
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024 3971

MTDA: Efficient and Fair DPU Offloading
Method for Multiple Tenants

Zhaoyang Huang , Yanjie Tan , Yifu Zhu , Graduate Student Member, IEEE, Huailiang Tan ,
and Keqin Li , Fellow, IEEE

Abstract—In modern cloud computing environment, the offload-
ing potential of DPU must be fully exploited for multiple tenants.
Existing DPU offloading techniques lack the capability to perform
the fair allocation of a DPU domain’s internal resources among
tenants with various performance requirements. In this article, we
propose a virtual multi-channel DPU offloading architecture for
multiple tenants (MTDA) and implement it on a BlueField-2 DPU
platform to achieve stability and fairness in resource allocation for
generic datacenter tasks. MTDA provides an independent virtual
channel for each tenant before their requests are submitted to avoid
competition among tenants. Considering the diverse requirements
of tenants, MTDA constructs a credit-based resource allocation
model and a traffic-aware scheduling algorithm to fully utilize
the rich computing resources of DPU and improve the fairness of
DPU resource allocation. Experimental results show that MTDA
increases the throughput by up to 101.2%, 143.2%, 36.1%, and
41.7%, lowers the latency by up to 50.3%, 58.9%, 26.6%, and
29.4%, improves the fairness by up to 98.8%, 99.0%, 98.3%,
and 98.4%, and provides more stable performance for multi-
tenants, compared with DPDK, iPipe, FairNIC, and LogNIC.

Index Terms—Credit model, DPU, fair resource allocation,
multi-tenant.

I. INTRODUCTION

W ITH the marvelous development of cloud computing
and network, the explosive growth of data in datacenters

has driven the leap of network bandwidth from 10 Gbps to 400
Gbps [1], [2]. However, the stagnation of CPU computing power
in recent years has caused traditional data centers, which rely on
CPUs to process data, to be overwhelmed, i.e., there exist too
many data center taxes in datacenters that prevent precious CPU
resources from being released.

The emergence of Data Processing Unit (DPU) bridges the
gap between the growth of network bandwidth and the stagnation

Manuscript received 7 November 2023; revised 15 July 2024; accepted 15 July
2024. Date of publication 25 July 2024; date of current version 30 December
2024. This work was supported in part by the special funding for the construction
of innovative provinces in Hunan Province under Grant 2021GK4012, in part
by the National Natural Science Foundation of China under Grant 62302158,
in part by the Hunan Provincial Natural Science Foundation of China under
Grant 2023JJ40175. (Zhaoyang Huang and Yanjie Tan are co-first authors.)
(Corresponding author: Huailiang Tan.)

Zhaoyang Huang, Yanjie Tan, Yifu Zhu, and Huailiang Tan are with the
College of Computer Science and Electronic Engineering, Hunan Univer-
sity, Changsha 410082, China (e-mail: huangzhaoyang@hnu.edu.cn; tanhuail
iang@hnu.edu.cn).

Keqin Li is with the College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China, and also with the Department of
Computer Science, State University of New York, New Paltz, NY 12561 USA
(e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TSC.2024.3433588

TABLE I
RELATED WORK

of CPU computing power in the data center [3]. The rich comput-
ing resources in DPU, including various hardware accelerators
for packet processing and specialized functions (such as crypto,
compression, and hash, etc.), on-board DRAM, and multi-core
processors (for some multicore SoC DPU), endow it the potential
to offload the generic datacenter tasks for multiple tenants, which
can release CPU resources to improve the efficiency of the
entire computing system and lower the total cost of the overall
system. In recent years, several researchers have explored the
offloading ability of DPU from various aspects [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13]. Detailed comparisons are
summarized in Table I. AccelTCP [4], Lynx [5] and UNO [6]
focus on offloading network tasks or services to reduce the
network overhead. LineFS [7], Xenic [8], and LeapIO [9] aim
to offload various storage protocols into DPU to accelerate the
distributed storage systems. Unlike the fronted two categories,
Floem [10] and iPipe [3] explore the design space to offload
computation tasks and applications into DPU to enhance the
performance and lower the latency. However, most of them are
engaged in offloading various applications or services into DPU
and ignore the competition and fair resource allocation among
tenants since all the tenants share the same physical device and
will compete for the DPU’s internal resources.

Optimally managing and fairly allocating DPU resources
among multiple tenants is an effective technique to improve
the throughput of offloading applications. There are several
discussions and methods for allocating and scheduling DPU
resources [3], [11], [12], [13], [14]. Liu et al [14] also conclude
that the dynamic load conditions of DPU should be taken into
consideration for improving the performance of data centers,
which is one of the research challenges that must be solved.
However, there are no further solutions in their research. iPipe [3]

1939-1374 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0008-3388-7636
https://orcid.org/0000-0001-6937-7648
https://orcid.org/0009-0003-7938-814X
https://orcid.org/0000-0001-9980-8015
https://orcid.org/0000-0001-5224-4048
mailto:huangzhaoyang@hnu.edu.cn
mailto:tanhuailpenalty -@M iang@hnu.edu.cn
mailto:tanhuailpenalty -@M iang@hnu.edu.cn
mailto:lik@newpaltz.edu

3972 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

proposes an actor-based hybrid scheduler, which combines First
Come First Serve (FCFS) and Deficit Round Robin (DRR) based
processor sharing, to promote the offloading benefits. Although
iPipe achieves dynamic resource scheduling through the hybrid
scheduler, it fails to consider the interference among tenants
and fair DPU resource allocation is also ignored. λ-NIC [13]
maps lambdas across different memory hierarchies to isolate
memory access and ensure fair allocation of resources, but it is
only suitable for serverless computing scenarios. FairNIC [11]
provides strict core partitioning, cache and memory striping,
and rate limiting of access to the fixed-function hardware ac-
celerator unit to achieve isolation and fair allocation for DPU
resources. However, this simple static partition method does not
consider the fairness of DPU resource allocation under diverse
applications of multiple tenants, each with varying performance
requirements. LogNIC [12] develops an optimizer to guide
fine-grained resource allocation and computation placement.
However, it requires an offline characterization phase to acquire
essential parameters as model input, rendering it inadequate for
adapting to the dynamic multi-tenant environment.

Existing DPU offloading architectures fail to satisfy the
complex and varying multi-tenant environments where all the
co-located tenants compete for the shared DPU’s internal re-
sources. This competition and interference will inevitably result
in degraded and fluctuating performance [15], [16]. In this paper,
we focus on DPU resource isolation and fair allocation under
complex and varying multi-tenant environments. We propose a
virtual multi-channel DPU offloading architecture for multiple
tenants (MTDA) and implement it on a typical multicore SoC-
based DPU platform Nvidia BlueField-2. MTDA maximizes the
offloading benefits by fairly assigning DPU resources to respond
to each tenant’s requests, according to the requirements of
application workloads. First, MTDA establishes an independent
virtual channel for individual tenants to ensure isolation and
mitigate the potential mutual interference among them. Offload-
ing requests will be inserted into corresponding virtual channels
based on the Tenant ID before they are submitted to the hard-
ware for execution. Second, for fair resource allocation, MTDA
abstracts DPU computing resources into credits and quantifies
the hardware resources to be allocated or transferred as the
number of credits changes. Based on their specific requirements,
MTDA allocates corresponding credits to each tenant. Third,
we design a traffic-aware scheduling algorithm that can adapt to
varying traffic characteristics and dynamic traffic behaviors by
assigning appropriate time slices.

The main contributions of our work are as follows.
� We propose a virtual multi-channel DPU offloading ar-

chitecture, called MTDA, which provides stable and fair
allocation of the DPU domain’s internal resources for each
tenant. MTDA separates the unified management of all of-
floading requests in DPU and builds an independent virtual
channel for each tenant to submit its offloading requests,
which prevents internal competition and interference of
requests among tenants.

� We develop a credit-based resource allocation model
that abstracts DPU resources to credit values and
allocates credits for each tenant according to its actual
requirements. Additionally, we also design a traffic-aware

TABLE II
COMPARISON AMONG DIFFERENT DPU DESIGNS

scheduling algorithm capable of adapting to diverse traffic
characteristics by monitoring the entire credit allocation
process and reallocating credits dynamically.

� We implement MTDA on the BlueField-2 DPU platform
and conduct a series of experiments with various bench-
marks (including both balanced and unbalanced work-
loads) to compare our method with four DPU offloading
frameworks (DPDK, iPipe, FairNIC, and LogNIC) from
four aspects, i.e., throughput, latency, fairness, and sta-
bility. For a fair comparison, we also implement them
on the BlueField-2 DPU platform. The evaluation results
demonstrate that MTDA enhances the throughput, reduces
the latency, and improves the fairness and stability of DPU
resource allocation.

The rest of this paper is organized as follows. Section II de-
scribes the background and motivation. Section III illustrates the
design of MTDA in detail. Section IV describes the implementa-
tion and portability of MTDA. Experimental results are demon-
strated in Section V. Section VI introduces related work. Finally,
Section VII concludes the paper and presents our future work.

II. BACKGROUND AND MOTIVATION

A. Data Processing Unit

Since the concept and technical standards of DPU are not
unified at present, the hardware design architecture of DPU
is diverse. From the perspective of core processors, DPU can
be categorized into three types which are FPGA-based, ASIC-
based, and SoC-based designs. Table II shows the comparison
between different DPU architectures.

FPGA-based DPUs usually combine hardware programmable
FPGAs with ASIC network controllers. They offer flexibility and
enhanced performance through parallel data flow processing.
However, these systems tend to be costly and pose challenges in
terms of programming [9]. Specifically, they require dedicated
programmers with sufficient skills in Hardware Description
Language (HDL) to fully leverage their capabilities. ASIC-based
DPUs achieve higher efficiency by sacrificing the flexibility
present in FPGA [13]. They are capable of running parallel
workloads with minimal latency and executing specific tasks
with highly optimized hardware structures. Nevertheless, their
programmability is limited, making them less suitable for han-
dling complex application scenarios [17]. Compared with the
aforementioned two categories, multi-core SoC-based DPUs
obtain the highest performance by adopting designs that mingle
dedicated hardware accelerators with programmable proces-
sors [18]. They usually hold rich computing resources including

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: MTDA: EFFICIENT AND FAIR DPU OFFLOADING METHOD FOR MULTIPLE TENANTS 3973

hardware accelerators, PCIe interface for host communication,
multicore processors, and onboard memory. Separate from the
host system, SoC-based DPUs are able to run their own operating
systems (commonly Linux), making them easier to program [13]
and obtain the maximum flexibility. Given these considerations,
we select Nvidia BlueField-2 DPU [19] as the experimental plat-
form and implement our virtual multi-channel DPU offloading
architecture on it.

B. Multi-Tenant Cloud

Multi-tenant cloud is a cloud computing service model where
multiple organizations or users collectively share a unified pool
of infrastructure and computing resources. Tenants within this
environment can leverage the resources provided by Cloud Ser-
vice Providers (CSPs) to deploy and execute their applications
or services. The emergence of multi-tenant cloud models not
only streamlines management processes and reduces operational
costs but also offers flexible and scalable cloud computing
services. Cloud resources for multi-tenant environments are
characterized by several key features, including 1) Resource
sharing: computing resources are shared among diverse ten-
ants, encouraging collaborative utilization while also fostering
competition for access to shared hardware infrastructure [22].
2) Pay-as-you-go billing: cloud computing system charges based
on the actual resource consumption of tenants [23]. This pay-
as-you-go billing model ensures users are billed for the precise
quantity of resources they consume, facilitating elastic resource
scaling and aligning costs with usage levels. 3) Dynamicity:
the computing demands of cloud data centers undergo constant
real-time fluctuations [24]. For example, during peak periods
such as year-end promotions, the server load experienced by
e-commerce platforms may escalate significantly in comparison
to standard operating periods. Consequently, the system design
should offer resource isolation to mitigate tenant competition
and provide dynamic configuration and traffic-aware schedul-
ing to accommodate fluctuations in tenant resource demands,
thereby ensuring optimal performance and fair resource alloca-
tion within the system.

C. Motivation

Although current DPU offloading frameworks have gained
decent performance, several research challenges need to be
addressed in dynamically offloading computation applications
of a multi-tenant system into DPU such as Bluefield-2. We will
demonstrate these challenges from two aspects as follows.

1) Competition among tenants: Considering the investment
and cost, today’s cloud providers usually don’t allocate physical
hardware to a tenant individually. The offloaded tasks of tenants
will share and compete with the internal resources of the DPU
domain [11], which results in performance degradation of the
whole system. Fig. 1 shows the experimental results of using
native DPDK to offload four typical applications in datacenters
(real-time analytics [10], flow monitor [25], IPv4 router [26]
and firewall [27]), the detailed experimental setup is described
in Section V-A. It can be seen that the throughput of the whole
system plummets with the increase in the number of tenants.

Fig. 1. Performance declines as tenants increase.

iPipe [3] alleviates this trend by scheduling requests with a
hybrid scheduler, but it does not fundamentally solve the prob-
lem of request competition among tenants (as shown in Fig. 4).
FairNIC [11] achieves fairness through the static isolation and
allocation of resources, but it is not suitable for unbalanced
load situations or scenarios with dynamic traffic changes (as
shown in Fig. 5). LogNIC [12] partitions computing resources
into multiple virtual instances and independently characterizes
the bandwidth to handle resource contention issues. However,
as an offline strategy, it also fails to address the dynamicity of
tenant resource demands (as shown in Fig. 13). To eliminate the
request interference among tenants, we first build an independent
virtual channel for each tenant in DPU to differentiate between
the offloading requests from different tenants, which can be
directed to their separate virtual channel, and then allocate
appropriate DPU computing resources for each tenant according
to its resource demands to process the offloaded requests.

2) Fair allocation of DPU computing resources for multi-
tenants: Emerging DPUs enclose rich computing resources
including a variety of hardware accelerators. It is a challenge
to fairly allocate these hardware resources for various offload
requests of tenants to achieve high and stable performance. Fig. 2
depicts the performance distribution of DPDK, iPipe, FairNIC,
and LogNIC when offloading four applications simultaneously.
We can observe that the throughput and latency of native DPDK
and iPipe fluctuate drastically over time, which means that they
cannot maintain stable performance in a multi-tenant environ-
ment. Although FairNIC and LogNIC guarantee small perfor-
mance fluctuations through strict isolation, they fail to achieve
fair resource allocation, leading to significant performance dif-
ferences among tenants. Moreover, their unfairness exhibits a
notable upward trend with the increase in the number of tenants
(experimental results are shown in Fig. 10). Therefore, we build
a credit-based resource allocation model to abstract the DPU
computing resources and assign credits for each tenant according
to its actual demands. A traffic-aware scheduling algorithm is
also proposed to adapt to the varying traffic behaviors.

III. DESIGN

In this section, we first formalize the definition of fairness
to pinpoint the root cause of unfairness and clarify our design

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

3974 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

Fig. 2. Performance of each tenant fluctuates over time.

TABLE III
LIST OF PARAMETERS

goals. Then we introduce the design specifics of our fair DPU
offloading architecture, namely MTDA, a system that effectively
separates the mixed offloading requests of tenants and ensures
stable performance and fair resource allocation.

A. Definition of Fairness

The assessment of fairness in resource allocation can be
defined in various ways, with different definitions being suitable
for different scenarios. In this subsection, we introduce two
typical definitions of fairness to clarify the underlying reasons
for unfairness and establish theoretical foundations to guide
the subsequent design of fair resource allocation strategy. The
detailed descriptions of each notation used in this paper are
summarized in Table III.

First, we follow the definition of fairness in research [28]
and [29], which is defined as the variance between the expected

weight and the actual weight of Tenanti. We denote Fair1
as the fairness index of DPU resource allocation and assume
that the throughput of Tenanti during the interval [t1, t2] is
Ti. Consequently, the overall system throughput is denoted as
T =

∑N
i=1 Ti and the measured weight ofTenanti is computed

as wreal
i = Ti/T . Therefore, the fairness index Fair1 can be

calculated as follows:

Fair1 =
N∑

i=1

∣∣wep
i − wreal

i

∣∣ , (1)

where N is the number of tenants, wep
i means the expected

weight of Tenanti, wreal
i represents the actual weight. A

smaller value ofFair1 indicates better fairness because it means
that the difference between the actual throughput and the fairly
allocated throughput is smaller.

Second, when multiple tenant requests run simultaneously,
they can negatively interfere with each other. To further assess
the impact of resource contention on performance and fairness,
and understand how the scheduler influences the interference, we
follow the definition of [30], [31] to redefine the fairness index
Fair2. The average slowdown Slowi for each tenant Tenanti
is defined as follows:

Slowi =
RLShared

i

RLAlone
i

, (2)

where RLAlone
i represents the request latency while running

the tenant Tenanti by itself and RLShared
i means the request

latency while Tenanti runs concurrently with other tenants.
The slowdown values, denoted as Slowi, express the difference
between these two scenarios. We define fairness as the ratio
between the minimum slowdown value and the maximum slow-
down value, which is formulated as follows:

Fair2 =
mini{Slowi}
maxi{Slowi} . (3)

The fairness index Fair2 varies from 0 to 1, where a higher
value indicates better fairness. If co-located tenants experience

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: MTDA: EFFICIENT AND FAIR DPU OFFLOADING METHOD FOR MULTIPLE TENANTS 3975

the same slowdown due to interference (i.e., the value of Fair2
equals 1), we consider the resource allocation strategy to be
completely fair.

B. System Model and Problem Formulation

Considering a multi-tenant cloud environment with N ten-
ants, where co-located tenants share and compete for the DPU
domain’s internal computing resources, including multicore pro-
cessors and hardware accelerators. This resource contention and
interference will inevitably lead to degraded and fluctuating
performance. To alleviate the competition and ensure fairness
among tenants, it is essential to implement an efficient allocation
strategy.

Denote the number of programmable processors as CM , and
CMi represents the multicore processor occupancy ofTenanti.
Since various applications need specific hardware accelerators
to perform, we denote ACC as the tenant dependency on them,
and the number of accelerators is M . Thus, ACCi

t represents
whether Tenanti relies on accelerator ACCt (1 indicates true,
otherwise the value is 0). Our objective is to achieve opti-
mal computing resource allocation among tenants, minimizing
fairness index Fair1 (lower is better), and maximizing Fair2
(higher is better). Similar to research [32], we construct an op-
timization problem model, which can be formulated as follows:

max
[
Fair2

(
CMi, ACCi

t

)− Fair1
(
CMi, ACCi

t

)]
(4)

s.t.
N∑

i=1

CMi ≤ CM, ∀i, (5)

M∑

t=1

ACCi
t ≤ M, ∀i, t. (6)

Equations (5) and (6) impose constraints on resource allocation
policy, ensuring that allocated hardware resources should not
exceed the total resource capacity.

Based on the discussion on the definition of fairness presented
in the preceding subsection, we can deduce two critical factors
contributed to unfairness: 1) the deviation between the ideal and
actual weights results from improper resource allocation, and 2)
performance slowdown caused by mutual interference among
co-located requests. Therefore, we can transform the fairness-
enhancing problem into two specific objectives: 1) considering
the actual resource demands of each tenant (min[Fair1]), and
2) alleviating the mutual competition among tenants for shared
resources (max[Fair2]). To address this, we propose MTDA,
an innovative virtual multi-channel DPU offloading architecture
designed to facilitate stable and fair allocation of the DPU
domain’s internal resources. The architecture of MTDA is il-
lustrated in Fig. 3.

First of all, we implement an independent virtual channel
for each tenant to ensure performance isolation and stability.
Offloading requests from multiple tenants are divided into inde-
pendent virtual channels to avoid competition and interference
with each other before they are submitted to the hardware.
Subsequently, for fair resource allocation, MTDA incorporates

Fig. 3. MTDA architecture.

a credit-based resource allocation model that abstracts DPU
resources as credits and assigns credits to each tenant according
to their actual requirements. The credit value of each tenant,
which presents the abstract of hardware resources, is allocated
and bound to the corresponding virtual channel according to
the credit allocation model. Finally, requests within the virtual
channels are dispatched to the physical hardware accelerator via
a traffic-aware scheduler, which allocates time slices according
to the actual demand of each tenant. When tenants contend for
the same accelerator during a period, the requests of each tenant
are sequentially sent to the ring buffer we establish. Then the
accelerator will consume these requests by fetching them from
the ring buffer. Further details will be provided in the subsequent
subsections.

C. Fair Resource Allocation Based on Credit Model

1) Independent virtual channels: In today’s data centers,
servers often host applications from multiple tenants on shared
physical DPU resources, leading to potential competition and
resource contention among them [33]. For instance, consider a
scenario where two tenants are co-located on the same server.
If Tenant A operates a compute-intensive application, it might
dominate the available resources, causing Tenant B to experience
head-of-line blocking. Therefore, it is essential to implement
robust performance isolation mechanisms to effectively manage
tenant competition and ensure fair resource allocation among
tenants.

In order to ensure the stability and security of multi-tenant
systems in complex shared resource environments and to mit-
igate potential interference among tenants, we implement an
independent virtual channel for each individual tenant to achieve

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

3976 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

resource isolation. For clear identification, MTDA assigns a
unique Tenant ID to each tenant and associates tenant requests
with their corresponding virtual channels through tenant ID allo-
cation. Virtual channels are isolated from each other, effectively
preventing unnecessary interference or interaction among ten-
ants. The offloading requests will be received through dedicated
Virtual Functions (VFs) and inserted into the appropriate virtual
channel based on the assigned Tenant ID. Subsequently, these
requests are submitted to suitable hardware computing units,
such as various hardware accelerators or multicore processors,
for execution.

2) Credit model: Based on the principles of credit-based
scheduling, a technique widely employed to ensure fairness in
CPU resource allocation within the Xen hypervisor [34], we
extend the concept to facilitate fair DPU resource allocation in
MTDA. We introduce a credit-based resource allocation model
that abstracts DPU computing resources into credits. These
credits are distributed fairly among tenants, taking factors such
as the number of requests, the quantity of hardware accelerators,
and the number of programmable processors into consideration.
Inspired by the findings in study like [35], which indicate that
hardware resources allocated to virtual machines (VMs) tend to
follow an exponential distribution, we express the credit value
assigned to Tenanti as follows:

Crediti =
e
∑M

t=1ACCi
t × eCMi +Reqi

e
∑M

t=1ACCt × eCM +
∑N

j=1Reqj

× CREDIT,

(7)
where Reqi represents the number of requests from Tenanti’s
virtual channel, and CREDIT means the total amount of
credits, i.e., the abstraction of the overall hardware resources
in DPU.

According to (7), we quantify the hardware resources to be
allocated or transferred as the number of credits changes (i.e.,
the amount of credits increases or decreases). By predicting the
credit weight of each virtual channel, we assign proper time
slices to each tenant and achieve efficient time division multi-
plexing of physical hardware resources. However, the required
context switches might result in increased latency. Therefore,
if the available multicore processors can satisfy the tenant
demands, we allocate certain amounts of cores to each tenant
to avoid frequent context switching. Through credit allocation,
DPU resources can be fairly exploited by all tenants, effectively
alleviating DPU resource competition among tenants.

D. Traffic-Aware Scheduling

The credit-based resource allocation model effectively as-
signs the necessary hardware resources to each tenant based on
their requirements. However, system performance can be further
improved with an appropriate scheduling algorithm. Consid-
ering different tenants have various traffic characteristics, and
even the traffic of the tenant itself will change dynamically over
time in different periods, we design a traffic-aware scheduling
algorithm to apply to this situation.

The traffic-aware scheduling framework encompasses two
principal components: the Monitoring Unit and the Reallocating

Algorithm 1: Credit Reallocation Algorithm.
EXPIRED: The current scheduling period ends and there are
remaining credits

EXHAUSTED: All credits are exhausted and new requests
arrive
1) int CreditReallocation(int ∗req, int ∗acc, int ∗core)
2) if EXPIRED then
3) currentCredit = credit;
4) else if EXHAUSTED then
5) /* Trigger the credit reallocation process based on

(7) */
6) credit = creditAllocation(req, acc, core);
7) currentCredit = credit;
8) end if
9) return currentCredit;

10) End

Unit. The monitoring unit monitors the entire credit allocation
process and records the status of virtual channels. Tenant queues
will become inactive when one of the following conditions are
met: 1) EXPIRED: the allocated credits will expire by the end
of a scheduling period, 2) EXHAUSTED: all credits in the
tenant’s virtual channel are exhausted and new requests arrive.
These indicators will be provided as the input of the second
Reallocating Unit, as shown in Algorithm 1. EXPIRED and
EXHAUSTED denote the two conditions for deactivating a
queue, and currentCredit[i] means the current credit value of
Tenanti. If the reason for queue deactivation is EXPIRED, we
consider there are remaining credits for each tenant and renew
the value of current credits as the last scheduling period (Step 1
to 3). However, if the reason for deactivation is EXHAUSTED,
we regard the tenant application to have been too high-intensity,
i.e., the request generation rate becomes higher and triggers the
credit reallocation process according to (7) (Step 4 to 10).

The procedure of traffic-aware fair scheduling is depicted in
Algorithm 2. Overall, in order to adapt to the traffic dynamicity
and achieve fair DPU resource allocation, MTDA takes the
actual resource requirements of each tenant as crucial inputs
and generates optimal fair resource allocation results. The time
complexity of Algorithm 2 is O(N ·max(Reqi)), where N is
the number of tenants, and max(Reqi) represents the maximum
number of tenant requests Reqi. The main steps are as follows.
MTDA traverses the virtual channel of each tenant, if spare cred-
its and pending requests exist, the algorithm dispatches requests
from the virtual channel and decreases the corresponding value
of req[i] and currentCredit[i] (Step 1 to 6). Otherwise, if all
the credits of Tenantsi are exhausted or the current scheduling
period ends, MTDA sets the corresponding indicators as 1,
triggers the credit reallocation process, and continues to the next
scheduling period (Step 7 to 21).

IV. IMPLEMENTATION AND DISCUSSION

In this section, we present the implementation details of the
MTDA framework on the BlueField-2 DPU platform and discuss
the architecture independence and portability of MTDA.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: MTDA: EFFICIENT AND FAIR DPU OFFLOADING METHOD FOR MULTIPLE TENANTS 3977

Algorithm 2: Traffic-Aware Fair Scheduling Algorithm.

Input: Request number of each tenant req[N], accelerator
dependency acc[N][M], and multicore processor
occupancy core[N]

Output: Fair resource allocation results credit[N]
1) for i = 1 to N do
2) while req[i] > 0
3) if currentCredit[i] > 0 then
4) /* Dispatch requests from the virtual channel */
5) req[i]−−;
6) currentCredit[i]−−;
7) else
8) /* All the credits of Tenant[i] are exhausted */
9) EXHAUSTED = 1;

10) credit = CreditReallocation(req, acc, core);
11) /* Continue the next scheduling round */
12) return credit;
13) end if
14) end while
15) end for
16) /* By the end of the scheduling period */
17) EXPIRED = 1;
18) credit = CreditReallocation(req, acc, core);
19) /* Continue to the next scheduling period */
20) return credit;
21) End

MTDA implementation on BlueField-2 DPU: BlueField-2
DPU is the latest generation DPU product of NVIDIA, which
belongs to the SoC-based designs. It is equipped with eight
64-bit ARMv8 A72 cores, 16 GB of DDR4 RAM, 64 GB of
on-board eMMC Memory, and a variety of specific hardware
accelerators, which allows us to install an individual operating
system to flexibly deploy the offloaded applications or proto-
cols. In this paper, we install Ubuntu 20.04 as the operating
system and implement the MTDA protocol in Data-Center-
Infrastructure-On-A-Chip-Architecture (DOCA) [36] which is
a highly programmable SDK development platform tool for
NVIDIA-Mellanox’s DPU. Both the core component and ap-
plication development of MTDA are implemented using the
C programming language with a total of 11480 lines of code
(LOC). Specifically, we develop four applications for experi-
mental evaluation, including real-time analytics, flow monitor,
IPv4 router, and firewall, with 2292 LOC, 2431 LOC, 1348 LOC,
and 1219 LOC respectively.

Architecture independence and portability discussion: Al-
though MTDA is implemented on BlueField-2 DPU in this
paper, it can also be suitable for other DPUs because specific
hardware accelerators are the essential components. In addition,
the core component of MTDA is platform agnostic. While we
implement it in DOCA currently, we can easily extend MTDA
to other SoC-based DPUs, such as MIPS architecture, or port it
to FPGA-based DPUs. Moreover, we might also apply MTDA
to other architectures in multi-tenant scenarios in addition to
DPUs, which will be explored in our future work.

V. EVALUATION

In this section, we run a set of experiments to evaluate the per-
formance of MTDA on our BlueField-2 DPU platform by using
a variety of workloads we have mentioned in Section II-C, which
demonstrate that MTDA has several advantages in throughput,
latency, fairness, and stability compared with other offloading
methods, including Native DPDK, iPipe [3], FairNIC [11], and
LogNIC [12]. We also implement them on the BlueField-2 DPU
for comparison.

A. Experimental Setup

1) Experimental platform: Similar to FairNIC [11], we also
emulate a simple cloud environment with two Intel servers,
which are equipped with an NVIDIA BlueField-2 25-Gbps DPU
and a regular Intel E810 25-Gbps NIC respectively. Both of them
support an Intel 8171M 52-core processor running at 2.6 GHz,
128 GB RAM, and 512 GB NVMe SSD. We install Ubuntu
20.04 in the servers and instantiate tenants in VMs by KVM
and SR-IOV. The server with regular NIC is used to generate
workloads of different formats by DPDK Pktgen [37], and
connected to the server with BlueField-2 DPU via an SFP28
cable.

2) Workloads: We select four typical data center applications,
that present both compute-intensive and memory-intensive be-
haviors to fully evaluate the heterogeneous platform.

Real-time Analytics: Real-time analytics (RTA) [10] is a data
processing approach that involves real-time analysis and extrac-
tion of valuable insights and patterns from extensive datasets.
Significant data ingestion and processing make it compute-
intensive. Additionally, as it involves large volumes of data
access and management, RTA is also memory-intensive.

Flow Monitor: Flow Monitor [25] performs the capture and
analysis of network flows, with the primary goal of identifying
abnormal traffic patterns and network issues. It offers real-time
insights into network performance and security. Notably, this
process is highly memory-intensive, especially when dealing
with substantial volumes of network data.

IPv4 Router: IPv4 router [26] is responsible for routing IPv4
packets through the internet. It functions by receiving packets
and forwarding them from the source address to the intended
destination. Complex operations like packet forwarding and
address translation make it compute-intensive.

Firewall: Firewall [27] involves the inspection and filtering
of network traffic to enforce security policies. This operation
is computationally intensive because it involves analyzing each
incoming packet for potential security threats and comparing it
against a set of predefined rules to determine whether it should
be allowed or blocked.

Workload Configuration: To comprehensively assess
MTDA’s performance, we expand the number of tenants
from 1 to 8 and design two sets of workloads (balanced and
unbalanced workloads). In the cloud computing environments,
it is common for VMs holding aggressive applications (e.g.,
video, Hadoop) with relatively high request arriving speeds,
to run together with VMs holding non-aggressive applications
like web and mail [38]. To simulate this common situation,

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

3978 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

Fig. 4. Throughput of balanced workload.

Fig. 5. Throughput of unbalanced workload.

TABLE IV
CONFIGURATION OF BALANCED AND UNBALANCED WORKLOADS

we assign different request generation rates to tenants under
unbalanced workloads. The configuration details are outlined
in Table IV. We deploy specific applications on each tenant and
allocate varying traffic generation rates for them in the case of
unbalanced workloads.

B. Throughput

We first evaluate the overall system throughput under bal-
anced and unbalanced workloads. Experimental results in dif-
ferent packet sizes are shown in Figs. 4 and 5.

Since resource allocation strategy is not triggered in scenarios
involving a single tenant, MTDA achieves similar throughput
compared with other methods, as shown in Figs. 4(a) and 5(a).
Moreover, with the increase in packet size, the overall system
throughput generally exhibits an increasing trend. iPipe requires
additional resource overhead to manage migration tasks between
hosts and DPUs, which inevitably impacts its performance.
While FairNIC demonstrates reasonable performance when
confronted with balanced workloads, it exhibits unsatisfactory
performance in scenarios involving unbalanced workloads due
to its adoption of static resource partitioning strategies. LogNIC
abstracts offloaded programs as directed acyclic graphs and
makes resource allocation decisions based on factors such as
computation transfer overhead and potential queueing delay.

However, it overlooks the actual resource requirements of each
tenant. Overall, when dealing with multiple tenants, MTDA
presents a superior performance of throughput than the other four
methods, especially for unbalanced workloads. Take Fig. 5(c) as
an example, MTDA improves the throughput by up to 101.2%,
143.2%, 36.1%, and 41.7% respectively compared to DPDK,
iPipe, FairNIC, and LogNIC. This significant enhancement
in throughput is attributed to MTDA’s unique characteristics.
Through the implementation of independent virtual channels,
MTDA effectively mitigates resource competition among ten-
ants and provides optimized system performance.

C. Latency

Figs. 6 and 7 provide a comprehensive evaluation of latency in
both balanced and unbalanced workloads. They show a similar
trend as the experimental results of throughput. As shown in
Fig. 7, for the four tenants operating under unbalanced work-
loads, as the packet size increases from 256B to 1500B, the
latency gradually decreases for all five methods. This trend is
primarily due to the decrease in the number of packets pro-
cessed per second as the packet size grows. MTDA consistently
maintains the lowest latency across various packet sizes and
reduces the latency by up to 50.3%, 58.9%, 26.6%, and 29.4%
respectively compared to DPDK, iPipe, FairNIC, and LogNIC.
The reason is that MTDA guarantees the appropriate allocation
of hardware resources based on the individual requirements of
each tenant, thereby reducing queueing delay and request pro-
cessing time. The performance experimental results underscore
MTDA’s capability to achieve nearly line-rate processing within
multi-tenant environments.

p99 tail latency: For generic cloud applications such as so-
cial networking or search, the end-to-end latency is primarily
determined by the slowest operations, which are often referred
to as the request tail latency [39], [40]. In this subsection, we
measure the tail latency at the 99th percentile for four tenants
under the packet size of 1024B, results are displayed in Fig. 8.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: MTDA: EFFICIENT AND FAIR DPU OFFLOADING METHOD FOR MULTIPLE TENANTS 3979

Fig. 6. Latency of balanced workload.

Fig. 7. Latency of unbalanced workload.

Fig. 8. p99 tail latency of each tenant.

iPipe effectively reduces the tail latency by directing requests
into a DRR runnable queue when latency exceeds the pre-defined
threshold. However, compared with DPDK, iPipe, FairNIC, and
LogNIC, MTDA significantly lowers the tail latency by up to
36.8%, 20.0%, 36.4%, and 21.2% respectively. Through re-
source isolation and fair allocation, MTDA alleviates significant
queue build-up caused by resource contention, leading to re-
duced end-to-end response times and enhanced user experience.

To further validate MTDA’s latency-reduction capabilities,
we assess the overall system p99 tail latency for four tenants
across various packet sizes. As illustrated in Fig. 9, we achieve
up to 23.5%, 14.5%, 16.7%, and 15.4% 99th percentile latency
savings compared to DPDK, iPipe, FairNIC, and LogNIC, re-
spectively. The results not only emphasize the effectiveness of
MTDA but also point to its potential in addressing real-world
cloud computing challenges where latency and response times
are critical metrics.

D. Fairness

In this subsection, we evaluate the fairness index of DPDK,
iPipe, FairNIC, LogNIC, and MTDA according to (1) and (3),
respectively.

Fig. 9. Overall system p99 tail latency.

First of all, we measure the results of the fairness index
Fair1, which depicts the difference between the expected
weight and the actual weight of Tenanti, with a lower value
of Fair1 indicating superior fairness. Take the throughput
of DPDK and MTDA in Fig. 4(c) as an example, for the
balanced workload, the expected weight W ep should be
equal to [1/4, 1/4, 1/4, 1/4], and the actual throughput of
DPDK and MTDA is (4.349, 3.284, 3.273, 4.439) and (5.288,
5.342, 5.343, 5.045) respectively. So we can calculate the
measured weights of DPDK and MTDA, which are W real

dpdk =
[4.349/15.345, 3.284/15.345, 3.273/15.345, 4.439/15.345] =
[0.283, 0.214, 0.213, 0.289] and W real

mtda = [5.288/21.018,
5.342/21.018, 5.343/21.018, 5.045/21.018] = [0.252, 0.254,
0.254, 0.240] respectively, and obtain the fairness index
Fairdpdk1 = 0.145 and FairMTDA

1 = 0.02.
Fig. 10 illustrates the results of Fair1 of five methods for

the balanced workload in the packet size of 1024B. It can be
observed that fairness gradually decreases as the number of
tenants increases. This trend may be attributed to the intensified
resource competition among tenants as their numbers grow.
Since each tenant will receive fewer resources, leading to a

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

3980 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

Fig. 10. Fairness index results of Fair1, which depict the difference between
the expected weight and the actual weight of Tenanti, with a lower value of
Fair1 indicating superior fairness.

Fig. 11. Fairness index results of Fair2, which denote the ratio of the
minimum and maximum slowdowns, where a higher value indicates better
fairness.

less fair resource allocation. Compared with DPDK, iPipe, and
LogNIC, the fairness index of MTDA is improved by up to
98.8%, 99.0%, and 98.4% respectively for multiple tenants.
Although MTDA obtains a similar fairness result to FairNIC
for two tenants, it promotes the fairness index by 98.3%, and
82.3% for three and four tenants respectively. This improvement
is due to the static resource allocation strategy in FairNIC, which
fails to meet the diverse resource requirements of multi-tenants.
In contrast, through the credit-based model and traffic-aware
scheduling, MTDA dynamically allocates computing resources
based on the actual needs of tenants, thereby reducing the weight
deviation between ideal and reality.

To demonstrate the benefits of MTDA in reducing inter-tenant
interference, we further measure the results of the fairness index
Fair2 , which denotes the ratio of the minimum and maximum
slowdowns, where a higher value indicates better fairness. Re-
sults of four tenants under various packet sizes are depicted in
Fig. 11. We improve the fairness index by up to 29.6%, 44.4%,
26.3%, and 21.4% respectively. MTDA divides offloading re-
quests from multiple tenants into independent virtual channels
and effectively alleviates the performance slowdown caused by
resource contention and mutual interference.

E. Stability

To demonstrate that MTDA has stable performance, we eval-
uate the stability of DPU resource allocation by measuring
the throughput of three tenants in 45 seconds for balanced

workloads. The packet size is set to 1024B. Fig. 12 presents
the experimental results. As shown in Fig. 12(a) and (b), DPDK
and iPipe reveal significant throughput fluctuations over time.
This instability can be problematic for maintaining consistent
performance levels. For FairNIC, while its throughput remains
stable due to the strict resource isolation, Tenant 1’s performance
(indicated by the blue line in the figure) experiences a notable
drop in performance due to its static resource allocation. Log-
NIC achieves performance isolation by partitioning computing
resources into virtual instances. However, tenants fail to attain
optimal performance due to unfair resource allocation. MTDA,
on the other hand, not only ensures stable performance but
also accomplishes nearly line-rate packet processing within the
multi-tenant environment, as shown in Fig. 12(e).

Stability under burst traffic: Unexpected burst traffic is a
common phenomenon within the data center environment, pre-
senting a potential risk of packet dropping and serious perfor-
mance degradation [41]. To assess the efficiency of MTDA under
extreme workload conditions, we measure the p99 tail latency
fluctuations over 30 seconds under four tenants. As shown in
Fig. 13, we initially employ a lightweight workload and intensify
it at the 8th second to emulate a burst traffic situation. DPDK,
FairNIC, and LogNIC experience noticeable latency increments
since they all employ static resource allocation policies, which
lack robust adaptive mechanisms capable of dynamically ad-
dressing unexpected situations. iPipe pushes requests to the DRR
runnable queue when the tail latency exceeds the pre-defined
threshold, effectively alleviating the surge in tail latency. How-
ever, it introduces additional request migration overhead. In con-
trast, through traffic-aware scheduling and credit reallocation,
MTDA demonstrates an effective response to burst traffic and
unexpected scenarios, providing stable tail latency levels and
enhanced overall performance.

F. Overhead of MTDA

To achieve stable and fair DPU resource allocation, MTDA
introduces an independent virtual channel for individual ten-
ants and implements a credit-based resource allocation model.
The evaluation experiments demonstrate that MTDA effectively
alleviates resource competition, and provides stable and en-
hanced performance. However, credit allocation and traffic-
aware scheduling require continuous monitoring of the whole
request processing and collection of relevant information men-
tioned in Section III-C. MTDA might also introduce some
additional overhead and potentially impact the overall system
performance.

To measure the overhead introduced by MTDA, we man-
ually adjust the resource allocation strategies among tenants
to achieve the possible optimal performance and compare it
with MTDA. Fig. 14(a) show the throughput of MTDA and the
manually-tuned version in the packet size of 512B varying the
number of tenants from 2 to 4. Fig. 14(b) displays the average
latency. As illustrated in the figure, when compared to the
manually-tuned results, MTDA reduces the throughput by less
than 4.9% and increases the latency by no more than 5.2%. We
also evaluate the additional CPU cores and memory utilization

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: MTDA: EFFICIENT AND FAIR DPU OFFLOADING METHOD FOR MULTIPLE TENANTS 3981

Fig. 12. Stability of DPU resource allocation in 3 tenants.

Fig. 13. Stability under burst traffic.

induced by MTDA, as shown in Fig. 14(c). MTDA exhibits a
modest increase in CPU and memory usage, with an average
rise of 3.3%, and 1.4%, respectively. The experimental findings
indicate that the additional overhead caused by MTDA’s fair
resource allocation and traffic-aware scheduling is acceptable,
in terms of both performance impact and implementation costs.

VI. RELATED WORK

DPU acceleration: Researchers have done a lot of work
to explore the potential of SmartNIC across various domains,
including network [4], [5], [6], [42], [43], [44], storage [7],
[8], [9], [45], [46], [47] and computation [3], [10], [48], [49]
acceleration.

For reducing network overhead, AccelTCP [4] employs
SmartNIC to accelerate the TCP protocol, offloading complex
TCP operations like connection setup and teardown to free up
valuable CPU cycles. Lynx [5] introduces an accelerator-centric
network server architecture that offloads server data and control
planes to the SmartNIC. UNO [6] studies how to make network
function placement decisions between the NIC and the host.
FlexNIC [42] provides a flexible DMA interface for network I/O,
enabling operating systems and applications to offload stateless
packet processing tasks. Clara [43] generates automated of-
floading insights for network functions, extracting features from
network functions and predicting their performance character-
istics on SmartNIC using machine learning techniques. Flex-
TOE [44] offloads all TCP data-path processing to SmartNIC
and leverages the fine-grained parallelization of TCP data-path
and segment reordering for exceptional performance.

To relieve cloud providers from heavy storage tax burden,
LeapIO [9] presents a novel cloud storage stack that leverages
ARM-based co-processors to offload complex storage services.
LineFS [7] decomposes distributed file system (DFS) operations

into execution stages that can be offloaded to a parallel data-path
execution pipeline and offloads CPU-intensive DFS tasks like
replication, compression, and data publication. Xenic [8] es-
tablishes a SmartNIC-optimized transaction processing system,
and employs a co-designed data store distributed between the
NIC and x86 host to enhance communication flexibility and
efficiency. AINiCo [45] proposes an intelligent transaction pro-
cessing system, which schedules transaction requests to different
CPU cores to minimize inter-transaction contention.

In addition, researchers have also proposed several methods
to make full use of the substantial computing resources on
SmartNIC and move computation tasks onto it. Floem [10]
provides a flexible programming system that simplifies the de-
velopment of network applications. It offers a unified framework
for implementing applications distributed between the CPU and
NIC. iPipe [3] explores the computational capabilities of mul-
ticore SoC SmartNICs and proposes an actor-based framework
for distributed application offloading to achieve host CPU and
latency saving. E3 [48] offloads microservice-based applications
to SmartNIC-accelerated server systems for energy efficiency.

To further optimize CPU resource allocation and alleviate
the heavy data center tax burden, MTDA offloads generic data
center tasks for multiple tenants and fairly allocates DPU internal
resources according to their specific demands.

Task scheduling and resource allocation: To make full use of
the multicore processors on DPU, several studies have concen-
trated on task scheduling and core allocation. IX [50] presents an
operating system that separates the control plane from the data
plane. The core of the IX control plane is a dynamic controller
that adjusts the number of cores allocated to applications by
monitoring CPU utilization. ZygOS [51] implements a work-
conserving scheduler, introducing a single-producer, multiple-
consumer shuffle queue for each core. This design allows idle
cores to aggressively steal pending events. However, work steal-
ing is not free and has associated costs. Shinjuku [52] imple-
ments preemptive scheduling at the microsecond scale, aided
by hardware support for virtualization. It leverages preemption
to select c-FCFS for low dispersion workloads and PS for all
other cases based on observed service times. iPipe [3] proposes
a hybrid scheduler that combines FCFS and DRR. Heavy-weight
actors are executed on DRR cores, while lightweight actors run
on FCFS cores. These studies primarily aim at the allocation of
multicore processors and scheduling requests among multiple
cores within DPUs. In contrast, MTDA focuses on multi-tenant
deployment and scheduling resources among tenants including
both cores and accelerators.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

3982 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

Fig. 14. Overhead of MTDA.

Multi-tenancy isolation: With the expansion of data centers,
cloud providers have started to deploy services on a shared
DPU, leading to increased competition for available hardware
resources. Researchers have proposed several solutions to al-
leviate the competition and provide cross-tenant performance
isolation. λ-NIC [13] aims to run serverless workloads (lambda)
on SmartNICs. To achieve isolated memory access, it maps
lambdas across different memory hierarchies within NICs based
on their memory-access patterns. FairNIC [11] focuses on strict
performance isolation, it isolates typical packet processing, core
cycles, shared memory, and fixed-function coprocessor access.
However, this static partitioning approach fails to adapt to the
diverse performance requirements of multi-tenants, especially
when their workloads are unbalanced. PANIC [33] enables
priority scheduling on FPGA-based SmartNIC, utilizing a new
hardware-based priority queue called PFIO, and allocates band-
width according to flow priorities. Different from the above-
mentioned approaches, MTDA aims at alleviating resource com-
petition and achieving fair resource allocation based on the
specific resource requirements of each individual tenant.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an efficient and fair DPU
offloading method for multi-tenants called MTDA. It divides
the unified management of all offloading requests into virtual
multi-channels to avoid internal competition and interference
of requests among tenants. By abstracting the DPU resources
to credit values according to a credit-based resource allocation
model, MTDA achieves the fair allocation of DPU resources
for each tenant based on its actual needs. After the resource
allocation, a traffic-aware scheduling algorithm is designed to
dynamically submit each tenant’s requests to hardware acceler-
ators for execution. Evaluations using four typical data center
applications show that MTDA increases the throughput by up
to 101.2%, 143.2%, 36.1%, and 41.7%, lowers the latency by
up to 50.3%, 58.9%, 26.6%, and 29.4%, improves the fairness
by up to 98.8%, 99.0%, 98.3%, and 98.4%, and provides more
stable performance for multi-tenants, compared with DPDK,
iPipe, FairNIC, and LogNIC.

Future work: In the current design, we primarily focus on
the fair allocation of computing resources, including multi-core
processors and hardware accelerators. However, it is essential to
acknowledge the significance of other critical resources within

data centers. For instance, research Falloc [32] and SoftBW [23]
highlight the importance of fair network bandwidth allocation. In
future work, we aim to extend MTDA to ensure the fair allocation
of other key resources, such as on-board memory and bandwidth.
Additionally, our research effort is primarily conducted on a
typical SoC-based DPU platform Nvidia BlueField-2. However,
as a software-level design, we can easily extend MTDA to other
SoC-based options such as the Cavium LiquidIO. Moreover,
given the platform-agnostic nature of MTDA’s core architecture,
we also have the potential to extend MTDA to other types of
DPUs, such as FPGA-based DPUs, or even other architectures
within multi-tenant scenarios. We intend to pursue these exten-
sions and explorations in our future work.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for their
helpful feedback.

REFERENCES

[1] Z. Wang, H. Huang, J. Zhang, F. Wu, and G. Alonso, “FpgaNIC: An FPGA-
based versatile 100Gb SmartNIC for GPUs,” in Proc. USENIX Annu. Tech.
Conf., 2022, pp. 967–986.

[2] M. Cooney, “Speed race: Just as 400Gb ethernet gear rolls out, an 800GbE
spec is revealed,” 2020. [Online]. Available: https://download.intel.com/
newsroom/2022/corporate/vision/Intel-IPU-Roadmap-Fact-Sheet.pdf

[3] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartNICs using iPipe,” in Proc.
ACM Special Int. Group Data Commun., 2019, pp. 318–333.

[4] Y. Moon, S. Lee, M. A. Jamshed, and K. Park, “AccelTCP: Accelerating
network applications with stateful TCP offloading,” in Proc. 17th USENIX
Symp. Netw. Syst. Des. Implementation, 2020, pp. 77–92.

[5] M. Tork, L. Maudlej, and M. Silberstein, “Lynx: A smartnic-driven
accelerator-centric architecture for network servers,” in Proc. 25th Int.
Conf. Architectural Support Program. Lang. Operating Syst., 2020,
pp. 117–131.

[6] Y. Le et al., “UNO: Uniflying host and smart NIC offload for flexible
packet processing,” in Proc. Symp. Cloud Comput., 2017, pp. 506–519.

[7] J. Kim et al., “LineFS: Efficient smartnic offload of a distributed file system
with pipeline parallelism,” in Proc. ACM SIGOPS 28th Symp. Operating
Syst. Princ., 2021, pp. 756–771.

[8] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy, “Xenic:
SmartNIC-accelerated distributed transactions,” in Proc. ACM SIGOPS
28th Symp. Operating Syst. Princ., 2021, pp. 740–755.

[9] H. Li et al., “Leapio: Efficient and portable virtual NVMe storage on
ARM SoCs,” in Proc. 25th Int. Conf. Architectural Support Program. Lang.
Operating Syst., 2020, pp. 591–605.

[10] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and T.
Anderson, “Floem: A programming system for NIC-accelerated network
applications,” in Proc. 13th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2018, pp. 663–679.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

https://download.intel.com/newsroom/2022/corporate/vision/Intel-IPU-Roadmap-Fact-Sheet.pdf
https://download.intel.com/newsroom/2022/corporate/vision/Intel-IPU-Roadmap-Fact-Sheet.pdf

HUANG et al.: MTDA: EFFICIENT AND FAIR DPU OFFLOADING METHOD FOR MULTIPLE TENANTS 3983

[11] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren, “SmartNIC performance
isolation with FairNIC: Programmable networking for the cloud,” in Proc.
Annu. Conf. ACM Special Int. Group Data Commun. Appl. Technol.
Architectures Protoc. Comput. Commun., 2020, pp. 681–693.

[12] Z. Guo et al., “LogNIC: A high-level performance model for Smart-
NICs,” in Proc. 56th Annu. IEEE/ACM Int. Symp. Microarchitecture, 2023,
pp. 916–929.

[13] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum, “λ-NIC: Inter-
active serverless compute on programmable SmartNICs,” in Proc. IEEE
40th Int. Conf. Distrib. Comput. Syst., 2020, pp. 67–77.

[14] J. Liu, C. Maltzahn, C. Ulmer, and M. L. Curry, “Performance character-
istics of the BlueField-2 SmartNIC,” 2021, arXiv:2105.06619.

[15] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, “Managing performance overhead
of virtual machines in cloud computing: A survey, state of the art, and future
directions,” in Proc. IEEE, vol. 102, no. 1, pp. 11–31, Jan. 2014.

[16] C. Zeng, F. Liu, S. Chen, W. Jiang, and M. Li, “Demystifying the per-
formance interference of co-located virtual network functions,” in Proc.
IEEE Conf. Comput. Commun., 2018, pp. 765–773.

[17] D. Firestone et al., “Azure accelerated networking: SmartNICs in the pub-
lic cloud,” in Proc. 15th USENIX Symp. Netw. Syst. Des. Implementation,
2018, pp. 51–66.

[18] L. Thostrup, D. Failing, T. Ziegler, and C. Binnig, “A DBMS-centric
evaluation of bluefield DPUS on fast networks,” in Proc. 13th Int. Work-
shop Accelerating Analytics Data Manage. Syst. Using Modern Processor
Storage Architectures, 2022, pp. 1–10.

[19] NVIDIA, “NVIDIA bluefield-2 DPU,” 2022. [Online]. Available:
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
documents/datasheet-nvidia-bluefield-2-dpu.pdf

[20] Mellanox, “Mellanox innova-2flex,” 2020. [Online]. Available:
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-
2_Flex.pdf

[21] Intel, “Intel ASIC-based IPU mount evans,” 2022. [Online]. Avail-
able: https://download.intel.com/newsroom/2022/corporate/vision/Intel-
IPU-Roadmap-Fact-Sheet.pdf

[22] F. Xu, F. Liu, and H. Jin, “Heterogeneity and interference-aware virtual
machine provisioning for predictable performance in the cloud,” IEEE
Trans. Comput., vol. 65, no. 8, pp. 2470–2483, Aug. 2016.

[23] J. Guo, F. Liu, T. Wang, and J. C. S. Lui, “Pricing intra-datacenter networks
with over-committed bandwidth guarantee,” in Proc. USENIX Annu. Tech.
Conf., 2017, pp. 69–81.

[24] F. Liu, J. Guo, X. Huang, and J. C. S. Lui, “eBA: Efficient bandwidth
guarantee under traffic variability in datacenters,” IEEE/ACM Trans. Netw.,
vol. 25, no. 1, pp. 506–519, Feb. 2017.

[25] N. Kr Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approximating
fair queueing on reconfigurable switches,” in Proc. 15th USENIX Symp.
Netw. Syst. Des. Implementation, 2018, pp. 1–16.

[26] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA (network
balancing act) a high-performance packet processing framework for het-
erogeneous processors,” in Proc. 10th Eur. Conf. Comput. Syst., 2015,
pp. 1–14.

[27] B. Li et al., “ClickNP: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proc. ACM SIGCOMM
Conf., 2016, pp. 1–14.

[28] A. Gulati, A. Merchant, M. Uysal, P. Padala, and P. Varman, “Efficient and
adaptive proportional share I/O scheduling,” ACM SIGMETRICS Perform.
Eval. Rev., vol. 37, no. 2, pp. 79–80, 2009.

[29] H. Tan, L. Huang, Z. He, Y. Lu, and X. He, “DMVL: An I/O bandwidth
dynamic allocation method for virtual networks,” J. Netw. Comput. Appl.,
vol. 39, pp. 104–116, 2014.

[30] R. Liu, Z. Tan, L. Long, Y. Wu, Y. Tan, and D. Liu, “Improving fairness
for SSD devices through DRAM over-provisioning cache management,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 10, pp. 2444–2454,
Oct. 2022.

[31] A. Tavakkol et al., “FLIN: Enabling fairness and enhancing performance
in modern NVMe solid state drives,” in Proc. ACM/IEEE 45th Annu. Int.
Symp. Comput. Archit., 2018, pp. 397–410.

[32] J. Guo, F. Liu, J. C. S. Lui, and H. Jin, “Fair network bandwidth allocation
in IaaS datacenters via a cooperative game approach,” IEEE/ACM Trans.
Netw., vol. 24, no. 2, pp. 873–886, Apr. 2016.

[33] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella, “PANIC:
A high-performance programmable NIC for multi-tenant networks,” in
Proc. 14th USENIX Symp. Operating Syst. Des. Implementation, 2020,
pp. 243–259.

[34] P. Barham et al., “Xen and the art of virtualization,” ACM SIGOPS
Operating Syst. Rev., vol. 37, no. 5, pp. 164–177, 2003.

[35] K. Tian, Y. Dong, and D. Cowperthwaite, “A full GPU virtualization
solution with mediated pass-through,” in Proc. USENIX Annu. Tech. Conf.,
2014, pp. 121–132.

[36] NVIDIA, “DOCA,” 2023. [Online]. Available: https://developer.nvidia.
com/networking/doca

[37] K. Wiles, “The pktgen application–pktgen 3.2.4 documentation,” 2020.
[Online]. Available: https://pktgen-dpdk.readthedocs.io/en/latest/

[38] H. Fan et al., “NCQ-aware I/O scheduling for conventional solid state
drives,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., 2019,
pp. 523–532.

[39] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, 2013.

[40] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A hardware-
software co-designed disaggregated memory system,” in Proc. 27th ACM
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2022,
pp. 417–433.

[41] Y. Niu et al., “PostMan: Rapidly mitigating bursty traffic via on-demand
offloading of packet processing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 2, pp. 374–387, Feb. 2022.

[42] A. Kaufmann, S. Peter, T. E. Anderson, and A. Krishnamurthy, “FlexNIC:
Rethinking network DMA,” in Proc. 15th USENIX Conf. Hot Topics
Operating Syst., 2015, Art. no. 7.

[43] Y. Qiu et al., “Automated smartnic offloading insights for network func-
tions,” in Proc. ACM SIGOPS 28th Symp. Operating Syst. Princ., 2021,
pp. 772–787.

[44] R. Shashidhara, T. Stamler, A. Kaufmann, and S. Peter, “FlexTOE: Flexible
TCP offload with fine-grained parallelism,” in Proc. 19th USENIX Symp.
Netw. Syst. Des. Implementation, 2022, pp. 87–102.

[45] J. Li, Y. Lu, Q. Wang, J. Lin, Z. Yang, and J. Shu, “AlNiCo:SmartNIC-
accelerated contention-aware request scheduling for transaction process-
ing,” in Proc. USENIX Annu. Tech. Conf., 2022, pp. 951–966.

[46] H. Ji et al., “STYX: Exploiting SmartNIC capability to reduce datacenter
memory tax,” in Proc. USENIX Annu. Tech. Conf., 2023, pp. 619–633.

[47] Z. Guo, H. Zhang, C. Zhao, Y. Bai, M. Swift, and M. Liu, “LEED: A
low-power, fast persistent key-value store on SmartNIC JBOFs,” in Proc.
ACM SIGCOMM Conf., 2023, pp. 1012–1027.

[48] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana, “E3:
Energy-efficient microservices on SmartNIC-accelerated servers,” in Proc.
USENIX Annu. Tech. Conf., 2019, pp. 363–378.

[49] D. Du, Q. Liu, X. Jiang, Y. Xia, B. Zang, and H. Chen, “Serverless
computing on heterogeneous computers,” in Proc. 27th ACM Int. Conf.
Architectural Support Program. Lang. Operating Syst., 2022, pp. 797–813.

[50] A. Belay et al., “The IX operating system: Combining low latency, high
throughput, and efficiency in a protected dataplane,” ACM Trans. Comput.
Syst., vol. 34, no. 4, pp. 1–39, 2016.

[51] G. Prekas, M. Kogias, and E. Bugnion, “ZygOS: Achieving low tail latency
for microsecond-scale networked tasks,” in Proc. 26th Symp. Operating
Syst. Princ., 2017, pp. 325–341.

[52] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis, “Shinjuku: Preemptive scheduling for µ second-scale tail
latency,” in Proc. 16th USENIX Symp. Netw. Syst. Des. Implementation,
2019, pp. 345–360.

Zhaoyang Huang received the BS degree in com-
puter science and technology from the China West
Normal University, in 2020. She is currently working
toward the PhD degree with the College of Computer
Science and Electronic Engineering, Hunan Univer-
sity. Her current research interests include cloud com-
puting and data centers.

Yanjie Tan received the BS and MS degrees from
the Huazhong University of Science and Technology,
China, in 2011 and 2015, respectively, and the PhD
degree from Hunan University, China, in 2021. He is
a postdoctor with the College of Computer Science
and Electronic Engineering, Hunan University. His
current research interests include real-time system
and image and video processing.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
https://download.intel.com/newsroom/2022/corporate/vision/Intel-IPU-Roadmap-Fact-Sheet.pdf
https://download.intel.com/newsroom/2022/corporate/vision/Intel-IPU-Roadmap-Fact-Sheet.pdf
https://developer.nvidia.com/networking/doca
https://developer.nvidia.com/networking/doca
https://pktgen-dpdk.readthedocs.io/en/latest/

3984 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2024

Yifu Zhu (Graduate Student Member, IEEE) received
the BS degree from the College of Electronic Science
and Engineering, Jilin University, in 2019, and the
MS degree from Hunan University, in 2023. He is
currently working toward the PhD degree with the
College of Computer Science and Electronic Engi-
neering, Hunan University. His current research in-
terests include FPGA and real-time systems.

Huailiang Tan received the BS degree from Central
South University, China, in 1992, the MS degree from
Hunan University, China, in 1995, and the PhD degree
from Central South University, China, in 2001. He has
more than eight years of industrial R&D experience
in the field of information technology. He was a visit-
ing scholar with Virginia Commonwealth University
from 2010 to 2011. He is currently a full professor of
computer science and technology with Hunan Uni-
versity, China. His research interests include high
performance I/O, image and video processing, and
embedded systems.

Keqin Li (Fellow, IEEE) received the BS degree
in computer science from Tsinghua University, in
1985, and the PhD degree in computer science from
the University of Houston, in 1990. He is a SUNY
distinguished professor with the State University of
New York and a National distinguished professor
with Hunan University (China). He has authored or
co-authored more than 1000 journal articles, book
chapters, and refereed conference papers. He received
several best paper awards from international con-
ferences including PDPTA-1996, NAECON-1997,

IPDPS-2000, ISPA-2016, NPC-2019, ISPA-2019, and CPSCom-2022. He holds
nearly 75 patents announced or authorized by the Chinese National Intellectual
Property Administration. He is among the world’s top five most influential
scientists in parallel and distributed computing in terms of single-year and
career-long impacts based on a composite indicator of the Scopus citation
database. He was a 2017 recipient of the Albert Nelson Marquis Lifetime
Achievement Award for being listed in Marquis Who’s Who in Science and
Engineering, Who’s Who in America, Who’s Who in the World, and Who’s Who
in American Education for more than twenty consecutive years. He received
the Distinguished Alumnus Award from the Computer Science Department,
University of Houston, in 2018. He received the IEEE TCCLD Research Impact
Award from the IEEE CS Technical Committee on Cloud Computing, in 2022
and the IEEE TCSVC Research Innovation Award from the IEEE CS Technical
Community on Services Computing, in 2023. He won the IEEE Region 1
Technological Innovation Award (Academic), in 2023. He is a member of
the SUNY Distinguished Academy. He is an AAAS fellow, an AAIA fellow,
and an ACIS founding fellow. He is an academician member and fellow of
the International Artificial Intelligence Industry Alliance. He is a member of
Academia Europaea (Academician of the Academy of Europe).

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on January 03,2025 at 03:09:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

