
Information Sciences 526 (2020) 68–85

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Novel fairness-aware co-scheduling for shared cache

contention game on chip multiprocessors

�

Zheng Xiao

a , ∗, Liwen Chen

a , Bangyong Wang

a , Jiayi Du

b , ∗, Keqin Li a , c

a Information Science and Engineering, Hunan University, and National Supercomputing Center in Changsha, Hunan 410082, China
b Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410 0 04,China
c Department of Computer Science, State University of New York,New Paltz, NY 12561, USA

a r t i c l e i n f o

Article history:

Received 6 November 2019

Revised 13 March 2020

Accepted 24 March 2020

Available online 2 April 2020

Keywords:

Chip multiprocessor

Co-scheduling

Cache contention

non-cooperative games

Nash equilibrium

a b s t r a c t

Threads running on different cores of chip multiprocessors (CMP) can cause thread per-

formance degradation due to contention for shared resources such as shared L2 cache.

Some studies have shown that thread co-scheduling can effectively reduce contention for

shared resources. However, in a multi-core system with shared caches, mutual interfer-

ence between threads is unpredictable. As the number of cores increases, we are unlikely

to exhaust all possible co-scheduling schemes. In this paper, a novel fairness-aware thread

co-scheduling algorithm base on non-cooperative game is proposed to reduce L2 cache

misses. We tried to improve the overall performance of the system by scheduling threads

fairly. The originality of this work is to model thread scheduling using a non-cooperative

game. The execution time of a thread varies depending on which threads are running on

other cores of the same chip, because different thread combinations result in different

levels of cache contention. Given the interdependence and competition between threads

on the CMP architecture, non-cooperative game is used to solve the problem of thread

co-scheduling where each thread is considered as a participant in the game. An iterative

algorithm (IA) is proposed to solve the Nash equilibrium of the non-cooperative game in

this paper. Subsequently, it is theoretically proved that IA has a potential game process

and finally proves that IA can converge to Nash equilibrium in N iterations, where N is

the number of threads. The co-scheduling scheme of all threads is obtained by solving the

Nash equilibrium of the IA . Finally, the convergence and effectiveness of IA proposed in

this paper is verified by experiments. In addition, we use the cache partition to improve

the performance of IA . Experimental results show that the number of total cache misses

of IA is less than that of the default scheduling algorithm, IA combined with cache parti-

tioning can further reduce the total cache misses.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Multiprocessor architectures provide a solution to achieve higher throughput and increased performance without break-

ing the physical limitations of Moore’s Law, including chip multiprocessors that contain multiple cores on a single chip. The
� This paper belongs to the special issue VSI:NPDTBA edited by Prof. W. Pedrycz.
∗ Corresponding authors.

E-mail addresses: zxiao@hnu.edu.cn (Z. Xiao), lwchen@hnu.edu.cn (L. Chen), bonnie_wang@hnu.edu.cn (B. Wang), dujiayi@csuft.edu.cn (J. Du),

lik@newpaltz.edu (K. Li).

https://doi.org/10.1016/j.ins.2020.03.078

0020-0255/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2020.03.078
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2020.03.078&domain=pdf
mailto:zxiao@hnu.edu.cn
mailto:lwchen@hnu.edu.cn
mailto:bonnie_wang@hnu.edu.cn
mailto:dujiayi@csuft.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.ins.2020.03.078

Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85 69

current CMP architectures primarily use shared LLC (last level cache) structures. Using a shared cache can reduce communi-

cation latency between multiple cores, but causes cache contention between threads running on different cores simultane-

ously, Additionally. Many studies have shown that the contention on shared LLC may be detrimental to co-scheduled threads

[1] . It can cause problems such as thread starvation, cache pollution, and ultimately system performance degradation [2–4] .

With the rapid increase in the number of processors in CMP, it has become increasingly important to ease shared cache

contention between threads. Previous research has mainly solved the problem of cache contention through either thread

scheduling or cache partitioning [5–9] .

In this paper, we pay special attention to thread scheduling. Thread scheduling minimizes the conflicts and interfer-

ence between threads by cleverly selecting the appropriate set of threads to run on the processor [4] . An effective thread

scheduling scheme should minimize the contention for shared caches to maximize utilization and system performance [10] .

To solve the thread scheduling scheme one has to determine which threads should be mapped to the same subset and

which should be scheduled separately, thereby minimizing the impact of resource contention. However, in a multi-core sys-

tem with shared caches, the execution time of a thread is affected by threads running on other cores of the same chip.

Different threads combined together will compete for cache resources to varying degrees, thus resulting in different levels

of performance degradation [11] .

When multiple threads are executed at the same time, the interaction between threads cannot be measured [12] , making

the performance of CMPs unpredictable and not guaranteeing the Quality of Service (QoS) requirements of threads [13–15] .

It is possible, but not feasible, to obtain an optimal thread co-scheduling scheme through brute force testing [16] . The

brute force test is to obtain the actual co-scheduling degradation of the threads combination by executing all threads of all

possible combinations. When the number of cores increases, the search space is too large to test all feasible combinations

[11] . Therefore, it is necessary to reduce the search space for thread co-scheduling.

To the best of our knowledge, the problem of using game theory to solve thread co-scheduling has not been studied

as such. Confronted with the interdependence and competition between threads, we use non-cooperative games to solve

the problem of thread co-scheduling and reduce the search space for thread co-scheduling. On the one hand, threads have

exclusive contention for shared resources, so there will be conflicts of interest between the co-scheduled threads, and the

performance of each thread will be different under different co-scheduling schemes. On the other hand, for each thread,

it is desirable to optimize its performance through co-scheduling, regardless of the performance of other threads, so each

thread’s decision is competitive and selfish. In this paper, we assume that the participants in the game are each thread,

and define a policy set and utility function for each of them (see Section 3 for details). Each participant only considers

its own utility in the game process, oblivious to other participants’ utility. Since threads are interdependent and mutually

influential, each thread’s decision depends on the decisions that other threads have made. Nash equilibrium is achieved

when each thread cannot obtain a better utility by changing its strategy individually. That is, when the strategy of any

thread is the optimal response of other thread strategies, the obtained policy vector is the equalization strategy, that is, the

thread coordinated scheduling scheme.

In this paper, we assume that L2 cache is the last-level cache and propose a fairness-aware thread co-scheduling model

based on non-cooperative game to reduce the contention in threads. The threads in the system are divided into multiple

scheduling batches, we try to achieve the system degradation balance of each scheduling batch as much as possible to

achieve the purpose of fair scheduling threads. We first establish a linear relationship between the L2 cache miss rate of

the threads and the total system performance degradation, which is used to predict the degradation of system performance

when the threads are scheduled in the same batch. Then we consider the thread co-scheduling on the CMP architecture in

accordance with game theory, where each thread is considered as a participant in the game. We propose an IA which is

proved to be a potential game. Each iteration of the IA can further optimize the thread co-scheduling strategy and converge

to a Nash equalization for a linear number of rounds. The time complexity of our analysed IA is �(N log N), where N is the

number of threads in the system. We obtain the co-scheduling scheme of all threads by solving the Nash equilibrium of

IA . Finally, we verify the convergence and effectiveness of IA , and experimental results show that IA can reduce the total

number of cache misses compared with the default scheduling algorithm. In addition, when multiple threads in the same

batch share the cache space, there will be mutual interference between the threads and the performance of the threads

will be reduced. Hassidi et al. [17] theoretically proved that the performance of the system can be improved by combining

dynamic cache partitioning and dynamic job allocation. We use strict cache partitioning to further improve the performance

of IA . Experimental results show that the number of cache misses is further reduced by combining cache partition.

The main contribution of this paper can be summarized as follows:

• A novel fairness-aware thread co-scheduling model is proposed and the non-cooperative game is used to model thread

co-scheduling.
• A thread co-scheduling algorithm IA is proposed to solve the Nash equilibrium of non-cooperative game model.
• It is theoretically proved that IA has a potential game process and finally proves that IA can converge to Nash equi-

librium in N iterations, where N is the number of threads.
• The IA proposed in this paper effectively reduces the search space of the thread co-scheduling, and its effectiveness

is verified by experiments. In addition, we use the cache partition to further improve the performance of IA , it can
further reduce the number of misses in the shared cache compared to the circumstance with only IA .

70 Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85

The rest of the paper is organized as follows: Section 2 reviews related researches while Section 3 introduces the

fairness-aware thread scheduling model on CMP architecture. In Section 4 , a thread co-scheduling algorithm based on non-

cooperative game is proposed, and the convergence of its Nash equilibrium is proved. Our experimental setup and experi-

mental results are shown in Section 5 . Finally, we summarize the work of this paper in Section 6 .

2. Related work

In previous works, cache partitioning or thread scheduling were often used to reduce contention for shared caches. In

this section, we review related works from aspects of cache partitioning and thread co-scheduling.

The cache partition divides independent cache space for each core, avoiding the extra cache miss caused by cache pol-

lution, so that all thread requests can be responded. The easiest way is to distribute the shared cache space evenly to each

core before running threads, that is, static cache partition. But when the size of the working set of the running threads is

imbalanced, static partition may encounter a worst-case [18] . Therefore, the shared cache needs to be dynamically parti-

tioned. In the previous work, there was a lot of work on the research of cache partitioning algorithm [6,19,20] . Since this

paper particularly focuses on thread scheduling, the cache partition is not described in detail in this section.

Some recent studies have attempted to solve cache contention problems with clever co-scheduling. Platform throughput

can be increased by cleverly executing multiple applications concurrently [21] . Shantharam et al. [22] studied co- scheduling

based on speed-up profiles, which divides tasks into multiple packages to minimize the total execution time of all packages,

but packs can have only one or two tasks and they reported the load is completed faster and the system power consumption

is saved accordingly. Akturk et al. [10] introduced an adaptive cache-hierarchy-aware scheduler that attempts to schedule

threads in a way that minimizes inter-thread contention, but this approach is concerned with thread L1 cache access fea-

tures. Jiang et al. [8] ruled the selection of the thread set with the smallest conflict to the NP-hard problem, and the optimal

set is solved by using greedy idea. The algorithm finds the optimal co-scheduling in the polynomial time, but the perfor-

mance degradation of thread co-scheduling for each possible subset of threads is obtained by executing all possible subsets

of threads. Aupy et al. [23] proposed an optimal processor assignment procedure when the tasks that form a pack are given,

but this has a potentially exponential cost. Xie et al. [24] proposed a method of animal classification, which classifies lines

according to the thread’s memory access characteristics. However, the author did not give an accurate calculation method to

classify threads. Hankendi and Coskun (2012) point out that the measurable benefits can be achieved by applying multi-level

collaborative scheduling techniques at runtime (based on classifying tasks based on specific performance metrics) [25] . Hsu

et al. [3] optimized system performance by balancing performance degradation across all threads. Zhuravlev et al. [9,26] pro-

posed that the L2 cache miss rate of threads is the main factor leading to the performance degradation of the system, and

separating threads with high miss rate can improve the overall performance of the system. However, the number of ele-

ments of each thread subset is equal, the miss rate of threads may not be evenly distributed to each subset. The idea of

assigning a thread with a high miss rate in the cache is also proposed in [27] , where the authors suggested reducing cache

interference by spreading intensive threads and co-scheduling them with non-intensive threads. However, no studies have

yet been conducted to quantify the relationship between miss rate and system degradation [11] . Merkel et al. [28] averted

the competition for resources by jointly scheduling tasks with different characteristics, but they assumed that the task did

little I/O and used computationally intensive tasks. Knauerhase et al. [29] introduced the OBS-X scheduling strategy, which

observes the cache usage of each task and distributes cached-heavy threads throughout the system to help spread the cache

load.

To the best of our knowledge, there is little research on using game theory to solve thread co-scheduling. In this paper,

the non-cooperative game is used to model the thread scheduling, and the co-scheduling scheme of the thread is obtained

by solving the Nash equilibrium.

3. Fairness-aware thread co-scheduling model on CMP architecture

In this paper, we attempt to reduce shared cache contention on CMP through fairness-aware thread co-scheduling. Before

introducing the thread co-scheduling model, we first introduce the CMP architecture. As show in Fig. 1 , we target multi-

core chip with multi-layered memory structures. This architecture consists of multiple cognate cores, expressed as: Core =
{ C ore 1 , C ore 2 , . . . , C ore p } , where p represents the number of cores. Each core has a private L1 cache, and all cores share L2

Cache and main memory through a shared bus.

In order to obtain a thread fair co-scheduling schema, we need to obtain the performance degradation when co-

scheduling threads, however, this is usually not easy to measure. The interaction between threads cannot be measured

[12] when their are executed at the same time, making the performance of CMPs unpredictable and not guaranteeing the

Quality of Service (QoS) requirements of threads [13–15] . A feasible prediction scheme is used to predict the L2 miss rate

of the thread first, and then the linear regression model is used to convert the predicted L2 cache miss rate and currently

measured L1 miss rate to the predicted CPI of the thread, but this method is rather complex [30] . Daci and Tartari [31] com-

pared the L2 cache miss rate metric with other characterization metrics, and concluded that using the L2 cache miss rate

to predict the performance degradation of thread co-scheduling is better than other metrics. However, they did not quantify

the relationship between miss rate and performance degradation. Next, we will use the L2 cache miss rate of co-scheduling

threads to predict the performance degradation of the system.

Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85 71

Synchronization/Communication logic

Core1 Core2 Corep

SRAM

CPU

L1cache

L2cache

Main memory

SRAM SRAM

...

Fig. 1. System architecture.

3.1. Performance degradation prediction

In this section, we will predict the system performance degradation when threads are co-scheduled. We first give a

quantitative formula for the performance degradation of the system. Thread co-scheduling on a CMP may be slower than

running alone, and this degradation is called co-scheduling degradation, quantified in the following formula [8] :

D i =

cC P I i − sC P I i
sCP I i

(1)

where D i represents the degradation of thread i, cCPI i represents the number of cycles per instruction when thread i shares

L2cache with other threads (i.e., threads co-running on the same L2 cache), and sCPI i represents the number of cycles per

instruction when thread i is running alone. For threads of the same scheduling batch, the total performance degradation of

the system is expressed as Eq. (2) .

D =

n ∑

i =1

D i (2)

Where D represents the total degradation of system, and n represents the number of threads that are co-scheduled.

In this paper, we try to illuminate the relationship between the L2 cache miss rate of threads and the performance

degradation of the system. Our experimental data is derived from the experimental results of Chandra et al. [32] . There are

14 sets of experimental results. For each set of experimental results, we calculate the total performance degradation of each

group threads according to Eq. (2) , and the sum of their L2 Cache missing rates.

The calculated results are imported into MATLAB, and the experimental data is fitted and modeled using a curve fit-

ting toolbox. A functional relationship was found that reflects the closeness between the total performance degradation of

the system and the sum of thread miss rates. By comparing the performance index values of the fitted curves, the final

functional relationship is as shown in Eq. (3) :

P ain = b ×
n ∑

i =1

miss i + c

b = 0 . 3342 confidence interval : (0 . 2847 , 0 . 383 4)

c = 0 . 1296 confidence interval : (0 . 06208 , 0 . 187) (3)

72 Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Total Miss Rate

0.2

0.3

0.4

0.5

0.6

0.7noitadarge
D

ec na
mrofre

P

Fig. 2. Fit curve of performance degradation and the total miss rate.

Thd1 Thd2 Thd3 Thd4 Thd5 Thd6

0 0 0 1 1 0

1 0 1 00 0

batch 3

batch 2

batch 1

0 1 0 0 0 1

Fig. 3. A co-scheduling scheme.

where Pain represents the total performance degradation of the system, n represents the number of co-scheduling threads

and miss i represents the miss rate of thread i .

The confidence interval for each coefficient is 95%, R-square = 0.9478, and RMSE = 0.0424. Individual coefficient values

can be adjusted according to the actual situation. The experimentally fitted curve is shown in Fig. 2 .

3.2. Thread co-scheduling motivation

There are a number of N threads waiting to be scheduled in the ready queue. These N threads are represented

as: T hread = { T hd 1 , T hd 2 , . . . , T hd N } . In this paper, we use the CMP architecture, and all processor cores share the L2

cache. These N threads are divided T (T > 0) scheduled batches, with the set of threads for the t th scheduled batch

expressed as batch t . Each thread must select one of the T scheduled batches to meet: batch 1 ∪ batch 2 ∪ · · · ∪ batch T =
T hread (batch i ⊆ T hread , 1 ≤ i ≤ T) ; batch t ∩ batch t ′ = ø(1 ≤ t, t ′ ≤ Tand t � = t ′). Threads of the same scheduled batch

share L2cache, and no resources are shared between threads of different scheduled batches. Once a thread is executed, it

will not be interrupted by other threads until the thread finishes running. In other words, it is the turn of the next batch of

threads to wait until all the threads in the previous batch have finished executing.

Assuming there are 6 threads in a ready queue: T hread = { T hd 1 , . . . , T hd 6 } and the total scheduled batch is 3. The sched-

uled batch selected by each thread is represented as: (2,3,2,1, 1, 3), and we can get the co-scheduling scheme shown in Fig. 3 .

The scheduling scheme for all threads can be represented as a matrix of T × N . Each row i represents a scheduled batch, and

each column j represents a thread j . Each entry ij in the matrix indicates whether the thread j is scheduled in the batch i (the

entry is equal to ”1” if the thread j is scheduled in batch i). We can obtain: batch 1 = { T hd 4 , T hd 5 } ; batch 2 = { T hd 1 , T hd 3 } ;
batch 3 = { T hd 2 , T hd 6 } .

In [33] we can know that for each thread Thd i , its actual processing time will be affected by other threads that are

co-scheduled. Placing threads with small competing relationships in the same scheduled batch can improve thread per-

formance. In this paper, we try to reduce the competition between the co-scheduled threads by using appropriate thread

scheduling scheme.

In this paper, the performance degradation of the j th scheduled batch of threads can be expressed as:

P ain j =

{
b × (

∑

T hd i ∈ batch j
R i) + c | batch j | > 1

0 | batch j | ≤ 1

(4)

where Pain j represents the total performance degradation of the j th scheduled batch, and batch j represents the set of

threads co-scheduled in the j th scheduling batch. R i represents the L2 cache miss rate when the thread Thd i is running

alone,| batch j |represents the number of threads in batch j , b and c represents the relationship coefficient between the total

miss rate and the degradation of system performance (Section 3.1). In this paper, the performance degradation of the thread

is 0 when it is run alone.

Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85 73

As mentioned in Blagodurov et al. [9] , the miss rate of threads is the main factor leading to the performance degradation

of the system. Separating the threads with high miss rate into different caches can improve the overall performance of the

system. In this paper, we also use this heuristic to evenly degrade system performance to each scheduled batch. Another

benefit of doing so is that the threads are fairly scheduled and can respond to all thread scheduling requests. Because it

does not cause large performance degradation of a batch, the response of some threads will not be delayed.

Our goal is to make the performance degradation of each scheduled batch as equal as possible by solving a thread

scheduling scheme, where the performance degradation can be calculated by Eq. (4) . In this paper, we use Pain max to rep-

resent the maximum value of performance degradation in these T batches. Our priority is to minimize Pain max .

In this paper, we have the following assumptions:

(1) Thread co-scheduler is space-shared machines. Space sharing refers to putting threads in the same scheduled batch

execution so that they share the L2cache space. Since we are concerned with the overall system performance, the issue of

which batch of threads is executed first has no substantial effect on the final result.

(2) In order for co-scheduling to be effective, the underlying CMP architecture must contain multiple cores.

(3) All L2 cache sharing is destructive interference. In other words, the performance of the two threads is not higher

when the L2 cache is shared as compared to when it is not. The degree of destructive interference can vary greatly from

negligible to significant, but it will never be negative (Pain ≥ 0).

4. Non-cooperative game between threads

4.1. Game optimization goal

In this paper, we use the non-cooperative game to solve the problem of thread co-scheduling, and obtain the co-

scheduling scheme by solving the Nash equilibrium. The game problem focuses on the game relationship between mul-

tiple participants, the purpose of which is to maximize the benefits of the participants themselves or to minimize negative

influence on them. In this paper, we consider the problem of thread co-scheduling under the CMP architecture as a non-

cooperative game between multiple participants. The non-cooperative game problem mainly includes participant collection,

strategy collection and strategy of the participant selection. In this paper, the participant collection means that the N threads

are in the ready state. The participants’ strategy set is the T different scheduling batches. That is Q i = { 1 , 2 , . . . , T } , and the

set of strategies for all participants is: Q = Q 1 × Q 2 × · · · × Q N .

The strategy chosen by participant i is expressed as q i ∈ Q i , and it denotes that the user i chooses to run on the

q i th scheduling batch. Therefore, for all threads waiting to be scheduled, we can get the scheduling strategy vector:

q = { q 1 , . . . , q N } (q ∈ Q) , representing a policy set of N threads. We use Pain t (q) (t ∈ { 1 , . . . , T }) to represent the degree

of system performance degradation of the t th scheduling batch, when the strategy vector for all participants is q . Pain max (q)

represents the biggest performance degradation of the system when the strategy vector for all participants is q . Pain min (q)

represents the minimal performance degradation of the system when the strategy vector for all participants is q . In this

paper, we try to make the performance degradation of each scheduling batch as even as possible, that is, minimize the

Pain max (q). The optimization problem solved can be expressed as follows:

minimize max
t∈{ 1 , ... ,T }

P ain t (q) , q ∈ Q (5)

In the non-cooperative game problem, each participant i is selfish, and its tries to maximize its own benefit or mini-

mize negative benefits, without considering the benefits of other participants. We define the utility function of participant

Thd i (Thd i ∈ Thread) as u i (q i , q −i) = 1 / (1 + Pain q i) (i ∈ { 1 , . . . , N}) , and the utility is 1 when the thread is running alone.

Each thread tries to jump to the scheduling batch t (t ∈ { 1 , . . . , T }) with the least performance degradation, maximizing its

own utility. Therefore, the optimization problem of Thd i is equivalent to:

maximize u i (q i , q −i) = 1 / (1 + P ain q i) (6)

where q i is the strategy selected by Thd i and q −i = { q 1 , . . . , q i −1 , q i +1 , . . . , q N } is a vector of 1 × (N − 1) , representing the

strategy of the remaining threads except Thd i . If and only if u i (q i
∗, q −i) > u i (q i

′ , q −i) , thread i tends to strategy q i
∗ more

than strategy q i
′ , where (q i

∗, q −i) represents the scheduling strategy vector obtained after the Thd i replaces the strategy q i
′

with q i
∗.

Definition 1 (Nash equilibrium) . For the non-cooperative game problem formed by thread co-scheduling, the Nash equi-

librium solution is to find a scheduling strategy vector q ∗, so that it is satisfied for each participant T hd i (T hd i ∈ Thread) :

q i
∗ ∈ arg max

q i ∈ Q i
u i (q i , q

∗) , q

∗ ∈ Q (7)

When the system reaches the Nash equilibrium, no one can make a higher utility by changing its own strategy, while the

strategies of other participants are fixed.

An equilibrium scheduling strategy vector can be obtained when the strategy of any participant is the optimal response

to the strategies of other participants. Given complete knowledge of the system, the strategy of participant Thd is a solution
i

74 Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85

to the following optimization problem.

minimize P ain q i (q i , q −i) , q i ∈ Q i (8)

In order to solve this optimization problem, the strategy of all other participants is fixed. Only the strategy q i of the

participant i is a variable, when it is the turn of the participant i to make a decision.

4.2. Iterative Algorithms (IA)

In this paper, we treat each thread as a participant in a non-cooperative game. In the process of the game, all participants

make decisions in a certain order. In each round of decision making, only one participant will try to increase its own utility

by changing its own strategy, while the strategies of other participants are fixed.

We assume that q k −1 represents the policy vector of all threads after the (k − 1) th iteration, and it is the turn of partici-

pant i to make the decision at the k th iteration. Participant i will update its current strategy q i to maximize its utility. In this

paper, we propose an iterative algorithm based on greedy idea and it’s specific implementation details of the IA are given

in Algorithm 1 . By solving a scheduling strategy vector of all threads, any participant cannot make its own utility greater

Algorithm 1 Iterative Algorithm (IA).

Input: thread collection T hread = { T hd 1 , . . . , T hd N } , L2cache miss rate set for N threads MissRate = { R 1 , . . . , R N } , the total

scheduling batches T , the coefficients b and c

Output: The scheduling policy vector q for all threads

1: sort MissRate by non-ascending order, so that R 1 ≥ R 2 ≥ · · · ≥ R N . Each thread T hd i is randomly assigned to a scheduling

batch and set the initial iteration counter k = 0

2: record the initial scheduling strategy q 0 and calculate the performance degradation for all batches: Pain t (q 0)(t ∈
{ 1 , . . . , T }) = b × (

∑

T hd i ∈ batch t
R i) + c (| batch t | ≥ 0) .

3: while (q k � = q k −N or k ≤ N) do

4: set k = k + 1 and i = k % N, the policy of thread i is denoted as q i
5: the strategy of thread i after k − 1 iterations is assigned to the variable t: t = q i
6: record the batch with the smallest performance degradation after k − 1 iterations as t ′
7: if Pain t (q k −1) > Pain t ′ (q k −1) + b × R i then

8: set Pain t (q k) = Pain t (q k −1) − b × R i
9: update the strategy q i of T hd i , set q i = t ′

10: set Pain t ′ (q k) = Pain t ′ (q k −1) + b × R i
11: for 1 ≤ h ≤ T and h � = t , t ′ do

12: set Pain h (q k) = Pain h (q k −1)

13: end for

14: end if

15: end while

16: for 1 ≤ t ≤ T do

17: if | batch t | ≤ 1 then

18: set Pain t = 0

19: end if

20: end for

by changing its own strategy, when other participants’ strategies are fixed. During the iterative process in the algorithm,

We will ignore the number of threads in each scheduled batch during the algorithm iteration, and adjust the performance

degradation of each batch and the benefits of each thread after the iteration. Before the algorithm iterates, we let the thread

with the largest miss rate make the decision first.

In the Algorithm 1 , we sort the miss rate of all threads in non-ascending order and randomly assign a scheduled batch to

each thread (Line 1). At the k th iteration, it is the turn of Thd i to make a decision. We need to record the strategy of thread

i after the k − 1 th iteration and the scheduling batch with the least performance degradation(Line 5–6). If the condition

Pain q i (q k −1) > Pain min (q k −1) + b × R i is satisfied, the strategy of Thd i will be updated. The scheduling policy vector q and

the vector Pain of the performance degradation of all scheduled batches are updated (Line 7–14). Since we ignore the

number of threads in each scheduling batch during the algorithm iteration process, after the end of the iteration process,

we need to adjust the performance degradation of each scheduling batch according to Eq. (4) (Line 16–20).

4.3. Nash equilibrium analysis

This section will illustrate the convergence of Algorithm 1 . Before that, we first introduce the concept of a state graph

and a potential function. As described in Schulz et al. [34] , a state graph G = (V, E) is a directed graph in which the node

set V = Q (Q = Q × Q × · · · × Q) . If the state q to the state q ′ has an edge, the difference between the state q and the
1 2 N

Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85 75

state q ′ merely lies in that the strategy of one participant i is different, and the utility of the participant i in the state q

is strictly less than q ′ . A Nash equilibrium solution corresponds to a node with no outgoing edges. The existence of the

potential function means that the state diagram is aperiodic, which determines the existence of the Nash equilibrium. A

game with a potential function is called a potential game.

Theorem 1. There exists a potential game process in IA

Proof. For any state q , we use Pain (q) = { P ain 1 (q) , . . . , P ain T (q) } to represent the vector of the performance degradation of

all scheduling batches at the state q and sort them in non-ascending order. We need to prove that at each iteration, when

a thread increases its own utility by changing its own scheduling batch and moving from one batch to another, the vector

Pain is logically reduced along with the thread changing its scheduling strategy. It is assumed that the scheduling strategy

vector for all threads is q ′ after one thread changes its own strategy. Proof that: Pain max (q
′) ≤ Pain max (q) .

Assume that the system’s scheduling strategy vector for all threads at the beginning of the k th iteration is q =
(q 1 , . . . , q i , . . . , q N) , the system degradation vector for all scheduled batches is Pain (q) = (Pain 1 (q) , . . . , Pain T (q)) , and the

decision made in the k th iteration is the Thd i . Suppose the utility of Thd i before the k th iteration is u i (q i , q −i) = 1 / (1 +
Pain t (q i = t)) , and Thd i jumps from the t th scheduling batch to the t ′ th scheduling batch under the idea of IA to increase its

utility. The scheduling strategy vector of all threads after the k th iteration is q ′ = (q 1 , . . . , q i
′ , . . . , q N)(q i ′ = t ′) and Pain (q ′) =

(Pain 1 (q ′) , . . . , Pain T (q ′)) . The utility of Thd i after the k th iteration is u i (q i
′ , q −i) = 1 / (1 + Pain t ′ (q i ′ = t ′)) . According to the

Line 7 of IA , we can know that Pain t ′ (q ′) < Pain t (q) , although the strategy change of Thd i caused an increase in the perfor-

mance degradation of the t ′ th batch, the performance degradation of the t ′ th batch after the k th iteration was still lower

than that of the t th batch before the k th iteration. And the change in the strategy of Thd i does not change the performance

degradation of the remaining batches except t and t ′ , that is: Pain h (q) = Pain h (q ′) (1 ≤ h ≤ T , h � = t , t ′) . Denote Pain h (q ′) =
{ Pain h (q ′) (1 ≤ h ≤ T , h � = t , t ′) } , if Pain t (q) = Pain max (q) is established, Pain max (q ′) = max { Pain t ′ (q ′) , Pain t (q ′) , Pain h (q ′) }
and Pain t ′ (q ′) < Pain t (q) ; Pain t (q

′) < Pain t (q) and max (Pain h (q ′)) ≤ Pain t (q) . Hence, Pain max (q
′) ≤ Pain max (q) . If the case

Pain t (q) � = Pain max (q) is established, we can deduce that: max (Pain h (q ′)) > P ain t (q) , P ain max (q ′) = max (Pain h (q)) . Thus,

Pain max (q
′) ≤ Pain max (q) is established. �

Corollary 1. The non-cooperative game problem of thread co-scheduling indicates that all participants’ strategies will converge to

a Nash equilibrium under the idea of IA .

Theorem 1 proves that the participant’s strategy converges to Nash equilibrium under the idea of IA does not necessarily

mean that it can converge quickly to the Nash equilibrium. The convergence speed of the IA is also a key issue, and next

we will prove the convergence of the Nash equilibrium of the IA . Before that, we first prove the two important properties

of Theorems 2 and 3 .

Theorem 2. Assume that the IA is in state q and the next state is q ′ , then there is Pain min (q) ≤ Pain min (q
′) .

Proof. Assuming that the current state is q , it is the turn of participation i to make a decision, and the current strat-

egy of Thd i is q i . The participation i changes its own strategy to q i
′ at state q ′ , and we have Pain q i ′ (q) = Pain min (q) . At

state q ′ , Pain min (q ′) = min { Pain q i (q) − b ∗ R i , Pain q i ′ (q) + b × R i , Pain h (q) } (1 ≤ h ≤ T , h � = q i , q i
′) . We can get that Pain q i (q) >

Pain min (q) + b × R i , according to the idea of the IA . Clearly, Pain min (q) ≤ Pain h (q)(1 ≤ h ≤ T, h � = q i , q i
′), Thus, we can get

that: Pain min (q) ≤ Pain min (q
′). �

Theorem 3. Assume that participant i has updated its strategy, and the scheduling policy vector of all threads is q . Participants

who make decisions before participant i will not update their own strategies. i.e. for all participants Thd j (1 ≤ j ≤ i), we have

q j ∈ arg max
q j

′ ∈ Q j
u j (q j

′ , q − j) .

Proof. To prove that q j ∈ arg max q j ′ ∈ Q j u j (q j
′ , q − j) is established, we need to proof that q j ∈ arg max q j ′ ∈ Q j Pain q j ′ (q j

′ , q − j) ,

i.e., Pain q j (q) ≤ Pain min (q) + b × R j . In this paper, we prove the theorem by recursive methods. When i = 1 , we need to

prove that Pain q 1 (q) ≤ Pain min (q) + b × R 1 . q is the strategy vector after the Thd 1 updates its strategy. Obviously, the

current scheduling policy vector can maximize the utility of Thd 1 when other participants’ strategies are fixed. Thus,

Pain q 1 (q) ≤ Pain min (q) + b × R 1 is established.

Assuming that the theorem is true for the participant i (1 ≤ i < N), that is, for all participants j (1 ≤ j ≤ i), Pain q j (q) ≤
Pain min (q ′) + b × R j is true. Assuming that the scheduling strategy vector of all threads is q ′ after the participant i + 1 up-

dates his strategy. We need to prove that Pain q j (q ′) ≤ Pain min (q ′) + b × R j (1 ≤ j ≤ i) . The proof is as follows:

In the state q , if the condition P ain q i +1
≤ P ain min (q) + b × R i +1 is true, participant i + 1 will not change its own strat-

egy, that is q ′ = q . Under this condition we can get Pain q j (q ′) ≤ Pain min (q) + b × R j for all participants j (1 ≤ j ≤ i). Oth-

erwise, P ain q i +1
> P ain min (q) + b × R i +1 , and participant T hd i +1 jumps from the q i +1 th scheduling batch to the q i +1

′ th
scheduling batch. The change in the strategy of participant T hd i +1 will result in a change in the performance degra-

dation of the two batches q i +1 and q i +1
′ , while the performance degradation of all others batches is unchanged. We

have Pain q j (q ′) = Pain q j (q)(1 ≤ j ≤ i + 1 , q j � = q i +1 , q i +1
′) . By Theorem 2 , we know that Pain min (q) ≤ Pain min (q

′). There-

fore Pain q j (q ′) ≤ Pain min (q ′) + b × R j (1 ≤ j ≤ i + 1 , q j � = q i +1 , q i +1
′) . Since the performance degradation of the q i +1 th batch

76 Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85

is reduced, we can get Pain q j (q) ≤ Pain min (q ′) + b × R j (1 ≤ j ≤ i + 1 , q j = q i +1) . According to the iterative algorithm, we

have R j ≤ R i +1 (1 ≤ j ≤ i + 1) and Pain q i +1
′ (q ′) ≤ Pain min (q ′) + b × R i +1 . Therefore, Pain q j (q ′) ≤ Pain min (q ′) + b × R j (1 ≤ j ≤

i + 1 , q j = q i +1
′) .

Therefore, q j ∈ arg max
q j

′ ∈ Q j
u j (q j

′ , q − j)(1 ≤ j ≤ i, 1 ≤ i ≤ N) is proved. �

Theorem 4. The IA can converge to the Nash equilibrium solution in N iterations, where N is the number of threads.

Proof. We know that a thread with a higher miss rate starts the decision-making process earlier according to the IA pro-

posed in this paper. In other words, the participant chooses the strategy to maximize its utility according to the sequence

R 1 ≥ R 2 ≥ ��� ≥ R N . By Theorem 3 , we know that if the participant i has updated his strategy, the participant who up-

dated the strategy before the participant i will keep its own strategy. Therefore, if participant N has updated its strategy, the

strategies of all participants will not change, and each participant will update the strategy no more than once. Therefore,

the IA for co-scheduling multi-threaded game problem can converge to the Nash equilibrium in the iteration of N . �

Theorem 5. The Nash equilibrium that IA converges to is an optimal solution.

Proof. Use q ∗ to represent an optimal scheduling strategy vector and assume q 0 = q ∗. After IA is executed, we get a schedul-

ing strategy vector q with: Pain max (q) ≤ Pain max (q
∗). Since q ∗ has been assumed to be an optimal scheduling strategy vector,

Pain max (q
∗) cannot be further reduced. It can be obtained that Pain max (q) = Pain max (q ∗) , q is also an optimal scheduling

strategy vector. Therefore, The Nash equilibrium obtained by IA convergence is an optimal solution. �

Theorem 6. The time complexity of IA is �(N × log N) .

Proof. According to Line 1 of Algorithm 1 , the time complexity for sorting the missing rates of all threads is �(N log N),

and then the time complexity of randomly assigning all threads to the dispatch batch is �(N). In Line 2, after calculating

the performance degradation of all scheduling batches, the time complexity is �(T). As for Line 3 to Line 15, each iteration

needs to select the minimum performance degradation, and the time complexity of selecting the minimum performance

degradation is �(log T). After the iteration is completed, we also need to adjust the performance degradation of each batch

(Line 3 to Line 15 of Algorithm 1), and its time complexity is �(T). It takes at most N iterations (Theorem 4), so the time

complexity of the IA is �(N × log N + N + T + N log T + T) = �(N × log N) . �

5. Experiment and evaluation

In this section, we provide simulation experiments to verify the theoretical analysis in Section 4.3 and the performance

of the IA proposed in this paper. The stack distance profiling is the theoretical basis of the experimental verification in this

paper and we will introduce it.

5.1. Stack distance profiling

The stack distance profiling reflects the thread’s reuse behavior on the cache space [35,36] . For a M -way group associative

cache with least recently used (LRU) replacement algorithm, there are M + 1 counters: C 1 , C 2 , . . . , C M

, C >M

. On each access to

the cache, the corresponding counter will be updated. If it is a cache access to a line in the i th position in the LRU stack of

the set, C i will be incremented. The first line in the stack is the most recently used row (MRU) of the set, and the last line

in the stack is the least recently used (LRU) line. If it is a cache miss, the line will not be found in the LRU stack, causing

C > M

plus one. The information of the stack distance can easily be obtained by the compiler [35] , either by simulation or

by running the thread alone in the system without cache sharing [37] .

We can easily calculate the number of cache misses and miss rate using the stack distance profile [5] . For example, the

stack distance profile of the thread i running alone without cache sharing is as shown in Fig. 4 , then the access frequency

of thread i is expressed as: A f i =

∑ M+1
j=1

C j
CPUcycle

. If the cache space of the M

′ ways (M

′ < M) is allocated to the thread i , the

number of misses of the thread i is as shown in miss i = C >M

+

∑ M

j= M

′ +1 C j and its miss rate is as shown in Eq. (9) :

R i =

miss i

C >M

+

∑ M

j=1 C j
(9)

5.2. Experiment setup

In the experimental environment setup, we consider a shared L2 Cache associated with an 8-way set (a total of 9 coun-

ters). The total number of threads is set as 15. We randomly generate stack distance profile for each thread, and the value

of each counter C j (j ∈ { 1 , . . . , 9 }) varies from 0 to 18 (unit: million). Without loss of generality, we set the CPUcycle of each

thread to 1 million. We conducted the experiment with the total scheduling batches of 4, 6, and 8. We calculated the L2

cache miss rate for each thread running alone using Eq. (9) , as shown in Table 1 .

Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85 77

sessecc
Afo

reb
mu

N
C1 CM C>M... CM

Stack Distance Counters

Extra
Cache Misses

Original
Cache Misses

Fig. 4. Illustration of a stack distance profile [5] .

Table 1

The miss rate of threads.

Thread L2 Miss Rate Thread L2 Miss Rate

Thd 1 28% Thd 9 20%

Thd 2 3% Thd 10 18%

Thd 3 5.5% Thd 11 4.9%

Thd 4 26% Thd 12 8.2%

Thd 5 30% Thd 13 19%

Thd 6 39% Thd 14 6%

Thd 7 9% Thd 15 25%

Thd 8 32%

Table 2

Thread co-scheduling scheme based on IA .

Scheduling batch Threads

batch 1 Thd 8 , Thd 11 , Thd 12

batch 2 Thd 2 , Thd 6
batch 3 Thd 5 , Thd 10

batch 4 Thd 1 , Thd 13

batch 5 Thd 4 , Thd 9
batch 6 Thd 3 , Thd 7 , Thd 14 , Thd 15

5.3. The convergence of IA

In our experiments, the initial scheduling strategy was randomly chosen from the set of strategies for all participants

Q ,that is, each thread randomly selects a scheduling batch (line 1 of Algorithm 1).

Table 2 is a thread scheduling scheme obtained through IA . According to Table 2 , we can know that the sum of the miss

rate of each scheduling batch is roughly equal(0.451 vs. 0.42 vs. 0.48 vs. 0.47 vs. 0.46 vs. 0.455, maximum difference of

missing rate is only 0.06), with the factors that cause system performance degradation being even. This will improve the

overall performance of the system, and this conclusion will be validated in experiments.

Fig. 5 shows that the value of the optimization problem (Eq. (5)) solved in this paper decreases as the number of itera-

tions increases, eventually reaching a relatively stable state. This verifies the correctness of Theorem 1 .

In Fig. 6 , we compare the utility of all threads before and after IA . The result of the Before Algorithm is the utility

calculated from the initially randomly selected scheduling strategy (Algorithm 1 Line 1), and the result of the After Algorithm

shows the utility of each thread after IA is executed. Obviously, the thread scheduling scheme based on the non-cooperative

game can separate the threads with high miss rate into different scheduling batches, so that the utility of each thread are

more balanced. It can be observed that after executing the IA , the utility of each thread is almost the same, rendering the

thread fair to be scheduled.

Fig. 7 shows the performance degradation of each scheduled batch as the number of iterations increases when the total

scheduling batch is 6. We can see that the performance degradation of all scheduling batches will eventually reach a rela-

tively stable state, that is, the Nash equilibrium. At this time, the performance degradation of all batches is roughly equal.

Theorem 4 proves that the IA converges to Nash equilibrium at most in N iterations, where N is the number of threads.

78 Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85

3 6 9 12 15 18 21 24 27 30
Itera�ons

20

30

40

50

60

M
ax

 P
er

fo
rm

an
ce

 D
eg

ra
da

�o
n

(%
)

Fig. 5. Iterative process of optimization function.

Fig. 6. Comparison of user utility before and after IA algorithm.

It can also be seen from Fig. 7 that the IA has reached a relatively stable state after 12 iterations, which confirms the

correctness of Theorem 4 and also demonstrates the efficiency of the IA .

Next, we will show the results of changes in utility of different threads calculated by IA as the number of iterations

increases. We randomly select 6 threads (thread 3, thread 4, thread 6, thread 10, thread 13 and thread 15) from 15 threads.

When the total number of scheduled batches is 6 (T = 6), the utility of these 6 threads changes as shown in Fig. 8 . We can

see that the utility of all threads eventually reaches a relatively stable state with the increase in the number of iterations.

Nonetheless, in the process of iteration, the utility of the thread fluctuates up and down. This is because during the iteration

process, when a thread’s strategy changes, it affects the utility of other threads. For example, the strategy of thread i changes

from t to t ′ , which increases the utility of threads with policy t , while the utility of threads with strategy t ′ decreases. When

the utility of all threads reaches a relatively stable state, then the scheduling strategy of all threads will not change at this

time. That is, after a certain number of iterations, the strategy of N threads reaches the Nash equilibrium, which reflects the

convergence of the IA . Fig. 8 also shows that when the Nash equilibrium is reached, the utility value of threads is slightly

different, which also achieves the purpose of fairly scheduling threads.

Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85 79

Fig. 7. Iterative process of performance degradation.

3 6 9 12 15 18 21 24 27 30
Itera�ons

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

U
se

r
U

�l
ity

Thread 3
Thread 4
Thread 6
Thread 10
Thread 13
Thread 15

Fig. 8. Iterative process of user utility.

80 Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85

Table 3

Thread scheduling scheme base on default

algorithm.

Scheduling batch Threads

batch 1 Thd 1 , Thd 7 , Thd 13

batch 2 Thd 2 , Thd 8 , Thd 14

batch 3 Thd 3 , Thd 9 , Thd 15

batch 4 Thd 4 , Thd 10

batch 5 Thd 5 , Thd 11

batch 6 Thd 6 , Thd 12

Total Number of Batches

170

180

190

200

210

220

230

240

250

260

270

280

290
Th

e
To

ta
l N

um
be

r
of

 C
ac

he
 M

is
se

s
(M

ili
on

)

Default

Fig. 9. Comparison of the total number of cache misses between IA and default algorithm.

5.4. Performance simulation

In this paper, we use the Frequency of Access (FOA) model proposed in [32] to predict cache contention when threads

shared L2 cache. When n threads are co-scheduled and share the L2 cache, the effective size of the cache obtained by thread

i can be calculated from:

e f fC acheSize i =

A f i ∑ n
j=1 A f j

× T otalC acheSize (10)

where TotalCacheSize represents the total L2 cache size, and Af i represents the access frequency of thread i , and then the

effective cache space of thread i can be calculated from:

M

′
i =

e f fCacheSize i
numCacheSet × LineSize

(11)

where numCacheSet =

TotalCacheSize
M×LineSize

, LineSize represents the cache size of each line. Then, by plugging M

′ into Eq. (9) , the

cache miss rate of threads i under cache sharing can be calculated.

We have conducted a total of 2 sets of comparative experiments, showing the number of L2 cache misses when the IA

and the default scheduling algorithm with and without the cache partition. In this paper, the default scheduling algorithm

assigns each thread to the scheduling batch in turn according to the order in which the threads arrive (the subscript of the

thread). The scheduling scheme of the default scheduling algorithm is shown in Table 3 , maximum difference of missing

rate is 0.211.

Fig. 9 shows the total number of L2 cache misses for 15 threads running under IA and the default scheduling algorithm

when the total scheduling batch is 4, 6, and 8. It can be seen that the total L2 cache misses under the IA is significantly

less than the number of misses under the default algorithm. In this paper, the IA is used to solve the thread co-scheduling

scheme, which minimizes the total misses of L2 cache.

Fig. 10 shows the number of L2 cache misses for each thread under IA and the default scheduling algorithm. We can see

that the IA algorithm is not strictly superior to the default scheduling algorithm for the number of L2 misses per thread. For

some threads (such as Thd 12 , Thd 15), the default scheduling algorithm is better than the IA , because when using different

thread scheduling schemes, the impact of each thread suffering from co-scheduled threads is not the same. In this paper,

we mainly consider the overall performance, and Fig. 9 shows that the total number of misses based on the IA is lower than

the total misses of the default scheduling algorithm.

In the above experiment, we only reduced the contention of the shared cache from the level of thread co-scheduling.

Recently showed experimentally that important gains could be reached by co-scheduling applications with strict cache par-

Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85 81

1 3 5 7 9 11 13 15
Threads

0

5

10

15

20

25

30
Th

e
N

um
be

r
Ca

ch
e

M
is

se
s

(M
ill

io
n)

Default

Fig. 10. Comparison of the number of thread misses between IA and default algorithm.

N threads:

{Thd1, ,ThdN}

L2 miss rate

{R1, ,RN}

The total number of

scheduled batches: T

Algorithm input

Thread co-

scheduling based

on non-cooperative

game (IA)

Threads of

batch 1: batch1

Threads of

batch 2: batch2

Threads of

batch T:

batchT

Cache

allocation

Cache

allocation

Cache

allocation

obtain the

cache size of

each thread

Co-scheduling algorithm Scheduling scheme Cache partitioning algorithm

Thread co-scheduling Cache Partition

Fig. 11. Combine thread co-scheduling with cache partitioning.

titioning enabled [38] . Next, we will use cache partitioning to further improve IA performance, the number of shared cache

misses can be reduced from the two aspects of thread co-scheduling and cache partitioning.

5.5. Performance improvement

As shown in Fig. 11 , to further improve IA performance, we combine thread co-scheduling with cache partitioning. the

overall optimization scheme consists of two parts: thread co-scheduling and cache partitioning. In this paper, we opti-

mize the overall system performance by adjusting the thread’s execution order and selecting threads with small conflicts

and small disturbances to be scheduled in the same batch (see Sections 3 and 4 for details). After obtaining the total co-

scheduling scheme, we solve the result of a cache partition for each scheduled batch, with an appropriate separate cache

space allocated to each thread (see Section 5.5.1 for details).

5.5.1. A cache partitioning algorithm

In this section, we will introduce the cache partitioning algorithm, which aims to maximize throughput [39] . Suppose

that n threads are running in the same scheduled batch, the shared L2cache is divided into S groups, each group containing

M ways. To find the optimal cache partitioning, the total number of cache misses of n threads shall be the smallest, and

then the minimum value of
∑ n

i =1 miss i is obtained. This paper uses a greedy allocation strategy to partition the cache, and

allocates a cache to one of the threads in each iteration until the cache resources are divided. The steps of the algorithm

are as follows:

Step 1. Define the gain function g (x) for each thread, where g i (x) represents the number of cache hits added to thread i

when thread i obtains the cache from x ways to x + 1 ways. In this paper g (x) = C (x) (x ∈ { 1 , . . . , M}) .
i i

82 Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85

1
2
3

S
.
.
.

Groups

WaysC1 C2 C3 . . . CM

Thd1 Thd2 Thdn. . .

Fig. 12. Illustration of cache partitioning.

Fig. 13. Comparison of the total number of cache misses.

Table 4

Comparison of total number of misses.

Total number of

batches

Decrease (%)

IA + Cache Partition vs. IA IA vs. Default IA + Cache Partition vs. Default

T = 4 3.19 5.69 8.7

T = 6 3.35 7.93 11.01

T = 8 2.81 4.81 7.49

Step 2. Initialize S = (S 1 , S 2 , · · · , S n) = (1 , 1 , · · · , 1) , where S i represents the number of cache lines allocated to thread i .

At the beginning of the algorithm, all threads are guaranteed to obtain the cache resources.

Step 3. Add 1 line cache to the thread with the largest gain in the current partition.

Step 4. Repeat step 3 until the cache resources are divided.

Step 5. Returns to the cache allocation scheme S for each thread.

After executing the cache partitioning algorithm, the cache space obtained by each thread is roughly as shown in Fig. 12 .

The sum of the cache spaces obtained by the same batch of scheduled threads is the total capacity of the shared cache. Be-

cause different threads have different sensitivity to the obtained cache space, the cache space obtained by different threads

may be different.

5.5.2. Experimental results

Fig. 13 shows the total number of L2 cache misses for 15 threads running in 4 cases (IA, IA +Cache Partition, Default

Algorithm, Default Algorithm+Cache Partition) when the total scheduling batch is 4, 6, and 8. It can be seen that the total

number of L2 cache misses after using the cache partitioning algorithm is significantly less than that of misses without the

cache partitioning algorithm(IA + Cache Partition vs. IA , Default + Cache Partition vs. Default). In this paper, the IA is used to

solve the thread scheduling scheme, and then the cache partitioning algorithm proposed in Section 5.5.1 is used to allocate

L2 cache space for each thread, which minimizes the total misses of L2 cache.

As can be seen from Table 4 , when the total scheduled batch is 6, the total number of misses under the IA is reduced

by 7.93% in comparison with the default algorithms. When using the IA and the cache partitioning algorithm (IA +Cache

Partition), the total number of misses is reduced by 11.01% compared with the default scheduling algorithm. When changing

Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85 83

1 3 5 7 9 11 13 15
Threads

0

5

10

15

20

25

30
Ca

ch
e

M
is

s
 (M

ill
io

n)

+ Cache Par��on

Default + Cache Par��on
Default

Fig. 14. Comparison of the number of thread misses.

3 6 9 12 15 18 21 24 27 30
Itera�ons

200

210

220

230

240

250

260

270

280

290

To
ta

l
 C

ac
he

 M
is

s
 (M

ill
io

n)

 + Cache Par��on

Fig. 15. Iterative process of the total number of cache misses.

the number of total scheduled batches, using the combinatorial optimization scheme can still achieve better system per-

formance than optimizing system performance from a single perspective. The algorithm in this paper does not guarantee

the optimal performance of a single thread, but rather improves the overall performance of the system by reducing cache

contention.

Fig. 14 shows the number of L2 cache misses for each thread under 4 scheduling schemes. When comparing the total

number of L2 cache misses for each thread with and without the cache partitioning algorithm, we can also find that the

difference between the two cases is not obvious, because the purpose of the cache partitioning algorithm is to minimize

the total number of cache misses. Table 2 demonstrates that thread 1 and thread 13 are in the same scheduled batch based

on IA . As seen from Fig. 14 , when the cache partitioning algorithm is executed, the number of cache misses of thread 1 is

increased (red bar vs. green bar), but the number of cache misses of thread 13 experiences a sharper decrease (red bar vs.

green bar). The number of cache misses of batch 4 is reduced compared with no cache partition. There is no guarantee that

the number of misses of each thread will be reduced.

Fig. 15 shows that, when the total number of scheduled batches is 6, the total number of L2 cache misses decreases

as the number of iterations increases. The green line in the figure indicates the change in the number of misses in the

case where only the IA is used, and the orange line indicates the change in the number of misses in the case of using the

IA +cache partition algorithm. As seen from the figure, the number of total miss using the IA decreases (green line) as the

84 Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85

number of iterations increases and eventually reaches a stable state, this proves the effectiveness of the IA . We can also see

that partitioning the cache after obtaining the IA based scheduling scheme can further reduce the total cache miss.

6. Conclusion

In this paper, thread co-scheduling is used to reduce the contention of shared caches on the CMP architecture, and the

non-cooperative game is used to model multi-thread co-scheduling. Firstly, a linear relationship between the miss rate of

thread co-scheduling and the performance degradation is established, which is used to calculate the performance degrada-

tion during the thread co-scheduling. Then, the competition relationship between threads on shared resources is modeled

as a non-cooperative game and treat each thread as a participant in the game. We propose an IA for solving the Nash equi-

librium of the game and its convergence is theoretically demonstrated. The time complexity of our analysed IA is �(N log N)

and it can converge to Nash equilibrium in N iterations, where N is the number of threads in the system. After obtaining the

co-scheduling scheme by solving the Nash equilibrium of IA , we further optimized the space for sharing the L2 cache. Each

thread is allocated a separate L2 cache space based on the greedy idea of minimizing the total number of cache misses.

Finally, we verified the convergence and validity of IA through experiments, and the effectiveness of thread co-scheduling

combined with cache partitioning scheme is also verified. Experiments have proved that the total L2 cache misses of IA is

less than that of the default scheduling algorithm. The combination of the cache partitioning and thread co-scheduling can

further reduce the number of misses in the shared cache compared to the circumstance with only thread co-scheduling.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Zheng Xiao: Conceptualization, Methodology, Validation, Funding acquisition, Resources. Liwen Chen: Investigation, For-

mal analysis, Writing - original draft. Bangyong Wang: Data curation, Visualization, Software. Jiayi Du: Visualization, Soft-

ware. Keqin Li: Writing - review & editing.

Acknowledgments

This work is partially supported by Natural Science Foundation of China (No. 61872129 and No. 618024 4 4), Hunan Provin-

cial Natural Science Foundation of China (No. 2019JJ40024) and Doctoral Scientific Research Foundation of Central South

University of Forestry and Technology (No. 2016YJ047).

References

[1] J. Leverich , C. Kozyrakis , Reconciling high server utilization and sub-millisecond quality-of-service, in: Proceedings of the European Conference on
Computer Systems, 2014 .

[2] M.K. Qureshi , Y.N. Patt , Utility-based cache partitioning: a low-overhead, high-performance, runtime mechanism to partition shared caches, in: Pro-

ceedings of the IEEE/ACM International Symposium on Microarchitecture, 2006 .
[3] L.R. Hsu , S.K. Reinhardt , R.R. Iyer , S. Makineni , Abstract communist, utilitarian, and capitalist cache policies on CMPS: caches as a shared resource, in:

Proceedings of the International Conference on Parallel Architectures & Compilation Techniques, 2006 .
[4] A. El-Moursy , R. Garg , D.H. Albonesi , S. Dwarkadas , Compatible phase co-scheduling on a CMP of multi-threaded processors, in: Proceedings of the

International Conference on Parallel & Distributed Processing, 2006 .
[5] S. Kim , D. Chandra , S. Yan , Fair cache sharing and partitioning in a chip multiprocessor architecture, 2004 .

[6] D. Sanchez , C. Kozyrakis , Vantage: scalable and efficient fine-grain cache partitioning, ACM SIGARCH Comput. Arch. News 39 (3) (2011) 57–68 .

[7] J.L. Kihm , A. Settle , A. Janiszewski , D.A. Connors , Understanding the impact of inter-thread cache interference on ILP in modern SMT processors., J.
Instruct.-level Parall. 7 (2005) .

[8] Y. Jiang , X. Shen , C. Jie , R. Tripathi , Analysis and approximation of optimal co-scheduling on chip multiprocessors, in: Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, 2008 .

[9] S. Blagodurov , S. Zhuravlev , A. Fedorova , Contention-aware scheduling on multicore systems, ACM Trans. Comput. Syst. 28 (4) (2010) 1–45 .
[10] I. Akturk , O. Ozturk , Adaptive thread scheduling in chip multiprocessors, Int. J. Parallel Program (1) (2019) 1–31 .

[11] S. Zhuravlev , J.C. Saez , S. Blagodurov , A. Fedorova , M. Prieto , Survey of scheduling techniques for addressing shared resources in multicore processors,

ACM Comput. Surv. 45 (1) (2012) 1–28 .
[12] G. Nan , M. Stigge , Y. Wang , Y. Ge , Cache-aware scheduling and analysis for multicores, in: Proceedings of the ACM & IEEE International Conference on

Embedded Software, 2009 .
[13] M. Moreto , F.J. Cazorla , A. Ramirez , R. Sakellariou , M. Valero , Flexdcp: a QOS framework for CMP architectures, ACM SIGOPS Oper. Syst. Rev. 43 (2)

(2009) 86–96 .
[14] F. Guo , H. Kannan , L. Zhao , R. Illikkal , R. Iyer , D. Newell , S. Yan , C. Kozyrakis , From chaos to QOS: case studies in CMP resource management, ACM

SIGARCH Comput. Arch. News 35 (1) (2007) 21–30 .

[15] K.J. Nesbit , J. Laudon , J.E. Smith , Virtual private caches, ACM SIGARCH Comput. Arch. News 35 (2) (2007) 57–68 .
[16] A.D. Blanche , T. Lundqvist , Addressing characterization methods for memory contention aware co-scheduling, J. Supercomput. 71 (4) (2015) 1451–1483 .

[17] A. Hassidim , H. Kaplan , O. Tuval , Joint cache partition and job assignment on multi-core processors, in: Proceedings of the International Conference
on Algorithms and Data Structures, 2013 .

[18] C. Gang , H. Kai , H. Jia , A. Knoll , Cache partitioning and scheduling for energy optimization of real-time MPSOCS, in: Proceedings of the IEEE Interna-
tional Conference on Application-specific Systems, 2013 .

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100006407
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0001
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0002
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0003
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0004
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0005
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0006
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0007
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0008
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0009
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0010
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0011
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0012
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0013
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0014
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0015
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0016
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0017
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0018
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0018

Z. Xiao, L. Chen and B. Wang et al. / Information Sciences 526 (2020) 68–85 85

[19] M. Jahre , L. Natvig , A light-weight fairness mechanism for chip multiprocessor memory systems, in: Proceedings of the ACM Conference on Computing
Frontiers, 2009 .

[20] A. Hassidim , Cache replacement policies for multicore processors, in: Proceedings of the Symposium on Innovations in Computer Science, 2009 .
[21] D. Dauwe , E. Jonardi , R. Friese , S. Pasricha , H.J. Siegel , A methodology for co-location aware application performance modeling in multicore computing,

in: Proceedings of the Parallel & Distributed Processing Symposium Workshop, 2015 .
[22] M. Shantharam , Y. Youn , P. Raghavan , Speedup-aware co-schedules for efficient workload management, Parallel Process. Lett. 23 (02) (2013) .

[23] G. Aupy , M. Shantharam , A. Benoit , Y. Robert , P. Raghavan , Co-scheduling algorithms for high-throughput workload execution, J. Schedul. 19 (6) (2016)

1–14 .
[24] Y. Xie , G. Loh , Dynamic classification of program memory behaviors in CMPS, in: Proceedings of the Second Workshop on Chip Multiprocessor Memory

Systems and Interconnects, 2008 .
[25] C. Hankendi , A.K. Coskun , Reducing the energy cost of computing through efficient co-scheduling of parallel workloads, in: Proceedings of the Confer-

ence on Design, 2012 .
[26] S. Zhuravlev , S. Blagodurov , A. Fedorova , Addressing shared resource contention in multicore processors via scheduling, in: Proceedings of the Fifteenth

Edition of ASPLOS on Architectural Support for Programming Languages & Operating Systems, 2010 .
[27] G. Dhiman , G. Marchetti , T. Rosing , vgreen: a system for energy efficient computing in virtualized environments, in: Proceedings of the ACM/IEEE

International Symposium on Low Power Electronics and Design, 2009 .

[28] A. Merkel , J. Stoess , F. Bellosa , Resource-conscious scheduling for energy efficiency on multicore processors, in: Proceedings of the European Conference
on European Conference on Computer Systems, 2010 .

[29] R. Knauerhase , P. Brett , B. Hohlt , T. Li , S. Hahn , Using os observations to improve performance in multicore systems, IEEE Micro 28 (3) (2008) 54–66 .
[30] M. Banikazemi , E.P. Dan , B. Abali , Pam: A novel performance/power aware meta-scheduler for multi-core systems, in: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, 2008 .
[31] G. Daci , M. Tartari , A comparative review of contention-aware scheduling algorithms to avoid contention in multicore systems, 2013 .

[32] D. Chandra , F. Guo , S. Kim , S. Yan , Predicting inter-thread cache contention on a chip multi-processor architecture, in: Proceedings of the International

Symposium on High-performance Computer Architecture, 2005 .
[33] R. Friese , T. Brinks , C. Oliver , H.J. Siegel , A .A . Maciejewski , Analyzing the trade-offs between minimizing makespan and minimizing energy consumption

in a heterogeneous resource allocation problem, in: Proceedings of the INFOCOMP, Second International Conference on Advanced Communications and
Computation, 2012, pp. 81–89 .

[34] A.S. Schulz , N. Immorlica , L. Li , V.S. Mirrokni , Coordination mechanisms for selfish scheduling., Theor. Comput. Sci. 410 (17) (2008) 1589–1598 .
[35] C. Cascaval , D.A. Padua , Estimating cache misses and locality using stack distances, in: Proceedings of the International Conference on Supercomputing,

2003 .

[36] C. Cascaval , L. Derose , D.A. Padua , D.A. Reed , Compile-Time based performance prediction, 1999 .
[37] G.E. Suh , S. Devadas , L. Rudolph , A new memory monitoring scheme for memory-aware scheduling and partitioning, in: Proceedings of the Interna-

tional Symposium on High-performance Computer Architecture, 2002 .
[38] D. Lo , L. Cheng , R. Govindaraju , P. Ranganathan , C. Kozyrakis , Improving resource efficiency at scale with heracles, ACM Trans. Comput. Syst. 34 (2)

(2016) 1–33 .
[39] G.E. Suh , L. Rudolph , S. Devadas , Dynamic partitioning of shared cache memory, J. Supercomput. 28 (1) (2004) 7–26 .

http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0019
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0020
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0021
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0022
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0023
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0024
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0025
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0026
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0027
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0028
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0029
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0030
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0031
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0032
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0033
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0034
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0035
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0036
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0037
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0038
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0038
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0038
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0038
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0038
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0038
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0039
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0039
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0039
http://refhub.elsevier.com/S0020-0255(20)30259-0/sbref0039

	Novel fairness-aware co-scheduling for shared cache contention game on chip multiprocessors
	1 Introduction
	2 Related work
	3 Fairness-aware thread co-scheduling model on CMP architecture
	3.1 Performance degradation prediction
	3.2 Thread co-scheduling motivation

	4 Non-cooperative game between threads
	4.1 Game optimization goal
	4.2 Iterative Algorithms (IA)
	4.3 Nash equilibrium analysis

	5 Experiment and evaluation
	5.1 Stack distance profiling
	5.2 Experiment setup
	5.3 The convergence of IA
	5.4 Performance simulation
	5.5 Performance improvement
	5.5.1 A cache partitioning algorithm
	5.5.2 Experimental results

	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	References

