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Summary

Joint service involving several clouds is an emerging form of cloud computing. In hybrid clouds, the

schedulers within 1 cloud must not only self-adapt to the job arrival processes and the workload

but also mutually adapt to the scheduling polices of other schedulers. However, as a combina-

torial optimization problem, scheduling is challenged by the adaptation to those dynamics and

uncertain behaviors of the peers. This article studies the collaboration among benevolent clouds

that are cooperative in nature and willing to accept jobs from other clouds. We take advantage

of machine learning and propose a distributed scheduling mechanism to learn the knowledge of

job model, resource performance, and others’ policies. Without explicit modeling and prediction,

machine learning guides scheduling decisions based on experiences. To examine the performance

of our approach, we conducted simulation using the SP2 job workload log of the San Diego Super-

computer Center under a test bed based on agent-based systems—SWARM. The results validate

that our approach has much shorter mean response time than 5 typical dynamic scheduling

algorithms—opportunistic load balancing, minimum execution time, minimum completion time,

switching algorithm, and k-percent best. A better collaboration in hybrid cloud is achieved by

full adaptation.
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1 INTRODUCTION

Cloud computing has emerged as the next-generation platform for

hosting business and scientific applications. It is used to virtualize all

of the online resources as an on-demand computing model. And it

achieves reasonable commercial success. Companies such as Amazon,

Google, and Microsoft have deployed a variety of clouds.

Recently, the concept of hybrid cloud is emerging. Cloud collabo-

ration or joint service is of significance to users as well as service

providers. First, this could greatly reduce access time and latency espe-

cially when a certain cloud is overloaded. Second, another benefit of

a hybrid cloud model is the ability to have on-premises computational

infrastructure that can support the average workload for your business,

while retaining the ability to leverage the other cloud for failover cir-

cumstances in which the workload exceeds the computational power of

its own cloud component. Third, it makes composition of services pos-

sible. Those advantages seem attractive to the cloud owners. They no

longer need to build a larger cloud for occasional load peaks, and mean-

while, they can increase users’ quality of experience. Many companies

pay much attention to hybrid cloud.1 Vmware has already supported

the data or job migration between clouds.2

In the applications of clouds,3 users usually do not care about

where and how their jobs get executed. Services are provided by

scheduling jobs onto processing elements (PEs) or virtual machines.

Scheduling is key to joint service or collaboration among clouds. By

scheduling, jobs migrate from 1 platform to another, aiming at improv-

ing the system performance.

However, hybrid cloud may involve several autonomous domains.

Schedulers in one cloud must not only self-adapt to the job arrival pro-

cesses and the workload but also mutually or collectively adapt to the

scheduling polices of other domains. In this article, the former is named

as self-adaptation, while the latter is called mutual adaptation.

In clouds, 3 kinds of uncertainties challenge self-adaptation. First, it

is unknown when and how many jobs will arrive. We do not know when

and what kind of jobs a user will initiate. Second, it is difficult to know

how long a PE will take to execute a job owing to the system dynamics.

The performance of a PE may vary in time. Moreover, a job may need

to access other networked resources, and the incurred delay is hard to
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evaluate. Third, it is hard to determine how long a job must wait before

execution. As the system is not dedicated, there may be jobs from

other users.

Mutual adaptation brings more challenges to scheduling. Because

different schedulers have different job patterns, execution dynamics,

and scheduling policies, an efficient collaboration needs to adapt to

them. More details can refer to Section 3. This paper focuses on benev-

olent schedulers, which are cooperative to assist other schedulers,

ignoring its cost. Collaboration of benevolent clouds pursues maximiza-

tion of system performance or full exploitation of the system resources

unconditionally. As an online open system, mean response time

(MRT) is the metric used for performance evaluation of hybrid cloud.

Response time of a job is defined as the sum of the waiting time and

execution time.

Most of the existing works barely considered the interaction of

schedulers from different clouds. Such works (eg, 2 studies4,5) make

allocation decisions based on the prediction of the completion time on

the PEs in its domain. In addition, heuristics such as genetic algorithms 6

and ant colony optimization 7 could be used to search for the best solu-

tion, but such techniques are offline and must have a global view of the

whole system.

Hybrid cloud is analogous to a social network, in which users

cooperate to complete a job.8 Users’ behaviors are important to the

quality of collaboration. García-Cuesta and Iglesias used statistical

analysis and subspace learning for user modeling to characterize the

computer use behavior.9 In this work, we take advantage of machine

learning and propose a distributed scheduling mechanism to learn the

unknown behaviors of the other schedulers. Because of the uncertain

job model and the system dynamics, learning happens under a nonsta-

tionary environment.10 So we adopt the methodology of reinforcement

learning—a model-free online learning, as indicated in 1 study.10 With-

out explicit modeling and prediction, reinforcement learning guides

the scheduling decisions based on experiences. Moreover, a layered

scheduling model is provided to organize all of the schedulers. The

proposed approach learns the knowledge of the job model, resource

performance, and schedulers’ policies, addressing self-adaptation and

mutual adaptation for hybrid clouds. To examine the performance,

we conducted simulation studies using the track SP2 job workload

log of San Diego Supercomputer Center (SDSC) under a test bed

based on agent-based systems—SWARM. The results validate that our

approach has much shorter MRT than 5 typical dynamic scheduling

algorithms, namely, opportunistic load balancing (OLB), minimum execu-

tion time (MET), minimum completion time (MCT), switching algorithm

(SA), and k-percent best (kPB).

The remainder of this article is organized as follows. In Section 2,

a layered scheduling model is described. The interaction among the

schedulers is analyzed in Section 3. Section 4 provides a learning-based

self-adaptive and mutually adaptive scheduling algorithm. A compari-

son study of our proposed algorithm is presented in Section 5. Section 6

discusses the related work on scheduling, especially on the dynamic

scheduling. Section 7 concludes this article.

2 PROBLEM DESCRIPTION

We use Figure 1 to describe the hybrid clouds. All of the resources from

the enterprises or research institutes are connected together using the

FIGURE 1 An overview of hybrid clouds. PE indicates processing
element

Internet. However, the resources may belong to different clouds. A PE

could be a virtual machine or a physical machine. The set of PEs can

be defined as PE = {pe1, pe2,… , pen}, where n is the number of PEs.

Every cloud has one or more schedulers to deal with all the arriving jobs.

All schedulers form a set S = {s1, s2,… , s|S|}, where |S| is the number

of schedulers.

Jobs in Figure 1 are independent and initiated by users at random.

Assume that hybrid cloud can handle m types of jobs. A type of jobs

means that jobs have similar operations but perhaps of a different scale.

The set T = {t1, t2,… , tm} represents all the possible job types. A job

of type ti on scheduler sj is denoted by 𝜏
j
i
(k), if it arrives at time k. The

sequence of jobs arriving at sj is called a job flow TFj.

In hybrid clouds, owing to the resources’ capacity, the number of jobs

per scheduler or PE can accept is limited. When the amount exceeds,

this will severely affect the performance of the system and increase the

response time of jobs. To solve this problem, jobs may be transferred to

other clouds.

A job 𝜏
j
i
(k) can be allocated to the adjacent schedulers or the affili-

ated PEs. To use resources in hybrid clouds efficiently, shorter response

time is expected to improve quality of experience.

Job migration in hybrid clouds can be described by a general frame-

work, a layered scheduling model (see Figure 2). These schedulers that

FIGURE 2 A layered scheduling model of hybrid clouds. PE indicates
processing element
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have more neighbors or cross-domain links are put at higher layers.

Through higher layers, a job can span much more schedulers and match

a better resource. In Figure 2, all the PEs are located at the resource

layer. A PE belongs to at least one or more clouds. Jobs are finally

assigned to the PEs for processing. If the PEs can directly be mapped

to jobs by a scheduler, the PEs are connected to the scheduler by the

dashed lines. A scheduler is able to communicate with the affiliated

PEs, so that the scheduler knows the load of the PEs. The schedulers

that are connected by lines with arrows are the neighboring schedulers,

which can communicate with each other. During scheduling, a job can

be assigned to the affiliated PEs or to the neighboring schedulers. If no

assignment is satisfactory, then the scheduler will hand over the job to

the neighbor at a higher layer. The scheme proposed in Section 4 can be

applied to all the scheduling layers.

3 MOTIVATION

There are 2 kinds of influence that might degrade the efficiency of

collaboration, given in Figure 3.

1. Master-slave influence—As shown in Figure 3A, TF1 and TF2 are job

flows on schedulers s1 and s2, respectively. We call TF1 as the mas-

ter flow, and TF2 as the slave flow. s1 immigrates a certain kind of

tasks to the neighbor s2 for collaboration. The MRT caused by this

collaboration depends not only on the load of s2 but also on the jobs

arriving at s2 in the future. For example, if at time k, s2 has a lighter

load, but in TF2 a large batch of jobs need to be processed by s2, the

MRT increases because s1 delivered jobs to s2.

2. Non–master-slave influence—Figure 3B illustrates the other influ-

ence. Suppose that at time k, the scheduler s3 executes jobs of type ti

faster than s4. Usually, s1 tends to assign jobs of type ti to s3, obtain-

ing faster response. However, the allocation neglects influence from

the job flow TF2. If after time k, s2 has a large number of jobs for s3

too, perhaps it will be much more reasonable that s1 assigns jobs to

the suboptimal scheduler s4. Although the response time for s1 may

be prolonged, jobs on s2 will receive quicker response, resulting in

shorter MRT of the system.

In brief, efficient collaboration means job allocation should adapt to

the job arrival patterns, execution dynamics, and scheduling behavior

of other schedulers.

4 LEARNING AND ADAPTIVE SCHEDULING

The background of Markov decision process (MDP) and Q-learning is

given before describing why and how our algorithm is proposed.

4.1 Background of MDP and Q-learning

Figure 4 shows a 3 × 4 grid world, in which there are 12 states. ST =
{sti, i = 1,2,… ,12} is the set of states. At each state, 4 actions could be

selected. AC = {UP, DOWN, LEFT, RIGHT} is the set of optional actions.

At some states like the border, some actions are infeasible. A function

R(sti ∈ ST, acj ∈ AC) ∈ ℜ represents the reward obtained by choosing

action acj at state sti. The problem is to find a path from st1 to st12 by tak-

ing a sequence of actions such that the accumulative reward is maximal.

At each state, a decision should be made on which action to take. The

solution is a sequence of decisions. Such a problem is called a sequential

decision process in operational research.

In the sequential decision process, the state stt + 1 at the (t + 1)th

moment depends on the previous states and the action act taken at

the tth moment. The transition between states is defined by stt + 1 =
Γ(st1,… ,stt ,act), where stt ∈ ST, act ∈ AC. If stt + 1 only depends on the

current state stt and action act , ie, Markov property, the sequential

decision process becomes MDP.11 In MDP, the state transition function

becomes stt + 1 = Γ(stt , act).

FIGURE 4 A 3 × 4 grid world

FIGURE 3 Classification of the mutual influence. A, master-slave influence. B, Non–master-slave influence
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The grid world problem is a MDP. Suppose there is a path that

reaches the terminal state st12 at the moment 𝜏 . Then the accumulative

reward AR is as follows.

𝐴𝑅 = r1 + r2 + · · · + r𝜏 =
𝜏∑

t=1

R
(

stt, act
)

=
𝜏∑

t=1

R
(
Γ
(

stt−1, act−1
)
, act

)
,

(1)

where st1 = st1 and st𝜏 = st12.

To find the maximal AR, we defined 2 functions for iterative solution:

Q(sti, acj), which means the accumulative reward by taking action acj

at state sti, and V(sti), which means the maximal accumulative reward

at sti.

Q
(

sti, acj

)
= R

(
sti, acj

)
+ V

(
Γ
(

ti, acj

))
(2)

V(sti) = max
j

Q
(

ti, acj

)
(3)

The problem becomes to compute V(st1). Equations 2 and 3 give a naive

Q-learning algorithm. Assume for ∀i and ∀j, R(sti, acj) = 0. Initially, let

Q(sti, acj) = 0 and V(sti) = 0 except V(st12) = 100. From the initial state

st1, take actions at random and then update Q and V. If the grid world

is explored fully, V(st12) = 100 will propagate backward to st1. In this

example, all Q and V equal to 100. This result shows that no matter

what decision is made at each state, the terminal state will be reached

on enough time. However, it is often desirable that the terminal state

is reached as soon as possible or the maximal accumulative reward is

obtained in shorter time. An improved Q-learning12 is proposed. The

less importance is assigned to the future decisions while the weight of

immediate reward gets more. So Q is discounted by a discounted factor

𝜆∈ [0,1].

Q
(

ti, acj

)
= R

(
ti, acj

)
+ 𝜆 · V

(
Γ
(

ti, acj

))
(4)

Based on Equations 3 and 4, the discounted accumulative reward

is defined.

𝐷𝐴𝑅 = r1 + 𝜆r2 + · · · + 𝜆𝜏−1r𝜏 =
𝜏∑

t=1

𝜆t−1R
(

stt, act
)

=
𝜏∑

t=1

𝜆t−1R
(
Γ
(

stt−1, act−1
)
, act

) (5)

The numbers in Figure 4 are the corresponding Q values according to

Equations 4 and 3 if 𝜆 = 0.9. When the action arg maxacj
Q
(

ti, acj

)
is

taken, the shortest path is found.

It is not always the case that the unique state is transferred to

by acj at sti. Because the environment is full of uncertainty, the tran-

sition function Γ is a subset of ST, ie, Γ ⊆ ST. PD(Γ) denotes the

probabilistic distribution over the potentially transferred states. The

iterations become the expected discounted accumulative reward as

Equation 6 shows.

Q̄
(

sti, acj

)
= R

(
sti, acj

)
+ 𝜆 · E

(
V
(
Γ
(

sti, acj

)))

= R
(

sti, acj

)
+ 𝜆 ·

∑
stk∈Γ(sti ,acj)

PD
(

stk|sti, acj

)
· V̄(stk)

V̄(sti) = max
acj

Q̄
(

ti, acj

)
(6)

Under the iterations of Equation 6, the objective becomes the expected

discounted accumulative reward E(DAR).

E(𝐷𝐴𝑅) =
∑

t

𝜆t−1
∑

stt∈Γ(stt−1 ,act−1)

𝑃𝐷
(

stt|stt−1, act−1
)
· R

(
stt, act

)
(7)

If the functions Γ and PD(Γ) are a priori knowledge, the tradi-

tional Q-learning method can be used to find the maximal E(DAR).

Unfortunately, environment is not easy to model. A practical online

Q-learning,11 1 method of model-free machine learning, is proposed to

solve the MDP problem. It defines the iterations as Equation 8.

Q̂
(

sti, acj

)
= R

(
sti, acj

)
+ 𝜆V̂(st′)), st′ ∈ Γ

(
sti, acj

)

V̂(sti) = max
j

Q̂
(

sti, acj

) (8)

That theory establishes that Q̂ and V̂ converge to Q̄ and V̄ on condition

of fully traversal of the entire “world.” Fully traversal means that all the

states and actions are explored and visited sufficiently. So this theory is

also called an error and attempt approach. The𝜀-greedy exploration is a

widely used policy for that. The exploration probability pe is preset. The

action is selected randomly by lower probability than pe; otherwise, the

action arg maxacj
Q̂
(

ti, acj

)
is selected.

Equation 8 is the form of Q-learning we used. It is model free.

The learning process is able to adapt to the transition function and

its probability.

4.2 Problem modeling by MDP

In distributed scheduling, jobs arrive at random. Aiming to minimize

the MRT, the allocation of the current jobs not only depends on the

allocation of the jobs already arrived but is also influenced by the jobs

to arrive later. If just assigning jobs to the PEs that have the shortest

response time and neglecting the scheduling of the later arriving jobs,

the MRT may not be optimal, as discussed earlier. Therefore, if a single

job’s allocation is regarded as a decision step, scheduling is made up of

a sequence of related steps.

Furthermore, the state transition only depends on what jobs are

being scheduled and the workload on the PEs. The scheduling problem

is a MDP, which is defined by a quadruple (ST, AC, Γ, R). In the context of

our scheduling problem, the particular MDP model is defined on each

scheduler as follows.

• ST = {st1, st2,… ,st|ST|}. If a job is being allocated by the scheduler sj,

the state includes the job type and the workload on all the possible

units. We use PU to denote the set of possible units to which the job

can be assigned. The elements in PU can be divided into 4 subsets,

ie, the set of affiliated PEs (APE), the set of sj’s neighboring sched-

ulers at the lower layer (LS), the set of sj’s neighboring schedulers at

the same layer (NS), and the set of sj’s neighboring schedulers at the

higher layer (HS). PU = APE ∪ LS ∪ NS ∪ HS, and 1 state in ST is

described by the vector below:

(
TYPE, LOAD(1···|𝐴𝑃𝐸|), LOAD(1···|𝐿𝑆|), LOAD(1···|𝑁𝑆|), LOAD(1···|𝐻𝑆|)

)
.

The load of a processing unit in PU is the ready time for the current

job. However, the execution time of a job already waiting for execu-

tion is hard to estimate, so the number of jobs already waiting for

execution is used as the load metric.

a. For a PE, the load is defined as the number of jobs already waiting

for execution.
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b. For a scheduler at the first layer, the load is defined as the maxi-

mal load of the affiliated PEs, which is a pessimistic strategy.

c. For a scheduler at the higher layers, the load is defined as the

minimal load of the schedulers at the lower layers.

In a large-scale system, the number of states could be numerous,

which leads to the curse of dimensio nality. For this problem, the

approach of state aggregation13 is used. The parameter 𝛽 of aggre-

gation granularity is used for clustering. The continuous values of

the size𝛽 are clustered into 1 state. For example, the interval [0, 100)

includes 100 states if 𝛽 =1 and 20 if 𝛽 =5. The state space is reduced

through aggregation by increasing 𝛽 .

• AC = {(sti, PUj)|sti ∈ ST, PUj ∈ PU} is the set of all possible allocations.

The element ACij = (sti, PUj) in AC is a pair of states and possible units.

It means that under the state sti, a job is assigned to the PUj.

• Γ ∶ 𝑆𝑇 × B → 𝑆𝑇 is a transition function. It describes the relation

among the states. The types of jobs are nondeterministic and

follow a certain discrete probability distribution. Therefore, the

TYPE in the next state is a stochastic variable. Moreover, the

LOAD on PU is uncertain because the policies of other sched-

ulers are unknown. Therefore, the transited state is not a deter-

ministic state. The transition function uses a probability distribu-

tion PD(ST) over the potentially transferred states. PD(𝑆𝑇 ) =
{P(st′ | sti, bij) | ∑st′∈𝑆𝑇 P(st′ | sti, bij) = 1,0 ⩽ P(st′ | sti, bij) ⩽ 1}.

• R ∶ ST × B → ℜ is the immediate reward function and r ∈ ℜ

represents the immediate reward when taking the allocation acij ∈
AC under the state sti ∈ ST. The shorter the response time a sin-

gle job has, the larger the reward r it returns. Therefore, an inverse

proportional function could be used to compute the value of r.

In the above MDP model, the job arrival process and the mutual influ-

ence of the schedulers are implied in the state transition function Γ.

The execution process of the individual jobs is implied by the immediate

reward function R.

We aim to minimize the MRT determined by all of the allocations of

the job flows. The current allocation should consider its own response

time and the influence of the forthcoming allocations. Such an influence

becomes weaker on the subsequently arriving jobs. Therefore, the dis-

counted accumulative reward is used as the objective function. Starting

from the tth allocation, it can be defined below:

𝐷𝐴𝑅(t) = rt + 𝜆rt+1 + 𝜆2rt+2 + · · · =
∞∑

i=0

𝜆irt+i, t ⩾ 1, (9)

where 𝜆 ∈ [0,1]. The bigger the value is, the more importance the deci-

sion puts on the subsequent allocations. It could be set empirically.

Equation 9 relies on the state transition function Γ and the imme-

diate reward function R, which actually relate to job arrival, execution

process, and policies of other schedulers. As Section 4.1 described,

Q-learning approach can be used to maximize DAR. It learns the histor-

ical online allocations to gradually adapt to uncertainties from environ-

ment and other peers without any prior knowledge.

4.3 A Q-learning approach

To maximize DAR, it is necessary to have complete information about

the arrived jobs and the jobs to arrive, ie, the knowledge of the arrival

and execution processes, as well as the policies of other schedulers.

Q-learning does not need to model job arrival and execution processes

and learns from the historical allocations as the training samples.

Because the state transition function Γ is a probabilistic event and

not a priori knowledge, we can define the iterations for Q-learning

according to Equation 6.

Q̄(ti, acij) = R
(

sti, acij

)
+ 𝜆E

(
V
(
Γ
(

sti, acij

))]

= R(sti, bij) + 𝜆
∑

st′∈Γ(sti ,acij)
PD(st′|sti, acij)V(st′)

V̄(sti) = max
j

Q
(

sti, acij

)
(10)

The optimal scheduling scheme 𝜋 is the allocation that has the

maximal Q̄:

𝜋(sti) = argmax
j

Q
(

sti, acij

)
. (11)

Although to solve it, we need to know P(st′
|sti, acij) and Γ(sti, acij), which

are related to job arrival, others’ scheduling policies, and execution pro-

cess. But the knowledge of them is hard to obtain. To build their models

is 1 solution to get such knowledge, but it is a nontrivial job.

Q-learning of 11 is a promising approach. During learning, 𝜀-greedy

exploration is used to visit the states and actions sufficiently. After each

decision is made and completed, the transferred state and reward are

used to train Q̂ and V̂. It is pointed out in Section 4.1 that Q-learning

works on premise of sufficient exploration. There is no evidence that

𝜀-greedy exploration is totally competent. So another mechanism,

dynamic learning rate, is introduced to guarantee sufficient exploration.

Equation 12 gives learning rule of the lth iteration:

Q̂l

(
sti, acij

)
← (1 − 𝛼l)Q̂l−1

(
sti, acij

)
+ 𝛼l(R

(
sti, acij

)
+ 𝜆V̂l−1(st′)),

V̂l(sti) ← max
j

Q̂l

(
sti, acij

)
.

(12)

In Equation 12, st′∈ Γ(sti,acij) is the transferred state now. The immedi-

ate reward R(sti,acij) is the reciprocal of the interval from arrival of a job

until its completion at PUj. 𝛼l(0 ⩽ 𝛼l ⩽ 1) is the learning rate for the lth

iteration, which is defined by Equation 13:

𝛼l =
1

1 + 𝑣𝑖𝑠𝑖𝑡sl

(
sti, acij

) , (13)

where visitsl(sti,acij) is the number of visits of the pair (sti,bij) during

the l iterations. If a state or action is visited frequently, its learning

rate gets lower. In other words, the less frequently visited states or

actions get more chance to learn. This mechanism helps sufficient and

fair exploration.

Next, we discuss how our approach takes effect. In distributed

scheduling, there are a number of schedulers and task flows. A sched-

uler can allocate a job to the affiliated PEs or the adjacent schedulers.

The complete algorithm is given in Algorithm 1. The learning rule given

by Equation 12 is extended to adapt to the task flows and policies of

other schedulers.

This algorithm is an online learning algorithm. It learns the allocation

scheme after a job is allocated and executed. It stops when the changes

of Q-function are lower than a customized threshold. It does not need

to model job arrival, evaluate execution cost, and predict others’ poli-

cies. However, there is a weakness; ie, jobs used for training before its

convergence may be allocated to inappropriate processing units, and

users have to pay for the worse performance.
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Our algorithm works seamlessly in hierarchic scenario. In the

definition of states, we treat the PEs or the adjacent schedulers as pro-

cessing units, although the load is counted differently. When a job is

ready for allocation, it compares Q̂ of all the adjacent entities, includ-

ing any in APE, LS, NS, and HS. If a entity A in HS has the maximal Q̂, then

the job is allocated to it. Maximum means that cloud has light load or

high capability, or it knows other clouds have better performance. In the

same way, A may pass the job to B in A’s LS, until it finally reaches a PE.

In fact, the hierarchy is flatted.

During deployment, the key problem is how to get the immediate

reward when a job has been allocated to its neighboring schedulers.

If a scheduler only interacts with its affiliated PEs, the PE returns the

response time when a job is completed. But in our case, a job can

be finally allocated to a PE through several schedulers. This forms a

scheduling chain as Figure 5 shows. The cost brought by forwarding a

job to a processing unit is stochastic at each stage of scheduling. The

network delay is not ignorable and contributes to the response time.

Besides, there is a synchronizing problem among the schedulers, espe-

cially locating in different domains. We use a timestamp mechanism

to solve the asynchronous problem. Each scheduler gives a timestamp

when a job is scheduled. When a job is completed, a notification with

a timestamp is returned to the schedulers. Then all the schedulers on

the scheduling chain compute the immediate rewards and trigger their

learning processes.

In Figure 5, a job is submitted by a user and scheduled 3 times before

execution on a PE. Steps 2, 4, and 6 indicate that at each scheduling,

a timestamp is appended when the job is forwarded. The schedulers

take charge of recording its own scheduling time and collecting the

post-scheduling time. If the job is completed, a timestamped notifica-

tion is generated in step 8 and returned to its previous schedulers in

order of 9, 10, and 11. Upon receiving it, the schedulers compute the

immediate reward and launch learning.

FIGURE 5 Synchronizing in distributed scheduling. PE indicates processing element
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5 SIMULATION USING SWARM

In this section, we will validate our proposed algorithm under the track

SP2 job workload log of SDSC.14 Before comparing its performance,

some involved parameters are analyzed first, and an empirical set-

ting is used in the following experiments of performance comparison.

Several typical algorithms are selected as the benchmark. The MRT and

makespan are used as the performance metrics.

A test bed of our lab developed based on SWARM is used to

simulate a distributed environment. SWARM is a complex, adap-

tive, system-oriented, agent-based modeling tool initiated at Santa

Fe Institute. This tool easily builds a multiagent system with multi-

ple roles like schedulers and PEs. This test bed only helps visualize

the simulation.

5.1 Data set and configuration

Two data sets are used to simulate the system structure as well as the

possible dynamics of jobs and resources.

FIGURE 6 A small-scale distributed system

(A) Queueing theory–based data set

We use a synthetic and small-scale distributed system as Figure 6

shows. For simplicity, it is composed of 5 schedulers in the scheduling

layer and 15 PEs in the resource layer. The job flow on each scheduler

follows a Poisson arrival process with different arrival rates. Assume 10

types of jobs might arrive. The probability of each type is 0.1 equally.

Their execution time on each PE by unit time is a random integer within

the range 5 to 30, given in Table 1.

(B) SP2 log–based data set

The real-world workload, SP2 log of SDSC,14 is used to further vali-

date our algorithm. SP2 cluster corresponds to a microhybrid cloud in

which the job migration cost between clouds is assumed to be equal.

There are 128 nodes or PEs. The queues to accommodate the arriving

jobs are 7. Each queue corresponds to a scheduler. However, the IBM

SP2 is not a real distributed environment, since the schedulers have a

global view of all the PEs. To simulate the collaboration of the sched-

ulers, the 128 PEs belong to the 7 schedulers randomly. Suppose the

7 schedulers are full connected peers at the single scheduling layer. As

a result, a scheduler sometimes has to pass a job to other schedulers,

because the fast resource may not belong to itself. The jobs in the log

are assumed to be atomic. According to the log, the arriving times of all

jobs are provided. So a real job arrival process is simulated in our exper-

iments. There are 73496 records in total, which are divided into 3-folds

for k-fold cross-validation.

5.2 Parameter analysis

The queueing theory–based data set is used to analyze and estimate

those 2 parameters. There are 2 parameters in our algorithm, ie, state

aggregation granularity 𝛽 and discount factor 𝜆. Their definitions can

be referred to in Section 4. The optimal settings of 𝛽 and 𝜆 vary as the

different environments, depending on the network architecture, the

workload pattern, the number of PEs, etc. Although 𝛽 and 𝜆 are not

optimal for all cases, this is one feasible way of parameter evaluation.

TABLE 1 Execution time of 10 task types on all PEs (unit time)

Type t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

PE1 25 27 8 27 20 7 11 18 29 17

PE2 8 15 27 24 28 21 5 26 21 21

PE3 22 5 11 6 7 25 22 12 5 24

PE4 17 16 21 22 23 11 21 21 7 19

PE5 23 11 17 22 27 28 18 8 11 11

PE6 13 9 11 20 16 13 25 19 27 14

PE7 6 6 18 24 28 8 19 16 13 18

PE8 20 11 21 22 23 16 7 10 8 6

PE9 7 29 5 24 25 26 7 14 25 11

PE10 8 26 19 18 8 26 20 13 15 9

PE11 15 6 27 28 17 17 13 27 7 15

PE12 8 28 28 19 6 10 13 25 6 21

PE13 18 12 23 9 22 9 14 20 7 15

PE14 12 17 17 25 24 21 14 25 13 20

PE15 10 12 16 10 26 9 10 9 15 9

Abbreviation: PE, processing element.
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FIGURE 7 Convergence with different state aggregation granularity

• State aggregation granularity—We use state aggregation to avoid the

curse of dimensionality. A number of neighboring states are catego-

rized as a single state. If the aggregation size is small, the number of

states will be large and lead to a slow convergence. But if it is too big,

a state cannot approximate the real system load.

• Discount factor—It determines how much importance the current

allocation lays on the subsequent allocations. The bigger it is,

the more weight is there on the future allocations. Instead, if it

approaches 0, the allocation only considers the current load and

becomes greedy scheduling.

From the statements above, 𝛽 and 𝜆 play a role in 2 indispensable

attributes: convergence and MRT.

In the first group of experiments, convergence is analyzed when the

discounted factor 𝜆= 0.9 and the state aggregation granularity 𝛽 is set

by several different values. The functions Q and V ought to converge.

Figure 7 depicts the curve of a certain Q-function at each iteration. The

number of states has some influence on the convergence speed. It is

observed that as 𝛽 decreases, it converges more slowly, because more

states have to be visited and learned. With 𝛽 = 5, it even does not con-

verge within 30000 iterations. But if the granularity is too big, many

neighboring states are clustered into a single state. The approximation

accuracy degrades. To trade off the convergence speed and the state

space size, the aggregation granularity𝛽 is set to 20 for the experiments

of performance comparison.

In the second group of experiments, we attempt to analyze the

influence of discount factor 𝜆. This parameter reflects the relationship

between current and successive allocations. Figure 8 shows the MRT

with the discount factor from 0 to 1. More weight is attached to the

future allocations if 𝜆 gets higher. The response time includes the wait-

ing and execution time. And it is averaged over 1000 jobs as the MRT.

The environment keeps the same as the first group of experiments.

Except for the Poisson arrival process, the uniform and periodic arrival

processes are also tested. In these arrival processes, the arrival rate is

unchanged as in Figure 6.

In Figure 8, the best performance happens when 𝜆 is between 0.8

and 1. So by a rough estimation, we use 0.9 as the discount factor in the

following experiments.

FIGURE 8 Mean response time with different discount factors

5.3 Performance analysis

Since our method schedules a job to the appropriate resource imme-

diately after its submission, the proposed method falls into immediate

mode scheduling scheme.15 Therefore, 5 immediate mode scheduling

algorithms, OLB, MET, MCT, SA, and kPB, are selected to be compared

with our proposed scheduling method. They are used as benchmarks in

many research works.

• OLB: This algorithm assigns each task to the earliest idle resource

without any consideration about the execution time of the task on

the resource. If two or more resources are idle, then a resource is

selected arbitrarily. The intuition behind OLB is to keep all resources

as busy as possible. One advantage of OLB is its simplicity, but

because OLB does not take the task execution times into account,

the resulting schedule is not optimal.

• MET: This algorithm assigns each task to a resource that results in

the least execution time for that task, regardless of that machine’s

availability. As a task arrives, all the resources in the environment

are examined to determine the resource that gives the MET for the

task. Therefore, the motivation behind MET is to give each task to

its best resource. But allocating task without considering resource

availability results in load imbalance.

• MCT: This algorithm assigns a task to the resource, yielding the earli-

est completion time (ready time of resource + task execution time on

that resource) for that task. When a task arrives in the environment,

all available resources are examined to determine the resource that

yields the smallest completion time for the task. In MCT, a task could

be assigned to a resource that does not have the smallest execu-

tion time for that task. The intuition behind MCT is to combine

the advantages of OLB and MET, while avoiding their drawbacks.

This method is also known as fast greedy, originally proposed for

SmartNet system.

• SA: The MET method has a potential drawback in that it can lead

to load imbalance across resources by assigning many more tasks

to some resources than to the others since it blindly looks at exe-

cution times of the tasks without considering the ready time of the

resources. On the other hand, the MCT heuristic assigns tasks to
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resources to achieve earliest completion time, thereby ensuring load

balance but does not necessarily minimize the execution times of the

tasks. The SA tries to overcome some limitations of MET and MCT

methods by combining their best features. Here, the idea is to first

use the MCT until a threshold of balance is obtained followed by

MET, which creates the load imbalance by assigning tasks on faster

resources. More precisely, let rmax be the maximum ready time and

rmin be the minimum ready time; the load-balancing factor is then

r = rmin∕rmax, which takes values in range [0, 1]. It is obvious that for r

=1, we have a perfect load balancing, and if r=0, then there exists at

least 1 idle resource. Further, 2 threshold values, rl and rh, 0 ⩽ rl ⩽ rh

⩽1 are used to control the order in which MCT and MET are applied.

Initially, r is set to 0 so that SA starts allocating tasks according to

MCT until r becomes greater than rh; after that, MET is activated so

that r becomes smaller than rl, and a new cycle starts again until all

tasks are allocated.

• kPB: This method also tries to combine the best features of MCT and

MET simultaneously instead of cyclic manner. In this method, only

k percentage of best resources, considering their service times, are

chosen while assigning the tasks. For a particular task, a resource

that gives MCT is selected from the k kPB resources instead of

all possible resources. It should be noted that for k = 100, kPB

behaves as MCT, and for k = (100/total number of resources), it acts

as MET.

The rl and rh parameters in SA algorithm and k factor in kPB algorithm

have been set to 0.1, 0.3, and 0.5, respectively. These values are approx-

imately the best ones in which the results obtained from applying them

are very reasonable and acceptable.16

In this section, performance of the proposed method is compared

with that of the aforementioned 5 typical scheduling algorithms

regarding 2 parameters: MRT and total makespan. The response time

of a job includes the waiting and execution times. After its arrival, a job

has to wait for allocation and execution. The first metric, MRT, is the sum

of response time of all jobs divided by the number of jobs. The second

comparison metric, total makespan, can be computed as the maximum

time among all resources’ ready times. Actually, this is the time that the

distributed system takes to finish all the jobs. Besides, its extendability

is also validated.

5.3.1 Mean response time

Mean response time is the objective of our algorithm. It is investigated

under 3 cases, namely, (1) queueing theory–based data set, (2) SP2

log–based data set with fixed execution time, and (3) SP2 log–based

data set with stochastic execution time.

In case (1), the jobs are classified into types by the run-time column

in the log. If the run time is close, the jobs are partitioned in 1 type.

According to the order of magnitude, 47 types are used in the exper-

iments. Then, for each type, we use a random number generator that

follows an exponential distribution to generate the execution time on

the 128 PEs. Owing to the constraint of the length, the corresponding

table is not provided here.

In case (2), the execution time of a job is deterministic before

scheduling. However, in real distributed environment, network delay

is dynamic. So the execution time of a job is a stochastic variable.

FIGURE 9 Mean response time of queueing theory–based data set.
kPB indicates k-percent best; MCT, minimum completion time; MET,
minimum execution time; OLB, opportunistic load balancing; SA,
switching algorithm

In this group of experiments, it is supposed that the execution time

follows an exponential distribution with the service rate 𝜇. A ser-

vice rate is appointed to all of the PEs for each job type. Algo-

rithms such as MET, MCT, SA, and kPB need the execution time

information. Assume that these algorithms have an exact prediction

function with the same distribution to estimate the execution time

when scheduling.

In the latter 2 cases, the reported MRTs and makespans in Figures 10

and 11 are averaged over 3 experiments in which 1-fold is selected as

the test data set and the remaining 2-folds are used as the training data

set. Because the execution time in case (3) is stochastic, the correspond-

ing experiments of Figures 10B and 11B repeat 50 times, and the 95%

confidence intervals are depicted.

Figures 9 and 10 compare the proposed algorithm with the 5 bench-

marks regarding MRT metric under the 3 cases, respectively. Figure 9

shows MRTs in the way that the arrival process keeps Poisson but the

arrival rate increases once each time.

The OLB, MET, MCT, SA, and kPB are heuristic algorithms. The

OLB and MET only take partial response time of a job into account.

Owing to severe load imbalance, their MRTs are highest. Especially,

the workload in cases (2) and (3) is heavy; MET always assigns jobs

to the best resources, which are blocked. So MET in Figure 10 is

the worst.

The heuristic of MCT is minimizing the completion (response) time

of current job. But it ignores the response time of subsequent jobs. The

shortest response time of a single job does not mean best performance

on average. The SA and kPB are tradeoff of MET and MCT, less greedy

than MCT and less conservative than MET.

The benchmarks’ MRTs are always higher than the MRT of the

proposed method in any cases. Unlike them, our algorithm is not

shortsighted. From its objective function Equation 9 of a single allo-

cation, our method considers not only the response time of cur-

rent job but also the influence of the subsequent allocations. Just

because each individual allocation is based on the whole task flow,

not on a single job, does not mean the MRT of our algorithm is
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FIGURE 10 Mean response time of SP2 log–based data set. A, Fixed
execution time. B, Stochastic execution time. kPB indicates k-percent
best; MCT, minimum completion time; MET, minimum execution time;
OLB, opportunistic load balancing; SA, switching algorithm

quite shortened. The interinfluence of individual task flows plays a

role in optimizing MRT. Actually, if 𝜆 = 0, our algorithm becomes

MCT. As the arrival rate increases and system load gets heavier in

case (1), MRT gets higher and higher. More time has to be spent

in waiting.

In addition, compared with Figure 10A, MRTs of the benchmarks in

Figure 10B increase in a larger magnitude than that of our algorithm.

Because of the stochastic execution time, jobs’ execution time is not

identical as predicted. But our algorithm is not on basis of any predic-

tion model, so its MRT drops less severely. Furthermore, our algorithm

has a smaller confidence interval. It verifies that our algorithm is capa-

ble of adapting to dynamics.

5.3.2 Makespan

Figure 11 compares the proposed algorithm with the 5 bench-

marks regarding the total makespan metric under cases (1) and (2),

respectively. It is not surprising that OLB and MET are worst, because

of load imbalance. kPB assigns jobs to the best resources, speeding the

execution of jobs. As a result, its makespan is shortest. The reason why

FIGURE 11 Makespan of SP2 log–based data set. A, Fixed execution
time. B, Stochastic execution time. kPB indicates k-percent best; MCT,
minimum completion time; MET, minimum execution time; OLB,
opportunistic load balancing; SA, switching algorithm

makespan of SA is much worse than MCT is not clear, perhaps resulting

from the frequent switch between MET and MCT.

Our algorithm does not aim to optimize makespan, so it does not per-

form its best. However, the first item of Equation 9 reflects the load of

resources. If this item is small when a resource is overloaded, it has the

trend to decrease the reward, restraining load imbalance. So makespan

of our algorithm is equivalent to that of MCT in Figure 11A. When

the execution time becomes uncertain in case (3), our algorithm gets

worse than MCT as Figure 11B shows. This is because the dynamic

execution time of subsequent jobs weakens the restraint of load imbal-

ance in contrast with the fixed execution time. And it does not have an

overwhelming privilege on the confidence interval.

5.3.3 Extendability

The scale of IBM SP2 is far smaller than that of hybrid clouds. The fol-

lowing experiments try to validate its extendability when the number

of schedulers increases.

The system is initialized by the SP2 log–based data set with fixed exe-

cution time. There are 7 schedulers and 128 PEs. Then we increase the

schedulers but not change the PEs. The 128 PEs belong to the sched-

ulers randomly. Jobs only arrive at the initial 7 schedulers according
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FIGURE 12 Mean response time under different numbers of
schedulers

to the SP2 log. For simplicity, still assume all of the schedulers fully

connected and at the same layer.

Figure 12 shows the MRTs under different numbers of sched-

ulers. Because the number of PEs remains the same, the MRTs stay

around 1210seconds no matter how many schedulers there are. As

the number of schedulers increases, the forwarding path may get

longer but the waiting time in each scheduler gets shorter. So the

large scale of clouds does not influence the performance of our

algorithm severely.

6 RELATED WORK

Cloud computing emerges as the dramatic development of grid com-

puting, virtualization, and web technologies. The real strength of the

cloud lies in the ability to distribute the workload over multiple nodes

using multiple technologies to create a high-performance, highly scal-

able, and available platform at a highly affordable price.17,18 Some

of the applications of cloud computing are online gaming, social net-

working, and data center.19 For economic and efficiency reasons,

hybrid clouds further integrate private clouds and public clouds into 1

unified environment.20

Millions of users share cloud resources by submitting their comput-

ing task to the cloud system. Scheduling these millions of tasks is a

challenge to cloud computing.21

Much research has been done on task scheduling. These algorithms

mainly fall into 2 categories. One is the static scheduling, which deter-

mines where and when to execute a task at compiling time. The other

is the dynamic scheduling, which makes such decisions at runtime. In

static scheduling,22 knowledge on tasks and system state should be

determined a priori. Because of the uncertainties, such knowledge can

only be acquired at running time. So traditional static scheduling is

not applicable.

In dynamic scheduling, most works try to adapt to job arrival pattern

and execution dynamics by the way of workload modeling to predict

system state. Smith et al.23 proposed a run-time method to predict how

long applications will wait in a queue and therefore improve schedul-

ing performance. An online system for predicting batch-queue delay

was proposed by Nurmi et al.24 Rao and Huh 4 have proposed a proba-

bilistic and adaptive job scheduling algorithm using system-generated

predictions for grid systems. The proposed algorithm first uses

system-generated job execution time estimates without actually sub-

mitting jobs to the target resource. Then, this estimation is used to

predict the job scheduling feasibility on the target system. Reza and

Ali5 presented a probabilistic task scheduling method to minimize the

overall MRT of the tasks submitted to the grid computing environ-

ments. A discrete time Markov chain representing the task scheduling

process within the grid environment is constructed. Then a nonlinear

programming problem is defined. These approaches take advantage of

queueing theory and statistics to model highly dynamic variables. But

our method learns those dynamics from the run-time samples with-

out building any explicit models. Model free makes scheduling less

complicated and suffers less from the error caused by models. How-

ever, models have priority of quality of service scheduling,25 on which

our method is not so straightforward. Quality of service is part of our

next work.

In hybrid clouds, schedulers need to adapt to behaviors of other

peers except for adaptation to those dynamics. As for collaboration,

there are 2 kinds of schedulers, ie, benevolent and self-interested. Dif-

ferent approaches should be adopted to achieve collaboration under

each case. For self-interested schedulers, which are not always will-

ing to cooperate especially by sacrificing their profit, game theory is

useful to spontaneously form a federation.26 Subrata et al.27 mod-

eled the grid load-balancing problem as a noncooperative game. In 1

study,28 Nash bargaining solution and Nash equilibrium were adopted

for single-class and multiuser jobs, respectively. For benevolent sched-

ulers, Grosu et al.29,30 studied load balancing based on cooperative

game theory. These algorithms are all static on the assumption that job

arrival and execution conform to queueing theory. Actually, they may

fail under non-Markovian environment.31 The work 32 implements a

dynamic scheduling for coordination. But it focuses on making up for

inaccurate run-time estimates to improve the response time. It is dif-

ferent from ours in the following aspects. First, prediction model is

its basis. Second, the metascheduler leads to a centralized approach.

Instead, ours are distributed. At last, all the service providers are

assumed dedicated, not their own job flows, wherein the case is sim-

pler because it is unnecessary to mutually adapt to others’ job arrival

patterns and scheduling behaviors.

7 CONCLUSION

Hybrid clouds have drawn more and more attention either in business

or in academia. The public and private cloud infrastructures, which

operate independently of each other, collaborate, lowering infrastruc-

ture cost and enhancing quality of experience.

Aiming at providing an approach to technically achieve effective col-

laboration, this paper proposes a distributed scheduling algorithm for

hybrid clouds. It shortens the MRT and improves efficiency of collab-

oration. Once cloud providers agree to form cooperative federation,

they will inform their partners the scheduler list, which is used to inter-

act between clouds. Then the partner providers configure part or all of

their schedulers to contain them as the schedulers at the upper layer.
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That is, only by extending the HS sets in our algorithm will a federation

with effective collaboration be founded.

However, when there is no such federation, whether collaboration is

possible is the problem we are going to investigate next. Game theory

is one way to propose an automatic negotiation mechanism that builds

spontaneous cooperation when each cloud is self-interested.
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