
J. Parallel Distrib. Comput. 74 (2014) 2662–2672
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Proactive scheduling in distributed computing—A reinforcement
learning approach
Zhao Tong a, Zheng Xiao a,∗, Kenli Li a, Keqin Li a,b
a College of Information Science and Engineering, Hunan University, Changsha, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• Propose the concept and method of proactive scheduling.
• Formulate dynamic scheduling as a MDP problem.
• Develop an online scheduling algorithm based on reinforcement learning.
• Demonstrate our learning-based algorithm stable with lower average response time.

a r t i c l e i n f o

Article history:
Received 11 April 2013
Received in revised form
4 March 2014
Accepted 17 March 2014
Available online 21 March 2014

Keywords:
Distributed computing
Markov decision process
Queueing model
Reinforcement learning
Task scheduling

a b s t r a c t

In distributed computing such as grid computing, online users submit their tasks anytime and anywhere
to dynamic resources. Task arrival and execution processes are stochastic. How to adapt to the consequent
uncertainties, as well as scheduling overhead and response time, are the main concern in dynamic
scheduling. Based on the decision theory, scheduling is formulated as a Markov decision process
(MDP). To address this problem, an approach from machine learning is used to learn task arrival and
execution patterns online. The proposed algorithm can automatically acquire such knowledge without
any aforehand modeling, and proactively allocate tasks on account of the forthcoming tasks and their
execution dynamics. Under comparisonwith four classic algorithms such asMin–Min,Min–Max, Suffrage,
and ECT, the proposed algorithmhasmuch less scheduling overhead. The experiments over both synthetic
and practical environments reveal that the proposed algorithm outperforms other algorithms in terms of
the average response time. The smaller variance of average response time further validates the robustness
of our algorithm.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Nowadays almost all computers are connected to a local net-
work or the Internet. The networked computers form a COW
(cluster of workstations) or a distributed system. In distributed
computing such as cluster computing and grid computing, online
users submit their tasks anytime and anywhere to dynamic re-
sources. Query processing in database management systems, par-
ticularly in a web-based database, is one that is often encountered
in practice. Many queries arrive stochastically, and their execution
plan has to be scheduled on the processing units with unstable
performance. To determine when and where to dispose of these

∗ Corresponding author.
E-mail addresses: tongzhao1985@yahoo.com.cn (Z. Tong), zxiao@hnu.edu.cn

(Z. Xiao), lkl510@263.net (K. Li), lik@newpaltz.edu (K. Li).

http://dx.doi.org/10.1016/j.jpdc.2014.03.007
0743-7315/© 2014 Elsevier Inc. All rights reserved.
queries is referred to as task scheduling. Task scheduling is critical
in exploiting the potential advantages of parallel and distributed
systems [13].

In the above environments, task arrival and execution processes
are stochastic. We take Google search service as an example to
illustrate its impacts. A large number of users all over the world
send their keyword queries to Google servers. Search engines use
the MapReduce technique to divide a query into several classes of
tasks, and then to map these tasks onto servers for execution. It
involves three kinds of uncertainties.
• It is uncertain when and how many tasks will arrive because

when and what kind of search query a user will initiate is
unknown.
• It is uncertain how long a processing unit will take to execute a

single task due to the dynamics of processors and networks. The
performance of a server varies temporally. The network delay is
hard to evaluate.

http://dx.doi.org/10.1016/j.jpdc.2014.03.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.03.007&domain=pdf
mailto:tongzhao1985@yahoo.com.cn
mailto:zxiao@hnu.edu.cn
mailto:lkl510@263.net
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.jpdc.2014.03.007

Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672 2663
• It is uncertain how many tasks are waiting in the queues for
execution. As the system is not dedicated, users share all the
processing units.

To adapt to those aforementioned uncertainties is a key to task
scheduling. How to adapt to the consequent uncertainties, as well
as scheduling overhead and response timeliness, are the main
concern in this paper.

Scheduling algorithmsmainly fall into two categories, i.e., static
and dynamic scheduling. Static scheduling [15,18,4,32] originally
emerged in parallel computing. A schedule for a parallel program is
determined during compilation. To date, it means that scheduling
happens before applications’ running. In distributed computing,
static scheduling fails because it is uncertain when and what kind
of tasks may arrive. Instead, scheduling has to happen at runtime
in our case, which is called dynamic scheduling. Because of online
scheduling, the scheduling overhead and response time become
important. But current dynamic scheduling algorithms [6,19,3,30]
either have high scheduling overhead, resulting in a long queue for
task admission [20], or unable to adapt to the uncertainties in task
arrival and execution, leading to lagging response.

To address this problem, our preliminary work [31] tried to
model task arrival and execution processes based on queueing
theory as most scholars did [9,22,25], and proposed a semi-
static scheduling algorithm. But we found that this approach gave
impractical models on task arrival and execution. The performance
gets worse under other models.

How to adapt to those uncertainties is still challenging. In this
paper we use an approach from machine learning to learn task ar-
rival and execution patterns online. In fact, scheduling is a decision
problem.We formulate dynamic scheduling as aMDP (Markov de-
cision process) problem. Because of those uncertainties, reinforce-
ment learning is an effective method to solve an uncertain MDP
problem. The proposed algorithm takes the previous allocations
as training samples and adjusts its policy accordingly. It automati-
cally acquires the knowledge of task arrival and execution with-
out any aforehand modeling, and proactively allocate tasks on
account of the forthcoming tasks and their execution dynam-
ics. Under comparison with four classic algorithms such as
Min–Min [6,3], Min–Max [6,3], Suffrage [19], and ECT [30], the pro-
posed algorithm has much less scheduling overhead. The experi-
ments over both synthetic and practical environments reveal that
the proposed algorithm outperforms other algorithms in terms of
the average response time. The smaller variance of average re-
sponse time further validates the robustness of our algorithm.

This paper makes the following contributions.
• Proposing the concept andmethod of proactive schedulingwith

high adaptability and low scheduling overhead;
• Formulating dynamic scheduling as a MDP problem on account

of the uncertainties of task arrival and execution;
• Developing an online scheduling algorithm based on reinforce-

ment learning, which extremely enhances adaptability to the
uncertainties in distributed computing;
• Demonstrating that our learning-based algorithm has lower

scheduling overhead, effectively reduces the average response
time, and is stable with lower variance.
The remainder of this paper is organized as follows. Section 2

reviews the related work on dynamic scheduling. Section 3
describes the motivation of minimizing the average response
time and proactive scheduling. Section 4 defines the scheduling
problem and formulates it by MDP. Section 5 gives the learning
based scheduling algorithm. Section 6 presents a comparative
study of our algorithms with the related work. Section 7 concludes
this paper.

2. Related work

Task scheduling is a non-trivial problem and well known to
be NP-hard even for non-preemptive scheduling of independent
tasks [27]. As mentioned before, static scheduling makes decision
before runtime. It acquires tasks, their dependency represented by
a DAG (directed acyclic graph), resource performance as a prior
knowledge. However, because of the uncertainties in distributed
computing, such knowledge can only be acquired at runtime.
Traditional static scheduling is not applicable in distributed
computing.

There are two modes in dynamic scheduling for independent
tasks. One is called the batch mode, which starts scheduling after
a batch of tasks have arrived. Min–Min [6,3], Min–Max [6,3], and
Suffrage [19] are three such typical algorithms. In the Min–Min
approach, a scheduler calculates MCTs (minimum completion
times) for tasks in the batch on resources. Then, it maps the task
with the minimal MCT first. In contrast, the task with the maximal
MCT has higher allocation priority in Min–Max. In Suffrage, it
first maps tasks which suffer the most if not allocated right now.
Usually, the suffrage value is the difference between its MCT and
the second MCT. The size of a batch depends on the number of
tasks or a fixed temporal interval. In the batch mode, tasks wait
for scheduling until the size of a batch is reached. So tasks arriving
earlier have to wait, which prolongs task response time. Besides,
the time complexity of such algorithms is proportional to the size
of batch times the number of processing units, because it needs to
compute MCT of all pairs. For these two reasons, the batch mode
algorithms result in high scheduling overhead. Hence, the online
mode arises. Algorithms of this mode schedule a task immediately
after its arrival. ECT is a typical algorithmwhich assigns tasks to the
processing unit of the MCT. This mode nearly takes forthcoming
tasks into account while the batch mode considers several tasks
once making scheduling decision. So the batch mode has limited
adaptability compared with the online mode.

Except for stochastic arrival of tasks, dynamic nature of re-
sources is the other difficulty for task scheduling in distributed
systems [12]. The following methods are usually employed to
estimate task execution like MCT and adapt to the dynamic
nature. (1) On-time information from the third party software
component—For instance, GIS (Grid Information Service) in Grid
is a software component, singular or distributed, that maintains
information about people, software, services, and hardware that
participate in a computational grid, and makes that information
available upon request [1]. (2) Performance prediction—Most algo-
rithms rely on performance estimates when conducting schedul-
ing. Prediction is based on historical record [33] or workload
modeling [7,10]. For example, most works predict resource per-
formance under a queueingmodel [31,9,22,25]. (3) Rescheduling—
Rescheduling changes previous schedule decisions based on a fresh
resource status [24,29]. The method (1) needs extra communica-
tion cost and delay, themethod (2) is hard to ensure providing high
prediction accuracy with a simple algorithm, and themethod (3) is
available on condition that the infrastructure provides job migra-
tion.

Dynamic scheduling is shortsighted. In order to get a global
optimization, scholars proposed new dynamic algorithms to adapt
to the task arrival and execution processes. Grid schedulers
like GridWay [17] and gLite WMS [16] only passively adapt to
resource performance based on simple prediction models. AppLeS
approach in [2] generates a schedule that not only considers
predicted expected resource performance, but also the variation
in that performance. Authors in [26] proposed a dynamic and
self-adaptive task scheduling scheme based upon application-
level and system-level performance prediction. Authors in [11]
presented a resource planner system that reserves resources for
the subsequent jobs. Most of these methods are passive and adjust
schedules when performance varies. In addition, the impact of task
arrival pattern is barely considered.

However, our learning based approach belongs to the on-
line mode. It incurs low scheduling overhead. Furthermore, it

2664 Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672
proactively makes scheduling decision based on the learned
knowledge of both task arrival and execution patterns. It has better
adaptability.

3. Motivation

In distributed computing, response time is believed to be a
more important metric than makespan. Scheduling overhead and
adaptability have considerable impact on performance of dynamic
scheduling algorithms.

3.1. Scheduling overhead

Dynamic scheduling happens at runtime and scheduling time is
a part of the task processing time, so that scheduling overhead has
a negative influence.

In Ref. [20], the workload of some OSG (Open Science Grid)
clusters is provided. The number of taskswaiting in theOSG cluster
at University of California, San Diego could be as many as 37,000
tasks in the waiting queue at peak. The best-known scheduling
algorithm for real-time tasks [5] takes more than 11 h to make
admission control decisions on the 14,000 tasks that arrived in
an hour. So the scheduling overhead could be substantial. A slow
scheduling algorithm will result in a congestion at the scheduler
and severely affect the response time of tasks.

3.2. Response time vs. makespan

In most previous works, makespan, which is the time for all
tasks to be processed, is viewed as the major optimization goal.
Unlike them, our work concerns task response time, which is the
time for a single task to be processed [23]. Task response time is
a metric from a user’s perspective. It becomes important, as users
are sometimes waiting online in distributed computing.

Let τ j
i represent a task, where i denotes the task class and j is the

sequence number. And Pk is the kth processing unit. A schedule schl
is a function from tasks to processing units, i.e., schl(τ j

i) = Pk. The
processing time of τ

j
i on Pk includes waiting and execution time

right after its arrival, denoted by PTk(τ
j
i). And Pk spends time CTk

to complete all the allocated tasks since the system starts running.
Then makespan of schl is maxPk{CTk}, while the average response
time is
1
|T |
·

Pk

τ
j
i

PTk(τ
j
i)

where |T | is the total number of tasks.
With shorter makespan, distributed systems are able to

complete more tasks per time unit, resulting in higher throughput.
Shorter response time means that users wait shorter for the
feedback of their queries. Makespan indicates the steady-state
speed of system or the capability of parallelism. In contrast,
response time is the instantaneous speed for an individual user.
Usually large response time may lead to a long makespan, but this
is not a corollary. Sometimes, prolongingmakespan a little bit may
reduce the average processing time of individual tasks, lowering
the response time. The following example tells that different
schedules of the same makespan have different response time.

Suppose a simple distributed system has three processing units
P1, P2, and P3. There are two classes of tasks named t1 and t2. The
time P1, P2, and P3 take to execute t1 is 6, 9, and 9 h respectively,
while for t2 they are 3, 5, and 6 h (refer to Table 1). Four tasks
{τ 1

1 , τ
2
2 , τ

3
2 , τ

4
2 } in total arrive in order. From the instant τ 1

1 arrives,
others are arriving in 1, 2 and 5 h later. A task cannot be scheduled
before its arrival. Fig. 1 shows two schedules. A column presents
Fig. 1. Example: response time vs. makespan.

Table 1
Execution time matrix.

Task type Pl P2 P3

t1 6 9 9
t2 3 5 6

the tasks scheduled to one processing unit. The rounded rectangles
represent the execution times of the tasks. In schedule (a) P1 takes
the longest time while P3 takes the longest time in schedule (b).
So they have the same minimum makespan 9. But the average
response time of Fig. 1(a) is (6 + 6 + 5 + 4)/4 = 5.25. Task
τ 4
2 has to wait for one hour before execution. If we move task

τ 1
1 from P1 to P3, we make the average response time shorter,
i.e., (9+ 3+ 5+ 3)/4 = 5 as Fig. 1(b) shows.

From this example, makespan and response time stand for
different performance of scheduling.

3.3. Proactive scheduling

In the above example, if we knew a bunch of tasks of type
t2 would arrive after task τ 1

1 , it is better to reserve the fastest
resource for them. In the schedule (b) in Fig. 1, the fast resource
P1 is reserved for future tasks of type t2. Sacrificing the task τ 1

1
by increasing its response time may profit the subsequent tasks.
Consequently, proactive scheduling is such a concept that takes
the possible scheduling of forthcoming tasks into account and then
finds out a globally optimal scheme.

A proactive scheduling algorithm has higher adaptability. In
order to schedule proactively, it is necessary to predict the
patterns of task arrival and execution. Many scholars attempt to
model them based on queueing theory [9,22,25]. Our preliminary
work [31] assumes that tasks arrive in the form of a Poisson
process, and proposes a semi-static scheduling algorithm for the
same problem studied in this paper. But it fails under other forms
of arrival and execution patterns. In Section 6, we will give a brief
introduction to it and demonstrate its limitations compared with
the algorithm in this paper. Through learning, the new algorithm
can adapt to various kinds of task arrival and execution patterns.

4. Problem description and modeling

4.1. Problem description

According to the application and scenario of a network virtual
laboratory of university, which is a project we are working on, the
scheduling problem is described by Fig. 2. The system supports
a number of experiments. Tasks are classified based on types
of experiments. The tasks of two types have different sizes or
data demands. There is a unique scheduler which takes charge
of assigning tasks to processing units in a distributed system.
Arrival tasks are pushed into the arrival queue at the scheduler.
The scheduler retrieves one task each time from the arrival queue,
and then allocates it to a processing unit and puts it into the local
queue of the processing unit. Processing units execute tasks in its

Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672 2665
Fig. 2. The studied task scheduling problem.
Table 2
Notations in the queueing model.

Notation Description

m the number of types of tasks
n the number of processing units
ti the ith type of tasks
PUj the jth processing unit
λ the task arrival rate of the system
λj the task arrival rate on PUj
µ the scheduling rate of the scheduler
µj the service rate of PUj
µij the service rate of PUj for task type ti
ρi probability that currently arrived task is of type ti
Prij probability of scheduling tasks of type ti to PUj

local queue in the way of FCFS (first come first served). Processing
units are heterogeneous. They can commit part of the tasks or at
different speeds.

In this scheduling problem above, tasks are independent and
cannot be interrupted once it is being executed. So it is actually
a centralized, independent, and non-preemptive scheduling prob-
lem.

In Fig. 2, queueing involves two levels. The length of a local
queue partially depends on resource performance. The length of
the arrival queue is influenced by scheduling overhead. If the
scheduling overhead is high, tasks will stay longer in the arrival
queue and the response time will increase. So the processing time
of tasks includes scheduling time, execution time, andwaiting time
in twoqueues. Previousworks usually consider one-level queueing
and neglect the influence of scheduling overhead.

A summary of notations is given in Table 2.
The distributed system includes n processing units {PU1, PU2,

. . ., PUn} and handles m kinds of tasks. λ is the task arrival rate. µ
is the scheduling rate. If µ ≫ λ, the arrival queue keeps empty
and can be ignored. µj is the service rate of PUj, depending on
the performance of PUj. Because different task types have different
sizes or data demands, the service rate is different, denoted by µij.
The set {t1, t2, . . ., tm} represents task types submitted by users. The
currently arrived task is of type ti with a probability of ρi. In Fig. 2,
Prij means the probability the scheduler assigns tasks of type ti to
PUj.

4.2. MDP model

In distributed systems, tasks arrive at the scheduler stochasti-
cally. In order to schedule proactively, it is necessary to have com-
plete information about the arrived tasks and the tasks to arrive,
i.e., the knowledge of the arrival and execution processes. The al-
location of current tasks not only depends on the allocation of tasks
already arrived, but also influenced by tasks to arrive later. If tasks
are assigned to processing units which have the shortest response
time, the average response time of the whole distributed system
may not be the shortest as shown by the motivation example in
Section 3, because this greedy policy neglects the scheduling of
forthcoming tasks. From this viewpoint, the scheduling problem
for distributed computing appears to be a dynamic programming
problem in which one cannot tell whether a single allocation is
good or not until all tasks have been allocated. Scheduling perfor-
mance depends on a series of allocations.

Each allocation is a single decisionmaking. The current decision
is related to the future decisions. Multiple such stages form a
solution to the scheduling problem. Under this description, the
Markov decision process (MDP) [14] can be used to model the
scheduling problem. MDP is described by a quadruple (S, B, Γ , R).
S is a set of states. B is a set of actions. Γ is a state transition
function. A new state is reached after a certain action is conducted.
R is the immediate reward function after taking an action. As to our
scheduling problem, the MDP model is defined as follows.

• S is the set of task types, i.e., S = {t1, t2, . . . , tm}.
• B is the set of allocations, i.e., pairs of task type and processing

unit, B = {(ti, PUj) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The element
bij = (ti, PUj) in Bmeans that a task of type ti is assigned to the
processing unit PUj.
• Γ : S × B → S. If there is any dependence between tasks,

the next state has something to do with the previous state.
However, tasks are assumed to be independent in this paper,
so the previous and successive states are irrelevant. The state
transition only depends on the probability ρi (see Table 2).
However, this does not cause trouble to the following algorithm.
The knowledge of ρi can still be learned. For convenience of the
following description, this function is kept as it was.
• R : S × B → ℜ, where ℜ is the set of real numbers. r ∈ ℜ

represents the immediate reward, for example,when taking the
allocation bij ∈ B for a task of type ti ∈ S. In our case, R is a
function of the processing time of a single task.

The state transition function Γ implies the task arrival process
and the probability distribution of task types. The immediate
reward function R implies the dynamic performance and the
execution time of individual tasks. The capability of processing
units determine possible actions.

Under MDP, we ought to evaluate schedules of tasks. The
key to evaluation is to describe the influence of former and
later allocations. Discounted accumulative reward is an objective
function often used in MDP. Starting from the θ th allocation, it is
defined below:

Ψ (θ) = rθ + γ rθ+1 + γ 2rθ+2 + · · · =
∞
i=0

γ irθ+i, θ ≥ 1 (1)

where γ is the discounted factor.
In Eq. (1), the reward at θ th allocation depends not only on the

immediate reward rθ , but also on the immediate reward of the

2666 Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672
forthcoming allocations. In other words, the allocation with the
minimum response time currently may lead to a lagging response
of forthcoming tasks. It is believed that the influence on future
allocations decays. The later tasks arrive, the less influence they
have on the current allocation. So a discount is added to each item.
This function embodies proactive scheduling which takes future
task allocations into account.

The discounted accumulative reward Ψ cannot be computed
until all tasks have been assigned by a series of actions. It relies on
the state transition function Γ and the immediate reward function
R, which further rely on task arrival and task execution. In the next
section an adaptive algorithm is proposed to find out a scheduling
policy which maximizes Ψ . It uses historical online allocations to
gradually adapt to task arrival and execution pattern without any
priori knowledge.

5. An online learning-based adaptive scheduling algorithm

How to automatically adapt to the task arrival and execution
processes is our main concern in this section. The following
algorithm is about to solve these problems by learning the patterns
of task arrival and execution online. The extra communication
happens when collecting the processing time of a single task.

5.1. Algorithm description

Because of the uncertainties stated in Section 1, the next
state Γ (ti, bij) is uncertain and follows the probability distribution
PDS = (ρ1, ρ2, . . . , ρm) over set S. In addition, the immediate
reward R(ti, bij) is also stochastic, because of the varying load and
network delay. The same allocation may have different discounted
accumulative reward. Hence, we try to maximize the expected
discounted accumulative reward:

E[Ψ (θ)] = E

∞
i=0

γ irθ+i

. (2)

In order to maximize Eq. (2), we need to get the discounted
accumulative reward of each action, which is denoted by
Q -function Q (ti, bij) in Eq. (3).

Q (ti, bij) = E[R(ti, bij)+ γ Vπ (Γ (ti, bij))]

= E[R(ti, bij)] + γ

t ′∈S

P(t ′ | ti, bij)Vπ (t ′), (3)

where t ′ = Γ (ti, bij) and P(t ′ | ti, bij) ∈ PDS is state transition
probability. Vπ (ti) is V -function, which denotes the expected
reward under certain state when following the optimal scheduling
scheme π :

Vπ (ti) = max
j

Q (ti, bij). (4)

The optimal scheduling scheme is the allocation which has the
maximal Q :

π(ti) = argmaxj Q (ti, bij). (5)

In the above equations, the scheduler considers two factors
when making decisions. One is the load on each processing unit,
i.e., the immediate reward of individual allocations. The other is
the future allocations, i.e., the V -function.

Eqs. (3)–(5) define a typical dynamic programming problem.
Though, to solve it we need to know P(t ′ | ti, bij) and R(ti, bij),
which are related to task arrival and execution processes. If know-
ing task arrival and task execution, the dynamic programming
method can be used to compute the optimal scheme π , making
the very decisions that maximize the expected reward of Eq. (2).
But the knowledge of task arrival and task execution is hard to ob-
tain. To build their models is one solution to get such knowledge,
but it is a nontrivial job. Q-learning provides a method which im-
plicitly learns and gradually adapts to the uncertainties.

In this section,we attempt to useQ-learning [14], onemethodof
model-free reinforcement learning (RL), to solve theMDP problem.
It is an online and unsupervisedmachine learningmethod. Itworks
by learning some value functions that give the expected reward
of taking each action in any state. It does not need any training
samples except the historical allocations. There is no need tomodel
task arrival and task execution.

According to Q-learning, two value functions given in Eq. (6) are
defined. Q̂ (ti, bij)denotes the estimated expected reward of certain
allocation, while V̂ (ti) denotes the estimated expected reward for
some task type.

Eq. (6) gives the lth learning rule:

Q̂l(ti, bij) ← (1− αl)Q̂l−1(ti, bij)

+αl[R(ti, bij)+ γ V̂l−1(Γ (ti, bij))],

V̂l(ti)← max
j

Q̂l(ti, bij),
(6)

where l denotes the iteration, and αl (0 ≤ αl ≤ 1) is the learning
rate for the lth iteration. The immediate reward R(ti, bij) is the
reciprocal of the interval from arrival of a task until its completion
at PUj.

Q-learning is an error and attempt approach. This approach
works correctly under the condition that every state is visited suf-
ficiently. The ε-greedy exploration policy is taken. The exploration
probability pe is preset. The possible allocations are selected ran-
domly by pe; otherwise, the allocation satisfying Eq. (5) is selected.
This exploration policy also functions to avoid falling in a local op-
timum.

Convergence is a necessary attribute of learning algorithm.
According to Ref. [28], the Q -function Q̂ in Eq. (6) can converge
to Q in Eq. (3) if the learning rate is defined by Eq. (7):

αl =
1

1+ visitsl(ti, bij)
, (7)

where visitsl(ti, bij) is the number of visits to pair (ti, bij) during l
iterations.

A complete description of our reinforcement learning algorithm
is given below.

The learning-based algorithm does not need any information
like the probability ρi that a task is of certain type, λ of the task
arrival process, and µij of task execution.

Algorithm 1 is an online learning algorithm. It learns the
allocation scheme after a task is allocated and executed. This leads
to a drawback: tasks used for training before its convergence may
be allocated to inappropriate processing units and users have to
pay for the worse performance.

5.2. Performance analysis and deployment

(A) Communication cost
The immediate reward R(ti, bij) is collected from a processing

unit when a task is completed. It is just a numerical value. There
is no need to get the loads on all processing units each time
a task is scheduled. Hence, this does not bring any burden on
communication with such a little data transmission.

(B) Scheduling overhead
In Algorithm 1, the learning and updating steps in each

loop only take a constant number of algebraic calculations. The
scheduling overhead mainly exists in the action selection of Step
(2). The time complexity of Algorithm 1 is O(n) for a single task.

Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672 2667
Algorithm 1 Reinforcement learning based algorithm
Input: task type of the arrived tasks
Output: π(ti)
(1) Initialization
for any ti ∈ S, any bij ∈ B do

Q0(ti, bij) = 0;
visits1(ti, bij) = 0
α1(ti) = 1

end for
(2) Action selection for task ti
if Explore with probability pe then

Select allocation bij randomly by uniform distribution
else

Select allocation bij by the currently learned scheme π(ti) =
argmaxjQ (ti, bij)

end if
(3) Learning
Update(Q):
Q̂l(ti, bij) = (1− αl)Q̂l−1(ti, bij)

+αl[R(ti, bij)+ γ V̂l−1(Γ (ti, bij))]
Update(V):
V̂l(ti) = maxj Q̂l(ti, bij)

(4) Updating
visitsl+1(ti, bij) = visitsl(ti, bij)+ 1
αl+1 =

1
1+visitsl+1(ti,bij)

goto (2)

In fact, this can reach O(log n) by increasing space complexity,
e.g., the MaxHeap. The heap is maintained in Step (4).

(C) Deployment
When the task arrival rate is not too high, the scheduler is

capable of updating and learning while scheduling. However, if
tasks arrive in a large batch, synchronizing updating and learning
with scheduling becomes a bottleneck. There are two ways of
optimization during deployment.
• Delaying updating and learning—If quite busy, the scheduler

can update and learn later, though the negative influence is
slower convergence.
• Separating learner from scheduler—The scheduler is only

responsible for task assignment and another dedicated server
is used to update and learn.

After convergence, the learner can stop learning for a while.
Then the scheduler maps tasks to processing units of maximal
Q -value. If there exists a Maxheap, this map can be done in O(1)
time. The learner resumes learning in a periodic time, in case of any
changes in task arrival and execution. If the stopping probability is
η ∈ (0, 1], scheduling complexity is O(η · 1 + (1 − η) · log n). By
intermittent learning, the scheduling overhead is approximately
O(1) and scheduling efficiency is further improved.

6. Experiments and results

In this section, we will validate convergence, robustness, and
performance of the online learning-based scheduling algorithm.

The parameters related to learning are set as follows in our
experiments. They are an empirical setting.
• The exploring probability is pe = 0.2, in which an action is

selected at random. Exploration scheme is used to avoid the
local optimum and visit all states sufficiently. The larger, the
slower it converges.
• The discount factor is γ = 0.9, which is the coefficient in

accumulative discounted reward. The closer to 0, the more
weight over the immediate reward; otherwise, themoreweight
over the future task allocations.
Table 3
Service rate matrix (tasks/hour).

Unit t1 t2 t3 t4 t5

P1 60 50 40 45 55
P2 30 35 30 40 40
P3 15 55 50 35 45

Fig. 3. Convergence of learning-based scheduling.

All of our experiments are simulated on a single PC. In the future
work, we intend to transplant themonto a real cluster based on the
supercomputing center to be built in our university.

6.1. Convergence

We simulate a distributed system with three processing units
and a scheduler. Five types of tasks t1, t2, . . . , t5 arrive at the
scheduler stochastically with probabilities 0.4, 0.2, 0.1, 0.1, 0.2.
Tasks arrive as a Poisson flow, with execution time following an
exponential distribution. Simply, we assume P1, P2, P3 can execute
50, 35 and 40 tasks per hour on average. To embody different
execution time for each type, we assign different service rates to
each type. The service rate matrix is given in Table 3.

Convergence is important for learning-based algorithms. Our
algorithm learns the flow of 1000 tasks with the arrival rate
λ = 80 tasks per hour. Fig. 3 shows result of the convergence
experiment. The curves of different colors denote the different
expected rewards Q (t1, b1j), j = 1, 2, 3, in allocating tasks of type
t1 to the three processing units respectively. The oscillation tends
to shrink as the learning goes on. After learning about 500 times,
the Q -function converges. When focusing on the first hundred of
iterations, we observe that most tasks are assigned to P1. Later,
a jam happens at P1. So the tasks begin to be assigned to other
processing units.

6.2. Robustness

Our previous work [31] represents a class of scheduling
approaches which achieve adaptability by explicitly modeling task
arrival and execution processes. To demonstrate robustness of
learning approach, we use the work [31] as a delegate to compare
with the learning-based algorithm.

The approach in [31] models task arrival as a Poisson flow
and execution as an exponential distribution. So M/M/1 model in
queueing theory is used to formulate the scheduling problem. As
per the additive property of Poisson distribution, the aggregated

2668 Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672
flow is still a Poisson flow. So the arrival process of each local queue
is also a Poisson flow. The arrival rate λj on PUj can be defined as:

λj =

m
i=1

λij =

m
i=1

ρijλ =

m
i=1

Prijρiλ, (8)

where λij is the rate that tasks of type ti arrive at PUj, ρij is the
probability that a task in PUj’s local queue is of type ti, and ρi is
the probability that a task in the arrival queue is of type ti.

The service rate µj of PUj can be computed as the weighted
average of µij:

µj =

m
i=1

λij

λj
µij (9)

where µij denotes the service rate for task type ti on processing
unit PUj.

If the scheduler can allocate tasks fast enough, i.e., µ ≫ λ, the
arrival queue is empty. The task processing time depends only on
the waiting time and the staying time in the local queues. Based
on the results from queueing theory [8], we have the expected
response time below.

RTexp =

j

λj

λ
·

1
µj − λj

=

j

λj

λ
·

1
i

λij
λj

µij −

i
Prijρiλ

. (10)

Scheduling aims to find out the allocation probability Pr∗ij that
minimize the expected response time. As a result, it is defined as a
non-linear programming problem.

min
Prij

RTavg = min
Prij

j

λj

λ
·

1
i

λij
λj

µij −

i
Prijρiλ

,

s.t. 0 ≤ Prij ≤ 1,
j

Prij = 1.

(11)

In the experiments, we use function ‘‘fmincon’’ in MATLAB
toolbox to solve it. In this approach, the allocation scheme Pr∗ij is
computed before scheduling, and then the scheduler only needs to
follow the scheme. Hence, the scheduling overhead is very small. If
the distributed system is not very large and tasks arrive gently, the
constraint µ≫ λ is satisfied. Algorithm 2 gives its pseudo-code.

Algorithm 2 Non-linear programming based algorithm
Input: m, n, λ, ρi, µij
Output: Prij
1: Initialize Prij = 1

n ,∀i, j
2: Define objective function RTexp by Eqs. (8)–(11)
3: Prij = fmincon(RTexp) %using subspace trust region method

for non-programming problem

The time complexity of the subspace trust region method used
in fmincon is O((mn)3 · N), where N is the number of iterations.
Comparedwith Algorithm 1, Algorithm 2 needs parameters of task
arrival and execution. It is hard to estimate these parameters. In
addition, Algorithm 2 assumes task arrival of Poisson distribution
and task execution time of exponential distribution. They are rigid
limitations.

In the rest, we will examine the performance under different
forms of task arrival. The arrival interval between successive tasks
follows such four distributions as exponential, constant, uniform,
and chi-square. Their expectations keep the same as reciprocal of
Fig. 4. Robustness in task arrival for Algorithm 2.

Fig. 5. Robustness in task arrival for Algorithm 1.

the arrival rate, i.e., 1/λ. Wherein the constant one means that the
arrival interval between two tasks is a constant of 1/λ. Keep the
other settings as in the convergence experiments.

Fig. 4 shows the average response time over 100 tasks under
different arrival rates. The average response time of exponential
arrival is the lowest, because it is completely in accordance with
the assumption. However, the other distributions result in longer
response time.

In Fig. 5, the robustness of the learning based algorithm is
analyzed. The average response time is measured over 100 tasks
after learning converges. As the task arrival rate increases, the
average response time increases too. In contrast to Fig. 4, the
average response time of the learning-based algorithm is relatively
stable. When the arrival rate is 80, they are about 0.0481, 0.0518,
0.0478, and 0.0472 respectively under the four distributions. But
the performance of Algorithm 2 decreases when the distribution
is not exponential. In summary, the learning algorithm is more
capable of adapting to the task arrival process.

In the following,we investigate robustnesswhen the estimation
on execution time has errors. The exact service rates of three
processing units are provided in Table 3. Two experiments with
arrival rate 60 and 80 are committed under Poisson arrival process.
If some errors in estimation happen, Figs. 6 and 7 show the changes
in average response time. The scales on x-axis stand for the correct,

Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672 2669
Fig. 6. Robustness in task execution for Algorithm 2.

Fig. 7. Robustness in task execution for Algorithm 1.

5-underestimated, 5-overestimated, and 10-overestimated service
rates. n-overestimated or underestimatedmean that the estimated
service rates for each type are higher or lower than the rates in
Table 3 by n. The average response time in Fig. 6 increases a lot,
while there are some fluctuation in Fig. 7 because Algorithm 1
needs no estimation.

In conclusion, learning-based algorithm is more robust in task
arrival and execution variation.

6.3. Performance analysis

The following experiments compare our algorithms with some
classical scheduling ones. In this group of experiments, the
performance of our algorithms, Min–Min, Min–Max, Suffrage, and
a naive ECT based online algorithm is analyzed. These algorithms
are designed for optimizing Makespan, and use completion time
for heuristic rules. But completion time of each task only considers
waiting time in the local queue and execution time, not including
waiting time in the arrival queue and scheduling time. So for a fair
comparison, we use processing time, which includes all the staying
time in both queues, to replace completion time.

Average response time is the main index for evaluation.
However, in a dynamic environment, the stochastic property
causes an oscillated or unstable average response time. Different
task flows may have different performance. It is expected that
Fig. 8. Performance comparison under Poisson arrival.

Fig. 9. Performance comparison under random arrival.

the scheduling algorithm can generate an ‘‘always-good’’ scheme
under any task arrival process. In other words, the variance of
average response time ought to be small for a stable scheduling
algorithm. Consequently our performance analysis takes the
average response time into account as well as its variance.

In the experiments, the average response time is measured
over 100 tasks after learning converges. To simulate stochastic
environment, we generate 50 task flows by random number
generator which share the same statistical parameters like
expectation. For example, flows of Poisson arrival have the same
arrival rate. The variance is computed over these flows. The
batch size for Min–Min, Min–Max, and Suffrage is 10 tasks. The
performance is first investigated on a small-scale distributed
system, with the setting similar to the above experiment, and then
on a large-scale distributed system.

6.3.1. Small-scale distributed system
Fig. 8 compares the performance of our algorithms with other

four classic algorithms under the condition that tasks arrive in
Poisson distribution. Fig. 9 shows the performance when task
arrival follows a uniformdistribution. In these figures,we also used
the random policy as a comparison baseline, in which tasks are
assigned to all processing units with equal probability.

First, our algorithm outperforms the others in terms of the
average response time. Because the assumptions are satisfied in

2670 Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672
Fig. 10. Performance comparison of LPC cluster applications (140 CPUs).

Fig. 8, the non-linear programming based algorithm generates
the better allocation probabilities and has the shortest response
time. The performance of our learning-based algorithm is close
to it. However, in Fig. 9, the performance of the non-linear
programming-based algorithm drops a lot and is worse than the
learning-based algorithm.

Second, the average response time of our algorithms and ECT
increases as the task arrival rate increases. However, the three
batch-mode algorithms have the opposite trend. The reason is that
batch-mode scheduling spends time in waiting for a batch of tasks
to arrive. It takes more time when tasks arrive sparsely, so that the
response time is longer for lower arrival rate.

Finally, different from traditional performance comparison,
both figures show the variance of average response time. Our
algorithm has greater variance than other algorithms. Perhaps this
has something to do with the probabilistic scheduling and the
random exploration policy in the learning-based algorithm. The
other algorithms may not be as good as they look, because they
need to correctly predict task execution time before scheduling.
In practice, there often exist errors in prediction. In this case, the
variance may get greater.

6.3.2. Large-scale distributed system
In the section, we simulate a real cluster, i.e., LPC (Labora-

toire de Physique Corpusculaire, CNRS-IN2P3, Clermont-Ferrand,
France) [21]. There are mainly two types of tasks, i.e., Dteam jobs
and Biomed jobs. During 163 days, 108,651 jobs fromwhich 56,799
Dteam jobs and 45,523 Biomed jobs are received. The other 6329
jobs are rare. For simplicity, our experiments only consider Dteam
and Biomed jobs. Dteam jobs aremainly shortmonitoring jobs (ex-
ecution time per Dteam jobs is 0.1 h) while Biomed jobs are CPU
intensive jobs (execution time per Biomed jobs is 1.5 h). According
to this, for the tested large-scale distributed system, the task ar-
rival rate is 28/h. In LPC, jobs are submitted by bursts. To simulate
this, we assume that such arrivalmode repeats every 6 h (one third
tasks arrive continuously at the rate of 66/h while the rest tasks at
9/h). There are 140 homogeneous CPUs. Dteam and Biomed are the
two task types. They arrive by the probability of 0.52 and 0.48 re-
spectively. The service rates for Dteam jobs and Biomed jobs are
10/h and 0.67/h. Figs. 10 and 11 show the average response time
over 163 days.

Because the task arrival process is hybrid, this experiment
does not compare the performance of Algorithm 2. The ‘‘ideal’’
response time in Fig. 10 is obtained under the condition that
there are sufficient CPUs. Thus, an idle CPU can be assigned to
a task immediately after it arrives. We use it as a baseline. Its
value is 0.52 × 0.1 + 0.48 × 1.5 = 0.772. The closer to it, the
better the algorithm is. Under this distributed environment, the
Fig. 11. Performance comparison of LPC cluster applications (15 CPUs).

Fig. 12. Average response time under varied discounted factor.

cluster is relatively idle. So the three batch-mode algorithms have
lower performance for the reason mentioned in the small-scale
experiment. Compared with ECT, our learning-based algorithm is
better, because it could reserve resources for bursting task arrival.

In the above experiment, there are so many processing units
that the system keeps idle. In order to examine the performance
under heavy loaded environment, we reduce CPUs in LPC from 140
to 15 in the simulation. Fig. 11 shows the 15-CPU LPC responds to
each job in about 2.2 h using learning-based algorithm, about one
hour faster than other algorithms.

6.4. Parameter setting

In the learning-based algorithm, there are two parameters,
i.e., the exploration probability and the discounted factor. This
section provides the empirical data for their settings. The
experiment environment uses the small-scale distributed system.

Fig. 12 gives the average response time under varied discounted
factor when tasks arrive by Poisson distribution with arrival rate
λ = 80. When γ = 0, the algorithm only takes the immedi-
ate reward into account and becomes the ECT algorithm. As γ
increases, the future allocations are considered and the average re-
sponse time decreases. From this figure, there exists a minimum
between 0.8 and 0.99. For simplicity, 0.9 is selected as the value of
discounted factor.

The parameter of explorationprobability functions to guarantee
sufficient traversal of all the states. If it is too big, the learning

Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672 2671
Table 4
The influence of exploration probability.

pe 0.1 0.15 0.2 0.25 0.3 0.4

ART 0.0562 0.0483 0.0419 0.0451 0.0507 0.0726
CI 425 482 547 677 829 ∞

algorithm cannot converge. If it is too small, the states cannot be
visited sufficiently, and the Q-function converges to the wrong
value or the local optimum. Under the same settings, Table 4 shows
the results of convergence and average response time with varied
exploration probability.

ART denotes the average response time while CI is the number
of iterations for convergence. The Q -function is believed to be
converged when the difference is lower than 5% in the following
one hundred iterations. In Table 4, the Q -function converges more
slowly as pe increases, and when pe = 0.4, it does not converge. As
far as the average response time is concerned, a local optimum is
reached when pe is small and the ART gets worse. Considering the
two aspects together, its better setting is around 0.2.

7. Conclusion

There existed lots of heuristics for dynamic task scheduling.
But they are sensitive to prediction of task execution or neglect
possible influence on subsequent tasks. Scheduling performance
could be further improved with adaptability to task arrival and
execution processes. Consequently, in this paper we use MDP to
model scheduling, which regards independent tasks as a flow.
Then we introduce machine learning into task scheduling and
propose an online Q-learning based algorithm for independent
tasks. By guarded adjusting scheduling policies for a task flow, it is
able to adapt to task arrival and execution patterns automatically,
and reserve resources for forthcoming tasks. Learning makes
this adaption without needing any prior knowledge about task
arrival and execution. It also leads to robustness for dynamics in
task traffic and execution. Compared with some typical heuristic
algorithms, this proactive scheduling effectively decreases the
average response time, achieving much better load balance.

In the future, we intend to transplant our method onto a cluster
in our national supercomputing center, and deploy it in the project
of our network virtual laboratory.

Acknowledgments

We are very grateful to three anonymous reviewers for the
comments and suggestions which greatly improved the quality of
the manuscript, and the Director of the National Supercomputing
ChangshaCenter for facilitating the experiments. This researchwas
partially funded by the Key Program of National Natural Science
Foundation of China (Grant No. 61133005), the National Natural
Science Foundation of China (Grant No. 61370095), the Natural
Science Foundation for Distinguished Young Scholars of Hunan
(12JJ1011), and supported by the Hunan Provincial Natural Science
Foundation (Grant No. 13JJ4038).

References

[1] M. Aktaruzzaman, Literature review and survey: resource discovery in
computational grids, Technical Report, School of Computer Science, University
of Windsor, Windsor, Ontario, Canada, 2003.

[2] F. Berman, R.Wolski, et al., Adaptive computing on the Grid using AppLeS, IEEE
Trans. Parallel Distrib. Syst. 14 (4) (2003) 369–382.

[3] S.S. Chauhan, R.C. Joshi, A weighted mean time Min–Min Max–Min selective
scheduling strategy for independent tasks on Grid, in: Proc. IEEE 2nd Int’l Conf.
Advance Computing Conference, IACC2010, Feb. 2010, pp. 4–9, 19–20.

[4] Y. Chung, S. Ranka, Applications and performance analysis of a compile-time
optimization approach for list scheduling algorithms on distributed memory
multiprocessors, in: Proc. Super-computing, Nov. 1992, pp. 512–521.
[5] S. Chuprat, S. Baruah, Scheduling divisible real-time loads on clusters with
varying processor start times, in: 14th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, Aug 2008,
pp. 15–24.

[6] K. Etminani,M.Naghibzadeh, Amin–minmax–min selective algorithm for grid
task scheduling, in: Proc. 3rd IEEE/IFIP Int’l Conf. Internet in Central Asia, Sept.
2007, pp. 1–7.

[7] L. Gong, X. Sun, E.F. Watson, Performance modeling and prediction of
nondedicated network computing, IEEE Trans. Comput. 51 (9) (2002)
1041–1055.

[8] Donald Gross, John F. Shortle, James M. Thompson, Carl M. Harris, Fundamen-
tals of Queueing Theory, fourth ed., John Wiley & Sons, Hoboken, NJ, 2008.

[9] D. Grosu, A.T. Chronopoulos, M.Y. Leung, Cooperative load balancing
in distributed systems, Concurr. Comput.: Pract. Exper. 20 (16) (2008)
1953–1976.

[10] L. He, S.A. Jarvis, D.P. Spooner, D. Bacigalupo, G. Tan, G.R. Nudd, Mapping DAG-
based applications to multiclusters with background workload, in: Proc. IEEE
Int’l Symposium on Cluster Computing and the Grid, May 2005, pp. 855–862.

[11] S. Jang, X. Wu, V. Taylor, Using Performance Prediction to Allocate Grid
Resources, in: Tech. Rep., GriPhyN, 2004.

[12] Y.C. Jiang, Z.C. Huang, The rich get richer: preferential attachment in the
task allocation of cooperative networked multiagent systems with resource
caching, IEEE Trans. Syst. Man Cybern. A: Syst. Humans 42 (5) (2012)
1040–1052.

[13] Y.C. Jiang, J.C. Jiang, Contextual resource negotiation-based task allocation and
load balancing in complex software systems, IEEE Trans. Parallel Distrib. Syst.
20 (5) (2009) 641–653.

[14] L.P. Kaelbling, M.L. Littman, A.W. Moore, Reinforcement learning: a survey,
J. Artificial Intelligence Res. 4 (1996) 237–285.

[15] S.J. Kim, J.C. Browne, A general approach to mapping of parallel computation
upon multiprocessor architectures, in: Proc. Int’l Conf. Parallel Processing,
vol. 2, 1988, pp. 1–8.

[16] A. Kretsis, P. Kokkinos, E.A. Varvarigos, Implementing and evaluating
scheduling policies in gLite middleware, Concurr. Comput.: Pract. Exper. 25
(3) (2013) 349–366.

[17] Katia Leal, Eduardo Huedo, Ignacio M. Llorente, A decentralized model for
scheduling independent tasks in Federated Grids, Future Gener. Comput. Syst.
25 (8) (2009) 840–852.

[18] J. Liou, M.A. Palis, An efficient task clustering heuristic for scheduling DAGs on
multiprocessors, in: Proc. Int’l Parallel Processing Symp., 1997, pp. 152–156.

[19] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, R.F. Freund, Dynamic matching
and scheduling of a class of independent tasks onto heterogeneous computing
systems, J. Parallel Distrib. Comput. 59 (2) (1999) 107–131.

[20] Anwar Mamat, Ying Lu, Jitender Deogun, Steve Goddard, Efficient real-time
divisible load scheduling, J. Parallel Distrib. Comput. 72 (2012) 1603–1616.

[21] Emmanuel Medernach, Job arrival analysis of a cluster in a grid environment,
in: 11th International Workshop of Job Scheduling Strategies for Parallel
Processing, in: Lecture Notes in Computer Science, vol. 3834, 2005, pp. 36–61.

[22] S. Penmatsa, A.T. Chronopoulos, Game-theoretic static load balancing for
distributed systems, J. Parallel Distrib. Comput. 71 (4) (2011) 537–555.

[23] X. Qin, T. Xie, An availability-aware task scheduling strategy for heterogeneous
systems, IEEE Trans. Comput. 57 (2) (2008) 188–199.

[24] R. Sakellariou, H. Zhao, A low-cost rescheduling policy for efficient mapping of
workflows on grid systems, J. Sci. Programming 12 (4) (2004) 253–262.

[25] R. Subrate, A.Y. Zomaya, B. landfeldt, Game-theoretic approach for load
balancing in computational grids, IEEE Trans. Parallel Distrib. Syst. 19 (1)
(2008) 66–76.

[26] X. Sun, M. Wu, Grid harvest service: a system for long-term, application-level
task scheduling, in: Proc. the 17th International Symposium on Parallel and
Distributed Processing, IPDPS’03, 2003, pp. 25–33.

[27] J.D. Ullman, NP-complete scheduling problems, J. Comput. System Sci. 10
(1975) 384–393.

[28] C. Watkins, P. Dayan, Q-learning, Mach. Learn., 8, 279–292.
[29] M. Wu, X. Sun, Self-adaptive task allocation and scheduling of meta-tasks

in non-dedicated heterogeneous computing, J. High Perform. Comput. Netw.
(IJHPCN) 2 (2) (2004) 186–197.

[30] F. Xhafa, L. Barolli, A. Durresi, Immediate mode scheduling of independent
jobs in computational grids, in: Proc. the 21st International Conference on
Advanced Networking and Applications, 2007, pp. 970–977.

[31] Zheng Xiao, Zhao Tong, Kenli Li, Probabilistic Scheduling Based on Queueing
Model for Multi-user Network Applications, Computer and Information
Technology, CIT, in: 2012 IEEE 12th International Conference on, 2012. pp. 224,
229.

[32] Yuming Xu, Kenli Li, Ligang He, Tung Khac Truong, A DAG scheduling scheme
onheterogeneous computing systemsusing doublemolecular structure-based
chemical reaction optimization, J. Parallel Distrib. Comput. 73 (9) (2013)
1306–1322.

[33] L. Yang, J.M. Schopf, I. Foster, Conservative scheduling: using predicted
variance to improve scheduling decisions in dynamic environments, in: Proc.
ACM/IEEE Supercomputing Conference, Nov. 2003, pp. 31–46.

http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref2
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref7
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref8
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref9
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref11
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref12
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref13
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref14
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref16
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref17
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref19
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref20
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref21
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref22
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref23
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref24
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref25
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref27
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref29
http://refhub.elsevier.com/S0743-7315(14)00063-X/sbref32

2672 Z. Tong et al. / J. Parallel Distrib. Comput. 74 (2014) 2662–2672
Zhao Tong received his M.Sc. from Hunan Agricultural
University, China, in 2010, and B.Sc. in Computer Science
from Beijing Institute of Technology in 2007. He is
currently a Ph.D. candidate in Hunan University, China.
His research interest includes modeling and scheduling
for parallel and distributed computing systems, parallel
system reliability, and parallel algorithms.

Zheng Xiao received his Ph.D. in Computer Science from
Fudan University, China, in 2009, and B.Sc. in Communi-
cation Engineering from Hunan University in 2003. Now
he is an assistant professor in College of Information Sci-
ence and Engineering of Hunan University. His research
interests include parallel and distributed computing, dis-
tributed artificial intelligence, Collaborative Computing.
Kenli Li received the Ph.D. in Computer Science from
Huazhong University of Science and Technology, China, in
2003, and the M.Sc. in Mathematics from Central South
University, China, in 2000. He was a visiting scholar at
University of Illinois at Champaign and Urbana from 2004
to 2005. Now he is a professor of Computer science and
Technology at Hunan University, a senior member of CCF.
His major research includes parallel computing, Grid and
Cloud computing, and DNA computer.

Keqin Li received the Ph.D. in Computer Science from
University of Houston, USA, in 1990, and B.Sc. in Computer
Science from Tsinghua University, China, in 1985. He
was the acting chair of Department of Computer Science
during Spring 2004, and currently a SUNY Distinguished
Professor, State University of New York, USA. He is also
an Intellectual Ventures Endowed Visiting Chair Professor
at the National Laboratory for Information Science and
Technology, Tsinghua University. His research interests
are mainly in design and analysis of algorithms, parallel
and distributed computing, and computer networking,

with particular interests in approximation algorithms, parallel algorithms, job
scheduling, task dispatching, load balancing, performance evaluation, dynamic tree
embedding, scalability analysis, parallel computing using optical interconnects,
wireless networks, and optical networks.

	Proactive scheduling in distributed computing---A reinforcement learning approach
	Introduction
	Related work
	Motivation
	Scheduling overhead
	Response time vs. makespan
	Proactive scheduling

	Problem description and modeling
	Problem description
	MDP model

	An online learning-based adaptive scheduling algorithm
	Algorithm description
	Performance analysis and deployment

	Experiments and results
	Convergence
	Robustness
	Performance analysis
	Small-scale distributed system
	Large-scale distributed system

	Parameter setting

	Conclusion
	Acknowledgments
	References

