3046

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 9, SEPTEMBER 2025

Dynamic DPU Offloading and Computational
Resource Management in Heterogeneous Systems

Zhaoyang Huang ©, Yanjie Tan =, Yifu Zhu

Abstract—DPU offloading has emerged as a promising way to
enhance data processing efficiency and free up host CPU resources.
However, unsuitable offloading may overwhelm the hardware and
hurt overall system performance. It is still unclear how to make full
use of the shared hardware resources and select optimal execution
units for each tenant application. In this paper, we propose DORM,
a dynamic DPU offloading and resource management architecture
for multi-tenant cloud environments with CPU-DPU heterogeneous
platforms. The primary goal of DORM is to minimize host resource
consumption and maximize request processing efficiency. By estab-
lishing a joint optimization model for offloading decision and
resource allocation, we abstract the problem into a mixed integer
programming mathematical model. To simplify the complexity of
model-solving, we decompose the model into two subproblems: a
0-1 integer programming model for offloading decision-making and
a convex optimization problem for fine-grained resource allocation.
Besides, DORM presents an orchestrator agent to detect load
changes and dynamically adjust the scheduling strategy. Experi-
mental results demonstrate that DORM significantly improves
resource efficiency, reducing host CPU core usage by up to 83.3%,
increasing per-core throughput by up to 4.61x, and lowering the
latency by up to 58.5% compared to baseline systems.

Index Terms—DPU, heterogeneous system, multi-tenant, opti-
mal scheduling.

1. INTRODUCTION

RADITIONAL data center relies on the central processing

unit (CPU) for data transmission and processing. However,
with the rapid development of storage and network technology,
the data scale and complexity in data centers are experiencing
exponential growth, presenting new challenges for CPUs [1],
[2]. In response to emerging demands, cloud providers increas-
ingly adopted data processing units (DPUs) for multi-tenant
deployment and request processing [3]. DPU offloading lowers

Received 4 November 2024; revised 8 May 2025; accepted 26 June 2025.
Date of publication 30 June 2025; date of current version 11 August 2025.
Recommended for acceptance by M. Kandemir. (Corresponding author:
Huailiang Tan.)

Zhaoyang Huang, Yanjie Tan, Yifu Zhu, and Huailiang Tan are with the
College of Computer Science and Electronic Engineering, Hunan University,
Changsha 410082, China (e-mail: huangzhaoyang @hnu.edu.cn; tanhuailiang @hnu.
edu.cn).

Kegin Li is with the College of Computer Science and Electronic Engineering,
Hunan University, Changsha 410082, China, and also with the Department of
Computer Science, State University of New York, New Paltz, NY12561 USA
(e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TC.2025.3584501

, Huailiang Tan

, and Keqin Li ~, Fellow, IEEE

the Total Cost of Ownership (TCO) and enhances the processing
efficiency of complex computing systems.

Researchers have explored the potential of DPU acceleration
from three aspects, i.e., network [4], [5], [6], [7], storage [8], [9],
[10], [11], and computation [12], [13], [14], [15]. Table I lists the
details of related works, including the offloading strategy, target
tasks, and design goals. The majority of existing research utilizes
static offloading strategies, concentrating on offloading various
applications or functions into DPU and making post-offloading
optimization. However, simply offloading all tenant applications
can potentially overwhelm the hardware, resulting in resource
saturation [16]. As illustrated in Section II-B, full offloading fails
to attain optimal performance and may instead result in increased
processing latency. Therefore, appropriate scheduling schemes
are essential to maintain the load balance across processors.

Furthermore, the multi-tenant environment introduces a height-
ened level of complexity to system design. Cooperative applica-
tions share system resources, and the offloading performance will
be influenced by other co-located tasks and system load conditions.
FairNIC [14] first explores the potential of leveraging DPU in
cloud environments and provides fair and isolated performance for
each tenant. LogNIC [15] introduces an optimizer aimed at guiding
fine-grained computation placement while partitioning computing
resources into multiple virtual instances to address resource conten-
tion issues. However, they do not consider tenant deployment for
CPU-DPU heterogeneous systems, which poses a crucial question:
how to make optimal offloading decisions and resource allocation
for each tenant application, in order to maximize the heteroge-
neous resource utilization and offloading benefits?

Several dynamic offloading methods have been proposed in
recent years. UNO [4] dynamically places Network Functions
(NFs) between the x86 host and DPU based on the current
resource and PCle bandwidth utilization. It aims at offloading
as much workload to DPU as possible and ignores the process-
ing efficiency which may lead to higher latency. E3 [12] places
microservices among multiple DPUs considering the network
topology. iPipe [13] proposes an actor-based scheduler and
migrates actors according to processing loads. However, all
these approaches make task placement decisions based on sys-
tem conditions, overlooking key workload-specific characteris-
tics. The lack of consideration for factors such as task
complexity, request size, and resource dependencies can result
in suboptimal application deployments, which may significantly
undermine system performance and compromise overall effi-
ciency. For instance, offloading I/O-intensive tasks might yield
higher latency due to frequent occupation of the PCle interface
for memory I/0 [17].

0018-9340 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0008-3388-7636
https://orcid.org/0000-0001-6937-7648
https://orcid.org/0009-0003-7938-814X
https://orcid.org/0000-0001-9980-8015
https://orcid.org/0000-0001-5224-4048
mailto:huangzhaoyang@hnu.edu.cn
mailto:tanhuailiang@hnu.edu.cn
mailto:tanhuailiang@hnu.edu.cn
mailto:lik@newpaltz.edu

HUANG et al.: DYNAMIC DPU OFFLOADING AND COMPUTATIONAL RESOURCE MANAGEMENT

TABLE I
RELATED WORK

3047

Acceleration Method DO |DRA | MT | Target Task Design Goal
UNO [4] v X x | Network functions Unify host and DPU offload for flexible packet
(SOCC-17) processing.
AccelNet [5] X X x | Host networking Azure accelerated networking and fast in-network
(NSDI-18) packet processing.
Network - - R -
AccelTCP [6] X X x| Stateful TCP operations Simplify host TCP stack and accelerating network
(NSDI-20) applications.
FlexTOE [7] X X x| All TCP data-path Flexible TCP offload with fine-grained parallelism and
(NSDI-22) eliminate host data-path TCP.
LeaplO [8] X X v | Storage service Cloud storage stack leveraging ARM-based
(ASPLOS-20) co-processors to offload complex storage services.
LineFS [9] X X x| Distributed file systems High-performance DPU offload of a distributed file
(SOSP-21) system with pipeline parallelism.
Stora
orage Xenic [10] X X X | Distributed transaction Minimize communication cost and transaction commit
(SOSP-21) latency.
Gimbal [11] X X v | Disaggregated NVMe storage Enabling multi-tenant storage disaggregation on
(SIGCOMM-21) SmartNIC JBOFs.
E3 [12] v X x| Microservices Energy-efficient microservices on DPU-accelerated
(ATC-19) Servers.
iPipe [13] v v x| Distributed applications Maximize offloading benefits for distributed
(SIGCOMM-19) applications.
Computation FairNIC [14] X v v | OVS and KVS Enabling SoC DPU use in cloud environments and
(SIGCOMM-20) provide performance isolation.
LogNIC [15] X v v | Offloaded programs Analyzing the performance characteristics of a
(MICRO-23) offloaded program under a given traffic profile.
Ours v 4 v | Generic data center tasks Offloading decision and resource allocation.

* Note that DO is short for dynamic offloading strategy, DRA refers to DPU internal resource allocation, and MT denotes multi-tenancy.

Due to the limited computation resources on DPU, it is hard
for all tenant applications to be deployed on it. Therefore, the
implementation of suitable scheduling algorithms is essential to
optimize placement decisions and ensure the fair allocation of
computation resources [13]. In this paper, we introduce an inno-
vative dynamic offloading architecture, called DORM, to off-
load generic data center tasks onto DPU and alleviate cloud
providers from the substantial burden of data center operations.
Our focus lies within the multi-tenant cloud environment within
CPU-DPU heterogeneous systems, where each tenant holds
multiple independent tasks. This multi-user multi-task scenario
poses challenges to system design since we must consider both
the offloading decisions of all user tasks and the competition for
shared hardware resources. To tackle this challenge, we formu-
late the offloading decision and resource allocation question as a
Mixed Integer Programming (MIP) problem and further parti-
tion it into two subproblems to alleviate the complexity of
problem-solving. The primary objective is to minimize host
resource occupation and maximize task processing efficiency.
To accommodate dynamic workload changes, DORM also
incorporates an orchestrator agent to detect load variations and
adjust the offloading and resource allocation strategy based on
obtained results.

The main contributions of our work are as follows.

e We introduce DORM, a dynamic DPU offloading archi-

tecture designed to release valuable host CPU resources

while optimizing request processing efficiency. Leverag-
ing both workload characteristics and runtime statistics,
DORM enables optimal scheduling for each tenant appli-
cation in CPU-DPU heterogeneous systems.

e We study the joint optimization of offloading decisions
and resource allocation strategies, formulated as a chal-
lenging mixed-integer optimization problem. To stream-
line the complexity of model-solving, we decompose it
into two tractable subproblems to determine the binary
offloading decisions and obtain the continuous resource
allocation policy, respectively. Moreover, we incorporate
an orchestrator agent to accommodate dynamic workload
variations and enable adaptive scheduling.

e We compare DORM with the no-offload method DPDK,
full-offloading approaches FairNIC and LogNIC, as well
as the dynamic offloading strategy iPipe in terms of host
CPU saving, throughput, average latency, p99 tail
latency, and fairness. Experimental results show that
DORM achieves significant host CPU and latency sav-
ings while ensuring fair resource allocation.

The rest of this paper is organized as follows: Section II
describes the background and motivation. In Section III, we
illustrate the design of DORM in detail. Section IV describes
the implementation. Experimental results are demonstrated in
Section V. Section VI introduces related work. Finally, the con-
clusion and future work is drawn in Section VII.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

3048

II. BACKGROUND AND MOTIVATION
A. On-Going DPUs in Industry

Recently, DPUs have emerged in the data center, offloading
various tasks from the host CPU and releasing valuable CPU
computing power. Based on their core processors, existing
DPUs from the industry can be categorized into three types:
FPGA-based, ASIC-based, and SoC-based [5].

FPGA-based DPU offers reconfigurable integrated circuits.
Programmers are able to customize the FPGA logic for packet
processing and achieve faster performance without introducing
much energy consumption. However, to make full use of the
chip, it requires dedicated programmers with sufficient skills in
Hardware Description Language (HDL) [18]. And it is too
expensive for large-scale deployment in data centers [8].

ASIC-based DPU contains hundreds of multi-threaded RISC
cores and specialized hardware functions, enabling them to exe-
cute parallel workloads with minimal latency [19]. However,
compared with other DPUs, they have the worst flexibility and
may not be able to handle complex scenarios [14].

Multicore SoC-based DPU usually holds various hardware
accelerators for packet processing and specialized functions,
PCle interface for host communication, multicore processors,
and onboard memory. Separate from the host system, they are
able to run their own operating systems (commonly Linux),
making them easier to program [20] and obtain the maximum
flexibility compared with the fronted two categories. In this
paper, we implement our dynamic offloading architecture
DORM on a typical SoC-based DPU Nvidia BlueField-2 [21].

B. Motivation

Although existing research has well explored the potential of
DPU in performance isolation and acceleration, there still exist
some issues that remain unsolved.

First, full offloading may overwhelm the hardware and hurt
overall performance. In order to comprehensively assess the het-
erogeneous system and demonstrate the impacts of offloading
ratios, we characterize four typical data center applications
under various offloading ratios between the host CPU and DPU.
Details of the experimental setup are given in Section V-A.
Take the 50% offloading ratio as an example, we randomly
assign half of the tasks on the host CPU and offload the rest of
them to the DPU. Note that, considering the variance in process-
ing cores and computing capabilities, we only use eight cores
for both the x86 host and DPU. Experimental results under vari-
ous offloading ratios using native DPDK are depicted in Fig. 1.
It’s worth noting that offloading all the tasks to DPU does not
yield the best performance since DPU computing resources may
become saturated. Moreover, ideal offloading ratios differ
among various applications and packet sizes, rendering a one-
size-fits-all approach impractical. Fig. 2 demonstrates the impact
of multi-tenancy on offloading ratios. We increase the number
of tenants from 2 to 8 and report the throughput result for three
offloading ratios: CPU only, DPU only, and 50% offload to
DPU, with the packet size set to 512B. The acceleration pro-
vided by DPU offloading may even be offset along with the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 9, SEPTEMBER 2025

18 4
I 256B W 512B

_
[$;]

124

©
|

Throughput (Gb/s)
o
1

w
I‘

o
1

100%

75% 50% 25% 0%

DPU offloading ratio

Fig. 1. Performance under varied offloading ratios and packet sizes: optimal
offloading ratios vary across different applications and packet sizes.

24 4 s CPU mmm DPU
20 I 50% offload to DPU
)
@16
S124——
]
% ' Ill
<
44 I I
8

4
Number of Tenants

Fig. 2. The impact of multi-tenancy on DPU offloading: acceleration provided
by DPU offloading may even be offset as tenant number increases.

120 —12
[N Latency —@— Host CPU Usage

100 i 10@

- 18 8

g 8

380 16 g

Q

- 44 «

: \ -
60 42 *

40

40

DPDK iPipe FairNIC
(No-offload) (Dynamic) (Static full-offload)

Fig. 3. Performance comparison for four tenants under 256B packet size.

increase in the number of tenants. Therefore, to make full use of
available heterogeneous hardware resources, it is necessary to
propose a dynamic offloading strategy and select optimal off-
loading ratios for task processing.

Second, identifying what types of applications benefit most to
be executed on DPU and selecting the optimal target device for
each application could be troublesome. To investigate the limi-
tations of existing research, we evaluate the average latency and
host CPU usage of three representative offloading strategies:
DPDK, FairNIC [14], and iPipe [13]. Experimental results for
four tenants under the packet size of 256B are shown in Fig. 3.
DPDK, which represents a no-offload method, suffers from con-
siderable request delays due to the overhead of packet transmis-
sion between the DPU and host, as each packet initially flows
through the DPU. FairNIC, which adopts a static full-offloading
strategy, offloads all computation to the DPU and effectively

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DYNAMIC DPU OFFLOADING AND COMPUTATIONAL RESOURCE MANAGEMENT

Tenant, Tenant, Tenant; Tenant,
JJ JJ JJ JJ
APP APP APP APP
Execution Queue l
— | Cavec) v [aee.) [ee. | [are Jo]
l Application Runtime
@ Characteristics Statistics @
L 1 i
|
CPU DP{%E {',5,:.5 Accelerators :
Cores
BOEDT|| 58 oot |-

Fig. 4. Architecture of DORM.

frees up host CPU resources. However, the request processing
efficiency is limited by the DPU’s wimpy cores, resulting in
higher system latency. iPipe introduces dynamic offloading by
migrating the most demanding tasks to the host side when DPU
queue buildup is detected. Although this approach reduces
request latency and host CPU usage, it still fails to fully opti-
mize resource utilization, as the selected migration tasks may
not be the optimal candidates. Based on the above observation,
we propose a dynamic offloading architecture, considering
workload characteristics and runtime features to enable optimal
scheduling for each application.

III. DORM ARCHITECTURE

To maximize hardware resource utilization and offloading
benefits, we introduce DORM, a dynamic offloading architec-
ture designed for multi-tenant cloud computing systems with
CPU-DPU heterogeneous platforms. Our primary goal is to
minimize the host CPU core occupation and reduce the process-
ing latency of all users, thereby making optimal offloading deci-
sions and resource allocation for tenants.

A. Design Overview

Considering n tenants are deployed in the system, each hav-
ing m independent tasks. The architecture of DORM is shown in
Fig. 4. In order to select the optimal target device (CPU or
DPU) for each tenant application, we first gather application-
specific characteristics that provide a comprehensive under-
standing of the computational demands of each task. Besides,
we also capture the runtime performance of both CPU and DPU
to account for dynamic behaviors and system capacity, which is
essential for real-time decision-making. Inspired by NFCompass
[22], we adopt a run-time plus offline profiling to collect the key
parameters required for scheduling decisions. Specifically,
traffic-related statistics, such as packet sizes, as well as runtime
performance metrics, including resource utilization and process-
ing latency, are collected through run-time profiling. Mean-
while, offline profiling is used to extract application-specific
characteristics, such as resource dependencies on multi-core

3049

processors and hardware accelerators. Then, we abstract the
problem for offloading decisions and resource allocation into a
mixed-integer programming problem and make optimal sched-
uling based on the collected information. To streamline the
model-solving process, we decompose the proposed model into
two subproblems: a 0-1 integer programming problem for off-
loading decision and a convex optimization problem for
resource allocation. Our objective is to minimize host resource
consumption and maximize request processing efficiency, off-
loading computation to DPU as far as possible to release valu-
able host CPU resources while maintaining the request
processing efficiency.

B. Offloading Decision and Resource Allocation Model

1) Users and tasks: Denote the user set as N = {1, ---,n}.
Each user holds multiple tasks M = {1, ---,m} to be executed
either at the host CPU or offloaded to DPU. Note that we
assume the same number of tasks m for all users only to simplify
mathematical notation. The proposed model can be easily
extended to other cases with different numbers of tasks. Assume
that computation tasks are independent of each other and cannot
be further divided into sub-tasks, therefore each task must be
executed in a single processor. According to whether user i’s
task j Tj; is processed at the host CPU or offloaded to DPU, we
denote the offloading decisions as xg, xfj) € {0, 1}, which are
constrained by:

XS4l =1, (M)

where only one of xf]; and xlD for user i’s task j T could be
non-zero.

2) Task processing model: Denote the total available resource
capacity of the host and DPU in terms of CPU cycles as C and
D, respectively. The parameter e;; represents the expected CPU
cycles required by Tj; to complete the request, and r;; denotes
the proportionality factor of the computing resource capacity
allocated to 7. We further express each computation task 7;; as
(8;,L;), where S; represents the request size, which may impact
the resource allocation parameters e; and ry. Additionally, L;
denotes the request processing latency, which can be expressed
as follows:

e

LS =—Y_ 2

e ©)
e

LP=—"Y_| 3

v r,'jXD ()

where Lg denotes the latency for task 7;; when deployed on
the host CPU, and Lg denotes the latency for the DPU.

To represent the task dependency on hardware accelerators,
we introduce the variable ACC, where ACCf.‘i indicates whether
task 7;; can be accelerated by ACCy or not. Specifically, a value
of 1 indicates true, otherwise, the value is 0. If applications can
be offloaded to dedicated hardware accelerators, multi-core pro-
cessor utilization on the DPU can be significantly reduced.
Overall, the cumulative sum of allocated resources must remain

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

3050
TABLE II
NOTATIONS AND DESCRIPTIONS
Notation Description
N The user set
M The task set of each user
n The number of tenants
m The number of tasks
K The number of hardware accelerators on DPU
T Jjth task for Tenant i
Sii Request size of Tj
x§ Indicate whether T; is deployed on CPU or DPU
e Expected CPU cycles to complete the request
Tij Proportionality factor of resource allocated to Tj;
X ={x;} Offloading decisions
R={r;} Resource allocation policy
ACC{; Dependency for hardware accelerators on DPU
CD The total resource capacity of CPU and DPU
LS LY Processing latency of T}; at host CPU or DPU
¢ TP The sets of tasks deployed on the host or DPU
Zij My Lagrangian multipliers
oij The dual variable

within the total computing resource capacity, as expressed by
the following constraint:

Z > oS <1, 4)

m K
er,, (1-ACCHx < 1. (5)

C. Problem Formulation and Decomposition

Then the total system cost can be expressed as the weighted
sum of allocated host CPU cores and the processing delays for
all users. Our primary objective is to minimize the total system
cost and make optimal offloading decisions x; = [x{, x| and
resource allocation 7;; under the following constraints that over-
all hardware resource requirements should be limited by the
total capacity. Let X = {x;},R = {r;}, then the overall objec-
tive optimization problem can be expressed as:

P1: mmZZr,jxu +ZZ Lc.xg+L3x5), (6)

i=1 j=1 i=1 j=1

s.t. (1),(4),(5),

e {0,1}, Vi,j. (7

,j,
Eq. (1) and Eq. (7) impose constraints on the offloading deci-
sions, specifying that each task must be executed on a single
processor, either at the host CPU or offloaded to the DPU. Con-
straints provided by Eq. (4) and Eq. (5) govern the resource allo-
cation policy, ensuring that allocated resources should not
surpass the total computing resource capacity. The key symbols
utilized in the system model are summarized in Table II.

As described in Eq. (6), the formulated optimization problem
is notably characterized as a challenging mixed-integer program-
ming problem, where X represents binary variables and R

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 9, SEPTEMBER 2025

signifies continuous variables. This problem exhibits inherent
complexity, rendering it difficult to solve through conventional
methods. Even if we choose to relax the binary constraint speci-
fied in Eq. (7), allowing the task offloading decision variables to
take values within the range [0,1], the problem represented by
Eq. (6) remains non-convex. To streamline the computational
model and address this complexity, we employ the Tammer
decomposition method [23] to decompose the original high com-
plexity problem into a set of more tractable subproblems. First of
all, we reformulate the objective function P1, as follows:

O(X,R)

=2 D s+ D (LG L) ®)
i=1 j=1 i=1 j=1

Therefore, the objective optimization problem P1 can be rewrit-
ten as the following equivalent form:

H}}n(n}tjn O(X,R))
st (1), (4),(5), (7). ©)

Subsequently, we decompose the objective function and con-
straints into the following distinct models, each featuring differ-
ent types of decision variables.

1) Offloading Decision Problem: After obtaining the optimal
resource allocation policy R*, the original optimization problem
presented in Eq. (6) can be reformulated as a 0-1 integer pro-
gramming problem denoted as O(X,R"), where X symbolizes
the offloading decision variables.

PL1:minO(X,R")
st (1),(7).

2) Resource Allocation Problem: To derive O(X,R"), w
temporarily set X = {x .}. Then, O(X, R*) can be reformulated
as a minimization problem O(X°,R) over the variable R, where
X is predetermined. It’s crucial to emphasize that the separation
from the original optimization problem P1 into subproblems
P1.1 and P1.2 preserves the overall optimality [23].

P1.2:O(X,R") zngno(xo,R)
st (4),(5). (11)

From the objective function of P1, it is evident that allocated
resources 7;; would only be non-zero when eltherx or xD equals
1. Consequently, we can transform the objectlve functlon Eq.
(11) into the following function:

(10)

O(X’,R)
€ji
DI ED I D (12)
T;€T¢ rerc i % C Tere i % D

where 7€ and T represent the sets of tasks deployed on the
host and DPU, respectively. Since the offloading decision is
assumed to be determined in this subproblem, O(XO,R) is a
function with respect to ;. Then we can obtain its Hessian
matrix by taking partial derivatives of R, the first-order partial

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DYNAMIC DPU OFFLOADING AND COMPUTATIONAL RESOURCE MANAGEMENT

Algorithm 1: Joint Optimization of Offloading Decisions and
Resource Allocation.

Input: The expected resources e;;, accelerator dependency
ACCS, and the overall resource capacity C, D
Output: The offloading decisions xjj and optimal resource
allocation policy r;

1) fori=1tondo

2) forj=1tomdo

3) Accquire the application characteristics information
ACCE i» €ij> Sij» and runtime statistics Lj;
4) Find out the optimal resource allocation policy r;;

according to P1.2;
5) Obtain the optimal offloading decision x;; based

on P1.1;
6) Update the value of Lj;
7) end for
8) end for

9) Return the optimal scheduling policy rj; and x;
10) End

derivative is expressed as follows:

d0(X°,R iiC iD
WKy aC | aD (13)
Ory (ryC)~ (ryD)
Eq. (14) shows the second-order partial derivative of R:
?0(X°,R)
6r,~j@rk1
De:: De::
° i i=kj=1,
=9 ()°C (ry)"D (14)

0, otherwise.

Due to the non-negativity of expected and allocated resources,
we can obtain that the value of the second-order partial deriva-
tive 9?0(X°, R) /Or;;Oryy are non-negative. Consequently, all the
eigenvalues of the Hessian matrix H are non-negative. As a
result, it can be concluded that O(X°,R) is a convex function.
Since the constraints are also linear, the computing resource
allocation problem P1.2 is characterized as a convex optimiza-
tion problem.

Through the decomposition, we effectively transform the
original intricate optimization problem P1 into a 0-1 integer pro-
gramming problem P1.1 for offloading decision and a convex
function P1.2 for computing resource allocation, both of which
are more manageable for solving.

D. Algorithmic Solution

As depicted in Algorithm 1, to obtain the optimal policy of
offloading decision xj; and computing resource allocation rj, we
solve the subproblem P1.2 and P1.1, respectively. The algo-
rithm takes O(nm) to traverse the task set of each tenant, where
n stands for the number of tenants, and m for task count. The
computation of r;; and x;; requires O(K) time, where K is the

3051

number of accelerators. Therefore, the overall time complexity
for Algorithm 1 is O(nm + K).

1) Resource Allocation Policy: Initially, to solve the decom-
posed subproblem P1.2, we employ the Karush-Kuhn-Tucker
(KKT) conditions, a well-known method for addressing con-
strained optimization problems [24]. The Lagrangian function
can be expressed as follows according to Eq. (11):

L(R, 4,) = O(X",R) + 2;8(R) + p;h(R),
gR) =1-> r
T;eT¢
K
h(R) =1- > ry(1—ACC), (15)
T;eTP k=1

where g(R) and h(R) represents the slack of constraints (4) and
(5), respectively. The symbols 4; and p; denote the Lagrangian
multipliers. The optimal solution is then derived by applying the
KKT conditions, which comprise four essential components:

1) stationarity

('LL 1 e;iC eiD)
OR <ri,c>2 (ryD)" "
Z“u —ACCL) =0, (16)

2) primal feasibility Eq. (4) (5), 3) dual feasibility necessi-
tating 4; >0 and p; >0, 4) complementary slackness
%;;8(R) =0 and p;h(R) = 0. By solving the stationarity
condition along with the primal and dual feasibility con-
ditions, we obtain the optimal resource allocation policy
r;; as follows:

* Zk IACCk

Ty = ¢;,(C+D)

(a7

2) Offloading Decision-Making: As discussed above, after
obtaining the optimal solution of computing resource allocation

r;;» the objective function can be transformed into a 0-1 integer

programming problem P1.1 for X = {x;}. Since x; = [xg,xg]
the problem is reformulated as follows:
P2: min O(X¢,X?,R")
XC, Xb (1 8)
st (1),(7).

To tackle P2, we initially relax the constraint (7) in P2, trans-
forming it into a linear programming problem P3,

. : D
P3.er’1)r(1Dlz]:]z: +ZZL +LxD (19)
stoxg+x) =1, (20)
xXgxp >0, Vij. (21)

Notably, any feasible solution of P3 also satisfies P2. Subse-
quently, we solve P3 using the primal-dual method by intro-
ducing the dual variable «; and constructing the Lagrangian

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

3052

4 * Traffic from Network
1

Physical Port

DPU Switch

o]

[app, | [app, |- [app, | [Orchestrator
ARM PN PN Agent
A 4 A 4
Accelerators | IPsec | | RegEx | | Deflate
- e ——— — PCle
x86 host v

Hypervisor Switch

[| VE
3

APP, |

1w

| APP, |

| VR[] VR
=3

(o] |

| Orchestrator Agent |

Fig. 5. Orchestrator agent to detect load changes and dynamically adjust the
scheduling strategy.

function as follows:

>3 i

i=1 j=1

DD ICE

i=1 j=1

722 T +LC ocU xc+i§m: ocU

i=1 j= i=1 j=1

L(X€ XP,a)

+LDXD> o) (C_XD)

U g

(22)

Since the coefficients of xg and xfj) must be non-negative, the
dual problem P4 can be formulated as:

P4 max Z Z %jj, 23)
i=1 j=1
st oy <y +L,.§, Vi, j, (24)

where a = {o;;} denotes the set of dual variables correspond-
ing to the constraints (20) in P3, and a; = min{r; +L{,L}}.
After solving the above simplified dual problem, the optimal
offloading decisions xj; can be subsequently recovered [25].

E. Adaptation to Dynamic Workload Changes

In order to effectively navigate the challenges posed by
dynamic workload changes, DORM employs an adaptive
approach by preserving the characteristics of each tenant applica-
tion and deploying an orchestrator agent on both the host and
DPU sides. As illustrated in Fig. 5, the orchestrator agent plays a
crucial role in monitoring system conditions, encompassing appli-
cation characteristics and runtime statistics, and triggering the
migration or resource reallocation process when necessary to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 9, SEPTEMBER 2025

uphold optimal performance. To simulate the multi-tenant cloud
environment, virtual machines (VMSs) are instantiated on the host
side using KVM, and each application is assigned a pair of virtual
functions (VFs) generated through Single Root Input/Output Vir-
tualization (SR-IOV). For applications deployed on DPU, we
assign them a pair of scalable functions (SFs) which are similar to
VFs on the host side.

To achieve resource isolation and alleviate the competition
for shared hardware resources among multiple tenants, DORM
allocates corresponding resources to each tenant based on the
computed results of 7. Upon receiving a packet, DORM analy-
ses the packet header and efficiently forwards it to the corre-
sponding applications based on the destination IP address
dst_ip. When a new task appears, DORM evaluates the avail-
able headroom on DPU. If there exist adequate resources on
DPU, DORM preferentially deploys applications on the DPU to
minimize host CPU utilization. However, if the remaining DPU
resources are insufficient to satisfy the requirements of incoming
requests, DORM initiates the migration process for processing
efficiency optimization, adjusting application deployment strate-
gies based on the formulated scheduling model.

Additionally, DORM actively monitors variations in tenant traf-
fic and identifies instances of head-of-line blocking, which typi-
cally occurs in scenarios where certain packets within a network
experience delays, leading to increased latency and degraded Qual-
ity of Service (QoS). In multi-tenant cloud environments, where
diverse applications coexist and compete for resources, mitigating
head-of-line blocking is crucial for sustaining optimal system per-
formance. In response, DORM adopts a proactive strategy by initi-
ating migration or resource reallocation processes, relocating
appropriate applications to less congested or more resource-
abundant processors, and dynamically adjusting the computing
resources distribution to alleviate the contention. Similar to iPipe,
we regard system latency as signals for migration and initiate the
process only when substantial performance degradation is
observed or DPU experiences an overload condition to avoid
excessive migration. During the migration process, DORM priori-
tizes retaining applications that can benefit from hardware acceler-
ators on the DPU to the fullest extent. Experimental findings
presented in Sec. V-F confirm that the additional performance and
resource overhead introduced by this constant monitoring and
adaptive adjustments remains within acceptable limits.

IV. IMPLEMENTATION

DORM implementation. Our dynamic offloading architec-
ture DORM is built on top of the Nvidia BlueField-2 DPU,
which is a typical Multicore SoC-based DPU. The BlueField-2
DPU contains an Nvidia Mellanox ConnectX-6 NIC, 16GB
on-board DDR4 DRAM, a variety of specific hardware acceler-
ators, and eight ARMv8 A72 cores running a customized Linux
version. In this paper, we implement DORM using the open
software framework DOCA (Data-Center-Infrastructure-On-A-
Chip-Architecture) [26], released by Nvidia which empowers us
to develop custom applications and protocols on both the host
and DPU side.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DYNAMIC DPU OFFLOADING AND COMPUTATIONAL RESOURCE MANAGEMENT

Traffic Traffic
[| A
DPU TX/RX ports DPU
TX/RX ports
Traffic Manager 3
1
v
FPGA | NIC Cores | | NIC ASIC |
NIC Cores - -
NIC ASIC
Multicore v -
SoC-based FPGA-based | DPU Switch |

HOST

(b) Off-path DPU

J
(a) On-path DPU

Fig. 6. DPUs can be further classified as on-path or off-path based on how their
core processors interact with network traffic.

Applications development. We have developed four appli-
cations across two distinct domains using the C programming
language. (1) Distributed real-time analytics (RTA). RTA [27]
involves real-time analysis and processing of substantial data
volumes to extract meaningful information and patterns.
Pattern-matching modules [28] are employed to filter out irrele-
vant tuples, and a quicksort algorithm is used to sort data tuples
based on the counting results. The encryption acceleration
engine on the DPU is utilized for secure data encryption and
decryption during RTA. (2) Network function virtualization
(NFV). NFV encompasses various functions, including a packet
scheduler [29], flow classifier [30], and IPv4 router [31]. The
packet scheduler is responsible for managing and scheduling the
order of packets transmitted through the network and ensuring
that they are sent and received according to certain rules. Flow
Classifier is a network function for traffic classification and
identification that utilizes Naive Bayes to group the network
traffic based on flow characteristics such as source or destination
IP address and port numbers. The IPv4 router is responsible for
routing IPv4 packets through the internet, forwarding them from
the source address to the destination based on the information in
the routing table. Traffic matching and classification during
IPv4 router can be accelerated by the regular expression
(RegEXx) acceleration engine on the DPU.

Generality of DORM. In this subsection, we delve into the
compatibility of DORM across various DPU models. DPUs can
be further categorized into two types: on-path and off-path,
depending on the way DPU cores interact with network traffic.
As illustrated in Fig. 6(b), off-path DPUs, such as BlueField
[21] and Stingray [32], perform off-path processing, i.e., the
core processor is not directly involved in the data transmission
and reception path. Instead, these DPUs leverage packet
switches to determine whether data should be sent directly to the
host or processed by the core processors on the DPU. In con-
trast, as depicted in Fig. 6(a), on-path DPUs, such as Cavium
LiquidIO [33], incorporate core processors directly into the data
processing path, thereby enabling streamlined and pre-
scheduled data processing. While there is a distinction in the
data processing path across different DPU architectures, other
components exhibit minimal differences. Therefore, even
though DORM is currently implemented on the off-path DPU

3053

platform Nvidia BlueField-2, the core architecture of DORM is
platform-agnostic. It can be easily extended to accommodate
other DPU models with varying configurations, which will be
explored in our future work.

V. EVALUATION

In this section, we compare our DORM with four DPU off-
loading architectures, including the no-offload method DPDK,
full-offload solutions FairNIC [14] and LogNIC [15], as well as
the dynamic offloading strategy iPipe [13] in terms of host CPU
saving, throughput, average latency, p99 tail latency distribu-
tion, and fairness.

A. Experimental Setup

1) Experimental Platform: Both the client and server hold an
Intel 8171M 52-core processor running at 2.6GHz, 128GB
DRAM, and 512GB NVMe SSD. We equip them with an Nvi-
dia BlueField-2 25Gbps DPU and a regular Intel E810 25Gbps
NIC, respectively. Two host machines are connected back-to-
back via an SFP28 cable. We install Ubuntu 20.04 as the operat-
ing system and implement our proposed DORM using the
DOCA software framework. DPDK Pktgen [34] serves as the
traffic loads generator, producing TCP payloads in various for-
mats at fixed intervals to simulate traffic conditions for multi-
ple tenants.

2) Workloads: For a comprehensive assessment of the pro-
posed DORM, we implement four typical data center applica-
tions that present both compute-intensive and memory-intensive
behaviors, including distributed real-time analytics (RTA) [27]
and three network functions, i.e., packet scheduler [29], flow
classifier [30], and IPv4 router [31]. We increase the number of
tenants deployed on the system from 2 to 8. For two tenants,
each of them runs RTA and scheduler, four tenants run the
aforementioned four applications respectively. To demonstrate
the effect of hardware accelerator allocation and isolation, for 8
tenants, we assign 4 of them to run RTA, 2 of them to run the
IPv4 router, one to run packet scheduler, and the rest to run the
flow classifier.

B. Host CPU Saving

Initially, we demonstrate the host CPU core savings achieved
by DORM in comparison to DPDK and iPipe. Since both
FairNIC and LogNIC employ full offloading strategies, running
without host CPU involvement, we do not compare DORM
with them in terms of host CPU saving and per-core throughput.
Similar to iPipe, we configure the system to achieve the highest
possible throughput and record the number of host CPU cores
used by each method. Fig. 7 illustrates the overall host CPU
usage under different packet sizes when achieving maximum
throughput. As the packet sizes increase, the number of packets
per second decreases, therefore the amount of host CPU cores
required by each tenant decreases accordingly. The iPipe sched-
uler tends to retain lightweight tasks on DPU and moves heavy-
weight ones to the host which may also consume a significant
number of host CPU cores. Different from iPipe, DORM

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

3054

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 9, SEPTEMBER 2025

%127 —-DPDK —A—iPipe ——DORM #£15 @ DPDK —A—iPipe —#— DORM #207 —#-DPDK —A—iPipe —/—DORM

g10 $12 816

8 2 89 812

D = >

[o 6 o 8

(@] © O

@ 2 0 3 o 4

o <} o]

I 0 T T T T I 0 T T T T I 0 T T T T
128B 256B 512B 1024B 128B 256B 512B 1024B 128B 256B 512B 1024B

(a) Number of tenants = 2 (b) Number of tenants = 4 (c) Number of tenants = 8
Fig. 7. Host CPU usage under various packet sizes.

128B

@ Q
3 o5 - 89
o N DPDK W iPipe W DORM)
5 204 - 52
2 £
§:15 — §)1
= 104 £1
[= [
o 5 o
g <}
s 0 >
) o}
o o

256B 512B 1024B 128B 256B

(a) Number of tenants = 2

Fig. 8. Per-core throughput analysis.

prioritizes keeping applications running on DPU as much as
possible and selectively moving the most suitable tasks to the
host CPU based on their workload characteristics. The experi-
mental findings underscore DORM’s remarkable capability to
optimize resource management within heterogeneous systems
and significantly reduce host CPU utilization. Specifically,
DORM achieves up to 83.3%, and 75.0% host CPU saving com-
pared to DPDK and iPipe, respectively.

C. Overall Performance

In this subsection, we first evaluate the per-core throughput of
DPDK, iPipe, and our DORM across various packet sizes and
increase the number of tenants from 2 to 8§ as illustrated in
Fig. 8. Subsequently, we assess the system’s average latency
and p99 tail latency saving across various packet sizes and net-
work loads when the number of tenants is 4, results are pre-
sented in Fig. 9 and Fig. 10, respectively.

Per-core throughput. To obtain per-core throughput, we
record the host CPU usage and overall system throughput. Experi-
mental results under various packet sizes are depicted in Fig. 8,
revealing substantial performance enhancements achieved by
DORM compared to DPDK and iPipe. DORM demonstrates con-
siderable improvements in per-core throughput, surpassing DPDK
and iPipe by up to 4.61X and 3.67X, respectively. This notable
improvement is attributed to DORM’s ability to make optimal
scheduling decisions for each tenant based on workload character-
istics and runtime statistics, leading to overall enhanced perfor-
mance while conserving host resources to a minimum.

Latency saving. We conduct a comprehensive assessment of
the system’s average latency and tail latency at the 99th percentile
for four tenants across various scenarios, as illustrated in Fig. 9(a)
and Fig. 9(b). As each packet request initially flows through
DPU, DPDK experiences considerable request delays due to

I DPDK M iPipe W DORM

(b) Number of tenants = 4

N
o

[DPDK W iPipe @ DORM

a AN
o o o

[

(=]

Per-core Throughput (Gb/s)

512B 1024B 128B 2568 512B 1024B

(c) Number of tenants = 8

1505 ~ii=DPDK =@ iPipe FairNIC
={—LogNIC ==DORM
1204
12}
2
>
2 904
[o)
®
-l
60+
30 T T T T
128B 256B 512B 1024B
(a) Average latency
280+ =fi=DPDK =@=iPipe FairNIC
~@®—LogNIC =#=DORM
@ 240
o
S 200+
®
B |
2 160
>3
1204

T T T T
128B 256B 512B 1024B

(b) Tail latency

Fig. 9. Latency performance comparison across diverse packet sizes.

packet transmission overhead between the DPU and host. While
full offloading solutions like FairNIC and LogNIC effectively
free up host CPUs, their request processing efficiency is limited
by the DPU’s wimpy cores under high-load conditions. Further-
more, FairNIC adopts a static resource partitioning strategy that
struggles to accommodate the diverse resource demands of each
tenant, resulting in increased latency. Although LogNIC mitigates
this issue through flexible calculation partition, it still suffers
from substantial performance degradation under intense load sce-
narios. iPipe mitigates system latency by employing a dynamic

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DYNAMIC DPU OFFLOADING AND COMPUTATIONAL RESOURCE MANAGEMENT

1204
=fi=DPDK =@=iPipe FairNIC
= LogNIC ===DORM
»@90—
=
2
& 60+
©
-
304
T T T T T
10 30 50 70 90
Network Load (%)
(a) Average latency
2400 _g ppDK =@ iPipe FairNIC
== LogNIC =+g==DORM
2004
(2}
&
2160
{ <=
2
5 1204
[}
2
80
40

50 70
Network Load (%)

(b) Tail latency

Fig. 10. Latency performance evaluation under various network loads.

migration strategy that transfers actors heavily load the DPU’s
processing capacity to the host processor when there is a queue
build-up on the DPU side. However, it does not consider the spe-
cific characteristics of each tenant application, potentially leading
to suboptimal migration choices. In comparison, DORM reduces
average latency by up to 36.6us, 21.0us, 52.4us, and 42.9us,
lowering the tail latency by up to 33.7%, 21.3%, 38.7%, and
29.4%, compared with DPDK, iPipe, FairNIC, and LogNIC,
respectively. DORM optimizes the deployment of tenant applica-
tions within heterogeneous systems, effectively reducing queuing
delays and request processing time.

Further, to demonstrate the capability of DORM to adapt to
varying workloads, we generate 512B requests and gradually
increase the networking load. Experimental results are presented
in Fig. 10, which exhibits a similar trend to the findings pre-
sented in Fig. 9. As the network load escalates, system latency
gradually increases due to network congestion. DORM achieves
remarkable latency reductions of up to 49.5%, 32.1%, 58.5%,
and 46.7%, lowering the tail latency by up to 40.7%, 31.5%,
50.8%, and 43.5%, compared with DPDK, iPipe, FairNIC, and
LogNIC, respectively. Experimental results demonstrate that
DORM can deliver faster response times and improved service
quality for latency-sensitive tenants.

D. Fairness

Fairness is commonly utilized to evaluate the system’s capa-
bility in equitably distributing resources among tenants in a
shared computing environment. Ensuring fairness contributes to
improving overall performance and stability. To quantitatively
assess the fairness of resource allocation, we calculate the fair-
ness index, denoted as fair, using the following equation

3055

0167 o DPDK = iPipe FairNIC
1 LogNIC s DORM

0.12

Fairness
o
o
[e5)

Fig. 11. Evaluation of fairness across multiple tenants, illustrating the variance
between expected and actual weights, lower values indicating better fairness.

2 4 8
Number of tenants

according to research [35] and [36]:

Sfair = z”: wi — o
=L

where n represents the number of tenants, w; means the expected
weight of Tenant;. The numerator 7T; represents the throughput
of Tenant; during the interval [¢1, 2], while the denominator
means the overall system throughput. Consequently, the fairness
metric can be expressed as the cumulative sum of the absolute
difference between the expected and actual weight of each
tenant. A smaller value indicates a higher level of fairness.

Fig. 11 presents the results of the fairness index under the
packet size of 256B. As the number of tenants increases, each
tenant receives fewer resources, leading to intensified resource
competition among tenants and making it harder to maintain
fairness. However, DORM improves the fairness index by up to
93.5%, 87.6%, 86.6%, and 83.6%, compared with DPDK, iPipe,
FairNIC, and LogNIC. Despite FairNIC offering strict resource
isolation for tenants, its static resource allocation strategy fails
to accommodate the varying resource demands of multiple ten-
ants. In contrast, DORM ensures fair resource allocation based
on actual demands by considering both the workload character-
istics and runtime statistics of each tenant application, thereby
minimizing the deviation between ideal and actual weights.

(26)

E. Real-World Traffic Traces

To assess the responsiveness of DORM to dynamic system
changes, we simulate real-world scenarios using the anony-
mized CAIDA dataset of Internet traffic traces [37]. CAIDA
contains traces collected from high-speed monitoring systems
deployed on a commercial backbone link. Although IP
addresses within the dataset are anonymized, key traffic charac-
teristics are preserved, including packet sizes, transport proto-
cols, and detailed flow statistics, providing a realistic and
representative view of actual network behavior under varying
conditions. To simulate dynamic multi-tenant scenarios, we
instantiate four tenants within the system, each assigned a dis-
tinct subset of traffic flows extracted from the CAIDA traces. As
depicted in Fig. 12, we observe the throughput performance of
one selected tenant over 150 seconds. Without appropriate
resource isolation strategies for multiple tenants, DPDK and
iPipe struggle to maintain stable performance under competing

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

3056

—s=— DPDK —e—iPipe FairNIC —+— LogNIC —+— DORM
Q
Qo
e
=]
o
<
=)
>
I
ey
'—
0 10 20 30 40 50 60 70 80 90 100110120130140150
Time (s)
Fig. 12. Performance fluctuations in real-world traffic traces across different

time epochs.

B Without DORM
s \With DORM

2

= 45

3

c

8304 — — S— S— S
(]

-

i II
0
2 4 8 16

Number of tenants

Fig. 13. Performance overhead incurred by DORM.

demands, leading to significant throughput fluctuations over
time. On the other hand, FairNIC and LogNIC guarantee small
performance fluctuations through strict resource isolation. How-
ever, they fall short in optimizing resource allocation among
multiple tenants, resulting in notable inefficiencies. In contrast,
DORM exhibits superior stability and consistent performance,
effectively managing resource distribution even in the face of
dynamic and unpredictable conditions.

F. Overhead

To maximize heterogeneous resource utilization and offloading
benefits, DORM abstracts the problem into a mixed-integer optimi-
zation problem. However, the decision-making and scheduling pro-
cess may introduce additional performance and resource overhead
to the system.

To measure the overhead introduced by DORM in large-
scale cloud environments, we conducted experiments by incre-
mentally increasing the number of tenants from 2 to 16 in the
packet size of 512B. As depicted in Fig. 13 and Fig. 14, we
record the latency and resource utilization results under two sce-
narios: tenant deployment with and without our proposed
DORM. Our findings demonstrate that DORM only introduces
a latency increase of no more than 4.3%, which remains within
acceptable bounds for performance impact. Furthermore, we
measure the time required for DORM to solve the MIP problem
under conditions involving 4 tenants, and it turns out that
DORM only consumes approximately 3ms to make an optimal
scheduling decision. Since DORM requires constant monitoring
and adaptive adjustment, we also evaluate the resource con-
sumption it induces. As shown in Fig. 14, DORM exhibits a
modest increase in resource usage, with an average rise of 4.2%

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 9, SEPTEMBER 2025

106, mm Without-DORM-CPU mmm With-DORM-CPU

Without-DORM-Mem mm With-DORM-Mem

o]
o

r» o
g @

N
P

Resource Utilization (%)

o
I

4 8
Number of tenants

Fig. 14. Resource overhead of DORM.

in CPU utilization and 3.8% in memory consumption. Never-
theless, with the further expansion to hundreds or even thou-
sands of tenants, the computational time required to solve the
formulated MIP problem increases substantially. The height-
ened frequency of monitoring and resource reallocation further
amplifies computational and resource burdens, resulting in
delayed decision-making. In response, we intend to explore
approximate heuristic algorithms in future work to reduce time
complexity while preserving scheduling optimality.

VI. RELATED WORK

DPU offloading. DPU has recently emerged as a valid option
to alleviate the host CPU burden by offloading various tasks.
Researchers leverage the multicore processors and hardware
accelerator engines on DPUs for task acceleration [4], [6], [9],
[10], [12], [13], [38], [39], [40], [41], [42]. For example,
AccelTCP [6] simplifies the host stack operations by offloading
stateful TCP operations to the NIC stack. LineFS [9] offloads
CPU-intensive distributed file system operations and organizes
them into distinct execution stages to enable pipeline parallel-
ism. Xenic [10] proposes a DPU-accelerated distributed transac-
tion processing system with co-designed data structures that
store key-value objects in host memory and utilize DPU mem-
ory for remote access. Li et al. [43] analyze the performance of
middlebox offloading, highlight the key capability of DPU in
flow table management, packet processing through embedded
ARM subsystem, and hardware-accelerated connection track-
ing. However, due to the constrained processing capability of
DPU, full offloading may saturate DPU hardware resources and
lead to degraded performance, so appropriate scheduling algo-
rithms are essential to make optimal placement decisions. UNO
[4] proposes a generalized SDN-controlled NF offload architec-
ture that dynamically places NFs across DPU and host based on
the current resource utilization. However, it may cause higher
latency on account of the optimization objective of minimizing
x86 host resource usage and prioritizing place tasks on the DPU
side. E3 [12] presents a microservice execution platform for
DPU-accelerated servers and places microservices among multi-
ple DPUs according to their network topology for better energy
efficiency. iPipe [13] proposes an actor-based framework for
distributed application offloading. The scheduler places as much
computation on the DPU as possible and migrates the actor that
contributes most to the NIC’s processing load to the host side
when it fails to handle the incoming packets promptly.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

HUANG et al.: DYNAMIC DPU OFFLOADING AND COMPUTATIONAL RESOURCE MANAGEMENT

However, all these approaches make task placement decisions
based on system conditions and ignore the workload characteris-
tics, which may potentially lead to inappropriate application
deployments. In contrast, DORM dynamically selects the opti-
mal target device for each tenant application, taking both work-
load characteristics and runtime statistics into consideration.

Multi-tenant resource allocation. Recently, cloud providers
have started to deploy DPUs in the multi-tenant cloud environ-
ment. However, co-located tenants will compete for shared
hardware resources, posing challenges to system design. LeaplO
[8] introduces an innovative cloud storage stack utilizing ARM-
based co-processors to offload intricate storage services and
expose virtual NVMe storage to the guest VMs. Gimbal [11]
proposes a software storage switch that orchestrates NVMe-oF
commands among multiple co-located tenants, providing fair-
ness and performance optimizations for tenant applications.
However, these solutions mainly focus on multi-tenant storage
solutions with isolation mechanisms and overlook the allocation
of DPU internal resources. In contrast, FairNIC [14] takes a pio-
neering step in sharing DPUs across multiple tenants. It achieves
isolation for each tenant in terms of typical packet processing,
core cycles, shared memory, and fixed-function coprocessor
access. PANIC [3] presents a hybrid push/pull packet scheduler
on FPGA-based DPU and provides cross-tenant performance
isolation and low-latency load-balancing across parallel offload
engines. However, these approaches also lean towards a static
offloading strategy, lacking adaptability to the dynamic resource
demands of multiple tenants. MTDA [44] establishes an inde-
pendent virtual channel for each tenant to submit offloading
requests and employs a credit-based mechanism to ensure fair
DPU resource allocation. SuperNIC [45] groups network tasks
into virtual chains and maps them to various forms of physical
chains based on system load and resource availability. However,
these solutions primarily focus on DPU internal resource man-
agement. In contrast, DORM targets dynamic scheduling within
CPU-DPU heterogeneous architectures, considering both the
offloading decisions of all user tasks and optimal allocation of
shared hardware resources.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce DORM, a novel DPU dynamic off-
loading architecture designed for multi-tenant cloud environments.
DORM aims to maximize the utilization of heterogeneous hard-
ware resources and minimize request processing latency. To
achieve this, we formulate the offloading decision problem using
mixed-integer programming, enabling the system to make optimal
scheduling and resource allocation decisions for each tenant appli-
cation. To accommodate dynamic workload changes, DORM
incorporates an orchestrator agent to periodically monitor applica-
tion characteristics within the system, detect load variations, and
initiate task migration and resource reallocation processes as nec-
essary. Experimental results demonstrate that DORM can effec-
tively free up valuable CPU cycles, leading to improved overall
application processing efficiency.

Future Work. Currently, the proposed dynamic offloading archi-
tecture is implemented within a single CPU-DPU heterogeneous

3057

system. In future research, we intend to investigate the feasibil-
ity of scaling this architecture to distributed clusters comprising
multiple CPU-DPU nodes, facilitating effective communica-
tion and resource management across these computing nodes.
Additionally, we plan to validate the portability and effective-
ness of DORM across varying DPU models, such as FPGA-
based Silicom C5010X and ASIC-based Intel E2000. These
extensions are expected to enhance the robustness of DORM in
increasingly complex large-scale data centers while providing
valuable insights for the development of more efficient resource
scheduling strategies in future heterogeneous computing
environments.

REFERENCES

[1] Z. Wang, H. Huang, J. Zhang, F. Wu, and G. Alonso, “FpgaNIC: An
FPGA-based versatile 100gb SmartNIC for GPUs,” in Proc. USENIX
Annu. Tech. Conf. (USENIX ATC), 2022, pp. 967-986.

[2] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” in Proc.
49th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), Piscataway, NJ,
USA: IEEE Press, 2016, pp. 1-13.

[3] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and A. Akella, “PANIC:
A high-performance programmable NIC for multi-tenant networks,” in
Proc. 14th USENIX Symp. Oper. Syst. Des. Implement. (OSDI), 2020,
pp. 243-259.

[4] Y. Le et al., “UNO: Uniflying host and smart NIC offload for flexible
packet processing,” in Proc. Symp. Cloud Comput., 2017, pp. 506-519.

[5] F. Daniel et al., “Azure accelerated networking: SmartNICs in the
public cloud,” in Proc. 15th USENIX Symp. Netw. Syst. Des. Implement.
(NSDI), 2018, pp. 51-66.

[6] Y. Moon, S. Lee, M. A. Jamshed, and K. Park, “AccelTCP: Accelerating
network applications with stateful TCP offloading,” in Proc. 17th
USENIX Symp. Netw. Syst. Des. Implement. (NSDI), 2020, pp. 77-92.

[7] R. Shashidhara, T. Stamler, A. Kaufmann, and S. Peter, “FlexTOE:
Flexible TCP offload with fine-grained parallelism,” in Proc. 19th
USENIX Symp. Netw. Syst. Des. Implement. (NSDI), 2022, pp. 87-102.

[8] H. Li et al., “Leapio: Efficient and portable virtual nvme storage on arm
socs,” in Proc. 25th Int. Conf. Archit. Support Program. Lang. Oper.
Syst., 2020, pp. 591-605.

[9] J. Kim et al., “Linefs: Efficient SmartNIC offload of a distributed file
system with pipeline parallelism,” in Proc. ACM SIGOPS 28th Symp.
Oper. Syst. Princ., 2021, pp. 756-771.

[10] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy,
“XeNIC: SmartNIC-accelerated distributed transactions,” in Proc. ACM
SIGOPS 28th Symp. Oper. Syst. Princ., 2021, pp. 740-755.

[11] J. Min et al., “Gimbal: Enabling multi-tenant storage disaggregation on
SmartNIC JBOFs,” in Proc. ACM SIGCOMM Conf., 2021, pp.
106-122.

[12] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana, “E3:
Energy-Efficient microservices on SmartNIC-Accelerated servers,” in
Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2019, pp. 363-378.

[13] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto SmartNICs using iPipe,” in
Proc. ACM Special Interest Group Data Commun., 2019, pp. 318-333.

[14] S. Grant, A. Yelam, M. Bland, and A. C. Snoeren, “SmartNIC performance
isolation with fairNIC: Programmable networking for the cloud,” in Proc.
Annu. Conf. ACM Special Interest Group Data Commun. Appl., Technol.,
Archit., Protocols Comput. Commun., 2020, pp. 681-693.

[15] Z. Guo et al., “LogNIC: A high-level performance model for SmartNICs,”
in Proc. 56th Annu. IEEE/ACM Int. Symp. Microarchit., 2023, pp. 916-929.

[16] J. Liu, C. Maltzahn, C. Ulmer, and M. L. Curry, “Performance
characteristics of the bluefield-2 SmartNIC,” 2021, arXiv:2105.06619.

[17] S. Wang et al., “Smartchain: Enabling high-performance service chain
partition between SmartNIC and CPU,” in Proc. IEEE Int. Conf.
Commun. (ICC), Piscataway, NJ, USA: IEEE Press, 2020, pp. 1-7.

[18] T. Doring, H. Stubbe, and K. Holzinger, “SmartNICs: Current trends in
research and industry,” Netw. Archit. Serv., vol. 19, May 2021.

[19] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum, “A-NIC:
Interactive serverless compute on programmable SmartNICs,” in Proc.
IEEE 40th Int. Conf. Distrib. Comput. Syst. (ICDCS), Piscataway, NJ,
USA: IEEE Press, 2020, pp. 67-77.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

3058

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

X. Wei, R. Cheng, Y. Yang, R. Chen, and H. Chen, “Characterizing off-
path SmartNIC for accelerating distributed systems,” in Proc. 17th USENIX
Symp. Oper. Syst. Des. Implement. (OSDI), 2023, pp. 987-1004.

“NVIDIA bluefield-2 DPU.” NVIDIA. Accessed: Jun. 2023. [Online].
Available: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf

Y. Hu and T. Li, “Enabling efficient network service function chain
deployment on heterogeneous server platform,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit. (HPCA), Piscataway, NJ, USA:
IEEE Press, 2018, pp. 27-39.

K. Tammer, “The application of parametric optimization and imbedding
to the foundation and realization of a generalized primal decomposition
approach,” Math. Res., vol. 35, pp. 376-386, 1987.

L. Vandenberghe and S. P. Boyd, Convex Optimization. New York,
NY, USA: Cambridge Univ. Press, 2004.

C. Swamy and A. Kumar, “Primal-dual algorithms for connected facility
location problems,” Algorithmica, vol. 40, pp. 245-269, Jul. 2004.
“DOCA.” NVIDIA. Accessed: Jul. 2024. [Online]. Available: https://
developer.nvidia.com/networking/doca

P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and
T. Anderson, “Floem: A programming system for NIC-accelerated
network applications,” in Proc. 13th USENIX Symp. Oper. Syst. Des.
Implement. (OSDI), 2018, pp. 663—-679.

“Implementing regular expression.” Russ Cox. [Online]. Available:
https://swtch.com/~rsc/regexp/

M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 435446, 2013.
J. Liu, Z. Tian, P. Liu, J. Jiang, and Z. Li, “An approach of semantic
web service classification based on naive bayes,” in Proc. IEEE Int.
Conf. Services Comput. (SCC), Piscataway, NJ, USA: IEEE Press,
2016, pp. 356-362.

J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA (network
balancing act) a high-performance packet processing framework for
heterogeneous processors,” in Proc. 10th Eur. Conf. Comput. Syst.,
2015, pp. 1-14.

“Broadcom stingray ps250 2x50-gb high-performance data center
SmartNIC.” Accessed: Aug. 2024. [Online]. Available: https://docs.
broadcom.com/doc/PS250-PB

Cavium. “Liquidio SmartNIC family of intelligent adapters provides high
performance industry-leading programmable server adapter solutions for
various data center deployments.” Marvell. Accessed: Aug. 2024. [Online].
Auvailable: https://www.marvell.com/ethernet-adapters-and-controllers/liquidio-
smart-nics/index.jsp

K. Wiles. “The pktgen application—pktgen 3.2.4 documentation.”
Pktgen. Accessed: Jun. 2023. [Online]. Available: https://pktgen-dpdk.
readthedocs.io/en/latest/

A. Gulati, A. Merchant, M. Uysal, P. Padala, and P. Varman, “Efficient
and adaptive proportional share i/o scheduling,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 37, no. 2, pp. 79-80, 2009.

H. Tan, L. Huang, Z. He, Y. Lu, and X. He, “DMVL: An /O
bandwidth dynamic allocation method for virtual networks,” J. Netw.
Comput. Appl., vol. 39, pp. 104-116, Jun. 2014.

“The Caida UCSD anonymized internet traces.” CAIDA. Accessed:
Sep. 2024. [Online]. Available: https://www.caida.org/catalog/datasets/
passive_dataset/

J. Zhang et al., “SmartDS: Middle-tier-centric SmartNIC enabling
application-aware message split for disaggregated block storage,” in
Proc. 50th Annu. Int. Symp. Comput. Archit., 2023, pp. 1-13.

D. Du, Q. Liu, X. Jiang, Y. Xia, B. Zang, and H. Chen, “Serverless
computing on heterogeneous computers,” in Proc. 27th ACM Int. Conf.
Archit. Support Program. Lang. Oper. Syst., 2022, pp. 797-813.

M. Tork, L. Maudlej, and M. Silberstein, “Lynx: A SmartNIC-driven
accelerator-centric architecture for network servers,” in Proc. 25th Int.
Conf. Archit. Support Program. Lang. Oper. Syst., 2020, pp. 117-131.
Y. Qiu et al., “Automated SmartNIC offloading insights for network functions,”
in Proc. ACM SIGOPS 28th Symp. Oper. Syst. Princ.,2021, pp. 772-787.

H. Ji et al, “STYX: Exploiting SmartNIC capability to reduce
datacenter memory tax,” in Proc. USENIX Annu. Tech. Conf. (USENIX
ATC), 2023, pp. 619-633.

F. Li, Q. Chen, J. Shen, X. Wang, and J. Cao, “Performance
characteristics and guidelines of offloading middleboxes onto bluefield-2
DPU,” IEEE Trans. Comput., vol. 74, no. 2, pp. 609-622, Feb. 2025.

Z. Huang, Y. Tan, Y. Zhu, H. Tan, and K. Li, “MTDA: Efficient and
fair DPU offloading method for multiple tenants,” IEEE Trans. Services
Comput., vol. 17, no. 6, pp. 3971-3984, Nov./Dec. 2024.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 9, SEPTEMBER 2025

[45] W. Lin, Y. Shan, R. Kosta, A. Krishnamurthy, and Y. Zhang,
“SuperNIC: An FPGA-based, cloud-oriented SmartNIC,” in Proc.
ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, 2024, pp.
130-141.

Zhaoyang Huang received the B.S. degree in com-
puter science and technology from China West Nor-
mal University of Computer Science, in 2020. She is
currently working toward the Ph.D. degree with the
College of Computer Science and Electronic Engi-
neering, Hunan University, Changsha, China. Her
research interests include cloud computing and data
centers.

Yanjie Tan received the B.S. and M.S. degrees
from Huazhong University of Science and Technol-
ogy, China, in 2011 and 2015, respectively, and the
Ph.D. degree from Hunan University, Changsha,
China, in 2021. He is a Postdoctoral Researcher with
the College of Computer Science and Electronic
Engineering, Hunan University. His research inter-
ests include real-time system and image and video
processing.

Yifu Zhu received the B.S. degree from the College
of Electronic Science and Engineering, Jilin Univer-
sity, in 2019, and the M.S. degree from Hunan Uni-
versity, Changsha, China, in 2023. He is currently
working toward the Ph.D. degree with the College
of Computer Science and Electronic Engineering,
Hunan University. His research interests include
FPGA and real-time systems.

Huailiang Tan received the B.S. degree from the
Central South University, China, in 1992, the M.S.
degree from Hunan University, Changsha, China, in
1995, and the Ph.D. degree from the Central South
University, China, in 2001. He has more than eight
years of industrial R&D experience in the field of
information technology. From 2010 to 2011, he was
a Visiting Scholar with Virginia Commonwealth
University. Currently, he is a Full Professor of com-
puter science and technology with Hunan University.
His research interests include high performance 1/O,
image and video processing, and embedded systems.

Keqin Li (Fellow, IEEE) received the B.S. degree
in computer science from Tsinghua University, in
1985, and the Ph.D. degree in computer science
from the University of Houston, in 1990. He is a
SUNY Distinguished Professor with the State Uni-
versity of New York and a National Distinguished
Professor with Hunan University, Changsha, China.
He has authored or co-authored more than 1060

journal articles, book chapters, and refereed confer-

ence papers. Since 2020, he has been among the
world’s top few most influential scientists in parallel
and distributed computing regarding single-year impact (ranked #2) and career-
long impact (ranked #4) based on a composite indicator of the Scopus citation
database. He is a member of the SUNY Distinguished Academy. He is an
AAAS Fellow, an AAIA Fellow, an ACIS Fellow, and an AIIA Fellow. He is
a member of Academia Europaea (Academician of the Academy of Europe).

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 12,2025 at 01:33:27 UTC from IEEE Xplore. Restrictions apply.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://developer.nvidia.com/networking/doca
https://developer.nvidia.com/networking/doca
https://swtch.com/<rsc/regexp/
https://docs.broadcom.com/doc/PS250-PB
https://docs.broadcom.com/doc/PS250-PB
https://www.marvell.com/ethernet-adapters-and-controllers/liquidio-smart-nics/index.jsp
https://www.marvell.com/ethernet-adapters-and-controllers/liquidio-smart-nics/index.jsp
https://pktgen-dpdk.readthedocs.io/en/latest/
https://pktgen-dpdk.readthedocs.io/en/latest/
https://www.caida.org/catalog/datasets/passive_dataset/
https://www.caida.org/catalog/datasets/passive_dataset/

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

