteria.

� We design a series of algorithms based on the Karush-
Kuhn-Tucker (KKT) conditions [11] to solve the above
optimization problems and obtain optimal offloading
decisions.

� We construct several numerical examples, a comparative
experiment, and a simulation experiment to show the ef-
fectiveness of the proposed solution.

Our work can provide important insights into the optimization
of computation offloading for MDs in complex application sce-
narios, which can help achieve better cost-performance tradeoffs
in CECC. The remainder of the paper is arranged as follows.
Section II reviews the existing work related to our research.
Section III presents system models for the CECC environment.
Section IV derives the performance and cost metrics and then
formulates the optimization problems. Sections V–VII describe
our numerical methods for solving these three optimization

problems. Sections VIII and IX provide numerical examples
and comparative experiments to show the effectiveness of our
methods. Section X summarizes this paper and identifies direc-
tions for future research.

II. RELATED WORK

This section reviews existing work related to our research
from the perspective of how to make a tradeoff between perfor-
mance and cost. (Due to space limitations, a more comprehen-
sive analysis of the current study can be found in Section 2 of
the supplementary file, available online.)

Performance Optimization With Cost Constraint: The most
common way to tradeoff two conflicting objectives is to con-
strain one of them in order to optimize the other. Since one
of the original intentions of mobile edge computing (MEC) is
to reduce latency, performance optimization occupies a large
part of the existing research. Wang et al. [12] studied distributed
offloading in wireless-powered MEC and addressed the problem
of minimizing the average task completion latency with energy
constraints based on deep reinforcement learning (DRL). In [13],
the authors have addressed the joint optimization of offloading
decision, resource and power allocation in a multi-user CECC
environment. The main objective is to minimize the overall
latency experienced by all MDs, encompassing both transmis-
sion and execution durations, while simultaneously ensuring
compliance with energy consumption and execution latency
constraints.

Cost Optimization With Performance Constraint: Energy con-
sumption and execution cost are critical metrics for some MDs,
such as UAVs or internet-of-thing (IoT) devices. As a result,
many studies use cost as the primary optimization objective.
Hu et al. [14] investigated offloading optimization and resource
allocation in a MEC-enabled IoT network with multiple ENs
and MDs equipped with energy harvesting (EH) components.
To balance energy efficiency and service latency, the authors
designed an online offloading scheme based on Lyapunov op-
timization and semi-definite programming. Ma et al. [15] re-
searched the computation capacity configuration of the edge
and tenancy strategy adjustment in a CECC environment with
multiple mobile requests, an EN, and a DC. The authors modeled
the EN and the DC as M/M/1 queueing systems and designed
algorithms to obtain the optimal resource provisioning and cloud
tenancy schemes to minimize the system cost with a given
latency constraint.

Joint Optimization of Performance and Cost: There are sev-
eral methods to jointly optimize performance and cost, such
as reducing the weighted sum of cost and performance and
reducing the ratio of cost-performance (i.e., the product of cost-
time). Yao et al. [16] investigated blockchain-enabled offloading
decision in CECC via reinforcement learning, including task
offloading, resource management, and smart contracts, aiming
at minimizing the weighted sum of latency and cost. In ad-
dition to the aforementioned literature regarding collaborative
resource allocation and offloading optimization, several solu-
tions have emerged to maximize the utility of MDs and cloud
resources. These solutions involve the utilization of pre-signed
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resource trading contracts, which are based on comprehensive
assessments of potential risks, analysis of historical statistics
(e.g., dynamic variations in resource requirements and unstable
network conditions), and multi-party negotiations [17], [18].

It is noteworthy that the queueing models employed in previ-
ous research significantly differ from those utilized in our study.
Specifically, existing studies commonly adopt M/M/1 or M/M/m
queueing models and often assume non-priority systems, such
as the first-come-first-served (FCFS) discipline. To highlight the
distinctive characteristics of this paper compared to the afore-
mentioned studies, we outline the following unique features.
� We consider task types and mixed queue disciplines as

crucial factors influencing offloading decisions in CECC,
while acknowledging that the queue disciplines employed
by different nodes may vary. The available queue dis-
ciplines include non-preemptive nonpriority queue disci-
pline, as well as non-preemptive and preemptive priority
queue disciplines.

� We utilize an M/G/1 priority queueing system to charac-
terize MDs, while employing M/G/m priority queueing
systems to characterize ENs and the DC. This choice of
queueing models is more sophisticated and challenging,
but it offers the advantage of accommodating task-related
parameters, such as execution requirements and task ex-
ecution times, that can follow arbitrary probability distri-
butions. This enhanced flexibility in modeling allows for
better applicability in real-world scenarios.

To the best of our knowledge, the modeling and analysis
approach used in our study has not been explored in existing
research investigating offload optimization in CECC.

III. PRELIMINARIES

This section presents the necessary information regarding
assumptions, notations, definitions, and models. (The summary
of the symbols and their definitions can be found in Section 1 of
the supplementary file, available online.)

A. The Cloud-Edge Collaborative Computing Environment

First, we introduce the CECC environment considered in this
paper.

Assume that there are n multiserver ENs (denoted as EN1,
. . . , ENn) and a multiserver DC in the CECC environment
to provide offloading services for computationally constrained
MDs (represented by Fig. 1). These computing nodes (including
MDs, ENs, and the DC) are typically heterogeneous in terms of
computing power, load conditions (e.g., execution requirements
and the number of preloaded tasks), and queue disciplines (i.e.,
service policies for different tasks). In such a scenario with both
wired and wireless communication, the target MD must decide
whether to perform the offloadable tasks locally or offload to
ENs/DC for remote execution to tradeoff cost and performance
when all computing nodes have different priority settings.

For offloading decisions, the MD needs to send offloadable
tasks that are difficult to handle to ENs/DC via an appropriate
strategy with the tradeoff between high performance and low
cost: 1) local execution of computing-intensive tasks may result

Fig. 1. A CECC environment with an MD, multiple ENs, and a DC.

in high energy consumption/latency issues; 2) remote processing
on the DC can ensure low processing time, but there is a potential
problem of high network delay; 3) remote processing on ENs
is expected to ensure low network delay benefiting from the
deployment location, but service demands cannot be fully guar-
anteed due to limited resources compared with the DC. Thus, in
such a cloud-edge-end offloading scenario, finding the optimal
offloading solution becomes more challenging.

There are two types of tasks in the environment, i.e., specific
tasks and generic tasks, where all nodes have both types of tasks
but with different definitions.
� The specific tasks on the MD refer to dedicated tasks that

must be executed locally (i.e., non-offloadable tasks). In
contrast, other tasks on the MD are generic tasks that can
be executed locally or offloaded to some selected ENs or
the DC (i.e., offloadable tasks).

� The specific tasks on ENs refer to critical tasks of the ENs
and may have a higher priority. The generic tasks on ENs
include computing tasks offloaded from the target MDs and
other MDs.

� The specific tasks on the DC are preloaded tasks within its
institution, which may have a higher priority than offloaded
tasks from external institutions. Similarly, generic tasks on
the DC refer to the computing tasks offloaded by all MDs.

In addition, computing nodes in CECC can apply any of the
following three queue disciplines according to their require-
ments or characteristics:
� Non-preemptive nonpriority queue discipline (DS1): All

tasks in a queueing system are treated equally on an FCFS
basis.

� Non-preemptive priority queue discipline (DS2): Specific
tasks have higher priority and are always scheduled before
generic tasks without preemption.

� Preemptive priority queue discipline (DS3): Specific tasks
with high priority will be executed before generic tasks,
where generic tasks in the service will be interrupted due
to the arrival of specific tasks.

(Section 3 of the supplementary file provides detailed illus-
trations of these disciplines, available online.)

B. The MD Model

The target MD is modeled as an M/G/1 queueing system that
can apply any of the three queue disciplines [19].
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Assume that computing tasks generated by the MD conform
to a Poisson stream with an arrival rate λ = λ̃0 + λ̈ (measured
in the number of tasks arriving per second), where λ̃0 denotes
arrival rate of specific tasks and λ̈ denotes arrival rate of generic
tasks (i.e., offloadable tasks).

The Poisson stream of generic tasks can be further divided
into n+ 2 substreams, that is, λ̈ = λ̈0 + λ̈1 + · · ·+ λ̈n + λ̈c,
where the substream with arrival rate λ̈0 is executed locally in
the MD, the ith substream of generic tasks with arrival rate
λ̈i is offloaded to ENi (where 1 ≤ i ≤ n), and the substream
with arrival rate λ̈c is offloaded to the DC. Let λ0 = λ̃0 + λ̈0

denote the total arrival rate of tasks executed locally in the
MD. Then, we have λ = λ0 +

∑n
i=1 λ̈i + λ̈c. Note that the

vector (λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c) actually represents an offloading
strategy of the MD in the CECC environment.

Let s0 denote the execution speed of the MD (measured in bil-
lion instructions per second, BIPS). The execution requirements
(measured in billion instructions, BI) of specific tasks generated
by the MD are independently and identically distributed (i.i.d.)
random variables (r.v.s) r̃0 with mean r̃0 and second moment
r̃20 . The execution requirements of generic tasks generated by
the MD are also i.i.d. r.v.s r̈0 with mean r̈0 and second moment
r̈20 . The input data sizes (measured in million bits, Mb) of generic

tasks, d̈, are i.i.d. r.v.s with mean ¯̈
d and second moment d̈2.

C. The EN Model

Each EN is modeled as an M/G/m queueing system that can
apply any of the three queue disciplines [19].

Assume that in addition to accepting the task stream with
arrival rate λ̈i, there is also a task Poisson stream with arrival rate
λ̃i + λ̈i,pre preloaded to ENi and processed by ENi. λ̃i and λ̈i,pre

denote the arrival rates of preloaded specific tasks and generic
tasks that other MDs have offloaded, respectively. Therefore, the
total task arrival rate to be performed on ENi is calculated by
λi = λ̃i + λ̈i,pre + λ̈i, for all 1 ≤ i ≤ n.

Letmi denote the server size of ENi (i.e., ENi hasmi identical
servers) and si denote the execution speed. The average channel
capacity (i.e., average data transmission rate) for the MD to com-
municate with ENi is ci (measured in million bits per second,
Mbps). The execution requirements of specific tasks preloaded
on ENi, r̃i, are i.i.d. r.v.s with mean r̃i and second moment r̃2i .
The execution requirements of generic tasks preloaded on ENi,
r̈i, are also i.i.d. r.v.s with mean r̈i and second moment r̈2i .

D. The DC Model

Similarly, we consider the DC as an M/G/m queueing system
that applies any of the three queue disciplines [19].

Assume that there is a Poisson stream of tasks that are already
preloaded to the DC with arrival rate λ̃c + λ̈c,pre, in which λ̃c

and λ̈c,pre denote the arrival rates of preloaded specific tasks
and generic tasks offloaded by other MDs, respectively. These
streams are unrelated to the target MD. Therefore, the overall
task arrival rate to be performed on the DC is λc = λ̃c + λ̈c,pre

+ λ̈c.

Let mc and sc represent the server size and execution speed
of the DC, respectively. Theoretically, we have mc ≥ mi, for
all 1 ≤ i ≤ n. When the MD decides to offload tasks to the DC,
these tasks will first be offloaded to a selected base station (BS)
that will forward these tasks to the DC via the Metropolitan
Area Network (MAN). Let cb be the average channel capacity
for the MD to communicate with the BS and tp (measured in
seconds) be the average propagation latency from the BS to the
DC since the DC is located in the center of the core network and is
geographically far away from MDs. The execution requirements
of specific tasks preloaded on the DC, r̃c, are i.i.d. r.v.s with
mean r̃c and second moment r̃2c . The execution requirements of
generic tasks preloaded on the DC, r̈c, are also i.i.d. r.v.s with
mean r̈c and second moment r̈2c .

To sum up, the heterogeneity among computing nodes is
reflected in several key characteristics, including queue disci-
plines, execution speed (s0, si, sc), channel capacity (ci, cb), ex-
ecution requirements (r̃0, r̃i, r̃c, r̈0, r̈i, r̈c), and preloaded tasks
(λ̃0, λ̃i, λ̈i,pre, λ̃c, λ̈c,pre), where 1 ≤ i ≤ n.

E. Power Consumption Models

This section describes the MD’s power consumption models,
including computation power consumption for using computing
resources and communication power consumption for transmit-
ting data. Notice that the MD is assumed to not be equipped
with the EH device and its power consumption for computation
is derived based on the CMOS circuit power model [20] and
related to the operating frequency, which is consistent with many
studies on energy-efficient offloading optimization (see Section
II).

1) Power Consumption Model for Computation: The com-
putation power consumption (measured in Watts) of an MD
mainly consists of dynamic power consumption and static power
consumption [21], [22], where dynamic power consumption can
be formulated as P dy = ξsα, where ξ and α are technology-
dependent constants, and s denotes the processor execution
speed [23], [24], [25]. Let P dy

0 = ξ0s
α0
0 and P ∗0 be the MD’s

dynamic power consumption and the static power consumption,
respectively. Then, the MD’s average power consumption (APC)
for computation can be obtained by P cmp

0 = ρ0P
dy
0 + P ∗0 =

ρ0ξ0s
α0
0 + P ∗0 , where ρ0 denotes the MD’s server utilization,

which is derived in Section IV-A.
2) Power Consumption Model for Communication: During

the communication process, the MD still needs to consume some
power. Based on Shannon theorem [26], the channel capacity c
can be formulated as c = B log2(1 + gP trs/(BN)), where B
denotes the bandwidth of the channel (measured in MHz), g
represents the channel gain (measured in dBm), P trs denotes
the average transmission power over the bandwidth, and N rep-
resents the noise power spectrum density (measured in dBm/Hz).
Thus, we express the average channel capacity ci for the MD to
communicate with ENi by

ci = Bi log2
(
1 + giP

trs
i /(BiNi)

)
,

then we have P trs
i = BiNi(2

ci/Bi − 1)/gi, where 1 ≤ i ≤ n.

The average communication latency is ¯̈
d/ci for offloading one
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generic task from the MD to ENi. Thus, the average energy
consumption (measured in Joules) for communication of one
generic task from the MD to ENi is P trs

i (
¯̈
d/ci).

Similarly, we formulate the average channel capacity cb for
the MD offloading tasks to the DC via the BS as

cb = Bb log2
(
1 + gbP

trs
b /(BbNb)

)
,

and we have P trs
b = BbNb(2

cb/Bb − 1)/gb. Since the average
communication latency for offloading one generic task to the
DC is ¯̈

d/cb, the average energy consumption for transmitting

one generic task to the DC via the BS is P trs
b (

¯̈
d/cb).

IV. PROBLEM DEFINITIONS

In this section, we first derive the performance and cost
metrics and then formulate the offloading decisions of the target
MD into three different multi-variable optimization problems to
investigate the cost-performance tradeoff.

A. Average Response Time

This paper uses the ART of generic tasks as the performance
metric, which includes processing latency, queueing latency, and
transmission latency.

First, we derive the ART for generic tasks executed locally
on the MD, denoted by T0. According to Section III-B, the
processing latency of specific tasks is i.i.d. r.v.s with mean
t̃0 = r̃0/s0 and second moment t̃20 = r̃20/s

2
0, and the processing

latency of generic tasks is i.i.d. r.v.s with mean ẗ0 = r̈0/s0

and second moment ẗ20 = r̈20/s
2
0. Then, the average processing

latency (APL) of tasks on the MD is t0 = (λ̃0r̃0 + λ̈0r̈0)/(λ0s0)

with second moment t20 = (λ̃0r̃20 + λ̈0r̈20)/(λ0s
2
0). The MD’s

server utilization is ρ0 = λ0t0 = (λ̃0r̃0 + λ̈0r̈0)/s0.
As mentioned in Section III-A, nodes in CECC can apply any

of the three queue disciplines (i.e., DS1, DS2, DS3). For DS1, the
average queueing latency (AQL) and the ART of generic tasks
on the MD are calculated by [19, p. 700]{

W0 =
λ0t20

2(1−ρ0)
=

λ̃0r̃20+λ̈0r̈20
2s0(s0−λ̃0r̃0−λ̈0r̈0)

,

T0 = ẗ0 +W0.

For DS2, the AQL and the ART of generic tasks on the MD
are [19, p. 702]{

W0 =
λ̃0r̃20+λ̈0r̈20

2(s0−λ̃0r̃0)(s0−λ̃0r̃0−λ̈0r̈0)
,

T0 = ẗ0 +W0.

For DS3, the ART of generic tasks on the MD is [19, p. 704]

T0 =
2r̈0s0+λ̃0(r̃20 − 2r̃0r̈0) + λ̈0(r̈20 − 2r̈0

2
)

2(s0 − λ̃0r̃0)(s0 − λ̃0r̃0 − λ̈0r̈0)
. (1)

Since ENs and the DC are both regarded as M/G/m queue-
ing models, we uniformly analyze the ART of generic tasks
processed on an M/G/m priority queueing system Sj , where
j ∈ {1, . . . , n, c}. Specifically, if j = i, the index j denotes ENi,
where 1 ≤ i ≤ n; otherwise, j = c denotes the DC. Let Wj and
Tj be the AQL and the ART of generic tasks processed on it,

respectively. As discussed in Section III, the processing latency
of tasks is i.i.d. r.v.s. On system Sj , let t̃j be specific tasks’ APL

with second moment t̃2j , ẗj be generic tasks’ APL with second

moment ẗ2j , and tj be the APL of all tasks with second moment

t2j . The server utilization is ρj .
For DS1, the AQL of generic tasks on Sj is [27]

Wj =
tj · pj,mj

(1 + CV 2
j )

2mj(1− ρj)
, (2)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
CVj =

√
t2j/tj

2 − 1,

pj,mj
=

(mjρj)
mj

mj !(1−ρj)
· pj,0,

pj,0 =
(∑mj−1

k=0
(mjρj)

k

k! +
(mjρj)

mj

mj !(1−ρj)

)−1
.

For DS2, the AQL of generic tasks on Sj is given by [28]

Wj =
tj · pj,mj

(1 + CV 2
j )

2mj(1− ρ̃j)(1− ρj)
, (3)

where ρ̃j = λ̃j r̃j/(sjmj). For DS3, the ART of generic tasks
on Sj is [29]

Tj = (λjRj − λ̃jR̃j)/(λ̈j,pre + λ̈j), (4)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rj =
1
μj

+
pj,mj

ρj

(
λ̃j

◦
Rj,1+(λ̈j,pre+λ̈j)

◦
Rj,2

λj
− 1

mjμj

)
,

R̃j = t̃j +
t̃2j

2t̃j
· p∗j,0 · (mj ρ̃j)

mj

mj !
· 1
mj(1−ρ̃j)

2 ,

p∗j,0 =
(∑mj−1

k=0
(mj ρ̃j)

k

k! +
(mj ρ̃j)

mj

mj !(1−ρ̃j)

)−1
,

◦
Rj,1 = t̃j + λ̃j t̃2j/(2(1− ρ̃j)),

μj = λj/
(
λ̃j t̃j + (λ̈j,pre + λ̈j)ẗj

)
.

(5)

and

◦
Rj,2 =

⎧⎪⎪⎨
⎪⎪⎩

1
1−ρ̃i

(
r̈0
si

+
¯̈
d
ci

+
λ̃i t̃2i+(λ̈i,pre+λ̈i)ẗ2i

2(1−ρi)

)
, j = i;

1
1−ρ̃c

(
r̈0
sc

+ d̈
cb

+
λ̃c t̃2c+(λ̈c,pre+λ̈c)ẗ2c

2(1−ρc)

)
, j = c.

According to Section III-C, the APL of preloaded specific tasks
on ENi is t̃i = r̃i/si with second moment t̃2i = r̃2i /s

2
i . The APL

of preloaded generic tasks on ENi is r̈i/si with second moment
r̈2i /s

2
i . The APL of the MD’s generic tasks on ENi is r̈0/si +

¯̈
d/ci with second moment r̈20/s

2
i + 2r̈0

¯̈
d/(sici) + d̈2/c2i . Then,

the APL of all generic tasks on ENi is

ẗi =
λ̈i

λ̈i,pre + λ̈i

(
r̈0
si

+
¯̈
d

ci

)
+

λ̈i,pre

λ̈i,pre + λ̈i

· r̈i
si
,

with second moment

ẗ2i =
λ̈i

λ̈i,pre + λ̈i

(
r̈20
si2

+
d̈2

ci2
+ 2

r̈0
¯̈
d

sici

)
+

λ̈i,pre

λ̈i,pre + λ̈i

· r̈
2
i

si2
,

where λ̈i/(λ̈i,pre + λ̈i) and λ̈i,pre/(λ̈i,pre + λ̈i) are the percent-
ages of generic tasks offloaded from the MD and preloaded
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generic tasks on ENi, respectively. Thus, the APL of tasks on
ENi is

ti =
λ̃i

λi
· r̃i
si

+
λ̈i

λi

(
r̈0
si

+
¯̈
d

ci

)
+

λ̈i,pre

λi
· r̈i
si
,

with second moment

t2i =
λ̃i

λi
· r̃

2
i

si2
+

λ̈i

λi

(
r̈20
s2i

+
d̈2

ci2
+

2r̈0
¯̈
d

sici

)
+

λ̈i,pre

λi
· r̈

2
i

si2
,

where λ̃i/λi and (λ̈i + λ̈i)/λi denote the percentages of spe-
cific tasks and generic tasks on ENi, respectively. The server
utilization of ENi is given by

ρi =
λiti
mi

=
λ̃ir̃i
simi

+
λ̈i

mi

(
r̈0
si

+
¯̈
d

ci

)
+

λ̈i,prer̈i
simi

. (6)

Based on (2), the ART of generic tasks offloaded from the MD
on ENi for DS1 is

Ti =
r̈0
si

+
¯̈
d

ci
+

ti · pi,mi
(1 + CV 2

i )

2mi(1− ρi)
. (7)

Based on (3), the ART of the MD’s generic tasks on ENi for
DS2 is

Ti =
r̈0
si

+
¯̈
d

ci
+

ti · pi,mi
(1 + CV 2

i )

2mi(1− ρ̃i)(1− ρi)
. (8)

Based on (4), the ART of the MD’s generic tasks on ENi for
DS3 is

Ti = (λiRi − λ̃iR̃i)/(λ̈i,pre + λ̈i). (9)

According to Section III-D, the APL of specific tasks on the
DC is t̃c = r̃c/sc with second moment t̃2c = r̃2c/s

2
c , the APL of

preloaded generic tasks on the DC is r̈c/sc with second moment

r̈2c/s
2
c , and the APL of the MD’s generic tasks is r̈0/sc +

¯̈
d/cb +

tp with second moment r̈20/s
2
c + d̈2/c2b + t2p + 2r̈0

¯̈
d/(sccb) +

2r̈0tp/sc + 2
¯̈
dtp/cb. Then, the APL of generic tasks is

ẗc =
λ̈c

λ̈c,pre + λ̈c

(
r̈0
sc

+
¯̈
d

cb
+ tp

)
+

λ̈c,pre

λ̈c,pre + λ̈c

· r̈c
sc
,

with second moment

ẗ2c =
λ̈c

λ̈c,pre + λ̈c

(
r̈20
sc2

+
d̈2

cb2
+ tp

2 + 2
r̈0

¯̈
d

sccb
+ 2

r̈0tp
sc

+ 2
¯̈
dtp
cb

)
+

λ̈c,pre

λ̈c,pre + λ̈c

· r̈
2
c

sc2
,

where λ̈c/(λ̈c,pre + λ̈c) and λ̈c,pre/(λ̈c,pre + λ̈c) are the per-
centages of generic tasks offloaded from the MD and preloaded
generic tasks on the DC, respectively. Thus, the APL of tasks on
the DC is given by

tc =
λ̃c

λc
· r̃c
sc

+
λ̈c

λc

(
r̈0
sc

+
¯̈
d

cc
+ tp

)
+

λ̈c,pre

λc
· r̈c
sc
,

with second moment

t2c =
λ̃c

λc
· r̃

2
c

sc2
+

λ̈c

λc

(
r̈20
sc2

+
d̈2

cb2
+ tp

2 + 2
r̈0

¯̈
d

sccb
+ 2

r̈0tp
sc

+ 2
¯̈
dtp
cb

)
+

λ̈c,pre

λc
· r̈

2
c

sc2
,

where λ̃c/λc and (λ̈c + λ̈c)/λc denote the percentages of spe-
cific tasks and generic tasks on the DC, respectively. Again, the
server utilization of the DC is

ρc =
λctc
mc

=
λ̃cr̃c
scmc

+
λ̈c

mc

(
r̈0
sc

+
¯̈
d

cb
+ tp

)
+

λ̈c,prer̈c
scmc

. (10)

Based on (2), the ART of MD’s generic tasks on the DC for DS1
is

Tc =
r̈0
sc

+
¯̈
d

cb
+ tp +

tc · pc,mc
(1 + CV 2

c )

2mc(1− ρc)
, (11)

Based on (3), the ART of the MD’s generic tasks on the DC for
DS2 is

Tc =
r̈0
sc

+
¯̈
d

cb
+ tp +

tc · pc,mc
(1 + CV 2

c )

2mc(1− ρ̃c)(1− ρc)
, (12)

Based on (4), the ART of the MD’s generic tasks on the DC for
DS3 is

Tc = (λcRc − λ̃cR̃c)/(λ̈c,pre + λ̈c). (13)

Therefore, the ART of the MD’s offloadable tasks can be
determined by

T =
λ̈0

λ̈
T0 +

λ̈1

λ̈
T1 +

λ̈2

λ̈
T2 + · · ·+ λ̈n

λ̈
Tn +

λ̈c

λ̈
Tc. (14)

Besides, according to queueing theory, we have ρ0 < 1, ρi < 1,
for all 1 ≤ i ≤ n, and ρc < 1.

B. Average Monetary Cost

The MD’s monetary cost generally refers to following aspects:
the cost for local execution on the MD and the cost for remote
processing on ENs/DC. The cost for local execution mainly
relates to the MD’s energy consumption, while the cost for
remote processing mainly involves three distinct costs and fees:
1) The channel service fee of the MD for data transmission; 2)
The MD’s energy consumption for data transmission; 3) The
service fee of the MD for tasks processing remotely on ENs or
the DC [30], [31].

Local Execution: Since the MD’s APC for computation
is P cmp

0 , the average energy consumption of processing one
generic task on the MD is given by P cmp

0 r̈0/s0. Let θ0 denote
the price of energy consumption per Joule (measured in CNY/J).
Therefore, the MD’s AMC for executing one generic task is
given by Cloc

0 = θ0 · P cmp
0 r̈0/s0.

Remote Processing: Offloading one generic task to ENi incurs
the following costs: 1) The channel service fee (ηi

¯̈
d) for the MD

transmitting one generic task with mean input data sizes ¯̈
d to

ENi, whereηi denotes the price of transmitting per million bits of
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data (measured in CNY/Mb); 2) The cost of energy consumption
(θ0 · P trs

i
¯̈
d/ci) for data transmission, where P trs

i
¯̈
d/ci denotes

the average energy consumption for transmitting one generic
task to ENi; 3) The service fee (πir̈0) to process one generic task
on ENi, where πi represents the price of executing per billion
instructions (measured in CNY/BI). Thus, the MD’s AMC to
offload one generic task to ENi for remote processing is given
by Coff

i = ηi
¯̈
d+ θ0 · P trs

i
¯̈
d/ci + πir̈0, where 1 ≤ i ≤ n.

Again, offloading one generic task to the DC also incurs
following costs: 1) The channel service fee (ηc

¯̈
d) for the MD

transmitting one generic task to the DC, where ηc represents
the price of transmitting per million bits of data; 2) The cost of
energy consumption (θ0 · P trs

b
¯̈
d/cb) for data transmission; 3)

The service fee (πcr̈0) to process one generic task remotely
on the DC, where πc represents the price of executing per
billion instructions. Thus, the MD’s AMC to offload one generic
task to the DC for remote processing is given by Coff

c =

ηc
¯̈
d+ θ0 · P trs

b
¯̈
d/cb + πcr̈0. Based on all the above analysis,

we can calculate the AMC to perform the generic tasks of MD
generation as

C =
λ̈0

λ̈
Cloc

0 +
n∑

i=1

λ̈i

λ̈
Coff

i +
λ̈c

λ̈
Coff

c . (15)

C. Problem Definitions

This section formally describes three optimization problems
to be solved in this paper.

Environment Conditions and Constraints: Given an MD spec-

ified by s0, λ̃0, λ̈, r̃0, r̃20 , r̈0, r̈20 , ¯̈d, d̈2, ξ0, α0, P ∗0 , θ0, and n ENs,
where ENi is specified by si, mi, λ̃i, λ̈i,pre, r̃i, r̃2i , r̈i, r̈2i , ci, Bi,
gi,Ni, ηi,πi, for all 1 ≤ i ≤ n, and a DC specified by sc,mc, λ̃c,
λ̈c,pre, r̃c, r̃2c , r̈c, r̈2c , cb, Bb, gb, Nb, tp, ηc, πc, queue disciplines
DSd for each node, where d = {1, 2, 3}, and following con-
straints: ρ0 < 1, ρi < 1, ρc < 1, and λ̈0 +

∑n
i=1 λ̈i + λ̈c = λ̈.

Minimizing Average Response Time Under Cost Constraint:
Given the cost requirementC∗, environment conditions and con-
straints, find the optimal offloading decision (λ̈0, λ̈1, . . . , λ̈n, λ̈c)
that minimizes T and satisfies C ≤ C∗.

Minimizing Average Monetary Cost Under Performance Con-
straint: Given the time requirement T ∗, environment con-
ditions and constraints, find the optimal offloading decision
(λ̈0, λ̈1, . . . , λ̈n, λ̈c) that minimizes C and satisfies T ≤ T ∗.

Minimizing the Cost-Performance Ratio: Given environment
conditions and constraints, find the optimal offloading decision
(λ̈0, λ̈1, . . . , λ̈n, λ̈c) that minimizes R = T · C.

V. MINIMIZING AVERAGE RESPONSE TIME UNDER COST

CONSTRAINT

In this section, we propose a solution for minimizing the ART
of MD’s generic tasks under cost constraint.

A. Analysis

The problem described in Section IV-C, which aims to min-
imize the ART of generic tasks while satisfying the given

inequality constraint, can be considered as a differentiable
multi-variable optimization problem. In this context, the KKT
conditions are commonly acknowledged as a standard method
for analyzing the optimal solution’s characteristics.

First, let’s rewrite the cost constraint C ≤ C∗ as

G(λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c)

= λ̈0C
loc
0 +

n∑
i=1

λ̈iC
off
i + λ̈cC

off
c − λ̈C∗ ≤ 0. (16)

Then we can construct the Lagrange function as

L = T (λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c) + βG(λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c)

+ ω

(
λ̈0 +

n∑
i=1

λ̈i + λ̈c − λ̈

)
, (17)

where β and ω are Lagrange multipliers, and we have⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = 1
λ̈

(
T0 +

∂T0

∂λ̈0
λ̈0

)
+ β

(
Cloc

0 +
∂Cloc

0

∂λ̈0
λ̈0

)
+ ω,

0 = ∂T
∂λ̈i

+ β ∂G
∂λ̈i

+ ω = 1
λ̈

(
Ti +

∂Ti

∂λ̈i
λ̈i

)
+ βCoff

i + ω,

0 = ∂T
∂λ̈c

+ β ∂G
∂λ̈c

+ ω = 1
λ̈

(
Tc +

∂Tc

∂λ̈c
λ̈c

)
+ βCoff

c + ω.

For simplicity, we set⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L′(λ̈0, ω, β) = T0 +
∂T0

∂λ̈0
λ̈0 + λ̈ω

+ λ̈β

(
Cloc

0 +
∂Cloc

0

∂λ̈0
λ̈0

)
,

L′(λ̈i, ω, β)=Ti +
∂Ti

∂λ̈i
λ̈i+ λ̈βCoff

i + λ̈ω, 1 ≤ i ≤ n,

L′(λ̈c, ω, β) = Tc +
∂Tc

∂λ̈c
λ̈c + λ̈βCoff

c + λ̈ω.

(18)

(19)

(20)

(The detailed derivation process of the first-order partial deriva-
tives is given in Section 12 of the supplementary file, available
online.) Basing the KKT conditions, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L′(λ̈0, ω, β) = 0,

L′(λ̈i, ω, β) = 0, 1 ≤ i ≤ n,

L′(λ̈c, ω, β) = 0,

ω < 0,

βG(λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c) = 0,

β ≥ 0,

G(λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c) ≤ 0,

λ̈0 + λ̈1 + λ̈2 + · · ·+ λ̈n + λ̈c = λ̈.

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

From (25)∼(27), we get the following relationship:{
β = 0, G(λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c) < 0;

β > 0, G(λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c) = 0.

If G < 0 (i.e., C < C∗ and β = 0), the values of λ̈0, λ̈i, and λ̈c

only depend on ω, where 1 ≤ i ≤ n; otherwise, β and ω jointly
determine λ̈0, λ̈i, and λ̈c.

Besides, there are other constraints mentioned in
Section IV-C, i.e., ρ0 < 1, ρi < 1, and ρc < 1. Thus, we
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set the initial range of λ̈0 as [0, λ̈∗0), the initial range of λ̈i as
[0, λ̈∗i ), and the initial range of λ̈c as [0, λ̈∗c), where

⎧⎪⎪⎨
⎪⎪⎩

λ̈∗0 = (s0 − λ̃0r̃0)/r̈0,

λ̈∗i =
mi−(λ̃ir̃i+λ̈i,prer̈i)/si

r̈0/si+
¯̈
d/ci

,

λ̈∗c =
mc−(λ̃cr̃c+λ̈c,prer̈c)/sc

r̈0/sc+
¯̈
d/cb+tp

.

B. Our Solutions

It is difficult to solve these complex nonlinear equations
directly, i.e., to obtain a closed-form solution from (21)∼(23).
By deriving and analyzing the above equations, we develop a
two-stage method consisting of several numerical algorithms to
solve the problem.
� Stage I: Assume that G < 0 (i.e., C < C∗ and β = 0),

and then adjust the value of ω to obtain an offloading
strategy (λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c)making (21)∼(23) and the
constraint (28) satisfied.

� Stage II: We check whether the offloading strategy obtained
by Stage I makes G < 0 hold. If that condition is met, the
problem is solved; otherwise, in addition to determining
ω, we need to further adjust the value of β so that all the
constraints are satisfied.

A Motivating Example: This example helps the reader better
understand our algorithms, which are for illustrative purposes
only. We consider a CECC environment composed of an MD,
n = 5 ENs, and a DC, where parameter settings are shown
below: λ̃0 = 1.0, λ̈ = 15.0, r̃0 = 0.5, r̃20 = 0.4, r̈0 = 1.5, r̈20 =

3.0, ¯̈
d = 1.0, d̈2 = 1.5, s0 = 1.3, ξ0 = 1.5, α0 = 3.0, P ∗0 =

2.0, θ0 = 2.44 ∗ 10−4, λ̃i = 2.5 + 0.05(i− 1), λ̈i,pre = 3.0 +

0.05(i− 1), r̃i = 1.0 + 0.05(i− 1), r̃2i = 1.35r̃i
2
, r̈i = 1.2 +

0.05(i− 1), r̈2i = 1.5r̈i
2
, mi = 4, si = 2.5 + 0.1(i− 1), ci =

10 + 0.5(i− 1),Bi = 3.0 + 0.1(i− 1),Ni = −174− 0.1(i−
1), ηi = (0.5 + 0.05(i− 1)) ∗ 10−4, πi = (2 + 0.1(i− 1)) ∗
10−10, for all 1 ≤ i ≤ n, λ̃c = 6.0, λ̈c,pre = 4.0, r̃c = 1.35,

r̃2c = 1.55r̃c
2
, r̈c = 1.5, r̈2c = 1.7r̈c

2
, sc = 3.5, mc = 15, cb =

11.0, Bb = 2.6, Nb = −174.0, and tp = 0.4, ηc = 0.6 ∗ 10−4,
πc = 2.0 ∗ 10−10 CNY/BI. In these examples, channel gains
(i.e., g1, g2, . . . , gn, gb) are assumed to be uniformly distributed
in [−50, −30] dBm.

1) Stage I: In the first stage, we develop five numerical algo-
rithms to determine ω and (λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c) that satisfy
(21)∼(23) and (28) under the condition that β = 0. Since the
proposed algorithms will frequently use the bisection method,
we define it in Algorithm 1 to avoid repetition.

First, we find that ifβ andω are given,L′(λ̈0, ω, β) (18) can be
viewed as an increasing function of λ̈0. Thus, we use Algorithm
2 to search λ̈0 within a certain interval making L′(λ̈0, ω, β) = 0
(lines 4−8). The initial interval of λ̈0 is [0, λ̈∗0) (line 5). Note
that Algorithm 2 will first check whether the MD is involved
in the offloading decision, which will be discussed later. If
the MD does not participate in the offloading decision, which
means the MD does not process generic tasks locally, and we set
λ̈0 = 0 and return λ̈0 (lines 2−4). (We set ε = 10−7.) (Due to
space limitation, we move the changing trend plots of functions

Algorithm 1: Bisection.
Input: v, lb, ub, ε, and criterion.
Output: v.
1: while ub− lb > ε do
2: v ← (lb+ ub)/2;
3: Calculate criterion;
4: if criterion then
5: ub← v;
6: else
7: lb← v;
8: end if
9: end while

10: return v ← (lb+ ub)/2.

Algorithm 2: Obtain_λ̈0.
Input: Environment conditions and constraints, ω, and β.
Output: λ̈0.
1: //Check whether the MD is involved in offloading
2: if (The MD is not involved in offloading decision) then
3: return λ̈0 ← 0.
4: else
5: lb← 0, ub← λ̈∗0; //Obtain the initial interval of λ̈0

6: // Obtain L′(λ̈0, ω, β) based on (18);
7: λ̈0 ← Bisection(λ̈0, lb, ub, ε, L

′(λ̈0, ω, β) > 0);
8: return λ̈0.
9: end if

Algorithm 3: Obtain_λ̈i.
Input: Environment conditions and constraints, ω, and β.
Output: λ̈i.
1: // Check whether ENi is involved in offloading
2: if (ENi is not involved in offloading decision) then
3: return λ̈i ← 0.
4: else
5: lb← 0, ub← λ̈∗i ; //Obtain the initial interval of λ̈i

6: // Obtain L′(λ̈i, ω, β) based on (19);
7: λ̈i ← Bisection(λ̈i, lb, ub, ε, L

′(λ̈i, ω, β) > 0);
8: return λ̈i.
9: end if

involved in Algorithms 2∼6 to Section 7 of the supplementary
file, available online, such as the changing trend of L′(λ̈0, ω, β)
with λ̈0.)

Second, we find that once β and ω are given, L′(λ̈i, ω, β)
(19) can be viewed as an increasing function of λ̈i. Accordingly,
we use Algorithm 3 to search λ̈i within a certain interval such
that L′(λ̈i, ω, β) = 0 (lines 4−8). The initial interval of λ̈i is
[0, λ̈∗i ) (line 5). Again, Algorithm 3 will first check whether ENi

is involved in the offloading decision, which will be discussed
later. (We set ε = 10−7.)

Third, we find that once β and ω are given, L′(λ̈c, ω, β) (20)
increases as λ̈c increases. Accordingly, we use Algorithm 4 to
search λ̈c within a certain interval such that L′(λ̈c, ω, β) = 0

Authorized licensed use limited to: Yunnan University. Downloaded on February 08,2024 at 12:04:50 UTC from IEEE Xplore.  Restrictions apply. 



3914 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 6, NOVEMBER/DECEMBER 2023

Algorithm 4: Obtain_λ̈c.
Input: Environment conditions, ω, and β.
Output:λ̈c.
1: // Check whether the DC is involved in offloading
2: if (The DC is not involved in offloading decision) then
3: return λ̈c ← 0.
4: else
5: lb← 0, ub← λ̈∗c; //Obtain the initial interval of λ̈c

6: // Obtain L′(λ̈c, ω, β) based on (20);
7: λ̈c ← Bisection(λ̈c, lb, ub, ε, L

′(λ̈c, ω, β) > 0);
8: return λ̈c.
9: end if

Algorithm 5: Obtain_ω.
Input: Environment conditions and constraints, and β.
Output:ω, λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c.
1: //Determine the interval [lb, ub] of ω
2: Calculate ω∗1, ω

∗
2, . . . , ω

∗
n+2;

3: Calculate λ̂1, λ̂2, . . . , λ̂n+2;
4: Determine l such that λ̂l < λ̈ ≤ λ̂l+1;
5: ub← ω∗l ;
6: if l < n+ 2 then
7: //The first l nodes participate in offloading decision
8: lb← ω∗l+1;
9: else
10: //All nodes participate in offloading decision
11: lb←

max{ωmin
0 ,max{ωmin

1 , ωmin
2 , . . . , ωmin

n }, ωmin
c };

12: end if
13: ω ← Bisection(ω, lb, ub, ε, λ̈0 +

∑n
i=1 λ̈i + λ̈c < λ̈);

14: Call Algorithm 2 to obtain λ̈0;
15: for i← 1 to n do
16: Call Algorithm 3 to obtain λ̈i;
17: end for
18: Call Algorithm 4 to obtain λ̈c;
19: return ω and λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c.

(lines 4−8). The initial interval of λ̈c is [0, λ̈∗c) (line 5). Sim-
ilarly, Algorithm 4 first checks whether the DC is involved in
the offloading decision, which will be discussed later. (We set
ε = 10−7.)

Consequently, given β and ω, we can obtain an offloading
strategy (λ̈0, λ̈1, . . . , λ̈n, λ̈c) with the above steps. Given the
constraint (28), λ̈0 +

∑n
i=1 λ̈i + λ̈c obtained from Algorithms

2∼4 has to make (28) hold, which is a decreasing function of
ω. Thus, we use Algorithm 5 to find ω satisfying (28) within a
certain interval [lb, ub], where we have to determine the initial
interval of ω (lines 1−12) before searching ω. By rewriting
(18)∼(20), we have⎧⎪⎨
⎪⎩
−λ̈ω = T0 + (∂T0/∂λ̈0) · λ̈0 + λ̈β

(
Cloc

0 +λ̈0
∂Cloc

0

∂λ̈0

)
;

−λ̈ω = Ti + (∂Ti/∂λ̈i) · λ̈i + λ̈βCoff
i , 1 ≤ i ≤ n;

−λ̈ω = Tc + (∂Tc/∂λ̈c) · λ̈c + λ̈βCoff
c .

(29)

(30)

(31)

Algorithm 6: Obtain_β.
Input: Environment conditions and constraints, and C∗.
Output: β.
1: lb← a small value, ub← a large value;
2: β ← Bisection(β, lb, ub, ε, C < C∗);
3: return β.

From (29), if β is fixed, ω decreases as λ̈0 increases. That is, ω
gets the maximum valueωmax

0 if λ̈0 = 0 andω gets the minimum
value ωmin

0 if λ̈0 ≈ λ̈∗0, i.e.,{
ωmax
0 = −(T0 + λ̈βCloc

0 )/λ̈,

ωmin
0 = −

(
T0 +

∂T0

∂λ̈0
· λ̈∗0 + λ̈β

(
Cloc

0 + λ̈∗0
∂Cloc

0

∂λ̈0

))
/λ̈.

From (30), if β is fixed, ω decreases as λ̈i increases, i.e.,{
ωmax
i = −(Ti + λ̈βCoff

i )/λ̈, if λ̈i = 0;

ωmin
i = −

(
Ti + λ̈∗i (∂Ti/∂λ̈i) + λ̈βCoff

i

)
/λ̈, if λ̈i ≈ λ̈∗i .

From (31), if β is fixed, ω decreases as λ̈c increases, i.e.{
ωmax
c = −(Tc + λ̈βCoff

c )/λ̈, if λ̈c = 0;

ωmin
c = −(Tc + λ̈∗c(∂Tc/∂λ̈c) + λ̈βCoff

c )/λ̈, if λ̈c ≈ λ̈∗c.

Due to the heterogeneity between nodes, the n+ 2 nodes have
different domains ofω. Since λ̈0 +

∑n
i=1 λ̈i + λ̈c is a decreasing

function of ω, ω needs to be big enough when λ̈ is too small,
which means that not all nodes are required to process generic
tasks from the MD. As a result, for a given β, ω determines
which nodes should be involved in the offloading decision.
Accordingly, Algorithm 5 first calculates ωmax

0 , ωmax
i , for all

1 ≤ i ≤ n, and ωmax
c , and then arranges them in descending

order (line 2).
Then, let λ̂l =

∑l−1
k=1 λ̂′k, where λ̂′k is chosen such that

L′(λ̂′k, ω
∗
l , β) = 0, for all 1 ≤ l ≤ n+ 2 and 1 ≤ k ≤ l − 1

(line 3). Specifically, (1) if index k denotes the MD, we require
L′(λ̈0, ω

∗
l , β) = 0 and set λ̂′k = λ̈0; (2) if k denotes ENi, we

require L′(λ̈i, ω
∗
l , β) = 0 and set λ̂′k = λ̈i, where 1 ≤ i ≤ n;

(3) if k denotes the DC, we require L′(λ̈c, ω
∗
l , β) = 0 and set

λ̂′k = λ̈c. Clearly, we have λ̂1 = 0 and λ̂n+3 = λ̈∗0 +
∑n

i=1 λ̈∗i +
λ̈c representing the maximum workload in environment. The
node can be involved in the offloading decision only when
λ̈ > λ̂l and ω < ω∗l , which possibly satisfies (21)∼(23). That
is, when λ̂l < λ̈ ≤ λ̂l+1, only the first l nodes are involved in
the offloading decision, where 1 ≤ l ≤ n+ 2. Note that when
λ̂n+2 < λ̈ ≤ λ̂n+3, all nodes are required to participate in the
offloading decision. In Algorithm 5, we obtain λ̂1, λ̂2, . . . , λ̂n+2

(line 3). When λ̂l < λ̈ ≤ λ̂l+1, only the first l nodes are involved
in the offloading decision, where 1 ≤ l ≤ n+ 2 (lines 4−12).
(We set ε = 10−10.)

2) Stage II: In this stage, we check whether the offload-
ing strategy (λ̈0, λ̈1, . . . , λ̈n, λ̈c) obtained by Algorithm 5 with
β = 0 makes (27) hold (i.e., C ≤ C∗). If that condition is met,
the problem is solved; otherwise, the adjustment of β is needed
to satisfy (27). A crucial observation is that C decreases as
β decreases. Therefore, we propose Algorithm 6 to find β
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Algorithm 7: Minimize Average Response Time.
Input: Environment conditions and C∗.
Output: T and (λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c).
1: // Stage I
2: β ← 0;
3: Call Algorithm 5 to obtain ω, λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c;
4: Calculate C by using (15);
5: // Stage II
6: if C > C∗ then
7: Call Algorithm 6 to obtain β;
8: Call Algorithm 5 to obtain ω, λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c;
9: end if

10: Calculate T by using (14);
11: return T and (λ̈0, λ̈1, λ̈2, . . . , λ̈n, λ̈c).

satisfying the cost constraint. Note that in line 2, the criterion
(C ≤ C∗) in the bisection method is given by two steps: 1) call
Algorithm 5 with β to obtain λ̈0, λ̈1, . . . , λ̈n, λ̈c; 2) calculate C
based on (15). (We set ε = 10−7.)

Finally, Algorithm 7 illustrates the procedures to get the
optimal offloading strategy of the MD that minimizes the ART
of generic tasks under the AMC constraint.

VI. MINIMIZING AVERAGE MONETARY COST UNDER

PERFORMANCE CONSTRAINT

In this section, we propose a solution for minimizing the AMC
under given performance. (Due to space limitation, this section is
moved to Section 4 of the supplementary file, available online.)

VII. MINIMIZING THE COST-PERFORMANCE RATIO

In this section, we propose a solution for minimizing the
product of cost-time. (Due to space limitation, we move this
section to Section 5 of the supplementary file, available online.)

In the supplementary file, available online, we also provide a
detailed time-complexity analysis of all algorithms in Section 6.

VIII. NUMERICAL EXAMPLES

This section provides five examples for the three optimization
problems by calling the proposed algorithms to show the effec-
tiveness of our methods, where the Python code for implement-
ing algorithms is written by us from scratch. All experiments are
performed on a computer with intel(R) Xeon(R) 8375 C CPU @
2.90 GHz and NVIDIA GeForce RTX 3090Ti. It should be noted
that parameter settings used in this paper refer to the parameters
in Refs. [24], [30], [32].

Specifically, Examples 1 and 2 correspond to minimizing the
ART with a cost constraint, Examples 3 and 4 correspond to
minimizing the AMC with a time constraint, and Example 5
corresponds to minimizing the cost-performance ratio. For each
numerical example, there is an MD, n = 5 ENs, and a DC.
Additionally, the environment-related parameter settings are the

same for these examples: r̃0 = 0.5, r̃20 = 0.4, ¯̈d = 1.0, d̈2 = 1.5,

ξ0 = 1.5,α0 = 3.0, r̈c = 1.5, r̈2c = 1.7r̈c
2
,mc = 15,Bb = 2.6,

and πc = 2.0 ∗ 10−10.
Example 1: The MD is given by λ̃0 = 1.0, λ̈ = 10.0, r̈0 =

1.5, r̈20 = 3.0, s0 = 1.3, P ∗0 = 2.0, θ0 = 2.44 ∗ 10−4. There
are n = 5 ENs, where ENi is given by λ̃i = 2.5 + 0.05(i−
1). λ̈i,pre = 3.0 + 0.05(i− 1), r̃i = 1.0 + 0.05(i− 1). r̃2i =

1.35r̃i
2
, r̈i = 1.2 + 0.05(i− 1), r̈2i = 1.5r̈i

2
, mi = 4, si =

2.5 + 0.1(i− 1), ci = 10.0 + 0.5(i− 1), Bi = 3.0 + 0.1(i−
1), Ni = −174− 0.1(i− 1), ηi = (0.5 + 0.05(i− 1)) ∗ 10−4,
πi = (2.0 + 0.1(i− 1)) ∗ 10−10, for all 3 ≤ i ≤ n. Parameter
settings of EN1 ∼ EN3 are the same, except that queue disci-
plines are different. The DC is given by λ̃c = 6.0, λ̈c,pre = 4.0,

r̃c = 1.35, r̃2c = 1.55r̃c
2
, sc = 3.5, cb = 11.0, Nb = −174.0,

tp = 0.4, and ηc = 0.6 ∗ 10−4. We set C∗ = 0.003.
Table I presents other experimental data: (1) r̈0/si (average

processing latency of MD’s generic tasks on each node); (2)
¯̈
d/ci (average communication latency for offloading one generic
task from the MD to ENs/BS); (3) gi (channel gains); (4) P trs

i

(average transmission power); (5) Coff
i (the MD’s AMC for

process one generic task remotely on ENs/DC); (6) DSd (queue
discipline applied by each node).

From Table II(a), we obtain the optimal offloading strat-
egy (λ̈0, λ̈1, . . . , λ̈5, λ̈c), where the minimized ART is T =
2.387431 and the AMC is C = 0.002999.

Example 2: In this example, the parameter settings are the
same as those in Example 1, except that the cost constraint is
set to C∗ = 0.004. From Table II(b), we obtain the optimal
offloading strategy (λ̈0, λ̈1, . . . , λ̈5, λ̈c), the minimized ART
T = 1.082083, and the AMC of the MD C = 0.004000.

Example 3: The MD is given by λ̃0 = 1.0, λ̈ = 15.0, r̈0 =

1.0, r̈20 = 1.35, s0 = 1.2, P ∗0 = 2.0, θ0 = 2.44 ∗ 10−4. There
are n = 5 ENs, where ENi is specified with λ̃i = 2.6 +
0.05(i− 1), λ̈i,pre=3.2 + 0.05(i− 1), r̃i=1.0 + 0.05(i−
1), r̃2i = 1.35r̃i

22
, r̈i = 1.2 + 0.05(i− 1), r̈2i = 1.5r̈i

22
,

mi = 3 + i, si = 2.5 + 0.1(i− 1), ci = 10.0 + 0.5(i− 1),
Bi = 2.8 + 0.1(i− 1), Ni = −174− 0.1(i− 1), ηi = (0.5 +
0.05(i− 1)) ∗ 10−4, πi = (2.0 + 0.1(i− 1)) ∗ 10−10, for all
1 ≤ i ≤ n. The DC is given by λ̃c = 6.5, λ̈c,pre = 5.0, r̃c =

1.35, r̃2c = 1.55r̃c
2
, sc = 3.4, cb = 10.0, Nb = −173.0, tp =

0.4, and ηc = 0.6 ∗ 10−4. We set T ∗ = 1.0. Table III presents
other experimental data in the environment. From Table IV(a),
we obtain the optimal offloading strategy (λ̈0, λ̈1, . . . , λ̈5, λ̈c),
the minimized AMC C = 0.003335, and the ART T =
0.999990.

Example 4: In this example, the parameter settings are the
same as those in Example 3, except that the total arrival
rate of generic tasks generated on the MD is set to λ̈ = 21.
From Table IV(b), we obtain the optimal offloading strategy
(λ̈0, λ̈1, . . . , λ̈5, λ̈c), the minimized AMC of the MD C =
0.003582, and the ART of generic tasks T = 1.000001.

Example 5: The MD is given by λ̃0 = 1.1, λ̈ = 25.0, r̈0 = 1.0,
r̈20 = 1.35, s0 = 1.2, P ∗0 = 1.5, θ0 = 2.34 ∗ 10−4. There are
n = 5 ENs, where ENi is specified with λ̃i = 2.6 + 0.05(i−
1), λ̈i,pre = 3.2 + 0.05(i− 1), r̃i = 0.7 + 0.05(i− 1), r̃2i =
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TABLE I
EXPERIMENTAL PARAMETERS OF EXAMPLES 1 AND 2

TABLE II
EXPERIMENTAL RESULTS FOR MINIMIZING ART WITH A COST CONSTRAINT

TABLE III
EXPERIMENTAL PARAMETERS OF EXAMPLES 3 AND 4

TABLE IV
EXPERIMENTAL RESULTS FOR MINIMIZING AMC WITH A PERFORMANCE CONSTRAINT

TABLE V
EXPERIMENT OF MINIMIZING COST-PERFORMANCE RATIO

1.1r̃i
2
, r̈i = 0.9 + 0.05(i− 1), r̈2i = 1.3r̈i

2
, mi = 2 + i, si =

2.5 + 0.1(i− 1), ci = 9.0 + 0.5(i− 1), Bi = 2.7 + 0.1(i−
1), Ni = −174− 0.1(i− 1), ηi = (0.5 + 0.05(i− 1)) ∗ 10−4,
πi = (2.0 + 0.1(i− 1)) ∗ 10−10, for all 2 ≤ i ≤ n. EN1 has the
same parameter settings as EN2, except that η1 = 0.5 ∗ 10−4

and π1 = 2.0 ∗ 10−10 (i.e., η1 < η2, π1 < π2). The DC is given
by λ̃c = 6.0, λ̈c,pre = 5.5, r̃c = 1.35, r̃2c = 1.55r̃c

2
, sc = 3.4,

cb = 9.5, Nb = −174.0, tp = 0.4, and ηc = 0.55 ∗ 10−4.
Table V shows other experimental data and results of minimiz-

ing the cost-performance ratio. From Table V(b), the minimized
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TABLE VI
OFFLOADING DECISIONS IN PERFORMANCE COMPARISON

cost-performance ratio is R = 0.001867, where T = 0.587271
and C = 0.003179.

In the supplementary file, available online, we summarize the
objective laws from these examples in Section 8, discuss how
queue disciplines impact offloading decisions in Section 9, and
design simulation experiments to analyze the task response time
on different nodes in Section 11, available online.

IX. PERFORMANCE COMPARISON

To further demonstrate the effectiveness of our solution,
we compare it with other algorithms, including a greedy-based
method, particle swarm optimization (PSO) [33], and the deep
deterministic policy gradient (DDPG) algorithm [34].

Lowest-Weighted-Sum-First (LWSF): Here, the target MD
will preferentially offload tasks to nodes that have the lower
weighted sum of cost and performance, i.e., g = wc · C + (1−
wc) · T , where wc is the weighting factor and its value is set
according to the specific optimization problem. For instance,
taking too small a value of wc may lead to an unsatisfied cost
constraint in terms of minimizing average response time under
a given cost constraint.

Particle Swarm Optimization: PSO is a heuristic algorithm
that solves optimization problems by searching for candidate
solutions in an iterative way. Let’s consider a swarm with
N = 20 particles moving in an n+ 2 dimensional search space
determined by the bounds of λ̈0, λ̈1, . . . , λ̈n, λ̈c (discussed in
Section V-A). We set the number of iterations as k = 100, the
inertia weight as ω = 0.8, the cognitive coefficient as cp = 1.5,
and social coefficient as cg = 1.5.

Deep Deterministic Policy Gradient: DDPG is a classical
DRL algorithm for learning deterministic policies from continu-
ous action spaces [35]. Employing DDPG, the offloading process

TABLE VII
THE ART AND AMC IN PERFORMANCE COMPARISON

can be modeled as Markov decision processes, which mainly
consists of three components: 1) state space that includes the in-
formation of the current CECC environment (e.g., computing re-
sources, execution requirements, and latency/cost constraints);
2) action space that is defined as the MD’s offloading strategy; 3)
reward function that refers to the optimization objective and con-
straint. (Due to space limitations, detailed information regarding
the DDPG algorithm used in the comparison experiments, such
as the reward function definition, hyperparameter settings, and
convergence performance, are provided in Section 10 of the
supplementary file, available online.)

For simplicity, we use the same parameter settings of numer-
ical examples in the previous sections for comparative analysis.
That is, we use the parameters in Example 1 for minimizing
T under constraint C∗, Example 3 for minimizing C under
constraint T ∗, and Example 5 for minimizing R. Tables VI and
VII show the corresponding experimental results, including the
offloading decisions, the ART of offloadable tasks, and the MD’s
AMC. To sum up, our methods are effective and can obtain
the optimal offloading decision of the target MD in various
situations.
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X. CONCLUSION

In this article, we have conducted research on a priority-based
offloading optimization approach in CECC. We have specif-
ically focused on three queue disciplines that serve different
types of tasks and have thoroughly analyzed their performance
and cost metrics. By leveraging the KKT conditions, we have
devised a series of algorithms to determine the optimal of-
floading decisions for MDs, aiming to strike a balance between
enhancing performance and reducing costs. Moreover, we have
implemented numerical examples to effectively demonstrate the
efficacy of our proposed methods. This work represents an initial
and valuable contribution to the field of priority-based offload
optimization in complex distributed computing environments.
It is important to note that the accuracy of our solution relies
heavily on the precision of environmental parameters. Hence, it
is crucial to adjust and refine these parameters accordingly when
changes occur in the offloading environment.

However, there are several areas that require further investiga-
tion in future work. First, we have not analyzed resource config-
uration or multi-user scenarios, where there may be competitive
or cooperative relationships among users. This aspect deserves
careful examination. Second, our consideration of the MD’s
power consumption assumes an energy-limited scenario without
considering EH or rechargeable capabilities. It would be mean-
ingful to explore scenarios involving green energy and recharge-
able devices. Third, our focus has primarily been on the impact of
task priority on the offloading strategy in heterogeneous environ-
ments. However, real-world scenarios involve multiple factors,
such as communication conditions, implementation environ-
ment, software architecture, and network interference, which
can influence offloading, transmission, and execution in positive
or negative ways. For instance, unstable network conditions can
result in long-tail latency, making service guarantee challenging.
Moreover, it would be interesting to apply the proposed scheme
to engineering applications, such as production scheduling and
design, as suggested in references [36], [37]. Further research
is necessary to address these issues and explore more complex
application scenarios.
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