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Abstract: In the rapidly evolving domain of mobile edge–cloud computing (MECC), the proliferation
of Internet of Things (IoT) devices and mobile applications poses significant challenges, particularly
in dynamically managing computational demands and user mobility. Current research has partially
addressed aspects of service migration and resource allocation, yet it often falls short in thoroughly
examining the nuanced interdependencies between migration strategies and resource allocation,
the consequential impacts of migration delays, and the intricacies of handling incomplete tasks
during migration. This study advances the discourse by introducing a sophisticated framework
optimized through a deep reinforcement learning (DRL) strategy, underpinned by a Markov decision
process (MDP) that dynamically adapts service migration and resource allocation strategies. This
refined approach facilitates continuous system monitoring, adept decision making, and iterative
policy refinement, significantly enhancing operational efficiency and reducing response times in
MECC environments. By meticulously addressing these previously overlooked complexities, our
research not only fills critical gaps in the literature but also enhances the practical deployment of
edge computing technologies, contributing profoundly to both theoretical insights and practical
implementations in contemporary digital ecosystems.

Keywords: Advantage Actor–Critic; deep reinforcement learning; mobile edge–cloud computing;
resource allocation; service migration

1. Introduction
1.1. Motivation

In recent years, the rapid expansion of Internet of Things (IoT) devices and mobile
applications has catalyzed the development of mobile edge–cloud computing (MECC). This
innovative paradigm combines the extensive computational resources of cloud computing
with the immediacy of edge computing to meet essential requirements for low latency, high
reliability, and superior quality of service (QoS) [1]. By harnessing the robust data handling
and computational capabilities of cloud data centers, MECC efficiently manages large
datasets and executes complex computations beyond the processing power of edge devices
alone [2,3]. Additionally, MECC significantly reduces latency by processing data closer to
their source, enhancing performance for latency-sensitive applications such as autonomous
driving, augmented reality (AR), virtual reality (VR), and real-time gaming [4–8].

MECC also improves system reliability by enabling edge nodes to autonomously man-
age critical operations, ensuring uninterrupted service even during network disruptions.
Furthermore, the architecture of MECC supports dynamic and scalable resource allocation,
optimizing cloud resources for computationally intensive tasks while delegating real-time
processing to edge servers (ESs) [9]. This adaptability makes MECC highly suitable for
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modern digital ecosystems, capable of efficiently handling variable network loads and
diverse application demands while seamlessly integrating smart technologies.

Despite its advancements MECC faces significant challenges, primarily stemming
from user mobility and the dynamic computational demands of contemporary mobile
applications, which can lead to potential delays and instabilities, adversely impacting
QoS [10,11]. Common issues arise when users move to locations farther from their current
ES, necessitating the offloading of tasks back to the original server to maintain service conti-
nuity. This often results in increased communication delays and can substantially degrade
user experience, particularly in latency-sensitive applications. While recent advancements
in dynamic computational offloading and resource allocation have significantly mitigated
issues related to user mobility by optimizing offloading and allocation decisions to mini-
mize response times, there remains a notable gap in fully addressing the dependencies of
task execution on the underlying environments and user contexts at ESs.

Current research has responded to these operational challenges by prioritizing ser-
vice migration strategies that relocate task execution environments and user contexts to
ESs closer to the user’s real-time location, thereby maintaining or enhancing QoS [12].
However, these studies often overlook the critical impact of the reduction in computa-
tional time caused by migration processes, which can be detrimental to the performance of
time-sensitive services. Furthermore, the interplay between service migration decisions
and resource allocation strategies remains underexplored. Effective strategies should not
only minimize data transfer delays by considering user proximity but also assess the
computational capacities of various ESs to ensure that after migration the resources are
adequate to handle the relocated services without causing service timeouts. Although some
studies have acknowledged the complex interdependence between service migration and
resource allocation, they often fail to account for scenarios where tasks are not completed
before migration. This oversight can lead to data loss, increased delays, and significantly
compromised QoS.

In summary, while significant progress has been made in addressing various aspects
of migrating services and allocating resources within MECC environments, critical gaps
remain. Developing comprehensive strategies that simultaneously enhance the efficiency
of service migration and resource distribution, considering unfinished tasks and their
contexts, is crucial. Addressing these gaps will significantly enhance the efficiency and
effectiveness of MECC environments, aligning their capabilities with the evolving demands
of contemporary digital ecosystems.

1.2. Our Contributions

In the rapidly evolving domain of MECC, the critical interplay between service mi-
gration and resource allocation commands increasing attention. This paper explores these
intricacies by establishing robust service migration and computational models, enhanced
by a reinforcement learning-based strategy aimed at minimizing service response times.
Addressing gaps identified in previous research, particularly the overlooked aspects of user
context migration and the inadequate attention to computational resource allocation, our
research introduces an innovative framework. It adeptly manages user mobility and the
need for uninterrupted service by migrating unfinished user data and context. Moreover,
the framework dynamically adjusts service provisions and resource allocations in real time,
significantly enhancing QoS within strict time constraints. This approach not only ensures
service continuity but also improves responsiveness across MECC environments.

The main contributions of this paper are summarized as follows:

• Comprehensive optimization of service migration and resource allocation: We pro-
vide a thorough problem formulation that simultaneously optimizes service migration
and resource allocation within MECC frameworks. Addressing the challenges of het-
erogeneous ES environments, our study tackles the intertwined issues of user mobility
and fluctuating computational demands. The optimization strategically aims to mini-
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mize average response times, substantially enhancing QoS while meeting rigorous
temporal constraints.

• Strategic transformation into a Markov decision process (MDP): Moving from theo-
retical models, this paper adeptly transforms the joint optimization challenge into an
MDP. We introduce a novel deep reinforcement learning (DRL)-based algorithm to
tackle this MDP, autonomously adapting migration and resource allocation strategies
without relying on prior knowledge of system states.

• Rigorous evaluation through simulation: The efficacy and robustness of our proposed
DRL-based dynamic migration and resource allocation strategy are rigorously tested
through comprehensive simulations. Performance metrics, including task failure rate
and average task response delay, serve as benchmarks. The results demonstrate that
our DRL-based approach sustains high service quality and markedly reduces average
response delays, thereby outperforming established benchmarks in this paper.

The remainder of the paper is organized as follows: Section 2 summarizes the related
work. Section 3 describes the system model in detail, which includes the migration model,
computational model, and problem description. Section 4 provides a detailed description of
the proposed A2C-based approach. The results of the simulation experiments are discussed
in Section 5. Finally, Section 6 summarizes the paper and outlines future research directions.

2. Related Works

In this section, we review existing research on the joint optimization of dynamic
computation offloading and resource allocation, alongside the optimization of service
migration policies in MECC environments. We then highlight the distinctions between our
study and the prior works, elucidating the unique contributions and advancements our
research offers in this domain.

2.1. Joint Optimization of Dynamic Computation Offloading and Resource Allocation

This section reviews existing research on strategies for task offloading and resource
management in dynamic network environments.

Liu et al. [13] considered the mobility characteristics of user equipment (UE) and
proposed a dual time-scale framework that resolves user–server association problems by
incorporating long-term channel interference, workload, and server computational con-
straints with short-term dynamic task offloading and resource allocation. Wang et al. [14]
developed a decentralized offloading framework, accommodating mobile users dynami-
cally entering or exiting an MEC system, and adapting to their varying offloading demands.
Yang et al. [15] introduced a priority-driven multi-agent (PDMA) cooperative task offload-
ing algorithm to address the dynamic characteristics of task arrivals, mobility of devices,
and load imbalances across ESs. Liang et al. [16] investigated joint task cache placement
and offloading in mobile edge computing systems characterized by dynamic task arrivals.
Fang et al. [17] devised a dynamic task offloading algorithm using DRL, considering depen-
dency relationships among user tasks to optimize task offloading and resource allocation
decisions effectively. This algorithm seeks to minimize task completion time and reduce
device energy consumption amid channel variations. Zhu et al. [18] proposed a scheduling
algorithm that integrates communication and dynamic tasks by considering the vehicle’s
mobility patterns and task sizes in vehicular networks supported by an intelligent reflecting
surface (IRS) for MEC services. Ma et al. [19] based their joint offloading strategy on vehicle
mobility patterns, aiming to minimize the weighted sum of execution time and computation
costs, considering both response delay and economic factors. Dang et al. [20] introduced
a task offloading cost model for scenarios involving multiple vehicles and MEC servers,
utilizing the DDPG algorithm to make decisions that minimized the overall system’s task
processing costs. Liao et al. [21] explored task execution queues and priorities within a
multi-MEC server environment, dividing computation offloading into power scheduling
and task offloading phases. In the power scheduling phase, the focus is on minimizing en-
ergy consumption through optimal transmission power and CPU frequency settings, while
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the task offloading phase aims to reduce execution latency through strategic offloading
decisions. Huang et al. [22] addressed a dynamic Internet of Vehicles (IoV) architecture that
supports both MEC and cloud computing, employing a DRL-based algorithm to optimize
task offloading and resource allocation for self-driving vehicles on straight roads. This
algorithm aims to minimize processing costs by optimizing computational offloading and
bandwidth allocation, adhering to processing delay and transmission rate constraints.
Xu et al. [23] proposed a vehicular edge computing architecture utilizing non-orthogonal
multiple access (NOMA), focusing on cooperative resource optimization among ESs to
maximize the service ratio through game theory and convex optimization methods.

While recent advancements in dynamic computational offloading and resource alloca-
tion have significantly mitigated issues related to user mobility by optimizing offloading
and allocation decisions to minimize response times, there remains a notable gap when
it comes to fully addressing the dependencies of task execution on the underlying envi-
ronments and user contexts at ESs. In scenarios where user mobility is rapid, optimizing
task offloading alone proves insufficient. This is due to the fact that task execution often
depends on specific characteristics of the ESs and user contexts. Consequently, integrating
service migration strategies that dynamically adapt to these environmental and contextual
dependencies is crucial. Such strategies not only complement the offloading process but
are also essential to effectively reduce delays caused by task routing and result returns,
thereby enhancing overall service quality.

2.2. Optimization of Service Migration Strategy

Numerous studies have focused on optimizing service migration policies to en-
sure QoS.

Liu et al. [24] aimed to efficiently manage the allocation of diverse heterogeneous
resources and user tasks to maximize system utility in the context of vehicular edge com-
puting. Their innovative hybrid computing offloading strategy, incorporating both vehicle-
to-infrastructure and vehicle-to-vehicle communications, allows for service migration to
other ESs when an ES’s computing capacity is insufficient, thus achieving load balancing.
Liang et al. [25] addressed mobility management across different time scales, proposing a
framework that integrates service migration with transmission power adjustments. This
strategy enables making service migration decisions at a broader time scale, while adjust-
ing transmission power at a finer scale to support task offloading, aiming to minimize
long-term energy consumption and ensure reliable computational offloading. Researchers
in [26] introduced a digital twin edge network architecture, distinguishing between latency-
sensitive and latency-insensitive tasks. By utilizing real-time and historical data to predict
future user movements, they tailored service migration decisions to reduce costs while
maintaining QoS. Peng et al. [27] considered the comprehensive migration costs associated
with service migration, integrating both computing and communication costs. In dynamic
networks, they employed reinforcement learning combined with transfer learning to derive
effective migration strategies within a dynamic vehicular edge computing environment.
Xu et al. [28] tackled user mobility by modeling the service scheduling problem in an MEC
environment, proposing a service management method using a probabilistic approach
to effectively reduce service delay and migration costs. Wang et al. [29] emphasized the
importance of balancing benefits and service costs during migration, proposing a dynamic
service migration algorithm based on DRL aimed at minimizing the weighted sum of ser-
vice delay and migration costs. Li et al. [30] introduced an edge caching strategy balancing
energy and latency, utilizing a deep neural network for predicting future request content,
followed by determining an optimal caching placement with the branch-and-bound algo-
rithm and refining service migration strategies using a DQN algorithm to reduce service
latency. Chen et al. [31] used a DRL algorithm to optimize service migration decisions
in ES, focusing on minimizing user-perceived latency and system energy consumption,
addressing service interruptions caused by user mobility. Additionally, Chen et al. [32]
developed a service migration optimization algorithm based on deep recursive Q-learning,
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aiming to minimize both user latency and system energy consumption by considering user
mobility and the coverage range of ESs.

Current research on service migration predominantly focuses on cost reduction but
often overlooks the significant reduction in computational time during migration, which
can adversely impact the performance of time-sensitive services. Moreover, the dynamics
between service migration strategies and resource allocation decisions have not been
extensively studied. Effective strategies must not only minimize data transfer delays by
considering user proximity but also rigorously evaluate the computational capacities of
various ESs. This ensures that the resources available post-migration are adequate to
support the services without causing timeouts. Joint consideration of service migration
and resource allocation is crucial for improving system performance and user experience.

2.3. Joint Optimization of Service Migration and Resource Allocation

This section explores the challenges associated with optimizing service migration and
resource allocation in MECC environments, a topic that has received limited attention in
existing research.

Liang et al. [33] addressed user mobility in cellular networks to ensure seamless
task migration between base stations without compromising resource efficiency or link
reliability. Their research optimized migration and handover policies by jointly managing
computational and radio resources. The policy framework integrated virtualization, I/O in-
terference between virtual machines, and challenges associated with wireless multi-access.
They developed a solution based on relaxation and rounding that includes an optimal
iterative algorithm and a novel integer-recovery design. This approach surpassed tradi-
tional rounding methods by leveraging derived problem properties and applying matching
theory. Additionally, their study included "hotspot mitigation", aiming to redistribute the
load from overloaded to idle servers or base stations. Simulation results validated the
effectiveness of their policies in multi-cell MECC networks, demonstrating near-optimal
performance in managing joint service migration and base station handover. Building on
this, Liu et al. [34] proposed a method to reduce access latency for IoT users in MECC
by jointly optimizing service migration and resource allocation. They introduce a Service
Migration and Resource Allocation (SMRA) algorithm based on DRL, which accounts for
the mobility of IoT users. This algorithm determines whether to migrate services, identifies
optimal migration destinations, and allocates resources using the long short-term memory
(LSTM) and the parameterized deep Q-network (PDQN) algorithms.

Despite the recognition of the interdependencies between service migration and re-
source allocation, existing studies often overlook scenarios where tasks are incomplete
before migration. Such oversight can result in data loss and significant deterioration in
QoS. Addressing these critical aspects is essential for developing more effective migration
and resource allocation strategies, ultimately enhancing both system performance and
user experience.

To underscore the novelty and uniqueness of our work, we compare our study with
existing research in the field and identify several key distinctions:

• Acknowledgment of migration delays and impacts: Unlike existing studies that
often overlook the critical impact of the reduction in computational time caused by
migration processes, our research takes these factors into account. We analyze the
direct consequences of migration processes on the operational efficiency of systems,
ensuring a more comprehensive understanding of the migration dynamics.

• Exploration of service migration and resource allocation interplay: The interaction
between service migration strategies and resource allocation decisions has not been
thoroughly examined in prior research. Our study delves into this interplay, aiming
to establish a balanced approach that optimizes both elements to improve overall
system performance.

• Consideration of incomplete tasks during migration: While a few studies have
begun to address the interdependencies between service migration strategies and
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resource allocation decisions, they rarely consider scenarios where tasks are not
completed before migration. This oversight can lead to significant challenges, such
as the need to migrate unfinished task data and service contexts together, which
can further complicate resource allocation strategies. Our work addresses this gap
by incorporating these scenarios into our optimization model, aiming to minimize
disruptions and enhance service quality.

By addressing these aspects, our study not only contributes to the academic under-
standing of service migration dynamics but also offers practical insights that can be applied
to improve the responsiveness and efficiency of IoT applications in MECC environments.

3. System Model and Problem Definition

As illustrated in Figure 1, we examine an edge–cloud collaboration system comprising
ESs and a single cloud server. In this system, users continuously move and offload tasks
generated by their mobile devices to the edge servers for execution. The ESs then send
the task information and users’ location data to a centralized scheduling and resource
allocation system, which is responsible for making decisions regarding migration and
resource allocation. By transmitting only the necessary information to the centralized
system for decision making, this approach effectively reduces network load. At the same
time, it allows for easier access to global network information, enabling more efficient and
reasonable resource allocation strategies [30].

Cloud Server

Edge-Cloud 

collaboration

Internet of Things 

Devices

Radio Access Point with 

Edge Server

Service Migration

Device Movement

Wireless Communication

Figure 1. An example of an MECC environment.

3.1. System Model

We assume that each ES in the edge–cloud collaboration system is associated with a
corresponding radio access network (RAN) node. Let S = {s1, . . . , si, . . . , sn} denote the set
of servers accessible to users via these RAN nodes. The required service functions (SFs) are
deployed on the ESs to support emerging IoT applications. When users offload specific
tasks to the ESs for processing, the corresponding SF creates a dedicated service instance
(SI) to execute the task. The ESs support Λ types of application tasks, and their allocatable
computational resources are represented as {p1, . . . , pi, . . . , pn}, measured in GHz.

In the system, m users, denoted as U = {u1, . . . , uj, . . . , um}, are continuously active
in the environment. Each user has installed Λ types of intelligent applications on their
respective devices. It is assumed that ESs periodically update the information regarding
the users they serve. Time is segmented into discrete intervals T = {1, . . . , t, . . . , T}, each
with a duration of τ. After an ES updates the information of the users it serves in slot
t, the user selects one of the Λ application types to generate a task for offloading to the
ES. Then, the ES creates an SI for the offloaded task, uploads the task information at this
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time slot, and inserts it into the task table Task maintained by the control system, where
Task = {Task1, . . . , Taskt, . . . , TaskT}. Here, Taskt = {task1

t , . . . , taskk
t , . . . , taskK

t }, where
Taskt represents the list of task information in time slot t. We define by |taskt| = Kt the num-
ber of tasks in the system in time slot t. And taskk

t defines {TW , Rstk
t , Vk

t , W, lock
t , Xk

t , Zk
t },

which contains the response time constraints of the task type W, the remaining time of the
task in time slot t, the remaining size of the task (measured in MB), the type of the task, the
ESs associated with the user who offloaded the task, the location of the task, and Zk

t = 1
indicates that the task is completed in time slot t; otherwise, it remains unfinished.

When service migration is required, the corresponding SI, including task and context
information, must be migrated from the origin server to the destination server. The model
and assumptions for service migration are elaborated below.

3.2. Migration Model

For each task taskk
t , we use Xk

t = [x1
k,t, . . . , xn

k,t] to denote the allocation of taskk
t on

ESs in time slot t, where xn
k,t = 1 indicates that taskk

t is allocated to server n; otherwise, it
signifies that taskk

t is not on server n. In time slot t, taskk
t needs to satisfy

C1 :
n

∑
i=1

xi
k,t = 1, ∀k ≤ Kt, ∀t ∈ T. (1)

This stipulates that each task is allocated to exactly one ES. The ES hosting taskk
t is denoted

as follows:
Ψk

t = arg max
l

Xk
t , l ∈ {1, . . . , n}. (2)

Migration occurs if |Ψk
t+1 −Ψk

t | > 0, and we use Ψk
t+1 to denote the location of the server

where the task is located in the next time slot.
Whenever a migration occurs, the SI of taskk

t must be migrated via the communication
link of the RANs from the current ES to a new ES for continued processing. It is crucial to
transfer the SI’s state context during migration, which includes user-specific information,
intermediate processing results, and more. Before resuming the task, the new ES must
synchronize the SI’s state context and restore the task’s progress. As depicted in Figure 2, the
migration process from suspension to restoration involves various time delays, including
service suspension delay, synchronization delay, and service restoration delay. Thus, the
total migration delay of SI can be expressed as follows:

Dk
t = hk

t + wk
t + rk

t+1, (3)

where hk
t represents the service suspension delay associated with the SI context of taskk

t , wk
t

denotes the synchronization delay as the SI migrates from the source ES to the target ES,
and rk

t+1 is the service restoration delay for restoring the task to its state before suspension.

t+2

…
t (time slot)

Service migration

t+1t

Suspension delay

Synchronization time

Restoration delay

Figure 2. An example of the migration process.

During the service suspension and restoration processes, both the suspension and
restoration delays are contingent upon the remaining size of the task, the processing inten-



Algorithms 2024, 17, 370 8 of 23

sity required for either suspension or restoration, and the computing resources allocated to
the task’s SI. The service suspension delay can be articulated as

hk
t =

ρ
sp
W(Vk

t+1 + Vm
W)

pΨk
t

, (4)

where ρ
sp
W represents the suspension processing intensity requirements of the application

type W to which the taskk
t belongs when the SI is paused (measured in CPU cycles required

by processing per bit state context), Vm
W is the context size of the application type W

(measured in MB), and pΨk
t

denotes the computational resources allocated to the SI on sΨk
t

(measured in cycles per second). And, the service restoration delay can be written as

rk
t+1 =

σ
sp
W (Vk

t+1 + Vm
W)

pΨk
t+1

, (5)

where σ
sp
W denotes the restoration processing intensity requirements of the application

type to which taskk
t belongs when the SI is restored, and pΨk

t+1
denotes the computational

resources allocated to the SI on sΨk
t+1

in the next time slot. The term Vk
t+1 is further discussed

in Equation (14). The synchronization delay is the transmission delay determined by the
remaining data size of the task and the bandwidth between the original server and the
target server, which can be expressed as

wk
t =

Vk
t+1 + Vm

W
BΨk

t ,Ψk
t+1

, (6)

where BΨk
t ,Ψk

t+1
is the link bandwidth between the source server sΨk

t
and the target server

sΨk
t+1

. Specifically, we have Dk
t = 0 if |Ψk

t+1 −Ψk
t | = 0.

In time slot t, we consider the migration of SI into or out of ES si, where both service
suspension and restoration demand computational resources. To avoid conflicts in re-
source usage, a period ϕt,i within each time slot is dedicated exclusively to these processes,
expressed as

ϕt,i = Avg{Ct,i, Vt,i}, (7)

where Ct,i represents the average delay for SIs migrating into target ES si, and Vt,i represents
the average delay for SIs migrating out of the original ES si.

When the remaining time Rstk
t < 0 for taskk

t and the task is incomplete, the SI of
taskk

t must migrate to the cloud server. Given the cloud server’s distance from the ES,

the synchronization delay for SI migration is wk
t =

Vk
t+1+Vm

W
B

Ψk
t ,cloud

+ µ, where µ represents the

propagation delay. It is assumed that the cloud server possesses ample computational
capacity to process the tasks and can return the results to the user in the subsequent
time slot.

3.3. Computation and Communication Model

At the start of each time slot t, a user offloads a task from a specific application type
to the associated ES si, where lock

t = i. Utilizing the Shannon formula, the maximum
transmission rate for offloading the task can be expressed as

Rj
t = B log2

(
1 +

pj
tgt

BN0

)
, (8)
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where B denotes the wireless channel bandwidth between the user and the RAN, pj
t is the

transmission power of user uj or the associated RAN node, gt represents the free-space
path loss, and N0 is the noise power spectral density.

The uplink transmission delay of taskk
t consists of two components: the delay for

offloading the task to the nearest RAN node and the delay from this RAN node to ES si,
which hosts the SI. This can be represented as

Ttran,k
t =

Vk
t

Rj
t

+
Vk

t
Block

t ,i
. (9)

Upon completion of taskk
t after rk

t time slots, we define the resultant data size as
VR,k

t+rk
t
= ωW

retVW , where VW denotes the average task data size for the application type

W of taskk
t , and ωW

ret represents the ratio of the resultant data size to VW . The return delay
of the task result can be expressed as

Tret,k
t+rk

t
= Tback,k

t+rk
t

+ Tdown,k
t+rk

t
, (10)

where Tback,k
t+rk

t
is the delay for returning the task result to the user’s associated ES, and Tdown,k

t+rk
t

is the delay for transmitting the result to the user over the wireless channel, given by

Tback,k
t+rk

t
=

VR,k
t+rk

t

BΨk
t+rk

t
,lock

t+rk
t

, (11)

Tdown,k
t+rk

t
=

VR,k
t+rk

t

Rj
t+rk

t

. (12)

Specifically, for results from the cloud, we have

Tback,k
t+rk

t
=

VR,k
t+rk

t

Bcloud,lock
t+rk

t

+ µ. (13)

The computational delay of a task on an ES depends on the task size, the computational
intensity required for processing tasks, and the allocated computational resources. After
taskk

t has been executed for a period of time in time slot t, the remaining size of taskk
t can be

expressed as

Vk
t+1 = Vk

t −
pΨk

t
· (τ − ϕt,Ψk

t
)

κW
, (14)

where κW denotes the computational intensity required by processing taskk
t of type W

(measured in CPU cycles required per bit), and pΨk
t

denotes the computational resources

allocated to taskk
t on sΨk

t
in time slot t. The remaining time of taskk

t after the execution of

the task in time slot t is updated as Rstk
t+1 = Rstk

t − τ. The sum of the resources allocated
to all tasks on si must satisfy its maximum resource constraint, i.e.,

C2 :
Kt

∑
k=1

pΨk
t
≤ pi, ∀i ∈ {1, . . . , n}, ∀t ∈ T. (15)

All mathematical symbols employed in this paper up to this point are systematically
organized and presented in Table 1, following their order of introduction in the text.
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Table 1. List of defined notation.

Symbol Definition

S The set of ESs
U The set of users
T The set of time slots
τ The duration of the time slot t
Λ Number of task types generated by users

Task A list of tasks offloaded by users at different time slots
Taskt List of offloaded task information for a single time slot t
taskk

t The state about task k during time slot t
TW The response time constraints of application W
Rstk

t Remaining time of taskk
t in time slot t

Vk
t Remaining size of taskk

t in time slot t
pi The total computing resources possessed by server si

lock
t The ES associated with the user who offloaded taskk

t
Xk

t The allocation of taskk
t on ESs in time slot t

Zk
t Indicator of task completion

Ψk
t ES where the taskk

t is located
Dk

t Migration delay of taskk
t in time slot t

hk
t Suspension delay of taskk

t in time slot t
wk

t Synchronization delay of taskk
t in time slot t

rk
t+1 Restoration delay of taskk

t in time slot t + 1
pΨk

t
The computational resources allocated to taskk

t
ρ

sp
W The computational intensity required to suspend service W

σ
sp
W The computational intensity required to restore service W

Vm
W The context size to be migrated for service W

BΨk
t ,Ψk

t+1
The wired bandwidth between service sΨk

t
and target service sΨk

t+1

Ct,i The average migration delay for services migrating to server si
Vt,i The average migration delay for services migrating out of server si
ϕt,i The average migration delay of server si
µ Propagation delay between ESs and cloud server
Rj

t Wireless transmission rate of user j in time slot t
VW Average task data size for application W

Ttran,k
t The uplink transmission delay of taskk

t
ωW

ret The ratio of the result data size to the VW

Tback,k
t+rk

t
The delay in returning task results to the ES sloct+rk

t

Tdown,k
t+rk

t
The delay in downlinking the task results to the user

κW The computational intensity of the task generated by application W

3.4. Problem Formulation

With the above notation and modeling, we can obtain the response delay of the task as

Tk
t =


rk

t · τ + ϕt+rk
t ,Ψk

t+rk
t

+
κW Vk

t+rk
t

p
Ψk

t+rk
t

+ Tret,k
t+rk

t
;

TW + Tret,k
t+rk

t
, if result from cloud.

(16)

In this paper, we minimize the average response delay of tasks by optimizing the
service migration and resource allocation policies. The combined challenge of optimizing
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service migration and resource allocation in the MECC environment can be expressed
as follows:

P : min
X,P

lim
T→∞

1
T

T

∑
t=1

1
|taskt|

|taskt |

∑
k=1

Tk
t , (17a)

s.t.
n

∑
i=1

xi
k,t = 1, ∀k ≤ Kt, ∀t ∈ T, (17b)

Kt

∑
k=1

pΨk
t
≤ pi, ∀i ∈ {1, . . . , n}, ∀t ∈ T. (17c)

4. Proposed A2C-Based Algorithm

In this section, we detail our proposed Advantage Actor–Critic (A2C)-based dynamic
migration and resource allocation approach. We discuss the transformation of problem P
into an MDP and describe the A2C-based algorithm.

4.1. Problem Transformation

In MECC systems, the ultimate goal is to improve the long-term QoS for users by
implementing service migration and resource allocation policies. Given that tasks in time
slot t+ 1 depend on the execution status of tasks in time slot t, and considering the dynamic
nature, heterogeneity, and complexity due to cross-time-slot execution characteristics, we
utilize reinforcement learning methods to address this problem.

Prior to applying reinforcement learning, we first transform the problem into an MDP,
represented by the tuple M = {S, A, P, R, γ}. Here, S denotes the state space, A represents
the action space, P is the state transition probability, R is the reward function, and γ signifies
the discount factor. Within this MDP framework, the agent perceives the state st of the
environment at time slot t, selects an action at from the action space to execute migration
and resource allocation, and receives a reward rt. The environment then transitions to the
next state st+1 based on P [35]. Further details of the MDP are as follows.

State: For any time slot t, the system’s state is represented by an array reflecting the
real-time status of tasks in the MECC system. This array includes information such as the
remaining time for tasks, remaining task size, task type, the ES associated with the user,
and the ES where the task is located, i.e.,

st = [Rstk
t , Vk

t , W, lock
t , Xk

t ]|taskk
t |∗5

. (18)

Each row represents the state of a task in the system, with a total of |taskk
t | rows.

Action: In time slot t, actions for state st are represented by an array that includes
migration decisions and resource allocation strategy, i.e.,

at = [Ψk
t , pΨk

t
]|taskk

t |∗2
. (19)

Each row indicates the migration target server sΨk
t

for the task taskk
t , and the computing

resources assigned to taskk
t on that server.

Reward: Reinforcement learning methods are typically employed to maximize the
long-term reward of the system. By converting the objective of minimizing the average
delay of all tasks into minimizing their cumulative response times, we define the reward
for an action at as the negative value of the delay. Additionally, we assign specific neg-
ative rewards for tasks that fail to complete their upload to the cloud within the given
time constraints.
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rt =


−
|taskt |

∑
k=1

(Zk
t Tk

t ), i f Rstk
t ≥ 0 and Vk

t ≤ 0;

(−103) ∗
|taskt |

∑
k=1

(Zk
t Tk

t ), i f Rstk
t ≤ 0 and Vk

t > 0.

(20)

4.2. Dynamic Migration and Resource Allocation Algorithm Based on A2C

Reinforcement learning is a robust approach for addressing dynamic programming
challenges. Recent advancements in this field involve the integration of deep neural
networks to represent both policy and value functions effectively. In this paper, we utilize
the A2C method to optimize our objective. As illustrated in Figure 3, A2C not only refines
the policy to select the optimal action for each state but also develops a value function that
supports policy optimization.

MECC Environment

𝑠𝑡,𝑠𝑡+1

𝑠𝑡

𝜋(𝑎𝑡|𝑠𝑡)

Policy
Implementation

Critic

𝑟𝑡

𝐴(𝑠𝑡, 𝑎𝑡)

Actor

…

…

…

𝐿𝐴𝑐𝑡𝑜𝑟

…

…

…

𝐿𝐶𝑟𝑖𝑡𝑖𝑐

Figure 3. Training of A2C-based dynamic migration and resource allocation algorithm.

In DRL, for the given state st the expected reward obtained by selecting action at
according to policy π is defined as the action value Qπ(st, at), which is defined as follows:

Qπ(st, at) = E{S,π}[Rt|st, at], (21)

where Rt represents the expected sum of reward under the strategy π. Rt can be ex-
pressed as

Rt =
∞

∑
t=0

γtr(st, at), (22)

where γt represents the discount factor used to discount future rewards. According to
Bellman’s equation, the action value Qπ(st, at) can be re-expressed as

Qπ(st, at) = r(st, at) + γEs∼S[Vπ(st+1)], (23)
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and Vπ(st+1) is the expected reward obtained by following policy π, called the state-value
function, i.e.,

Vπ(st+1) = Eat+1∼π [Qπ(st+1, at+1)]. (24)

In the A2C framework, there are two primary components: the actor and the critic.
The actor is responsible for maintaining a policy π, guiding action selection, and interacting
with the environment. The critic, on the other hand, learns the state-value function based
on rewards derived from the interactions between the actor and the environment, and aids
the actor in policy updates.

The actor employs a neural network to model the policy function, generating action
probabilities from the observed state. Its objective is to identify the optimal policy that
maximizes the expected reward in the environment. We can define the objective function as

J(π) = Es0 [Vπ(s0)]. (25)

We use θa to denote the parameters of the actor’s network and θc to denote the
parameters of the critic’s network. We can rewrite the function J(π) as

J(πθa) = E[A(st, at) · log πθa(at|st)], (26)

where A(st, at) is advantage function. It indicates whether the reward obtained by choosing
action at is higher than the average reward in st. We define the advantage function as

A(st, at) = Qθc(st, at)−Vθc(st) ≈ r(st, at) + γVθc(st+1)−Vθc(st). (27)

Then, the loss function of the actor’s network is

LActor = −
[

log πθa(at|st)A(st, at)
]
. (28)

Hence, we have

θa ← θa + la(A(st, at)
∂ log πθa(at|st)

∂θa
), (29)

where la is the learning rate of the actor network.
As with the actor network, we use the critic network to estimate the state-value

function Vθc(st), and its loss function can be expressed as

LCritic = (r + γVθc(st+1)−Vθc(st))
2. (30)

Similarly, we have

θc ← θc + lc(A(st, at)
∂Vθc(st)

∂θc
), (31)

where lc is the learning rate of the critic network.
Algorithm 1 outlines the A2C-based approach for migrating services and allocating

resources described in this paper. Initially, we initialize the algorithm parameters, as well
as the actor and critic networks, and set up the MECC system based on input values
(lines 1–4). At the beginning of each episode, the system’s state is reset and transmitted to
the agent (lines 6–8). The agent then interacts with the environment: it inputs the observed
state into the actor network, which returns the corresponding action distribution (line 9).
The agent samples an action from this distribution (line 10), executes it, and receives the
resultant reward and the next state (lines 11–12). This process repeats until the predefined
update frequency is met. When it is time to update the networks, the observed states
at time step t + 1 are fed into the critic network to obtain the average reward for that
state (line 16). We then backtrack to time step t− tg + 1, compute the advantage function
using (27), and update the parameters of the actor and critic networks according to (29) and
(31) (lines 18–21). The interaction with the environment continues until the termination
of the algorithm. Ultimately, the agent consistently produces actions that yield favorable
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rewards, demonstrating that the A2C-based approach has effectively optimized migration
and resource allocation strategies in the MECC system. This system is now capable of
executing pre-trained policies for efficient management.

Algorithm 1: Training of A2C-based dynamic migration and resource allocation
algorithm.

Input : The number of ESs m, the number of users n
Output : Trained policy with parameter θa

1 Randomly set the initial weights for both the Actor and Critic networks;
2 Initialize the MECC system;
3 Set global counter i and step counter t = 1;
4 Set tg, γ, EP_num, T, learning rate la, lc;
5 for episode i← 1 to EP_num do
6 Reset the system state ;
7 for t← 1 to T do
8 st ← Observed system state;
9 The Actor network takes st as input and outputs the policy distribution of

action π(at|st);
10 Agent samples the action at according to π(at|st);
11 Execute the action at;
12 Obtain the reward rt, get new state st+1;
13 if t%tg == 0 then

// tg is the frequency of update neuronal network
14 R← Vθc(st+1);
15 for q← t to t− tg + 1 do
16 R← rq + γR;
17 A(sq, aq)← R−Vθc(sq);
18 Calculate the Loss of Actor by (28);
19 Update θa of the Actor network according to (29);
20 Calculate the Loss of Critic by (30);
21 Update θc of the Critic network according to (31);
22 end
23 end
24 Change environment’s state by st+1;
25 end
26 end

5. Performance Evaluation

In this section, we conduct a series of simulations to evaluate the performance of the
A2C algorithm against four alternative schemes across various environments. The results
indicate that the algorithm proposed in this paper outperforms the comparative approaches
in terms of efficiency.

5.1. Simulation Settings

In this simulation, we configure a randomly generated MECC system where the
computing power and link bandwidth of each ES are randomly determined within specified
parameter ranges. The system supports five types of applications, with parameters for
each also randomly generated. The distance from the user to the RAN nodes is fixed at
10 m. Users can randomly select from one of the five application types to generate tasks for
offloading. The wireless communication bandwidth between the user and the RANs is set
to B = 10 MHz, the transmission power to pj

t = 10 dBm, the channel power at the reference
distance of 1 m to −50 dB, and the Gaussian noise power spectral density is established at
N0 = −170 dBm/Hz.
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In our simulations, all deep neural networks (DNNs) are structured as four-layer fully
connected networks, consisting of an input layer, two hidden layers, and an output layer.
Each hidden layer in both the actor and critic networks contains 256 neurons. The learning
rate for the networks is set at 0.001. As the objective is to minimize the average response
delay across all tasks over a prolonged period, we set the discount factor for reinforcement
learning to 0.9. Additional details on the experimental simulation parameters are provided
in Table 2.

Table 2. Experiment parameters.

Parameters Value

Bandwidth between ESs and cloud [20, 100] Mbps
Total computing capacity in ES [1, 3] GHz
Suspension processing intensity [1.0, 2.0] cycles/bit
State context size [100, 200] KByte
Bandwidth between ESs [100, 200] Mbps
The ratio of the result data size to initial size [0.001, 0.005]
Propagation delay from ESs to the cloud 400 ms
Computational intensity requirements [20, 40] cycles/bit
Average task data size for W [2.0, 3.0] MByte
The bandwidth between user and RANs 10 MHz
Transmission power 10 dBm
Noise power spectrum density −170 dBm/Hz

5.2. Comparison Experiments

To evaluate our solution in a dynamic migration and resource allocation environment,
we benchmarked it against four distinct schemes.

• Follow-Avg scheme: This scheme targets the user’s current location for migration
if a task remains incomplete and there is residual time. It then allocates computing
resources equally among all tasks on the same server.

• PSO scheme: In this scheme, migration targets and resource allocation decisions
are treated as particles within a particle swarm optimization (PSO) algorithm, using
average response delay as the fitness function. Decisions are made for each time
slot state.

• PPO scheme: Proximal policy optimization (PPO) is employed, a method from online
reinforcement learning within the DRL spectrum, to determine service migration and
resource allocation.

• DDPG: Deep deterministic policy gradient (DDPG) utilizes the actor–critic framework
of DRL to derive migration and resource allocation strategies.

5.3. Simulation Results

In all simulations, the parameters for the ESs were randomly generated within the
ranges specified in Table 2. At each simulation step, new values were randomly selected
from these ranges to update the system state. To assess performance, we calculated the
average response delay and the average service failure rate across 10,000 episodes. Each
episode consisted of 100 steps, during which we recorded the average service delay, the
number of tasks generated by users, and the number of service timeouts.

The impact of the number of ESs: In this section, we investigate the effects of varying
the number of ESs on the average service response delay and task failure rate. We fixed the
number of users at 10, the duration of each time slot at 0.8 s, and the size of tasks generated
by applications between 2 and 3 MB. Figure 4 shows the reduction in average response
delay as the number of ESs increases from 4 to 8, incrementing by one each time. As the
number of ESs grows, more computational resources become available, facilitating better
task resource allocation and reducing service response times. Although the Follow-Avg,
PPO, and DDPG methods exhibit minor differences in response delays across various
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ES counts, they do not match the efficiency of the PSO and A2C methods. Notably, the
A2C-based scheme consistently outperforms the PSO scheme by reducing the average
response delay by 0.15 s across all evaluated numbers of ESs.
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Figure 4. The impact of the number of ESs on average response delay.

Figure 5 demonstrates that our A2C-based approach achieves the lowest task failure
rate, outperforming PSO, while PPO and DDPG record the highest failure rates. Under
conditions of abundant resources, other methods experience failure rates as high as 20%,
whereas our approach maintains a rate below 10%. Analyzing both Figures 4 and 5,
with six or more ESs present, the Follow-Avg scheme shows a lower failure rate than
PSO but suffers from longer response delays. This difference stems from the system’s
dual focus on migration and resource allocation decisions. While abundant resources can
mitigate response delays through efficient migration, leading to reduced failure rates, the
generic resource allocation strategy of the Follow-Avg scheme, which does not account
for task-specific requirements, results in prolonged average response delays. We conclude
that the A2C-based algorithm excels over the other four schemes, offering superior service
migration and resource allocation policies that effectively minimize both the average service
response delay and failure rate, particularly in unpredictable environments.
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Figure 5. The impact of the number of ESs on failure rate.

Impact of time constraints: In our system, the time constraints for applications are
defined by the number of time slots, and adjustments to the duration of these slots influence
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the time constraints for each application. For this analysis we fixed the number of ESs
at five while maintaining the number of users and task sizes consistent with previous
comparisons. Figure 6 illustrates the average service response delays for varying time slot
durations, from 0.6 s to 1.0 s, with an increment of 0.1 s. As shown in Figure 6, excluding
PSO and our method, the differences in average response delays among the other three
methods are minimal.
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Figure 6. The impact of the time constraint on average response delay.

Our method consistently achieves the lowest average service response delay. As the
time constraints are relaxed with a constant computational workload, the average service
response delay decreases. Shorter time slot durations impose stricter constraints on each
task, leading to an increased number of tasks that fail to complete within the designated
time. Consequently, these tasks are offloaded to the cloud for continuation, introducing
significant propagation delays during transmission and increasing the average service
response delay. According to Figure 7, as time constraints become less stringent the task
failure rate diminishes. Notably, under tighter time constraints, simple follow-migration
methods exhibit higher failure rates, whereas our method consistently outperforms others.
With more lenient time constraints, our method maintains a task failure rate below 10%.
These observations highlight the importance of intelligently performing dynamic migration
and resource allocation according to the current state in dynamic environments.
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Figure 7. The impact of the time constraint on failure rate.
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Impact of the number of users: The number of users in the system directly impacts
the quantity of tasks, influencing the QoS for users. In this comparison, the number of ESs,
task sizes, and time slot durations are consistent with previous experiments. We increment
the number of users from 8 to 12, adjusting by one each time. As demonstrated in Figure 8,
the average service response delay for all methods increases as the number of users rises
due to more intense competition for resources among tasks. Notably, when the user count
reaches 11, the average response delays for our method and the PSO approach converge.
However, our approach consistently maintains a lower average response delay across
various scenarios compared to other benchmarks. Furthermore, as shown in Figure 9, the
PSO method requires significantly more time to make migration and resource allocation
decisions than other methods, which may be impractical in real-world settings. Our method,
however, delivers optimal results more efficiently. Figure 10 illustrates that task failure
rates increase with the number of users. Despite this, our method outperforms others even
under intense resource competition, achieving failure rates approximately 10% lower than
PSO and 30% lower than the Follow-Avg method.
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Figure 8. The impact of the number of users on average response delay.
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Figure 9. Decision-making duration for each step.
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Figure 10. The impact of the number of users on failure rate.

Impact of task data size: In this section, we compare the impact of different task
sizes on the results by varying the task sizes generated by the applications while keeping
the number of ESs, time slot duration, and number of users consistent with the previous
experiments. Regarding the task sizes generated by the applications, we set the application
data size range from 2 ± 0.5 MB to 3 ± 0.5 MB, with an increment of 0.25 MB each time.
Figure 11 demonstrates the impact of different application data sizes on the decisions made
by various methods, with average response delay as the metric. It can be observed that as
the task data size increases, the average response delay gradually rises. One reason for this
is that the task’s data size affects migration delay, thereby reducing the time available for
computation. Additionally, although the computational resources in the system remain
unchanged, an increase in data size also contributes to an increase in average response
delay. Figure 12 illustrates the variation in task failure rates under different data sizes. We
observe that as the data size increases, the increase in failure rate becomes more pronounced
for the Follow-Avg scheme. In the scenario with the highest data size, the failure rate of the
Follow-Avg scheme exceeds that of the PPO and PSO schemes, while our approach ensures
the lowest failure rate in all scenarios. Overall, our method achieves lower response delay
while maintaining a low failure rate.
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Figure 11. The impact of data size on average response delay.
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Figure 12. The impact of data size on average failure rate.

Impact of network scale expansion: To evaluate the effectiveness of the algorithm
in a real-world scenario, we increased the number of users to 40 and the number of ESs
to 20. As shown in Figure 13a, our method achieved the best performance in terms of
average response delay, reducing it by 0.1 s compared to other strategies. Additionally,
Figure 13b shows that the average failure rate was reduced by 10% compared to other
methods. Overall, in a large-scale network environment, our method outperforms other
approaches in dynamic migration and resource allocation strategies, maintaining lower
average response delays and failure rates.
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Figure 13. The impact of network scale expansion in an environment with 40 users and 20 ESs.
(a) Average response delay. (b) Average failure rate.

5.4. Evaluation of Algorithm Overhead

In our simulation, we measured the overhead of the algorithm under different network
scales, including memory usage, the number of iterations, and the training time per iteration.
In the experiments, we used a 13th Gen Intel® Core™ i9-13900K CPU without utilizing a
GPU. For network scales involving 10 and 40 users, the CPU usage for a single training did
not exceed 10%. As shown in Table 3, the differences in the number of training iterations
and the time required for each iteration across different network scales were minimal.
However, when the number of users increased to 40, memory usage rose by approximately
30 MB compared to when there were 10 users. This indicates that as the problem scale
increases, the overhead of the algorithm increases only slightly. We also observed that the
duration of each iteration increased from 0.24 s to 0.938 s, due to the expansion of the neural
network size caused by the increase in users and edge servers, which in turn increased
the computational load. To address this growth, GPU acceleration could be considered in
practical applications to effectively reduce the training time.
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Table 3. Evaluation of algorithm overhead.

Network Scale
(Number of Users)

Memory Usage
(MB)

Number of
Iterations

Training Duration per
Iteration (s)

10 282.5 40,000 0.240

40 312.8 40,000 0.938

6. Conclusions and Future Work

In this paper, we investigate the dynamic migration and resource allocation issues
in MECC systems. We emphasize the importance of service migration in networks char-
acterized by dynamic features. Our investigation covers both the migration process and
its performance, and we conduct a modeling analysis of computational performance post-
migration. To tackle the challenges posed by dynamic computational demands and user
mobility, we propose a method based on the Advantage Actor–Critic framework. This
method determines migration and resource allocation operations for each time slot, based
on observed states, aiming to minimize the average task response delay. The simulation
results demonstrate that our A2C-based approach consistently reduces the average task
response delay across various scenarios and ensures the lowest task failure rate compared
to benchmark methods.

However, several aspects require further research. While our primary focus has been
on the impact of migration on average response delay, the migration process also leads to
additional network effects, including migration costs. Future research should explore strate-
gies that simultaneously reduce migration costs and average response times. Additionally,
our study mainly examines the impact of migration and computing resource allocation
decisions. However, in real-world scenarios, the task offloading strategy significantly in-
fluences these migration and resource allocation strategies due to varying communication
conditions associated with user mobility. This complex interplay between the offloading
strategy and system performance in realistic settings demands more detailed investigation
to optimize both cost and efficiency effectively. Another important issue to consider is that
the centralized decision-making process may pose a risk of user data leakage. Therefore,
finding ways to ensure data security while minimizing the impact of privacy protection
mechanisms on system decisions has become a critical challenge.
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