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a b s t r a c t

Multi-access edge computing (MEC) provides cloud-like services at the edge of the radio access
network close to mobile devices (MDs). This infrastructure can provide low-latency services to MDs
and significantly reduce the pressure on the backbone network. However, the computing resources
configured on an edge server (ES) are limited compared to a cloud data center (DC). It is difficult for
ESs to satisfy the demands of MDs anytime and anywhere. Thus, a new paradigm that combines DC
with ESs has been proposed to provide better capability and flexibility, namely, cloud-assisted MEC
(CA-MEC). In CA-MEC, MDs can offload tasks to ESs and the DC, which means more elasticity and more
complicated offloading decisions. This paper studies MDs’ energy-efficient computation offloading
strategy in CA-MEC, which considers two different priority tasks. First, we establish mathematical
models to characterize the CA-MEC environment. Second, we mathematically analyze the MD’s average
task response time and average power consumption. Third, we propose efficient numerical algorithms
to obtain a computation offloading strategy to optimize the energy efficiency of the target MD. Finally,
we demonstrate several numerical examples and construct a comparative experiment to show the
effectiveness of our algorithms.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Motivation

With the growing demand for portable services, some ap-
lications (e.g., computation-intensive and power-hungry appli-
ations) are expected to be executed on mobile devices (MDs,
.g., smartphones, wearable devices), such as deep learning appli-
ations and self-driving technology [1]. Although MDs are becom-
ng more powerful and intelligent, their computing power, stor-
ge space, and battery life are still limited compared to desktop
omputers. Executing applications with complex requirements on
Ds will result in poor performance or short operation time.

n order to give mobile users a complete experience, offloading
omputation-intensive workloads from MDs to cloud data centers
DCs) is a standard solution [2]. However, with the exponential
rowth of mobile communications, the massive mobile traffic has
rought enormous pressure to the backbone network where the
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DCs are located. The resulting high latency can significantly de-
grade the user experience and may even cause serious problems
in safety-critical applications [3,4].

On that account, multi-access edge computing (MEC) is pro-
posed as an emerging computing paradigm. By flexibly deploying
edge servers (ESs) at the network edge, MEC can provide comput-
ing, storage, and software services for MDs nearby, significantly
reducing the pressure on the backbone network and providing
an unparalleled experience [5,6]. However, compared to a DC,
the computing resources configured on an ES are minimal due
to the space constraints of deployment. It is difficult for ESs to
completely satisfy the demands of MDs anytime and anywhere.
To overcome this, some scholars have proposed to introduce
cloud to assist ESs, namely cloud assisted MEC (CA-MEC), which
chieves a good trade-off between rich resource (DC) and high
esponse (ESs) [7,8].

In CA-MEC, MDs can offload tasks to either ESs or the DC based
n system utilization, task characteristics, etc. Due to the different
ardware configurations of the ESs in the computing environ-
ent and the high transmission delay of the DC, computation

asks with different average response time (ART) requirements
ay need to be offloaded to different computing nodes. Excellent

https://doi.org/10.1016/j.future.2023.06.014
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.06.014&domain=pdf
mailto:hezl@ynu.edu.cn
mailto:bfg_xyn@163.com
mailto:di.liu@ntnu.no
mailto:zwei@ynu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.future.2023.06.014


Z. He, Y. Xu, D. Liu et al. Future Generation Computer Systems 148 (2023) 298–313

o
s
(

i
c
h
s
u
o
a
c
p
i
m
t
e
w
c
a
o
r
a
b

a
f
i
I
s
l
f
a

1

f
c
M
t
t
M
a
o

I

ffloading decisions can better meet user demands, improve re-
ource utilization, and reduce MDs’ average power consumption
APC).

Although many scholars have realized the importance of this
ssue and conducted much research, these existing works rarely
onsider an important factor that different types of tasks may
ave different priorities. Regarding MDs, some computation tasks,
uch as lane changing for autonomous driving, may be extremely
rgent and must be performed by themselves [9]. In contrast,
ther tasks may be inherently suitable for remote execution, such
s driving trajectory recording. Similarly, in terms of ESs, some
omputation tasks may be urgent and need to be preferentially
erformed by ESs, such as service initialization applications. It
s important to note that high-priority urgent tasks cannot be
erely regarded as an inescapable background load, excluding

heir portion of resource demands. Due to the interleaving of task
xecution, the presence of high-priority tasks inevitably interferes
ith the execution of other tasks. For example, in a self-driving
ar, a sudden appearance of a pedestrian may trigger and execute
n emergency braking task, disrupting the execution order of
ther tasks. As a result, high-priority tasks not only consume
esources, but also disrupt the execution order of common tasks,
nd hence, their impact on the execution of common tasks must
e carefully considered.
In conclusion, computation tasks on computing nodes cannot

lways be deemed to be performed in the first-in-first-out (FIFO)
ashion when considering computation offloading decisions. It
s crucial to consider the issue of prioritization among tasks.
gnoring task priorities may culminate in low-priority tasks ob-
tructing the immediate execution of high-priority tasks or in
ow-priority tasks experiencing timeouts owing to interference
rom high-priority tasks. Such consequences can substantially
ffect safety-critical or time-sensitive workloads.

.2. Our contributions

In this paper, we investigate energy-efficient computation of-
loading strategy with task priority in CA-MEC. Specifically, we
onsider how to make strategic offloading decisions for a target
D in a CA-MEC environment where both MDs and ESs have

wo different task priorities. The main optimization objective is
o minimize the average power consumption (APC) of the target
D on the premise that the average response time (ART) meets
predetermined standard. To summarize, the main contributions
f this paper are as follows:

• We consider a CA-MEC environment consisting of multiple
MDs, multiple ESs, and a single DC. We regard the target MD
as an M/G/1 non-preemptive priority queueing model, each
ES as an M/G/m non-preemptive priority queueing model,
and the DC as an M/G/∞ queueing model. Then, we es-
tablish mathematical models to characterize the considered
CA-MEC environment.
• We perform a rigorous mathematical derivation of APC and

ART for the target MD and then formulate the energy-
efficient computation offloading decision problem as a mul-
tivariable optimization problem.
• We develop a series of efficient algorithms based on the

Karush–Kuhn–Tucker (KKT) conditions [10] to obtain the
optimal offloading decision of the target MD in a CA-MEC
environment, such that the MD can minimize its APC under
a preset ART constraint.
• We also demonstrate three numerical examples and con-

struct a comparative experiment, including a greedy-based
method, particle swarm optimization (PSO) [11], and deep
deterministic policy gradient (DDPG) [12] algorithms, to
illustrate the effectiveness of our proposed methods and

algorithms.
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Note that the problem definition for optimizing offloading
decisions is based on mathematical models, where the accuracy
of our solution depends only on the precision of parameters from
the real world. The proposed method (i.e., a series of numerical
algorithms) essentially solves a non-linear system of equations
constructed based on Lagrangian functions. These calculations
are computationally less expensive and should be performed
accordingly when the offloading environment changes.

This work can provide important insights into the energy-
efficient offloading optimization considering application urgency
in the CA-MEC environment. We would like to mention that our
study can be extended to multi-priority situations. The remainder
of the paper is organized as follows. In Section 2, we review
existing research. In Section 3, we present system models. In
Section 4, we formulate our optimization problem. In Section 5,
we propose algorithms to solve the optimization problem and
then conduct numerical examples to illustrate the effectiveness
of our methods. In Section 6, we construct a comparative experi-
ment to illustrate further our proposed algorithms’ effectiveness
and the optimality of our solutions. In Section 7, we summarize
the work and offer future research direction. We also provide
appendices that illustrate the mathematical notations used in this
paper, the explicit process of computation offloading in CA-MEC,
the detailed derivation of the formulas used in this paper, and the
proofs of the theorems presented in this paper.

2. Related work

In this section, we review existing research relevant to our
study. However, we cannot enumerate all the work related to
computation offloading in MEC, and interested readers are re-
ferred to [1,3,13] for more comprehensive reviews. We divide the
existing related research into three main categories according to
different research scenarios.

Single ES scenario. There is a single ES for offloading. Yun
et al. [14] investigated the joint optimization of computation
offloading and resource allocation in an MEC environment using
deep reinforcement learning (DRL) and queueing theory. Their
approach aimed to reduce the energy consumption of target MDs
and enhance system utility. The authors introduced a theoretical
innovation by segregating service queues according to task types
and service rates. In [15], Li established a non-cooperative game
framework for MEC, aiming at determining the optimal action
profile for each participant based on the Nash equilibrium. This
approach minimized each participant’s payment function. Yang
et al. [16] explored the trade-off between task completion time
and MD’s energy consumption in an MEC environment. In this
paper, the authors modeled the offloading decision and resource
allocation problem as an execution cost minimization problem,
where the execution cost is the weighted sum of the task com-
pletion time and the energy consumption of the MD. Then they
solved the problem based on a multi-task learning method. Fang
et al. [17] studied offloading optimization in a multi-user MEC en-
vironment. The authors proposed an algorithm based on bisection
search to determine the optimal offloading decision that mini-
mized task completion time while satisfying energy consumption
and offloading power constraints. In [18], the authors considered
partial and complete offloading strategies with the objective of
minimizing the energy–time weighted product. In [19], the au-
thors modeled the energy-efficient offloading optimization prob-
lem as a stable control problem while taking into account the exe-
cution deadlines of tasks based on perturbed Lyapunov optimiza-
tion and designed an online delay-aware offloading algorithm to
solve the proposed problem.

Multiple ESs scenario. There are multiple ESs for offloading.
n [20], Li studied offloading strategy optimization in a single-user
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EC environment and proposed various numerical algorithms to
etermine the optimal offloading strategy. This approach enabled
he target MD to balance application performance and power con-
umption. In [21], Zarandi et al. explored the joint optimization of
omputation offloading and communication resource allocation
n a sliced MEC network. They employed fractional programming
nd the Augmented Lagrangian method to address this problem.
uo et al. [22] investigated the trade-off between delay and
nergy consumption in a dynamic single-user MEC scenario. The
uthors applied Lyapunov optimization to convert the optimiza-
ion problem of minimizing execution delay subject to energy
onsumption constraint into transmit power allocation and ES
election. Wang et al. [23] studied computation offloading in a
ireless-powered multi-user MEC scenario, focusing on minimiz-

ng the average task completion delay with energy consumption
onstraints. They approached this problem through the applica-
ion of DRL. In [24], Wang et al. addressed the joint optimization
f offloading decision and power-resource allocation in an MEC
nvironment. Their goal was to maximize load benefit, defined as
inimizing response time and energy consumption. In [25], Jiang
t al. employed a multi-agent and distributed DRL approach to
ointly solve offloading decision-making and resource allocation
hallenges, aiming to minimize the weighted sum of delay and
nergy consumption.
CA-MEC scenario. The above studies have not considered the

ollaboration of cloud data centers. The CA-MEC environment is
ore complex than the previously investigated computing con-

exts. Li et al. [26] designed a two-stage multilateral negotiation
cheme to improve the expected utility (EU) of the three parties
hat include end users’ EU (related to energy consumption, task
ompletion time, and default), the ES’s EU (related to service
evenue and default penalty), and the DC’s EU (related to ser-
ice revenue and default penalty). Nan et al. [27] researched
nergy-efficient online decision-making in a green energy-based
loud-of-things system, comprising fog and cloud tiers. The fog
erver and data center (DC) were modeled as two M/M/1 queue-
ng systems, with the transmission process represented as an
/M/1 queue. The authors proposed an online algorithm based
n Lyapunov optimization to minimize monetary costs of energy
onsumption while meeting time requirements. You et al. [28]
nvestigated computation offloading and resource configuration
n a multi-user and multi-cloudlet CA-MEC environment, aim-
ng to reduce the overall computing overhead and improve the
fficiency of resource utilization based on game theory. In [29],
adav et al. studied delay and energy optimization in a vehicular
og computing environment, which included multiple vehicular
odes, cloudlet nodes, and a DC. The authors proposed a dy-
amic computation offloading and resource allocation scheme
o minimize the total weighted sum of service latency and en-
rgy consumption. Sun et al. [30] studied computation offloading
trategy in CA-MEC under limited edge computing resources.
hey solved the offloading optimization problem using reinforce-
ent learning and implemented resource prediction with gated

ecurrent units. Peng et al. [8] investigated multi-objective com-
utation offloading optimization, considering latency and energy
onsumption in a CA-MEC environment with multiple MDs, ESs,
nd DCs. Ma et al. [31] researched the joint optimization problem
f computing resource allocation and cloud tenancy strategy in
A-MEC. The authors modeled the ES and the DC as M/M/1
ueueing systems and designed algorithms to obtain optimal
esource provisioning and cloud tenancy strategy to minimize
he system cost under system delay constraints. In [32], Ya-
av et al. researched computation offloading optimization based
n reinforcement learning to balance energy consumption and
rocessing latency. The CA-MEC environment consisted of three

ayers: a sensor layer with multiple sensor nodes, an edge layer

300
Fig. 1. Non-preemptive priority queueing discipline

with multiple ESs, and a cloud layer with a DC. However, Refs. [8,
28,29,32] do not consider queuing delay when analyzing the ART
of MDs, and none of the above studies consider task priority or
application urgency setting.

To position our study and emphasize its distinct characteris-
tics, we analyze the key differences between our research and
existing studies that have considered computation offloading in
CA-MEC.

• First, we take into account the priority of computation tasks.
The MD and ESs will perform their dedicated tasks be-
fore addressing generic tasks. Therefore, we adopt the non-
preemptive priority queueing discipline (NPQD), described
in detail below: (1) Tasks with the same priority are queued
according to the FIFO discipline; however, dedicated tasks
are always scheduled before generic tasks (see Fig. 1(a)).
(2) Generic tasks will only be executed when no dedicated
tasks are pending (see Fig. 1(b)). (3) The execution of a
computation task is uninterruptible, meaning that the task
being executed cannot be interrupted, even if it is a generic
task (see Fig. 1(c)).
• Second, we consider the impact of dedicated tasks on the

waiting delay of generic tasks when they disrupt the exe-
cution order of generic tasks, performing a rigorous mathe-
matical derivation.
• Third, we employ M/G/1 non-preemptive priority queueing

model, M/G/m non-preemptive priority queueing model,
and M/G/∞ queueing model to characterize the target MD,
each ES, and the DC, respectively. These models allow task-
related parameters (e.g., execution requirements and input
data sizes) to follow arbitrary probability distributions, thus
providing better applicability.

3. Preliminaries

This section provides the necessary preliminaries, including
assumptions, notations, and models used in this paper. (Ap-
pendix A lists definitions of the mathematical notations used in
this paper.)

3.1. The CA-MEC environment

First, we introduce the CA-MEC environment considered in
this paper.

Assume that there are m ESs with limited computation re-
sources (denoted as ES1, ES2, . . . , ESm) and a DC with infinite
omputation resources in the CA-MEC environment to provide
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Fig. 2. A CA-MEC environment with an MD, multiple multi-server ESs, and a
C.

omputation offloading services for MDs (see Fig. 2). We con-
ider the offloading decision from the perspective of one of the
Ds, that is, the target MD needs to offload some computation-

ntensive tasks to some ESs and/or the DC to minimize its APC on
he premise that the ART of offloadable tasks does not exceed the
aximum latency requirement, thereby efficiently prolonging its
wn battery life. Specifically, the target MD establishes wireless
onnectivity with the ESs, and the information exchange between
he MD and the ESs is managed by a central node/controller
e.g., a gateway) [33].

Regarding the computation offloading process in the CA-MEC
nvironment, the calculation of the offloading scheme and the
ollection of global information are not performed by the MD but
re assumed to be executed by the central node. For clarity of
resentation, the specific process is provided in Appendix B.
In terms of types of tasks, we consider two categories of

omputational tasks, each characterized by a different priority.
or simplicity, high priority tasks are referred to as dedicated
asks, while lower priority tasks are referred to as generic tasks.
he definitions of these two types of tasks vary between different
omputing nodes and can be summarized as follows.

• There are both dedicated tasks and generic tasks on the
target MD. Dedicated tasks (i.e., non-offloadable tasks) on
the MD refer to the urgent tasks that cannot be offloaded
and must be performed by the MD, while other tasks on
the MD are regarded as the generic tasks (i.e., offloadable
tasks) that can be offloaded to ESs/DC. The dedicated tasks
are given higher priority than the generic tasks.
• There are both dedicated tasks and generic tasks on each

ES. The dedicated tasks on each ES refer to the critical tasks
that are implemented on the ES and must be performed
by the ES, while the generic tasks on the ES refer to the
computational tasks that are offloaded from MDs to the
ES. Similarly, the dedicated tasks are given higher priority
than the generic tasks and are always scheduled before the
generic tasks.
• The DC is considered to have only generic tasks which are

offloaded from MDs. Although the service provision of the
DC may also require the support of some critical tasks,
the DC theoretically has infinite computing resources, such
that the offloaded tasks will not interfere with these critical
tasks.

.2. The MD model

In this section, we use an M/G/1 non-preemptive priority
ueueing model [34] to characterize the target MD.
A brief explanation of the above notation is given here. The

pecialized notation employed to define the queueing systems
nder consideration (i.e., M/G/1 and M/G/m) is known as Kendall
 λ
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notation [34]. This notation allows a queueing system to be
described in the form A/B/m/X/n/Z: A and B symbolize the dis-
tributions of inter-arrival time and service time, respectively; m
and n represent the number of servers and customers (infinite
by default), respectively; X denotes the queue capacity (infinite
by default); and Z signifies the queuing discipline for the system
(FIFO by default). For instance, in the case of an M/G/1 system,
task inter-arrival times follow a negative exponential distribution,
while service times exhibit an arbitrary distribution, and there is
a single server providing services with no constraint on queue
length. Interested readers are referred to [34] for more about
queueing theory.

Assume that the dedicated and generic tasks generated by
the MD conform to a Poisson stream with arrival rate λ =
˙0 + λ̈ (measured by the number of tasks arriving per sec-
nd), in which λ̇0 denotes the arrival rate of dedicated tasks
i.e., non-offloadable tasks with a higher priority that can only
e performed locally in the MD) and λ̈ denotes the arrival rate of
eneric tasks (i.e., offloadable tasks that can be performed locally
n the MD or remotely in ESs/DC).

A Poisson stream is known to be divisive, which means that
t can be split into several sub-streams, while several Poisson
treams can also be merged to form a single Poisson stream. Thus,
he arrival rate λ̈ can be split into m + 2 sub-streams, that is,
¨ = λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m + λ̈c , where λ̈0 denotes the arrival
ate of the sub-stream of generic tasks performed locally in the
D, λ̈i denotes the arrival rate of the ith sub-stream of generic

asks offloaded from the MD to ESi and performed remotely in
Si, and λ̈c denotes the arrival rate of the sub-stream of generic
asks offloaded from the MD to the DC and performed remotely
n the DC. Then, λ = λ̇0 + λ̈ = λ̇0 + λ̈0 +

∑m
i=1 λ̈i + λ̈c . We can

se vector λ =(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) to represent a computation
ffloading strategy of the MD.
The MDmaintains a queue for pending tasks and adopts NPQD,

hat is, dedicated tasks pending for execution have higher priority
nd are always scheduled before generic tasks, and generic tasks
ill only be executed when no dedicated tasks are pending.
oreover, all tasks are executed non-preemptively, i.e., a task
annot be preempted by any other task if it starts its execution.
Let s0 denote the execution speed of the MD (measured by

illion instructions per second, BIPS). The execution requirements
measured by billion instructions, BI) of dedicated tasks generated
n the MD are independent and identically distributed (i.i.d.)
andom variables (r.v. (s) ṙ0 with the mean ṙ0 and second moment
ṙ20 . The execution requirements of generic tasks generated on
the MD are i.i.d. r.v.s r̈0. Its mean and second moment are r̈0
nd r̈20 , respectively. The input data sizes (measured by units

of million bits, Mb) involved in generic tasks are also i.i.d. r.v.s
d̈0 with the mean d̈0 and second moment d̈20. Note that all the
execution requirements and input data sizes can follow arbitrary
probability distributions and can be obtained by graph analysis
methods [35,36].

3.3. The ES model

In this section, we use an M/G/m non-preemptive priority
queueing system [34] to characterize each ES in CA-MEC.

Assume that the dedicated tasks that are already on ESi con-
orm to a Poisson stream with arrival rate λ̇i. Since these m ESs
ot only provide computation offloading service for the target MD
ut also for other MDs in the CA-MEC environment, we assume
hat ESi also receives a Poisson stream of generic tasks from other
Ds with arrival rate λ̈ex,i, which is already there, and has nothing

o do with the target MD. Therefore, the total arrival rate of
ixed computation tasks executed by ESi can be calculated as
= λ̇ + λ̈ + λ̈ , for all 1 ≤ i ≤ m.
i i ex,i i
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Similarly, each ES maintains a queue for pending tasks and
dopts NPQD, i.e., dedicated tasks have higher priority and are
lways scheduled before generic tasks, and all tasks are non-
reemptive.
Let mi denote the server size of ESi (i.e., ESi has mi identical

ervers). The execution speed (measured by units of BIPS) of ESi
s si. In the wireless transfer channel between the MD and ESi,
he wireless data transmission rate is ci (measured by million
its per second, Mbps). The execution requirements of dedicated
asks preloaded on ESi are i.i.d. r.v.s ṙi. Its mean and second
oment are ṙi and ṙ2i , respectively. The execution requirements of

generic tasks offloaded from other MDs to ESi are i.i.d. r.v.s r̈i. Its
ean and second moment are r̈i and r̈2i , respectively. Note that
ll the execution requirements can follow arbitrary probability
istributions.

.4. The data center model

With a flexible design, the cloud data center theoretically
as infinite computation resources. Referring to some current
esearch work, the DC is typically regarded as a queuing system
ith infinite computation resources, such as [37–39].
We model the DC as an M/G/∞ queueing system with infinite

omputation resources. Therefore, there is no queueing latency
or the computation tasks offloaded to the DC, that is, the com-
utation tasks offloaded to the DC will be executed immediately.
Let sc denote the execution speed (measured by BIPS) of the

C. As discussed in Section 3.2, the DC processes a sub-stream
f generic tasks that are offloaded from the MD. When the MD
ffloads computation tasks to the DC, it first offloads these tasks
o a selected mobile base station (BS), and then the BS forwards
he tasks to the DC via Metropolitan Area Network (MAN). There-
ore, there are two transmission stages to offload computation
asks from the MD to the DC. Let cb denote the average wireless
ata transmission rate (measured by Mbps) between the MD and
he BS, and cWAN denote the average wired data transmission rate
measured by Mbps) between the BS and the DC.

.5. Power consumption models

In this section, we establish mathematical models to analyze
he power consumption of the MD in the CA-MEC environment.

.5.1. Power consumption for computation
Generally, the processor is the main power-consuming com-

onent of an MD, which is typically represented as Pd,0 =
0s

α0
0 [40–43], where s0 denotes processor execution speed, ξ0 and

0 are two technology-dependent constants [44–46].
Therefore, the MD’s APC (measured by Watts) for computation

an be calculated by

comp = ρ0ξ0s
α0
0 + P∗0 ,

here ρ0 is the utilization of the MD (i.e., the average percentage
of time that the MD’s processor is busy) that will be derived
in Section 4, and P∗0 denotes the base power of the processor,
ncluding base power, leakage power, and short-circuits power
issipation [47].

.5.2. Power consumption for communication
The communication between the MD and the ESs/DC also

onsumes power. We establish the communication power con-
umption model as follows.
Based on Shannon’s theorem [48], the data transmission rate

i for transmitting generic tasks from the MD to ESi can be
alculated by

i = Bilog2

(
1+

qiPt,i
)

,

BiNi
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where Bi denotes the communication channel bandwidth be-
tween the MD and ESi, qi represents the channel gain between
he MD and ESi, Pt,i denotes the transmission power of the MD
o offload tasks to ESi, and Ni denotes the noise power spectrum
ensity, for all 1 ≤ i ≤ m. Then, we can rewrite the equation to
btain Pt,i as

t,i =
BiNi(2ci/Bi − 1)

qi
.

The average communication time for the MD to offload one
generic task to ESi is d̈0/ci, thus the average communication
energy consumption of the MD in this process can be expressed
as Pt,i(d̈0/ci). We know that there are λ̈i generic tasks offloaded
rom the MD to ESi per second. Hence, we can get the average
ommunication energy consumption between the MD and ESi
er second, i.e., the APC of the MD (measured by Watts) for
ommunication with ESi as

comm,i =
λ̈id̈0
ci

Pt,i =
λ̈id̈0
ci
·
BiNi(2ci/Bi − 1)

qi
,

Similarly, the APC of the MD for communication with the DC
(relaying through a selected BS) is

Pcomm,c =
λ̈c d̈0
cb

Pt,b =
λ̈c d̈0
cb
·
BbNb(2cb/Bb − 1)

qb
.

Based on the above discussion, we can obtain the APC of the
MD for both computation and communication as

P = Pcomp +

m∑
i=1

Pcomm,i + Pcomm,c

= ρ0ξ0s
α0
0 + P∗0 +

m∑
i=1

λ̈id̈0
ci
·
BiNi(2ci/Bi − 1)

qi

+
λ̈c d̈0
cb
·
BbNb(2cb/Bb − 1)

qb
.

(1)

4. Problem definition

Before defining our optimization problem, we first derive the
primary performance metric of the target MD, i.e., the ART of
generic tasks generated on the MD. These generic tasks can be
executed locally on the MD and offloaded to ESs or the DC for
remote performance. Therefore, we need to analyze the ART of
offloadable tasks on each computing node.

First, we derive the ART of generic tasks performed locally
in the MD, which is denoted as T̈0. Based on the MD model we
established in Section 3.2, we know that the processing latency
of dedicated tasks performed locally in the MD is i.i.d. r.v.s ẋ0 =
ṙ0/s0. Its mean and second moment are ẋ0 = ṙ0/s0 and ẋ20 = ṙ20/s

2
0,

respectively. We also know that the processing latency of generic
tasks performed locally in the MD is i.i.d. r.v.s ẍ0 = r̈0/s0. Its mean
and second moment are ẍ0 = r̈0/s0 and ẍ20 = r̈20/s

2
0, respectively.

or the MD, it needs to execute two types of computation tasks,
.e., the dedicated tasks with arrival rate λ̇0 and the generic
asks with arrival rate λ̈0. Thus, the processing latency of mixed
omputation tasks performed locally in the MD is i.i.d. r.v.s with
ean

x0 =
λ̇0

λ0
ẋ0 +

λ̈0

λ0
ẍ0 =

λ̇0

λ0

ṙ0
s0
+

λ̈0

λ0

r̈0
s0

,

and second moment

x20 =
λ̇0 ẋ20 +

λ̈0 ẍ20 =
λ̇0 ṙ20

2 +
λ̈0 r̈20

2 ,

λ0 λ0 λ0 s0 λ0 s0
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here λ0 = λ̇0 + λ̈0 denotes the total arrival rate of mixed
omputation tasks on the MD, and λ̇0/λ0 and λ̈0/λ0 are the
ercentages of dedicated tasks and generic tasks on the MD,
espectively. Based on queueing theory, the server utilization of
he MD can be calculated by ρ0 = λ0x0 = (λ̇0 ṙ0 + λ̈0 r̈0)/s0, and
0 < 1. The average queueing latency of generic tasks performed
ocally in the MD is ([34, p. 702])

ẅ0 =
λ0x20

2(1− λ̇0ẋ0)(1− ρ0)
=

λ̇0 ṙ20 + λ̈0 r̈20
2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)

.

hen, we can calculate T̈0 by

T̈0 = ẍ0 + ẅ0 =
r̈0
s0
+

λ̇0 ṙ20 + λ̈0 r̈20
2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)

. (2)

Second, we derive the ART of generic tasks offloaded from the
MD to ESi, which is denoted as T̈i, for all 1 ≤ i ≤ m. Based on
he ES model we established in Section 3.3, we know that the
rocessing latency of dedicated tasks preloaded on ESi is i.i.d. r.v.s
˙i = ṙi/si. Its mean and second moment are ẋi = ṙi/si and ẋ2i =
ṙ2i /s

2
i , respectively. We also know that the generic tasks on ESi are

omposed of two parts, including the generic tasks that have been
ffloaded to ESi from other MDs (i.e., the communication latency
oes not need to be considered) and the generic tasks that will
e offloaded from the target MD to ESi (i.e., the communication
atency needs to be considered). The processing latency of generic
asks that are already there in ESi is i.i.d. r.v.s. Its mean and
econd moment are r̈i/si and r̈2i /s

2
i , respectively. The processing

atency of generic tasks offloaded from the target MD to ESi is
lso i.i.d. r.v.s. Its mean and second moment are r̈0/si+ d̈0/ci and

r̈20/s
2
i + 2r̈0d̈0/(sici)+ d̈20/c

2
i , respectively (notice that d̈0/ci is the

average communication latency). For ESi, it needs to execute two
types of computation tasks, i.e., the generic tasks with arrival rate
λ̈i + λ̈ex,i and the dedicated tasks with arrival rate λ̇i. Thus, the
processing latency of generic tasks performed remotely in ESi is
i.i.d. r.v.s with mean

ẍi =
λ̈i

λ̈i + λ̈ex,i

(
r̈0
si
+

d̈0
ci

)
+

λ̈ex,i

λ̈i + λ̈ex,i
·
r̈i
si

,

nd second moment

ẍ2i =
λ̈i

λ̈i + λ̈ex,i

(
r̈20
s2i
+ 2

r̈0d̈0
sici
+

d̈20
c2i

)
+

λ̈ex,i

λ̈i + λ̈ex,i
·
r̈2i
s2i

.

The processing latency of mixed computation tasks performed in
ESi is i.i.d. r.v.s with mean

xi =
λ̇i

λi
ẋi +

λ̈i + λ̈ex,i

λi
ẍi =

λ̇i ṙi
λisi
+

λ̈i

λi

(
r̈0
si
+

d̈0
ci

)
+

λ̈ex,i r̈ i
λisi

,

nd second moment

x2i =
λ̇i

λi
ẋ2i +

λ̈i + λ̈ex,i

λi
ẍ2i =

λ̇i

λi

ṙ2i
si2
+

λ̈i

λi

(
r̈20
si2
+

d̈20
ci2
+ 2

r̈0d̈0
sici

)

+
λ̈ex,i

λi

r̈2i
si2

,

and the variance σ 2
i = x2i − xi2, and the coefficient of variation

CVi =
σi

xi
=

√
x2i
xi2
− 1,

here λi = λ̇i + λ̈ex,i + λ̈i denotes the total arrival rate of
mixed computation tasks on ESi, λ̇i/λi and (λ̈i + λ̈ex,i)/λi are
actually the percentages of dedicated tasks and generic tasks on
303
ESi, respectively. Based on queuing theory, the server utilization
of ESi can be calculated by

ρi =
λixi
mi
=

λ̇i ṙi + λ̈ex,i r̈i
simi

+
λ̈i

mi

(
r̈0
si
+

d̈0
ci

)
,

or

ρi =ρ̇i + ρ̈i =
λ̇i ṙi
simi
+

λ̈i

mi

(
r̈0
si
+

d̈0
ci

)
+

λ̈ex,i r̈i
simi

,

here ρ̇i = λ̇iẋi/mi denotes the server utilization of dedicated
tasks of ESi, and ρ̈i = (λ̈i+λ̈ex,i)ẍi/mi denotes the server utilization
of generic tasks of ESi. We also have ρi < 1. According to
the accurate approximation of the average queueing latency in
an M/G/m non-preemptive priority queueing system from [49],
we can calculate the average queueing latency of generic tasks
processed on ESi as ẅi = W̊i/(1 − ρ̇i), where W̊i represents the
average queueing latency for non-priority (FIFO) case [50], that
is,

W̊i =
xi · pi,mi (1+ CV 2

i )
2mi(1− ρi)

,

where

pi,mi = pi,0 ·
(miρi)mi

mi!(1− ρi)
,

nd

i,0 =

(mi−1∑
k=0

(miρi)k

k!
+

(miρi)mi

mi!(1− ρi)

)−1
.

After simple algebraic operations, we have

ẅi =
xi · pi,mi (1+ CV 2

i )
2mi(1− ρ̇i)(1− ρi)

.

Then, we can calculate T̈i by

¨i =
r̈0
si
+

d̈0
ci
+ ẅi =

r̈0
si
+

d̈0
ci
+

xi · pi,mi (1+ CV 2
i )

2mi(1− ρ̇i)(1− ρi)
.

Third, we derive the ART of generic tasks offloaded from the
MD to the DC, which is denoted as T̈c . Based on the DC model we
established in Section 3.4, we can calculate T̈c by

¨c = ẍc =
r̈0
sc
+

d̈0
cb
+

d̈0
cWAN

+ tprop, (3)

where d̈0/cb denotes the average communication latency from
the MD to the BS, d̈0/cWAN denotes the average communication
latency from the BS to the DC, and tprop denotes the propagation
atency from the BS to the DC (since the DC is located at the hub
f the backbone network, i.e., geographically far away from MDs).
According to the above discussion, the ART of generic tasks

hat are generated on the MD can be calculated by

¨ =
λ̈0

λ̈
T̈0 +

m∑
i=1

λ̈i

λ̈
T̈i +

λ̈c

λ̈
T̈c . (4)

Now we can formally define the optimization problem to be
solved in this paper. Recall that our main objective is to obtain
the optimal computation offloading decision in the CA-MEC en-
vironment for the target MD, such that the MD’s APC is minimized
and the performance of the MD meets a preset standard, thereby
improving energy efficiency and prolonging the battery life of the
MD. This problem is a multi-variable optimization problem and is
formulated as follows.
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Given an MD with parameters λ̇0, λ̈, s0, ṙ0, ṙ20 , r̈0, r̈
2
0 , d̈0, d̈

2
0,

ξ0, α0, P∗0 , and m ESs with parameters λ̇i, λ̈ex,i, mi, si, ṙi, ṙ2i , r̈i,
r̈2i , ci, qi, Bi, Ni, for all 1 ≤ i ≤ m, and a DC with parameters
c , cb, qb, Bb, Nb, cWAN, tprop, and performance constraint T̃g , find a
omputation offloading strategy λ= (λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c), such
hat P is minimized, namely,

in P = Pcomp +

m∑
i=1

Pcomm,i + Pcomm,c, (5)

subject to the following constraints

λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m + λ̈c = λ̈, (6)

T̈ ≤ T̃g , (7)

ρ0 < 1, (8)

ρi < 1, for all 1 ≤ i ≤ m. (9)

It should be noted that if λ̈0 = 0, it means that the MD will
not execute generic tasks locally. Similarly, λ̈i = 0 means that
generic tasks will not be offloaded to ESi for remote performance,
and λ̈c = 0 means that generic tasks will not be offloaded to the
DC.

5. Our solutions

In this section, we analyze the multi-variable optimization
problem defined above and design an approach to solve it based
on KKT optimality conditions.

5.1. Analysis

First, we define the two constraints Eqs. (6) and (7) as func-
tions H(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) and G(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c), re-
pectively, where

(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) = λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m + λ̈c − λ̈,

(10)

nd

(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) =

(
λ̈0T̈0 +

m∑
i=1

λ̈iT̈i + λ̈c T̈c

)
− λ̈̃Tg .

(11)

Second, we construct a Lagrange function as

=P(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c)+ βG(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c)

+ γH(λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c),
(12)

here β and γ are two Lagrange multipliers. Now, we have m+2
onlinear equations

∂L
∂λ̈0
=

∂P
∂λ̈0
+ β ∂G

∂λ̈0
+ γ = 0,

∂L
∂λ̈i
=

∂P
∂λ̈i
+ β ∂G

∂λ̈i
+ γ = 0, 1 ≤ i ≤ m,

∂L
∂λ̈c
=

∂P
∂λ̈c
+ β ∂G

∂λ̈c
+ γ = 0,

hat is,

∂P
∂λ̈0
+ β

(
T̈0 + λ̈0

∂ T̈0
∂λ̈0

)
+ γ = 0,

∂P
∂λ̈i
+ β

(
T̈i + λ̈i

∂ T̈i
∂λ̈i

)
+ γ = 0, 1 ≤ i ≤ m,

γ = − ∂P
− β T̈ .
∂λ̈c
c

304
According to KKT conditions, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂P
∂λ̈0
−

∂P
∂λ̈c
+ β

(
T̈0 + λ̈0

∂ T̈0
∂λ̈0
− T̈c

)
= 0, (a)

∂P
∂λ̈i
−

∂P
∂λ̈c
+ β

(
T̈i + λ̈i

∂ T̈i
∂λ̈i
− T̈c

)
= 0, 1 ≤ i ≤ m, (b)

βG(λ̈0, λ̈1, . . . , λ̈m, λ̈c) = 0, (c)
β ≥ 0, (d)
G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) ≤ 0, (e)
λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m + λ̈c = λ̈. (f)

(13)

y observing Eqs. (13)(c)∼(13)(f), the following relationship be-
ween β and G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) can be obtained:

β = 0,G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) < 0,
β > 0,G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) = 0.

(14)

owever, if β = 0, Eqs. (13)(a) and (13)(b) can be rewritten as
∂P
∂λ̈0
−

∂P
∂λ̈c
= 0,

∂P
∂λ̈i
−

∂P
∂λ̈c
= 0, 1 ≤ i ≤ m,

which means that the equations directly become constants and
cannot be solved. Therefore, the value of β should be larger than
0 and G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) should be equal to 0, i.e., β > 0 and
¨ = T̃g . Then, Eqs. (13)(a)∼(13)(f) can be rewritten as

∂P
∂λ̈0
−

∂P
∂λ̈c
+ β

(
T̈0 + λ̈0

∂ T̈0
∂λ̈0
− T̈c

)
= 0, (a)

∂P
∂λ̈i
−

∂P
∂λ̈c
+ β

(
T̈i + λ̈i

∂ T̈i
∂λ̈i
− T̈c

)
= 0, 1 ≤ i ≤ m, (b)

β > 0, (c)
G(λ̈0, λ̈1, . . . , λ̈m, λ̈c) = 0, (d)
λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m + λ̈c = λ̈. (e)

(15)

For the sake of simplicity, let L0(β, λ̈0) represent Eq. (15)(a)
nd Li(β, λ̈i) represent Eq. (15)(b), i.e.,

0(β, λ̈0) =
∂P
∂λ̈0
−

∂P
∂λ̈c
+ β

(
T̈0 + λ̈0

∂ T̈0
∂λ̈0
− T̈c

)

= ξ0 r̈0s
α0−1
0 −

d̈0
cb
·
BbNb(2cb/Bb − 1)

qb
+ β

(
r̈0
s0
−

r̈0
sc

+
(s0 − λ̇0 ṙ0)(λ̇0 ṙ20 + 2λ̈0 r̈20 )− λ̈2

0 r̈0 r̈
2
0

2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)
2

−
d̈0
cb
−

d̈0
cWAN

− tprop

)
= 0,

(16)

and

Li(β, λ̈i) =
∂P
∂λ̈i
−

∂P
∂λ̈c
+ β

(
T̈i + λ̈i

∂ T̈i
∂λ̈i
− T̈c

)

= d̈0

(
BiNi(2ci/Bi − 1)

ciqi
−

BbNb(2cb/Bb − 1)
cbqb

)
+ β

(
r̈0

(
1
si
−

1
sc

)
+ d̈0

(
1
ci
−

1
cb
−

1
cWAN

)
+

1
2mi(1− ρ̇i)(1− ρi)

(
∂CV 2

i

∂λ̈i
· λ̈ixi · pi,mi

+ (1+ CV 2
i )
(

xi · pi,mi

(
1+

∂ρi

∂λ̈i
·

λ̈i

(1− ρi)

)
+

∂xi
· λ̈ipi,mi +

∂pi,mi
· λ̈ixi

))
−tprop

)
= 0,

(17)
∂λ̈i ∂λ̈i
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Fig. 3. Several examples of Li(β, λ̈i).

for all 1 ≤ i ≤ m. (For clarity of presentation, we provide the
detailed derivation process of Eqs. (16) and (17) in Appendix C.)

5.2. Algorithms

It is challenging to directly solve these sophisticated nonlinear
equations since there is no closed-form solution. Therefore, we
design a series of algorithms to find numerical solutions.

A Motivational Example. This example helps to understand
our algorithms. We consider a CA-MEC environment with m = 3
ESs. The example parameters are given as follows: λ̇0 = 1.0, λ̈ =
7.0, ṙ0 = 0.4, ṙ20 = 0.3, r̈0 = 0.9, r̈20 = 0.7, d̈0 = 1.2, d̈20 = 1.65,
s0 = 1.2, ξ0 = 1.5, α0 = 3.0, P∗0 = 2.0, λ̇i = 2.95 + 0.05(i − 1),
λ̈ex,i = 4.45 + 0.05(i − 1), ṙi = 0.75 + 0.05(i − 1), ṙ2i = 1.1ṙi

2
,

r̈i = 0.95+ 0.05(i− 1), r̈2i = 1.35r̈i
2
, mi = 4, si = 2.5+ 0.1(i− 1),

i = 9.5+0.5(i−1), Bi = 2.9+0.1(i−1), Ni = −174−0.1(i−1),
or all 1 ≤ i ≤ m, cb = 10.0, Bb = 2.6, Nb = −174.0,
c = 3.0, cWAN = 60.0, and tprop = 0.5. In this paper, each channel
ain (including q1, q2, . . . , qm, and qb) is assumed to be uniformly

distributed in [−50, −30] dBm.

Theorem 1. For a given β , L0(β, λ̈0) has the following optimal
olution:

¨0 =

(
−b+

√
b2 − 4ac

)
/2a, (18)

here

a = 2r̈0
2
(y1 + βy2)

(
s0 − λ̇0 ṙ0

)
− β r̈0 r̈20 ,

b =
(
s0 − λ̇0 ṙ0

)(
2β r̈20 − 4r̈0 (y1 + βy2)

(
s0 − λ̇0 ṙ0

))
,

c =
(
s0 − λ̇0 ṙ0

)(
βλ̇0 ṙ20 + 2 (y1 + βy2)

(
s0 − λ̇0 ṙ0

)2)
,

y1 = ξ0 r̈0s0α0−1 −
d̈0
cb
·

BbNb

(
2cb/Bb−1

)
qb

,

y2 = r̈0
(

1
s0
−

1
sc

)
−

d̈0
cb
−

d̈0
cWAN
− tprop.

Thus, if β is fixed, we can calculate λ̈0 based on Eq. (18). (The
roof of the above theorem is postponed to Appendix D.)
We also find that if the value of β is given, Li(β, λ̈i) (i.e.,

q. (17)) could be regarded as an increasing function of λ̈i. Fig. 3
hows several examples of Li(β, λ̈i). Similarly, we propose an
lgorithm, shown in Algorithm 1, to search λ̈i such that the value
f Li(β, λ̈i) is close to 0, for all 1 ≤ i ≤ m. Since ρi < 1, we can
btain the search interval of λ̈i as [0, λ̈∗i ) (lines 1–2), where

λ̈∗i =
mi − (λ̇i ṙi + λ̈ex,i r̈i)/si

r̈0/si + d̈0/ci
.

or a given β , we can obtain λ̈i through Algorithm 1, such that
i(β, λ̈i) = 0.
Through the above discussion, if the value of β is given, we

an obtain the values of λ̈ , λ̈ , λ̈ , . . . , λ̈ through Eq. (18) and
0 1 2 m
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Algorithm 1 Search_λ̈i

Require: r̈0, r̈20 , d̈0, d̈
2
0, ṙi, ṙ

2
i , r̈i, r̈

2
i , λ̇i, λ̈ex,i, si, ci, mi, Bi, qi, Ni, sc ,

cb, Bb, qb, Nb, cWAN, tprop, and β .
Ensure: λ̈i.
1: lb← 0; ub← λ̈∗i ;
2: while ub− lb > ϵ do
3: λ̈i ← (lb+ ub)/2;
4: Calculate Li(β, λ̈i) by using Eq. (17);
5: if Li(β, λ̈i) > 0 then
6: ub← λ̈i;
7: else
8: lb← λ̈i;
9: end if
0: end while
1: λ̈i ← (lb+ ub)/2;
2: return λ̈i.

Algorithm 2 Obtain_λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c

Require: ṙ0, ṙ20 , r̈0, r̈
2
0 , d̈0, d̈

2
0, λ̇0, λ̈, s0, P∗0 , ξ0, α0, sc , cb, Bb, qb, Nb,

cWAN, tprop, and ṙi, ṙ2i , r̈i, r̈
2
i , λ̇i, λ̈ex,i, si, ci, mi, Bi, qi, Ni, for all

1 ≤ i ≤ m.
nsure: λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c .
1: Calculate λ̈0 by using Eq. (18);
2: for i← 1 to m do
3: Call Algorithm 1 to obtain λ̈i;
4: end for
5: if (λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m) > λ̈ then
6: //The value of β is inappropriate;
7: λ̈c ←−1;
8: else
9: λ̈c ← λ̈− (λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m);
0: end if
1: return λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c .

Algorithm 1. Now, we can calculate the value of λ̈c according to
q. (15)(e), shown in Algorithm 2. However, in some cases, for
given β , we may be unable to find λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c that
ake Eq. (15)(e) hold. For example, if there are fewer generic

asks on the MD and ESs have a light workload, or when it is
ore costly for the MD to offload tasks to the DC, the MD tends

o perform tasks locally or offload tasks to ESs, which may result
n (λ̈0 + λ̈1 + λ̈2 + · · · + λ̈m) > λ̈. We judge these situations in
lgorithm 2. First, we calculate λ̈0 (line 1) and there is an iteration
o obtain λ̈i, for all 1 ≤ i ≤ m (lines 2–4). Second, we judge
hether Eq. (15)(e) holds (lines 5–10). If that condition is met,
e calculate λ̈c according to Eq. (15)(e) (lines 8–10); otherwise,
e set λ̈c = −1 to help adjust the value of β (lines 5–7).
Since the value of β determines the values of λ̈0, λ̈c , and λ̈i, for

ll 1 ≤ i ≤ m, the value of β indirectly determines the value of T̈ .
Therefore, finding the value of β is the key to finding the optimal
computation offloading strategy. Let λ̈0,m (β) = λ̈0 + λ̈1 + λ̈2 +

· · ·+ λ̈m be the total arrival rate of generic tasks processed in the
MD and ESs. And we have λ̈0,m (β) ≤ λ̈ according to Eq. (15)(e).
One important observation is that, in some cases, if the value of
β is relatively small, then we get λ̈0,m (β) > λ̈. In Fig. 4, we show
the changing trend of λ̈0,m (β) with β . It is clear that if the value
of β is too small (e.g., close to 0), Eq. (15)(e) may no longer hold,
which means β should not only be larger than 0 but also have a
guaranteed lower bound.

According to our further observation, we find that the ART of
generic tasks (i.e., T̈ ) could be viewed as a decreasing function of
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Fig. 4. Changing trend of λ̈0,m (β) with β .

β , and the change trend of T̈ with β is shown in Fig. 5. We also
ind that the APC of the MD (i.e., P) will increase with the increase
f β , as shown in Fig. 5(b). Based on the above observations, we
ropose an algorithm to search appropriate β in certain search
nterval to meet the performance constraint T̈ ≤ T̃g , as shown
in Algorithm 3. As for the initial search interval of β , the lower
bound can be set to a very small value (e.g., lb = 10−6), and the
upper bound can be set to a very large value (e.g., ub = 107) (lines
1–2). Then, we can obtain the value of β that makes T̈ ≤ T̃g hold
lines 3–17). For a certain β , if λ̈c = −1 (calculated by Algorithm
), it means that the current value of β is small, and we should
hange the search interval to the right half to continue to search
lines 6–9) according to the previous analysis.

Algorithm 4 describes the steps that get the final offloading
ecision.

Algorithm 3 Search_β

Require: ṙ0, ṙ20 , r̈0, r̈
2
0 , d̈0, d̈

2
0, λ̇0, λ̈, s0, P∗0 , ξ0, α0, T̃g , cb, Bb, qb, Nb,

sc , cWAN, tprop, and ṙi, ṙ2i , r̈i, r̈
2
i , λ̇i, λ̈ex,i, si, ci, mi, Bi, qi, Ni, for all

1 ≤ i ≤ m.
Ensure: β .
1: lb← a small value;
2: ub← a large value;
3: while ub− lb > ϵ do
4: β ← (lb+ ub)/2;
5: Call Algorithm 2 to obtain λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c ;
6: if λ̈c == −1 then
7: lb← β;
8: continue;
9: end if

10: Calculate T̈ by using Eq. (4);
1: if T̈ < T̃g then
2: ub← β;
3: else
4: lb← β;

15: end if
16: end while
17: β ← (lb+ ub)/2;
8: return β .

5.3. Time complexity analysis

In this section, we analyze the time complexity of the four
lgorithms we proposed, as shown below.
306
Fig. 5. The changing trends of T̈ and P with β .

Algorithm 4 Minimize_APC

Require: ṙ0, ṙ20 , r̈0, r̈
2
0 , d̈0, d̈

2
0, λ̇0, λ̈, s0, P∗0 , ξ0, α0, T̃g , cb, Bb, qb, Nb,

sc , cWAN, tprop, and ṙi, ṙ2i , r̈i, r̈
2
i , λ̇i, λ̈ex,i, si, ci, mi,Bi, qi, Ni, for all

1 ≤ i ≤ m.
nsure: (λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) and P .
1: Call Algorithm 3 to obtain β;
2: Call Algorithm 2 to obtain λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c ;
3: Calculate P by using Eq. (1);
4: return (λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c) and P .

1. The time complexity of obtaining λ̈i (Algorithm 1). In Al-
gorithm 1, the initial lower bound and upper bound of λ̈i
are set to lb = 0 and ub = λ̈∗i , for all 1 ≤ i ≤ m. There is
one While loop and the number of iterations of the While
loop is log((ub − lb)/ϵ). Therefore, the time complexity of
Algorithm 1 is O(log( ub−lb

ϵ
)).

2. The time complexity of obtaining λ̈0, λ̈1, λ̈2, . . . , λ̈m, λ̈c
(Algorithm 2). Algorithm 2 contains one For loop and the
number of iterations of the For loop is m. And due to the
calling of Algorithm 1 in the For loop, Algorithm 1 will
be executed m times. Therefore, the time complexity of
Algorithm 2 is O(m log( ub−lb

ϵ
)).

3. The time complexity of searching β (Algorithm 3). In Algo-
rithm 3, the initial lower bound and upper bound of β are
set to lb = 10−6 and ub = 106. There is one While loop
in Algorithm 3 and the number of iterations of the While
loop is log((ub− lb)/ϵ). And due to the calling of Algorithm
2 in the While loop, Algorithm 1 will be executed log((ub−
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lb)/ϵ) times. Thus, the time complexity of Algorithm 3 is
O(m(log( ub−lb

ϵ
))2).

4. The time complexity of minimizing the MD’s APC (Algo-
rithm 4). Due to the calling of Algorithms 2 and 3, the time
complexity of Algorithm 4 is O(m(log( ub−lb

ϵ
))2).

Note that the execution time of the proposed algorithm and
the accuracy of the results are related to the setting of the preset
accuracy parameter ϵ and Lagrange multiplier β . In this paper, we
et ϵ = 10−11 and the upper bound of β as 10−6. Each bisection
earch in our algorithms terminates when the difference between
he upper and lower bounds of the search domain is less than ϵ,
hich implies that the smaller ϵ is, the more accurate the search
esults will be, but the longer the search time might be. As for the
nitial search domain of Lagrange multiplier β , the initial lower
ound of β can be set to a small value but not equal to 0 because
is required to be greater than 0, and the initial upper bound of
is commonly assumed to be a very large value [20].

.4. Numerical examples

In this section, we provide three numerical examples to illus-
rate the effectiveness of the proposed methods. Note that the
xperimental parameter settings in these examples are only for
llustrative purposes, and we perform these examples by imple-
enting the proposed algorithms with Python on a computer
ith intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz 2.40 GHz, and
28 GB RAM.
For each numerical example, there is an MD, m = 3 ESs,

BS, and a DC. Besides, several environment-related parameter
ettings are the same for these examples, that is, λ̇0 = 1.0,
0 = 1.5, and α0 = 3.0 for the MD, Bi = 2.9 + 0.1(i − 1), and
i = −174−0.1(i−1) for ESs, where 1 ≤ i ≤ m, and Nb = −174.0
or the BS. Note that the experimental parameter settings in these
xamples are only for illustrative purposes.

xample 1. The MD is given by λ̈ = 12.0, ṙ0 = 0.5, ṙ20 = 0.8,
r̈0 = 0.3, r̈20 = 0.7, d̈0 = 1.8, d̈20 = 3.0, s0 = 2.2, and P∗0 = 2.0.
There is a BS with cb = 8.0, Bb = 2.6, qb = −48.700109, and
DC with sc = 3.2, cWAN = 140.0, and tprop = 0.5. There are
= 3 ESs, where ESi is given by ṙi = 0.75 + 0.05(i − 1),

ṙ2i = 1.1ṙi
2
, r̈i = 0.95 + 0.05(i − 1), and r̈2i = 1.35r̈i

2
, where

≤ i ≤ m. For each ES, Table 1 shows ṙi (execution requirements
f dedicated tasks), r̈i(execution requirements of generic tasks),
i (server size), si (execution speed), ci (data transmission rate),
nd qi (channel gain), for all 1 ≤ i ≤ m. Table 1 also presents

other experimental data: λ̈∗i (the upper bound of generic tasks
accepted by each node), d̈0/ci (the average communication time
to offload one generic task to ESi), and Pt,i(d̈0/ci) (the average
nergy consumption of the MD to offload one generic task to ESi).

The performance constraint is T̃g = 0.80. From Table 1, we
et the optimal offloading decision λ = (λ̈0, λ̈1, λ̈2, λ̈3, λ̈4, λ̈c),
i (the server utilization of the MD and ESs), T̈i (the ART of
eneric tasks on each node), Pcomm,i (the APC of the MD for

communication with ESs and the DC), as well as other outputs
of our algorithms, including β (Lagrange multiplier), Pcomp (MD’s
APC for computation), P (MD’s APC for both computation and
communication), and T̈ (the ART of generic tasks from the MD).

Example 2. The MD is given by λ̈ = 25.0, ṙ0 = 0.4, ṙ20 = 0.64,
r̈0 = 0.5, r̈20 = 0.71, d̈0 = 2.0, d̈20 = 5.691, s0 = 2.3, and P∗0 = 1.5.
There is a BS with cb = 9.5, Bb = 2.7, qb = −33.593768, and a DC
ith sc = 3.0, cWAN = 115.0, and tprop = 0.45. There are m = 3
Ss, where ES is given by ṙ = 0.75 + 0.05(i − 1), ṙ2 = 1.1ṙ

2
,
i i i i

307
Table 1
Experimental results of Example 1.
i 0 1 2 3 c(DC)

ṙi 0.500000 0.750000 0.800000 0.850000 –
r̈i 0.300000 0.950000 1.000000 1.050000 –
λ̇i 1.000000 3.150000 3.200000 3.250000 –
λ̈ex,i – 3.950000 4.000000 4.050000 –
λ̈∗i 5.665666 1.902954 1.765531 1.609465 (∞)
mi – 3 3 3 –
si 2.200000 2.600000 2.700000 2.800000 3.200000
ci – 8.000000 8.500000 9.000000 –
qi – −38.336495 −44.188590 −33.563147 –
d̈0/ci – 0.225000 0.211764 0.200000 –
Pt,i(d̈0/ci) – 17.080640 15.336448 20.855342 –

λ̈i 1.736180 0.250665 0.190639 0.000000 9.822513
ρi 0.464024 0.812415 0.830394 0.835119 –
T̈i 0.639052 0.707236 0.759218 0.772803 0.831607
Pcomm,i – 9.464766 4.281533 0.000000 152.707904

β = 40.190286, Pcomp = 9.411401, P = 169.324573, T̈ = 0.800000

Table 2
Experimental results of Example 2.
i 0 1 2 3 c(DC)

ṙi 0.400000 0.750000 0.800000 0.850000 –
r̈i 0.500000 0.950000 1.000000 1.050000 –
λ̇i 1.000000 3.350000 3.400000 3.450000 –
λ̈ex,i – 4.150000 4.200000 4.250000 –
λ̈∗i 3.799000 1.538655 4.036735 6.750357 (∞)
si 2.300000 2.700000 2.800000 2.900000 3.000000
mi – 3 4 5 –
ci – 9.500000 10.000000 10.500000 –
qi – −48.446658 −39.863527 −31.350468 –
d̈0/ci – 0.210526 0.200000 0.190476 –
Pt,i(d̈0/ci) – 19.045683 23.791944 31.045080 –

λ̈i 2.297890 0.643247 2.356808 3.767892 15.934161
ρi 0.673454 0.881760 0.840912 0.783466 –
T̈i 1.013290 1.066177 0.693223 0.502725 0.844584
Pcomm,i – 12.251086 56.073051 116.974513 490.700050

β = 13.702376, Pcomp = 13.790881, P = 689.789583, T̈ = 0.800000

Table 3
Experimental results of Example 3.
i 0 1 2 3 c(DC)

λ̈i 3.012191 1.040053 3.022679 3.572331 14.352743
ρi 0.828737 0.934100 0.903932 0.769272 –
T̈i 2.073743 1.774520 1.007665 0.487060 0.8445842
Pcomm,i – 19.808520 71.915427 110.903332 441.999547

β = 2.749974, Pcomp = 16.624869, P = 661.251698, T̈ = 1.000000

r̈i = 0.95 + 0.05(i − 1), r̈2i = 1.3r̈i
2
, where Table 2 shows mi, si,

ci, and qi for each ES, for all 1 ≤ i ≤ m.

We set the performance constraint as T̃g = 0.80. Similarly, in
Table 2, we present the optimal offloading strategy of the MD λ
= (λ̈0, λ̈1, λ̈2, λ̈3, λ̈c) and other outputs of our algorithms.

xample 3. In this example, the parameter settings are the same
s in Example 2, except that we set the performance constraint
s T̃g = 1.0. Again, Table 3 shows the optimal offloading strategy

of the MD λ = (λ̈0, λ̈1, λ̈2, λ̈3, λ̈c) and other outputs of our
lgorithms.

From the experimental results in Examples 1∼3, we obtain the
ollowing observations:

• In Table 1, the MD does not offload generic tasks to ES3,
since the communication cost with ES is more than that
3



Z. He, Y. Xu, D. Liu et al. Future Generation Computer Systems 148 (2023) 298–313

w
t
s
p

s
t
N
w
t
t
s

r
s
γ
r
c
5
r

Table 4
Experimental results of performance comparison.
(a) Offloading decisions

i Our solution LWSF PSO DDPG

λ̈i ρi λ̈i ρi λ̈i ρi λ̈i ρi

0 2.297890 0.673454 2.175882 0.646930 2.389889 0.693454 0.000561 0.174035
1 0.643247 0.881760 0.846267 0.908539 0.129127 0.813946 0.366864 0.845304
2 2.356808 0.840912 2.315726 0.837024 2.440887 0.848869 0.699830 0.684091
3 3.767892 0.783466 3.911974 0.793923 3.969749 0.798116 3.712331 0.779433
c(DC) 15.93416 – 15.750147 – 16.070345 – 20.220411 –

(b) Results of ART and APC

Our solution LWSF PSO DDPG

T̈ 0.800000 0.801420 0.799865 0.782766
P 689.789583 691.001050 693.974957 766.260539
S
i
a
m
s
u
t
L
h
o
m

of communication with ES1 and ES2, and ES1 and ES2 can
already meet its computing offloading requirements. These
means that the MD prefers to offload tasks to the ESs with
higher benefits.
• In Table 2, the generic tasks offloaded from the MD to ES1,

ES2, and ES3 are quite different, although their workloads are
not heavy. This is because the MD prefers to select the ESs
with better computation capacity and resources to offload
computation tasks.
• In Table 3, the MD processes generic tasks locally and of-

floads generic tasks to ESs as much as possible to save
energy consumption when the performance constraint T̃g
is up to 1.0 s (by comparison, in Table 2, the MD tends to
offload more tasks to the DC to save time). This is because
the MD prefers to execute tasks locally or offload tasks to
ESs rather than taking more power to offload tasks to the
DC, when performance requirements are not high, which
can save its energy consumption.

6. Performance comparison

In this section, we construct a comparative experiment to
further illustrate the effectiveness of our proposed algorithms
and the optimality of our solutions. Specifically, we compare our
solution with a greedy-based offloading method, PSO, and DDPG
algorithms.

Lowest-weighted-sum-first (LWSF). Here, the target MD will
preferentially offload tasks to nodes with the lower weighted sum
of latency and power consumption, i.e., g = wp · P + (1−wp) · T̈ ,
here wp is the weighting factor and is set to wp = 0.4. In
erms of minimizing power consumption under performance con-
traints, setting too large a value for wp may lead to unsatisfied
erformance constraints.
Particle swarm optimization. PSO is a heuristic algorithm that

olves optimization problems by searching for candidate solu-
ions iteratively. In this comparison, we consider a swarm with
= 20 particles moving in an n + 2 dimensional search space,
hich is determined by the action bounds of λ̈0, . . . , λ̈n, λ̈c . Here,
he number of iterations is set to k = 50, the inertia weight is set
o ω = 0.7, the cognitive coefficient is set to cp = 2.0, and the
ocial coefficient is set to cg = 2.0.
Deep deterministic policy gradient. DDPG is a classical DRL algo-

ithm for learning deterministic policies from continuous action
paces [51]. In this comparison, we set the discount factor as
= 0.3, the soft-update coefficient as τ = 0.005, the learning

ate of the actor network as 0.00005, the learning rate of the
ritic network as 0.0005, the number of training episodes as
000, and the sizes of the replay buffer and batch as 105 and 64,
espectively.
308
For simplicity, we use the parameter settings of Example 2 in
ection 5.4 and present the corresponding experimental results
n Table 4, where Table 4 shows the MD’s offloading decisions
nd server utilization of computing nodes under four different
ethods (i.e., our solution, LWSF, PSO, and DDPG), and Table 4
hows the ART of the MD’s offloadable tasks and the MD’s APC
nder different methods. From Table 4, only LWSF cannot meet
he constraint. More specifically, the offloading strategy under
WSF not only violates the performance constraint but also incurs
igh power consumption. In addition, although PSO, DDPG, and
ur solution can be effectively implemented, our solution can
ake a more energy-efficient offloading decision.
Given the above, the experimental results in Tables 1∼4 reveal

that our algorithms are effective and can obtain the optimal
offloading decision of the target MD in various situations.

7. Conclusions and future work

In this paper, we have discussed the importance of task pri-
oritization. We have reviewed the existing related research and
highlighted the focus of our research. We have designed an
energy-efficient computation offloading strategy with different
task priorities in a CA-MEC environment. Based on KKT con-
ditions, we have developed a series of effective algorithms to
obtain the optimal offloading decision for the target MD, such that
the MD can prolong its own battery life without degrading the
service quality. Several numerical examples and the comparative
experiment have been provided to demonstrate the effectiveness
of our methods. Our work can provide a reference for energy-
efficient computing offloading strategies in CA-MEC that consider
multiple task priorities. Furthermore, the optimization algorithms
implemented in our work can serve as benchmarks for other
approaches, such as machine learning, for comparative analysis.

However, there are still some issues and improvements to be
addressed in our future work. In this paper, we do not consider
the possible competition among the offloading tasks of MDs nor
the situation in that the computation resources of DC may also
be limited. Considering more sophisticated models and scenarios
would be exciting and challenging.
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ppendix A. Mathematical notations

The mathematical notations used in this paper are summa-
ized in Table A.1, where the symbols are listed in the order

ntroduced in the paper.
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Appendix B. Computation offloading process

In the CA-MEC offloading scenario considered in this work, we
assume a central node/controller (e.g., a gateway) is responsible
for managing information exchange among MDs and ESs [33].
This includes solving the optimization problem of offloading
strategy based on requirements and the current environment
using the proposed algorithms. Specifically, the calculation of the
offloading scheme and the collection of global information are not
performed by the MD but are executed by the central node. The
process unfolds as follows:

• First, all MDs and ESs communicate their task characteristics
and computational resource information to the central node.
• Second, the central node solves the energy-efficient offload-

ing optimization problem using the proposed algorithms.
• Third, the central node informs the target MD of the offload-

ing decision.
• Fourth, depending on the decision, the target MD offloads a

certain percentage of tasks to ESs or the DC.

The target MD’s role is to triage the Poisson task stream based
on the offload decision provided by the central node and then of-
fload tasks to the appropriate compute nodes. No additional com-
putational processes are involved, making this operation efficient
and fast.

Additionally, it is crucial to clarify that our approach and
algorithms are based on the distribution of task arrival times. We
assume that the computational demand remains constant within

specific time intervals, implying that the distribution of arriving
Table A.1
Mathematical notations in this paper.
Symbol Definition

m the number of edge servers (ESs)
ESi the ith ES, for all 1 ≤ i ≤ m
λ̇0, λ̈ the arrival rate (measured by tasks/second) of dedicated and generic tasks generated on the MD, λ = λ̇0 + λ̈

λ̈0 the arrival rate of generic tasks performed locally in the MD
λ̈i, λ̈c the arrival rate of generic tasks offloaded from the MD to ESi and the DC
s0 the execution speed (measured by BIPS) of the MD
ṙ0 the execution requirements (measured by BI) of dedicated tasks generated on the MD
ṙ0 , ṙ20 the mean and second moment of ṙ0
r̈0 the execution requirements of generic tasks generated on the MD
r̈0 , r̈20 the mean and second moment of r̈0
d̈0 the sizes of computation input data involved in generic tasks (measured by Mb)
d̈0 , d̈20 the mean and second moment of d̈0
λ̇i, λ̈ex,i the arrival rate of dedicated tasks and generic tasks that are already on ESi , λi = λ̇i + λ̈ex,i + λ̈i
mi, si the server size and execution speed of ESi
ci the wireless data transmission rate (measured by Mbps) between the MD and ESi
ṙi the execution requirements of dedicated tasks preloaded on ESi
ṙi , ṙ2i the mean and second moment of ṙi
r̈i the execution requirements of generic tasks offloaded from other MDs to ESi
r̈i , r̈2i mean and second moment of r̈i
sc the execution speed of the DC
cb the average wireless data transmission rate between the MD and the BS
cWAN the average wired data transmission rate between the BS and the DC
ξ0, α0, P∗0 parameters to calculate computation power consumption of the MD
ρ0 the utilization of the MD
Pcomp the average power consumption (APC, measured by Watts) of the MD for computation
qi, Bi, Pt,i,Ni parameters to calculate the APC of the MD for communication with ESi
Pcomm,i the APC of the MD for communication with ESi
qb, Bb, Pt,b,Nb parameters to calculate the APC of the MD for communication with the DC
Pcomm,c the APC of the MD for communication with the DC
P the APC of the MD
T̈0 the average response time (ART, measured by seconds) of generic tasks performed locally in the MD
T̈i the ART of generic tasks offloaded from the MD to ESi
ρi the server utilization of ESi
T̈c the ART of generic tasks offloaded from the MD to the DC
T̈ the ART of generic tasks that are generated on the MD
T̃g performance constraint
β, γ , ϵ two Lagrange multipliers and a preset accuracy parameter
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asks is fixed during such periods. An offloading decision is not
equired for every individual task arrival; instead, it is computed
hen significant environmental changes occur.
It should be noted that the problem defined in this paper

s based on queueing models and parameters involving the of-
loading environment, and the proposed method (i.e., a series of
umerical algorithms) essentially solves a non-linear system of
quations constructed based on Lagrangian functions. These cal-
ulations are computationally less expensive and should be per-
ormed accordingly when the offloading environment changes.
oreover, the proposed solution relies on mathematical models,
ith the accuracy of our solution depending only on the precision
f real-world parameters.

ppendix C. Detailed derivation process

In this appendix, we describe the detailed derivation process
f Eqs. (16) and (17) in Section 5.1.
First, according to Eq. (16), we have

0(β, λ̈0) =
∂P
∂λ̈0
−

∂P
∂λ̈c
+ β

(
T̈0 + λ̈0

∂ T̈0
∂λ̈0
− T̈c

)
= 0.

ince
∂P
∂λ̈0
= ξ0 r̈0s0α0−1,

∂P
∂λ̈c
=

d̈0
cb
·
BbNb(2cb/Bb − 1)

qb
,

nd

∂ T̈0
∂λ̈0
=

r̈20
2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)

+
r̈0(λ̇0 ṙ20 + λ̈0 r̈20 )

2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)
2

=
r̈20 s0 + λ̇0 ṙ20 r̈0 − λ̇0 ṙ0 r̈20

2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)
2 ,

hen we have

0(β, λ̈0) = ξ0 r̈0s0α0−1 −
d̈0
cb
·
BbNb(2cb/Bb − 1)

qb
+ β

(
r̈0
s0

+
λ̇0 ṙ20 + λ̈0 r̈20

2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)
+ λ̈0

×

(
r̈20 s0 + λ̇0 ṙ20 r̈0 − λ̇0 ṙ0 r̈20

2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)
2

)

−

(
r̈0
sc
+

d̈0
cb
+

d̈0
cWAN

+ tprop

))
= ξ0 r̈0s0α0−1 −

d̈0
cb
·
BbNb(2cb/Bb − 1)

qb
+ β

(
r̈0
s0

+
λ̇0 ṙ20 s0 + 2λ̈0 r̈20 s0 − λ̇2

0 ṙ0 ṙ
2
0 − λ̈2

0 r̈0 r̈
2
0 − 2λ̇0λ̈0 ṙ0 r̈20

2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)
2

−
r̈0
sc
−

d̈0
cb
−

d̈0
cWAN

− tprop

)
= ξ0 r̈0s0α0−1 −

d̈0
cb
·
BbNb(2cb/Bb − 1)

qb
+ β

(
r̈0

(
1
s0
−

1
sc

)
+

λ̇0 ṙ20 s0 + 2λ̈0 r̈20 s0 − λ̇2
0 ṙ0 ṙ

2
0 − λ̈2

0 r̈0 r̈
2
0 − 2λ̇0λ̈0 ṙ0 r̈20

2

2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)

310
−
d̈0
cb
−

d̈0
cWAN

− tprop

)
= ξ0 r̈0s0α0−1 −

d̈0
cb
·
BbNb(2cb/Bb − 1)

qb
+ β

(
r̈0

(
1
s0
−

1
sc

)
+

(s0 − λ̇0 ṙ0)(λ̇0 ṙ20 + 2λ̈0 r̈20 )− λ̈2
0 r̈0 r̈

2
0

2(s0 − λ̇0 ṙ0)(s0 − λ̇0 ṙ0 − λ̈0 r̈0)
2

−
d̈0
cb
−

d̈0
cWAN

− tprop

)
= 0.

Second, according to Eq. (17), we have

Li(β, λ̈i) =
∂P
∂λ̈i
−

∂P
∂λ̈c
+ β

(
T̈i + λ̈i

∂ T̈i
∂λ̈i
− T̈c

)
= 0,

for all 1 ≤ i ≤ m. It is clear that

∂P
∂λ̈i
=

d̈0
ci
·
BiNi(2ci/Bi − 1)

qi
,

and

∂ T̈i
∂λ̈i
=

1
2mi(1− ρ̇i)(1− ρi)

(
∂CV 2

i

∂λ̈i
· xi · pi,mi

+
∂xi
∂λ̈i
· pi,mi (1+ CV 2

i )+
∂pi,mi

∂λ̈i
· xi(1+ CV 2

i )

+
∂ρi

∂λ̈i
·
xi · pi,mi (1+ CV 2

i )
(1− ρi)

)
=

1
2mi(1− ρ̇i)(1− ρi)

(
∂CV 2

i

∂λ̈i
· xi · pi,mi

+ (1+ CV 2
i )
(

∂xi
∂λ̈i
· pi,mi +

∂pi,mi

∂λ̈i
· xi

+
∂ρi

∂λ̈i
·
xi · pi,mi

(1− ρi)

))
,

where

∂CV 2
i

∂λ̈i
=

∂x2i
∂λ̈i
·

1

xi2
−

∂xi
∂λ̈i
·
2x2i
xi3

,

∂xi
∂λ̈i
= −

λ̇i

λ2
i
·
ṙi
si
+

λ̇i + λ̈ex,i

λi
2

(
r̈0
si
+

d̈0
ci

)
−

λ̈ex,i

λ2
i
·
r̈i
si

=
1
λ2
i

(
(λ̇i + λ̈ex,i)

(
r̈0
si
+

d̈0
ci

)
−

λ̇i ṙi + λ̈ex,i r̈i
si

)
,

∂x2i
∂λ̈i
= −

λ̇i

λ2
i
·
ṙ2i
si2
−

λ̈ex,i

λ2
i
·
r̈2i
si2
+

λ̇i + λ̈ex,i

λi
2

(
r̈20
si2
+

d̈20
ci2
+ 2

r̈0d̈0
sici

)

=
1
λ2
i

(
(λ̇i + λ̈ex,i)

(
r̈20
si2
+

d̈20
ci2
+ 2

r̈0d̈0
sici

)
−

λ̇i ṙ2i + λ̈ex,i r̈2i
si2

)
,

∂pi,mi

∂λ̈i
=

∂ρi

∂λ̈i
·
mi

mi

mi!
· pi,0 ·

miρi
mi−1(1− ρi)+ ρi

mi

(1− ρi)2

+
∂pi,0
∂ρi
·
∂ρi

∂λ̈i
·
mi

mi

mi!
·

ρi
mi

1− ρi

=
∂ρi

∂λ̈i
·
mi

mi

mi!
· pi,0 ·

miρi
mi−1 −miρi

mi + ρi
mi

(1− ρi)2

+
∂pi,0

·
∂ρi
·
mi

mi

·
ρi

mi
∂ρi ∂λ̈i mi! 1− ρi
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0

=
∂ρi

∂λ̈i
·
mi

mi

mi!
· pi,0 ·

ρi
mi−1(mi − (mi − 1)ρi)

(1− ρi)2

+
∂pi,0
∂ρi
·
∂ρi

∂λ̈i
·
mi

mi

mi!
·

ρi
mi

1− ρi

=
∂ρi

∂λ̈i
·
mi

mi

mi!
·
ρi

mi−1

1− ρi

(
pi,0 ·

mi − (mi − 1)ρi

1− ρi

+
∂pi,0
∂ρi
· ρi

)
,

∂pi,0
∂ρi
= − p2i,0

(mi−1∑
k=1

mk
i ρi

k−1

(k− 1)!
+

mi
mi

mi!
·
miρi

mi−1(1− ρi)+ ρi
mi

(1− ρi)
2

)

= − p2i,0

(mi−1∑
k=1

mk
i ρi

k−1

(k− 1)!
+

mi
mi

mi!
·
miρi

mi−1 −miρi
mi + ρi

mi

(1− ρi)
2

)

= − p2i,0

(mi−1∑
k=1

mk
i ρi

k−1

(k− 1)!
+

mi
mi

mi!
·
ρi

mi−1(mi − (mi − 1)ρi)
(1− ρi)

2

)
,

nd

∂ρi

∂λ̈i
=

1
mi

(
r̈0
si
+

d̈0
ci

)
.

Then, we have

Li(β, λ̈i) =
d̈0
ci
·
BiNi(2ci/Bi − 1)

qi
−

d̈0
cb
·
BbNb(2cb/Bb − 1)

qb

+ β

(
r̈0
si
+

d̈0
ci
+

xi · pi,mi (1+ CVi
2)

2mi(1− ρ̇i)(1− ρi)

+
λ̈i

2mi(1− ρ̇i)(1− ρi)

(
∂CV 2

i

∂λ̈i
· xi · pi,mi

+ (1+ CV 2
i )
(

∂xi
∂λ̈i
· pi,mi +

∂pi,mi

∂λ̈i
· xi

+
∂ρi

∂λ̈i
·
xi · pi,mi

(1− ρi)

))
−

(
r̈0
sc
+

d̈0
cb

+
d̈0

cWAN
+ tprop

))
= d̈0

(
BiNi(2ci/Bi − 1)

ciqi
−

BbNb(2cb/Bb − 1)
cbqb

)
+ β

(
r̈0

(
1
si
−

1
sc

)
+ d̈0

(
1
ci
−

1
cb
−

1
cWAN

)
+

1
2mi(1− ρ̇i)(1− ρi)

(
xi · pi,mi (1+ CV 2

i )

+
∂CV 2

i

∂λ̈i
· λ̈ixi · pi,mi + λ̈i(1+ CV 2

i )
(

∂xi
∂λ̈i

× pi,mi +
∂pi,mi

∂λ̈i
· xi +

∂ρi

∂λ̈i
·
xi · pi,mi

(1− ρi)

))
− tprop

)
= d̈0

(
BiNi(2ci/Bi − 1)

ciqi
−

BbNb(2cb/Bb − 1)
cbqb

)
+ β

(
r̈0

(
1
si
−

1
sc

)
+ d̈0

(
1
ci
−

1
cb
−

1
cWAN

)
+

1
2mi(1− ρ̇i)(1− ρi)

(
xi · pi,mi (1+ CV 2

i )

+
∂CV 2

i
· λ̈ixi · pi,mi + (1+ CV 2

i )
(

∂xi

∂λ̈i ∂λ̈i

311
× λ̈ipi,mi +
∂pi,mi

∂λ̈i
· λ̈ixi +

∂ρi

∂λ̈i
·
λ̈ixi · pi,mi

(1− ρi)

))
− tprop

)
= d̈0

(
BiNi(2ci/Bi − 1)

ciqi
−

BbNb(2cb/Bb − 1)
cbqb

)
+ β

(
r̈0

(
1
si
−

1
sc

)
+ d̈0

(
1
ci
−

1
cb
−

1
cWAN

)
+

1
2mi(1− ρ̇i)(1− ρi)

(
∂CV 2

i

∂λ̈i
· λ̈ixi · pi,mi

+ (1+ CV 2
i )
(
xi · pi,mi +

∂xi
∂λ̈i
· λ̈ipi,mi

∂pi,mi

∂λ̈i
· λ̈ixi +

∂ρi

∂λ̈i
·
λ̈ixi · pi,mi

(1− ρi)

))
− tprop

)
= d̈0

(
BiNi(2ci/Bi − 1)

ciqi
−

BbNb(2cb/Bb − 1)
cbqb

)
+ β

(
r̈0

(
1
si
−

1
sc

)
+ d̈0

(
1
ci
−

1
cb
−

1
cWAN

)
+

1
2mi(1− ρ̇i)(1− ρi)

×

(
∂CV 2

i

∂λ̈i
· λ̈ixi · pi,mi + (1+ CV 2

i )

×

(
xi · pi,mi

(
1+

∂ρi

∂λ̈i
·

λ̈i

(1− ρi)

)
+

∂xi
∂λ̈i
· λ̈i

× pi,mi +
∂pi,mi

∂λ̈i
· λ̈ixi

))
− tprop

)
= 0.

his completes the derivation.

ppendix D. Proof of the theorem

In this appendix, we prove Theorem 1 (the optimal solution of
0(β, λ̈0)) in Section 5.2.

roof of Theorem 1. Based on Eq. (16), we can get

0(β, λ̈0) = y1 + βy2

+ β
λ̇0 ṙ20 s0 + 2λ̈0 r̈20 s0 − λ̇2

0 ṙ0 ṙ
2
0 − λ̈2

0 r̈0 r̈
2
0 − 2λ̇0λ̈0 ṙ0 r̈20

2
(
s0 − λ̇0 ṙ0

)(
s0 − λ̇0 ṙ0 − λ̈0 r̈0

)2
= 0,

here

y1 = ξ0 r̈0s0α0−1 −
d̈0
cb
·

BbNb

(
2cb/Bb−1

)
qb

,

y2 = r̈0
(

1
s0
−

1
sc

)
−

d̈0
cb
−

d̈0
cWAN
− tprop.

hen, we have

= 2 (y1 + βy2)
(
s0 − λ̇0 ṙ0

)(
s0 − λ̇0 ṙ0 − λ̈0 r̈0

)2
+ β

(
λ̇0 ṙ20 s0 + 2λ̈0 r̈20 s0 − λ̇2

0 ṙ0 ṙ
2
0 − λ̈2

0 r̈0 r̈
2
0 − 2λ̇0λ̈0 ṙ0 r̈20

)
= 2 (y1 + βy2)

(
s0 − λ̇0 ṙ0

)3
− 4r̈0 (y1 + βy2)

(
s0 − λ̇0 ṙ0

)2
λ̈0

+ 2r̈0
2
(y1 + βy2)

(
s0 − λ̇0 ṙ0

)
λ̈2
0 + β

(
λ̇0 ṙ20 s0 − λ̇2

0 ṙ0 ṙ
2
0

)
+ β

(
2r̈2s − 2λ̇ ṙ r̈2

)
λ̈ − β r̈ r̈2λ̈2
0 0 0 0 0 0 0 0 0
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a

w⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

T

R

= 2r̈0
2
(y1 + βy2)

(
s0 − λ̇0 ṙ0

)
λ̈2
0 − β r̈0 r̈20 λ̈

2
0 + βλ̈0

×

(
2r̈20 s0 − 2λ̇0 ṙ0 r̈20

)
− 4r̈0 (y1 + βy2)

(
s0 − λ̇0 ṙ0

)2
λ̈0

+ β

(
λ̇0 ṙ20 s0 − λ̇2

0 ṙ0 ṙ
2
0

)
+ 2 (y1 + βy2)

(
s0 − λ̇0 ṙ0

)3
=

(
2r̈0

2
(y1 + βy2)

(
s0 − λ̇0 ṙ0

)
− β r̈0 r̈20

)
λ̈2
0

+

(
s0 − λ̇0 ṙ0

)(
2β r̈20 − 4r̈0 (y1 + βy2)

(
s0 − λ̇0 ṙ0

))
λ̈0

+

(
s0 − λ̇0 ṙ0

)
×

(
βλ̇0 ṙ20 + 2 (y1 + βy2)

(
s0 − λ̇0 ṙ0

)2)
= 0.

hen, we have

λ̈2
0 + bλ̈0 + c = 0, (D.1)

here

a = 2r̈0
2
(y1 + βy2)

(
s0 − λ̇0 ṙ0

)
− β r̈0 r̈20 ,

b =
(
s0 − λ̇0 ṙ0

)(
2β r̈20 − 4r̈0 (y1 + βy2)

(
s0 − λ̇0 ṙ0

))
,

c =
(
s0 − λ̇0 ṙ0

)(
βλ̇0 ṙ20 + 2 (y1 + βy2)

(
s0 − λ̇0 ṙ0

)2)
.

Solving Eq. (D.1), we can obtain

λ̈0 =

(
−b+

√
b2 − 4ac

)
/2a. (D.2)

his completes the proof.
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