
Future Generation Computer Systems 173 (2025) 107902

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

State-driven fairness control for efficient I/O queue scheduling in NVMe

virtualization
Zhaoyang Huang a , Yifu Zhu a , Xin Kuang a , Yanjie Tan a , Huailiang Tan a ,∗,
Keqin Li a,b
a College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, Hunan, China
b Department of Computer Science, State University of New York, New Paltz, 12561, NY, USA

A R T I C L E I N F O

Keywords:
Fairness
I/O scheduling
Multi-tenant cloud
NVMe SSD
Storage virtualization

 A B S T R A C T

As data centers and cloud environments expand, enhancing fairness in I/O queue resource scheduling has
become increasingly urgent in the field of Non-Volatile Memory Express (NVMe) storage virtualization. Existing
methods usually focus on metrics such as Input/Output Operations Per Second (IOPS) enhancement or latency
reduction, overlooking fairness issues among virtual machines (VMs) which may lead to significant resource
contention and performance degradation. In this paper, we propose FairNVMe, a novel NVMe virtualization
solution that enables fair I/O queue scheduling among multiple tenants through effective fairness control.
FairNVMe introduces a state-driven fairness controller that assigns a private state for each tenant and triggers
adaptive resource adjustments when unfair tenant states are detected. Specifically, FairNVMe employs time
budget-based I/O queue scheduling with dynamic budget compensation, reallocating time budgets based on
actual resource consumption and requirements of each tenant. Experimental results demonstrate that FairNVMe
alleviates mutual competition among multiple tenants and outperforms existing solutions in terms of both
system performance and fairness, reaching up to 94.5%, 61.2%, and 79.5% tail latency optimization, enhancing
the fairness by up to 51.4%, 15.6%, and 73.2%, and mitigates maximum slowdowns by up to 92.1%, 59.2%,
and 58.2% compared with Virtio, SPDK, and LPNS, respectively.
1. Introduction

The rapid advancement of new-generation information technologies
such as 5G, cloud computing, and artificial intelligence has rendered
data centers a crucial component for modern information infrastruc-
ture [1,2]. Simultaneously, the volume of data transmitted and pro-
cessed within cloud environments is experiencing explosive growth,
presenting challenges in data management and processing efficiency
[3]. To mitigate these challenges and achieve faster data transmission
speeds with lower latency, NVMe devices are widely deployed in data
centers and cloud platforms [4–6].

NVMe storage virtualization has emerged as a prominent area of
research due to its potential to enhance the effectiveness and scala-
bility of storage devices while reducing the operational costs of data
centers [7,8]. Traditional storage virtualization technologies, such as
VirtIO [9], H-NVMe [10], FamZ userspace NVMe driver [11], and
Storage Performance Development Kit (SPDK) [12] employ universal
Linux I/O virtualization frameworks. These methods involve complex
software stacks and may not be fully optimized to exploit the high-
speed capabilities of NVMe devices, resulting in potential processing

∗ Corresponding author.
E-mail address: tanhuailiang@hnu.edu.cn (H. Tan).

inefficiencies. MDev-NVMe [13] introduces a full NVMe virtualization
framework with mediated pass-through, where each guest runs a na-
tive NVMe driver and facilitates device sharing. By passing through
performance-critical resources, MDev-NVMe increases the utilization
and scalability of storage devices. For enhanced workload-aware man-
agement and latency-predictable I/O control, Peng et al. further pro-
pose FinNVMe [14] and LPNS [15], which provide improved I/O
throughput and operational efficiency within virtualized environments.
However, they fail to ensure fair I/O queue resource allocation among
tenants. Hardware-assisted approaches, such as Single Root I/O Vir-
tualization (SR-IOV) [16], LeapIO [17], and FVM [18], enable the
partitioning of physical I/O devices into virtual functions, facilitating
direct access by multiple VMs. Nevertheless, these solutions rely on
dedicated hardware support and exhibit limited flexibility, constraining
their deployment by cloud vendors across diverse hardware platforms.

With the sustained increase in cloud users, improving the fairness
of physical resource allocation and maintaining the stability of tenant
request processing has become an urgent challenge [19–22]. Co-located
https://doi.org/10.1016/j.future.2025.107902
Received 22 January 2025; Received in revised form 7 April 2025; Accepted 4 May
vailable online 20 May 2025
167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and
 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0009-0008-3388-7636
https://orcid.org/0009-0003-7938-814X
https://orcid.org/0009-0002-4154-5560
https://orcid.org/0000-0001-6937-7648
https://orcid.org/0000-0001-9980-8015
https://orcid.org/0000-0001-5224-4048
mailto:tanhuailiang@hnu.edu.cn
https://doi.org/10.1016/j.future.2025.107902
https://doi.org/10.1016/j.future.2025.107902
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.107902&domain=pdf

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
Table 1
Related work of storage virtualization solutions.
 Technology Methods High Flexible I/O Fairness Description and Limitation
 Performance Scheduling Control
 PT VFIO [29] ✓ × × Pass-through technology assigns

the entire NVMe device to a
single VM, failing to achieve
device sharing.

Para

Virtio [9] × × × Virtio lacks specific optimization
for NVMe devices. SPDK

 SPDK [12] ✓ × × relies on Hugepage memory,
imposing additional pressure.

SR-IOV

FVM [18] ✓ × × Hardware-assisted virtualization
relies on dedicated hardware

 LeapIO [17] × × × support and exhibit limited
flexibility.

MPT

Mdev-NVMe [13] ✓ × × Existing mediated pass-through
NVMe virtualization

 FinNVMe [14] ✓ ✓ × focuses on I/O performance
enhancement and fail to address

 LPNS [15] ✓ ✓ × the critical issue of fair I/O
queue resource allocation.

 FairNVMe (Ours) ✓ ✓ ✓ The first NVMe virtualization
with effective fairness control.

* PT: Pass-through. MPT: Mediated Pass-through.
tenants share underlying physical NVMe devices, leading to inevitable
competition and potential interference. To address these issues, the
Linux kernel introduces several I/O fair scheduling algorithms, such
as CFQ [23], BFQ [24], and mq-deadline [25]. While effective in
traditional systems, these algorithms fail to fully perceive distinct I/O
load characteristics of individual virtual machines, making it hard to
achieve optimal scheduling in dynamic virtualization environments.
Recent research has introduced device-level fair I/O scheduling strate-
gies tailored for NVMe SSDs [26–28]. FLIN [26] performs an in-depth
analysis of interference in multi-queue SSDs and proposes a flash-level
interference-aware scheduler that aims to balance slowdowns while
adhering to application-level priorities assigned by the host system.
Fuzzy [27] focuses on the interference at the data cache level of the
SSD and presents a fuzzy logic-based fairness controller. Fair-ZNS [28]
targets the specialized NVMe Zoned Namespace (ZNS) storage interface
and introduces a self-balance I/O scheduling mechanism dedicated
to ZNS SSDs. Unfortunately, these fairness control strategies often
require modifications to the underlying SSD controller, which increases
the algorithm complexity and implementation cost, restricting their
deployment in practical data centers.

Existing NVMe storage virtualization techniques fail to address the
critical issue of fair I/O queue resource allocation in multi-tenant cloud
storage systems with constrained resources. It may result in severe im-
balances in system efficiency and degrade the quality of service (QoS)
delivered to affected tenants, failing to meet their performance expecta-
tions and negatively impacting user satisfaction [30–32]. In response to
these challenges, we introduce FairNVMe, a novel NVMe virtualization
solution that incorporates effective fairness control mechanisms to
enable flexible I/O queue scheduling and mitigate resource contention
among multiple tenants. Firstly, FairNVMe classifies tenant states into
four distinct levels based on predefined latency thresholds and mea-
sured I/O latency, facilitating real-time assessment of tenant load and
system fairness conditions. Secondly, FairNVMe employs a state-driven
fairness control strategy that continuously monitors the runtime state of
each tenant and generates control signals to initiate adaptive resource
adjustments when state transitions are detected. Finally, the system
integrates a time budget-based I/O queue scheduling approach with
dynamic budget compensation. This mechanism allocates specific time
budgets to tenants and dynamically adjusts them based on request cost
estimation, thereby offering a comprehensive understanding of each
tenant’s actual resource consumption and requirements.

The main contributions of our work are as follows.
2
• We present FairNVMe, a novel OS-level mediated pass-through
NVMe virtualization solution with effective fairness control. FairN-
VMe guarantees fair I/O queue scheduling among multiple tenants,
addressing the critical issue of resource contention in multi-tenant
clouds.

• We introduce a state-driven fairness controller that continuously
upholds an individual state for each tenant. The controller triggers
an unfairness signal whenever it identifies unbalanced or saturated
states among tenants. To ensure balanced resource distribution,
we estimate the time cost of each read/write operation and in-
tegrate time budget-based I/O scheduling with dynamic budget
compensation.

• We conduct an extensive series of experiments to compare the
proposed FairNVMe with three mainstream NVMe virtualization
frameworks, including para-virtualization Virtio, SPDK, and LPNS
with mediated pass-through. Experimental results demonstrate
that FairNVMe maintains the high performance of NVMe devices
while effectively managing fairness among multiple tenants, out-
performing existing solutions in terms of both system performance
and fairness.

The remainder of this paper is organized as follows. Section 2 pro-
vides a comprehensive overview of the background and motivation. In
Section 3, we illustrate the design and implementation of FairNVMe in
detail. Section 4 presents the discussion. Experimental results compared
the proposed FairNVMe architecture with Virtio, SPDK, and LPNS are
demonstrated in Section 5. Section 6 introduces related works. Finally,
the conclusion is drawn in Section 7.

2. Background and motivation

2.1. NVMe protocol

NVMe is an advanced storage access and transport protocol specif-
ically designed for SSD devices [4]. NVMe operations can be classified
into two primary categories: Admin Commands and I/O Commands.
Admin Commands undertake administrative tasks such as I/O queue
management, device parameter configuration, and function manage-
ment. On the other hand, I/O Commands are responsible for data
transmission between the host system and SSD.

The NVMe architecture is built around three principal components:
Submission Queue (SQ), Completion Queue (CQ), and Doorbell Register

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
(DB). The SQ serves as the host system’s interface for dispatching
commands to the SSD, encompassing both Admin and I/O Commands.
CQ receives updates and completion notifications from the SSD, pro-
viding essential feedback to the host system. The DB plays a crucial
role in signaling between the host and the SSD device. When the host
system enqueued Admin and I/O Commands into the SQ, it rings the
doorbell to alert the SSD hardware controller of pending tasks. The
controller periodically checks for modifications in the doorbell register
and retrieves commands from the SQ for execution. Upon completing
command execution, the controller writes relevant information to the
CQ and triggers a Message Signaled Interrupt (MSI/MSI-X) in the
DB to notify the host system of task completion. After receiving the
interrupt, the host system reads the information from the CQ, updates
the command status, and prepares for subsequent command processing.

2.2. Fairness definition

To quantify the fairness of NVMe virtualization, we follow the
definition in prior research [26,28,33]. Fairness is defined as the ratio
between the minimum slowdown value and the maximum slowdown
value, formulated as follows:

𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛𝑖 =
𝑅𝐿𝑆ℎ𝑎𝑟𝑒𝑑

𝑖

𝑅𝐿𝐴𝑙𝑜𝑛𝑒
𝑖

, (1)

𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 =
min𝑖{𝑆𝑙𝑜𝑤𝑖}
max𝑖{𝑆𝑙𝑜𝑤𝑖}

. (2)

When multiple I/O flows run simultaneously, they can negatively in-
terfere with each other, leading to performance degradation. The slow-
down metric 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛𝑖 measures the performance loss experienced
by each I/O flow due to resource contention. Specifically, 𝑅𝐿𝑆ℎ𝑎𝑟𝑒𝑑

𝑖
refers to the request latency of the 𝑖th I/O flow when it operates
under shared conditions, where multiple I/O flows run concurrently.
𝑅𝐿𝐴𝑙𝑜𝑛𝑒

𝑖 denotes the request latency when the flow is running alone. The
fairness metric 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠, derived from these slowdown values, provides
a comprehensive measure of the equitability of resource allocation
among multiple I/O flows. 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 ranges from 0 to 1, where a higher
value indicates a more balanced system. The fairness value approaching
1 signifies an ideal system condition where all I/O flows experience
similar slowdown levels due to resource contention, implying that the
system facilitates fair resource distribution.

2.3. Motivation

Table 1 categorizes existing NVMe virtualization mechanisms [9,
12–15,17,18,29] into four categories, including pass-through, para-
virtualization, hardware-assisted virtualization, and mediated pass-
through. Although existing NVMe virtualization methods have achieved
reasonable efficiency, they fail to address the following critical chal-
lenges inherent in cloud environments.

(1) Performance degradation. When multiple co-located tenants si-
multaneously access shared underlying NVMe devices, the contention
for I/O resources inevitably leads to increased latency and reduced
throughput. This slowdown has a direct and adverse impact on the
QoS experienced by each tenant, as tenants may face delays in data
processing, which can be particularly detrimental to time-sensitive ap-
plications. For instance, in financial services, where real-time transac-
tion processing is essential, any lag can lead to substantial operational
challenges and financial losses. To quantify the slowdown caused by
mutual interference among tenants, we evaluate the IOPS, average
latency, and corresponding slowdown metrics for each virtual machine
running intensive 4K random read and write operations. The detailed
experimental setup is described in Section 5.1. As depicted in Fig. 1,
the performance of each VM utilizing Virtio and LPNS exhibits varying
levels of degradation, highlighting resource contention and mutual
interference in multi-tenant environments. Although SPDK preserves a
3
Fig. 1. System performance (histogram) and corresponding slowdown (line graph)
caused by mutual resource contention among multiple VMs.

Fig. 2. The stability of I/O throughput under real-world application scenarios.

relatively consistent slowdown among VMs, it still suffers from severe
degradation in system efficiency under high contention scenarios.

(2) Instability. System instability and fluctuations introduced by
resource contention can complicate resource management and lead
to inconsistent application behaviors. The performance of individual
tenants can vary unpredictably, which poses challenges in preserving
consistent service levels. To assess system stability under real-world
scenarios, we assign two VMs to execute application workloads web-
server and fileserver generated by Filebench [34]. The other two VMs
run intensive FIO workloads, characterized by random read and ran-
dom write operations, configured with numjobs=4 and iodepth=32.
As illustrated in Fig. 2, we observe the system IOPS over a 100-second
interval. The experimental results reveal that the throughput of Virtio,
SPDK, and LPNS fluctuates significantly over time due to resource
contention among co-located tenants. As evaluated in Section 5.3,
we also quantify the stability of tenant latency using the standard
deviation metric and observe that resource contention also contributes
to substantial latency variability. Such instability might make it hard
to ensure the reliability and predictability of cloud services [35].

(3) Unfairness in resource allocation. Unfair resource allocation can
lead to scenarios where some tenants experience severe degradation
while others benefit disproportionately from the shared resources. For
example, as depicted in Fig. 1(a), the IOPS throughput of 𝑉𝑀 using
6

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
Fig. 3. System architecture of FairNVMe.

LPNS experiences considerably higher slowdowns compared to 𝑉𝑀5.
This imbalance considerably affects the overall efficiency and fairness
of cloud environments. Maintaining fairness in resource distribution
is essential for enhancing tenant satisfaction and optimizing the uti-
lization of cloud resources. To address the above critical challenges
and enable fair NVMe virtualization, we introduce a state-driven fair-
ness controller and integrate time budget-based I/O scheduling with
dynamic budget compensation.

3. Design and implementation

In this section, we introduce FairNVMe, a novel NVMe virtualization
framework with effective fairness control to mitigate mutual interfer-
ence among multiple tenants and enable fair I/O queue scheduling.

3.1. Architecture overview

FairNVMe is designed based on mediated pass-through technique
[36] and implemented as a kernel module on the Linux host system
(kernel version 5.5.0). FairNVMe offers full virtualization support for
NVMe devices without necessitating any modifications to the guest OS
kernel. The system architecture is depicted in Fig. 3. For simplicity
in model design, we assume that each tenant contains only a single
VM, with fairness achieved at the VM level. Nevertheless, the proposed
model can be easily extended to other scenarios where tenants hold
multiple VMs. FairNVMe inherits the physical I/O queue pool and
I/O queue shadowing design principles from previous mediated pass-
through NVMe virtualization solutions [13,14]. In FairNVMe, each
tenant is allocated virtual I/O queues, which comprise virtual submis-
sion queues (VSQs) and virtual completion queues (VCQs). Commands
from each tenant are initially delivered to the VSQs and then passed
through to the shadowing physical queue via Direct Memory Access
(DMA) and the translation of Guest Physical Address (GPA) to Host
Physical Address (HPA). To achieve fairness in I/O queue management,
FairNVMe presents several key components: a tenant state classifier, a
state-driven fairness controller, and a dynamic budget compensation
module.

The tenant state classifier categorizes tenant states into four distinct
levels based on predefined thresholds: idle, balanced, unbalanced, and
saturated. Each category reflects the current load and performance
status of tenants’ I/O operations. To flexibly adapt to tenant state
transitions, FairNVMe employs dedicated polling threads to handle I/O
commands while continuously monitoring the status of each tenant.
Upon detecting unfairness or overload conditions, the fairness con-
troller adjusts the latency thresholds and associated weights while
activating the budget compensation process to maintain system fair-
ness and efficiency. The budget compensation module estimates the
4
request cost associated with read/write operations, enabling resource
allocation strategies to be adjusted according to the actual resource
consumption and demands. Further details on the implementation and
functionality of these components will be presented in the following
subsection.

3.2. Tenant state classifier

Accurate assessments of each tenant’s fairness state are crucial for
implementing effective fairness control. Motivated by research pre-
sented in [37,38], which define fairness as the variance between the
expected and actual weight of each tenant. We utilize the difference
between measured latency and predefined target levels as an indi-
cator of potential unfairness. However, determining suitable latency
thresholds poses challenges. The performance characteristics of each
virtual machine are unpredictable and influenced by a multitude of
factors, including request size (average and distribution), operation mix
(the percentage of read versus write operations), and workload access
patterns (sequential or random). These dynamic variations make it hard
for a fixed latency threshold to be universally applicable across diverse
scenarios. In response, we introduce an adaptive latency threshold
adjustment mechanism that dynamically updates the threshold value,
denoted as 𝑇ℎ𝑟𝑒𝑠ℎ𝑐𝑢𝑟, by leveraging the exponentially weighted moving
averages (EWMA) [39].

Tenant states are further categorized into four distinct levels based
on measured latency 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 in relation to the minimum threshold
𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛, the adaptive current threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑐𝑢𝑟, and the maxi-
mum threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥. (1) Idle (𝐿𝑎𝑡𝑒𝑛𝑐𝑦 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛): allocated
resources are underutilized. (2) Balanced (𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛 ≤ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 <
𝑇ℎ𝑟𝑒𝑠ℎ𝑐𝑢𝑟): the ideal state for achieving optimal system efficiency and
effective resource management. (3) Unbalanced (𝑇ℎ𝑟𝑒𝑠ℎ𝑐𝑢𝑟 ≤ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 <
𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥): suggesting that the current resource distribution may be
suboptimal, potentially leading to system unfairness and inefficiencies.
(4) Saturated (𝐿𝑎𝑡𝑒𝑛𝑐𝑦 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥): the demand for system resources
surpasses the available capacity, resulting in significant performance
delays. Typically observed in scenarios with excessive task volumes or
insufficient resource allocation.

As the lower bound of 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 state, 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛 must exceed the
maximum latency observed when the I/O flow operates in isolation,
i.e., 𝑚𝑎𝑥(𝑅𝐿𝐴𝑙𝑜𝑛𝑒). We configure 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛 to 600 μs to ensure the
system remains within the 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 state under light load conditions.
The upper threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥 is critical in enabling efficient resource
utilization under heavy loads while avoiding frequent transitions into
the 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 state, which could compromise the system stability. To
strike the optimal balance, we set 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥 to 3500 μs, which is
slightly higher than the latency observed as the device approaches
saturation. Moreover, to effectively accommodate dynamic workloads
and diverse SSD hardware characteristics, we adopt a feedback loop-
based threshold adjustment strategy. Inspired by the adaptive threshold
design in GCC [40], we continuously monitor latency trends and dy-
namically update the minimum and maximum threshold using the
following equation:
𝑇ℎ𝑟𝑒𝑠ℎ(𝑡𝑖) = 𝑇ℎ𝑟𝑒𝑠ℎ(𝑡𝑖−1) + 𝑘 ⋅ (𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑡𝑖) − 𝑇ℎ𝑟𝑒𝑠ℎ(𝑡𝑖−1)), (3)

𝑘 =

{

𝑘𝑢, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑡𝑖) > 𝑇ℎ𝑟𝑒𝑠ℎ(𝑡𝑖−1),
𝑘𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(4)

The adaptation parameters 𝑘𝑢 and 𝑘𝑑 control the rates of threshold
increase or decrease. Similar to GCC [40], we employ an asymmetric
adaptation ratio (𝑘𝑢 = 0.01 ≫ 𝑘𝑑 = 0.001) to ensure rapid response
to latency increases while maintaining smooth recovery during stable
periods. Our parameter sensitivity analysis also confirms that this
configuration optimally balances system responsiveness and stability
across diverse SSD workloads. Notably, the computational overhead
of this adaptive mechanism is negligible, as it only requires simple
arithmetic operations without introducing additional I/O operations or
costly computations.

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
Algorithm 1 Fair I/O Queue Scheduling through State-Driven Fairness
Control
Input: Number of tenants 𝑁 , predefined weight 𝑤𝑒𝑖𝑔ℎ𝑡[𝑁], maximum
and minimum threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥, 𝑡ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛
Output: Budget allocation results for each tenant 𝑏𝑢𝑑𝑔𝑒𝑡[𝑁]
1: for 𝑖 = 1 to 𝑁
2: while 𝑟𝑒𝑞[𝑖] > 0
3: if 𝑏𝑢𝑑𝑔𝑒𝑡[𝑖] > 0 then
4: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦[𝑖] = request_processing(𝑟𝑒𝑞);
5: 𝑏𝑢𝑑𝑔𝑒𝑡[𝑖] -= 𝑐𝑜𝑠𝑡[𝑖];
6: if 𝑠𝑡𝑎𝑡𝑒[𝑖] == 𝐼𝑑𝑙𝑒 && 𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] > 𝛽 then
7: 𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] -= 𝛽;
8: 𝑡ℎ𝑟𝑒𝑠ℎ[𝑖] = ewma(𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑡ℎ𝑟𝑒𝑠ℎ);
9: else if 𝑠𝑡𝑎𝑡𝑒[𝑖] == 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 then
10: /* Keep the current weight and time budget */
11: 𝑡ℎ𝑟𝑒𝑠ℎ[𝑖] = ewma(𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑡ℎ𝑟𝑒𝑠ℎ);
12: else if 𝑠𝑡𝑎𝑡𝑒[𝑖] == 𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 then
13: 𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] += 𝛽;
14: 𝑡ℎ𝑟𝑒𝑠ℎ[𝑖] = (𝑡ℎ𝑟𝑒𝑠ℎ[𝑖] + 𝑡ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥[𝑖]) / 2;
15: 𝑐𝑜𝑠𝑡 = cost_estimation(𝑟𝑒𝑞);
16: 𝑏𝑢𝑑𝑔𝑒𝑡 = budget_compensate(𝑤𝑒𝑖𝑔ℎ𝑡, 𝑐𝑜𝑠𝑡);
17: return 𝑏𝑢𝑑𝑔𝑒𝑡;
18: else
19: 𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] += 2𝛽;
20: 𝑡ℎ𝑟𝑒𝑠ℎ[𝑖] = 𝑡ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥[𝑖];
21: 𝑐𝑜𝑠𝑡 = cost_estimation(𝑟𝑒𝑞);
22: 𝑏𝑢𝑑𝑔𝑒𝑡 = budget_compensate(𝑤𝑒𝑖𝑔ℎ𝑡, 𝑐𝑜𝑠𝑡);
23: return 𝑏𝑢𝑑𝑔𝑒𝑡;
24: end if
25: else /* Tenant exhausts allocated time budgets */
26: Break; /* Excluded from the scheduling unit */
27: if 𝑖==𝑁 /* All tenants run out of budgets */
28: 𝑏𝑢𝑑𝑔𝑒𝑡 = budget_reallocate(𝑤𝑒𝑖𝑔ℎ𝑡, 𝑐𝑜𝑠𝑡);
29: return 𝑏𝑢𝑑𝑔𝑒𝑡;
30: end if
31: end if
32: end while
33: end for
34: End

3.3. State-driven fairness controller

For flexible I/O queue scheduling, FairNVMe integrates a time
budget-based I/O queue scheduling mechanism with a state-driven
fairness controller. Specifically, FairNVMe continuously monitors the
tenant status to identify varying levels of unfairness, guiding the system
to apply either aggressive or gradual time budget adjustments based on
the severity of the imbalance.

The procedure for the fair I/O queue scheduling is outlined in
Algorithm 1, which exhibits a time complexity of 𝑂(𝑁 ⋅ 𝑚𝑎𝑥(𝑟𝑒𝑞𝑖)).
This complexity arises from the nested loop structure: the outer loop
iterates over 𝑁 tenants, while the inner loop processes up to 𝑚𝑎𝑥(𝑟𝑒𝑞𝑖)
requests for each tenant. Since operations within the inner loop have
a constant time complexity, the total number of operations in the
worst case is proportional to 𝑁 ⋅ max(𝑟𝑒𝑞𝑖). Initially, each tenant is
assigned a default weight of 1 upon creation, which determines its
proportion of resource allocation and is subsequently dynamically ad-
justed based on the tenant’s status. The system then fairly allocates time
budgets among tenants according to their associated weights. As I/O
requests are processed, the time budget is incrementally reduced based
on the estimated costs (Steps 1 to 5). During execution, the system
continuously monitors the runtime state of each tenant according to
their measured I/O latency and corresponding thresholds. Upon detect-
ing state transitions, the algorithm dynamically modifies the relevant
5
weights and thresholds. Additionally, it triggers cost estimation and
budget compensation processes (as described in Section 3.4) when
necessary to maintain system fairness and efficiency (Steps 6 to 24).
Once a tenant’s allocated time budget is exhausted, their request queue
is temporarily excluded from the scheduling unit until the budget is
replenished in the next scheduling cycle, preventing any single tenants
from monopolizing system resources and ensuring that all tenants have
equitable access over time (Steps 25 to 26). In scenarios where all
tenants exhaust their time budgets and there are still pending requests,
the scheduler resets the time budgets, allowing the system to continue
processing I/O operations without introducing significant delays (Steps
27 to 34). Detailed explanations of the control actions associated with
each state are provided below.

(1) Releasing unused resources during the idle state. Idle state indi-
cates the potential for redistributing unused capacity to other tenants
experiencing higher demand, particularly those in unbalanced or sat-
urated states for overall performance optimization. To facilitate this,
we introduce a new parameter 𝛽 for tenant resource allocation weight
adjustments in response to state transitions. Specifically, the fairness
controller reduces the weight associated with idle tenants by 𝛽 and
updates the current threshold using the EWMA method (Steps 6 to 8).

(2) Preserving optimal efficiency in the balanced state. The fairness
controller preserves the current resource allocation strategy as no
immediate adjustments are necessary (Steps 9 to 11).

(3) Gradually mitigating unfairness in the unbalanced state. This state
serves as an early warning that system fairness is facing degradation.
In response, the algorithm implements proactive actions to correct
these imbalances before they escalate into more severe issues (i.e., the
saturated state). Initially, the system gradually increases the weight
associated with unbalanced tenants by 𝛽 to enhance its I/O queue
resource allocation ratio (Steps 12 to 13). To reduce the frequency
of transitions into the unbalanced state, the algorithm incrementally
adjusts the 𝑇ℎ𝑟𝑒𝑠ℎ𝑐𝑢𝑟 to the midpoint between the current threshold
and the maximum threshold (Step 14). Additionally, it triggers cost
estimation and budget compensation processes to maintain system
fairness (Steps 15 to 17).

(4) Aggressively addressing system stress in the saturated state. The
tenant load is either approaching or exceeding the system’s process-
ing capacity, necessitating immediate intervention to prevent further
system degradation and ensure stability. Specifically, we aggressively
increase the weight associated with saturated tenants by 2𝛽, thereby
prioritizing their resource allocation (Steps 18 to 19). Moreover, the
controller activates the dynamic budget compensation process and
updates the current threshold to align with the maximum threshold
value, preventing further performance degradation and enabling the
system to quickly adapt to extreme load conditions (Steps 20 to 24).

To ensure accurate control, we perform a sensitivity analysis on the
parameter 𝛽 and observe that smaller values of 𝛽 potentially delay the
resolution of unfairness among tenants. Conversely, a larger 𝛽 enables
more aggressive adjustments in resource allocation but heightens the
risk of overcompensation, which could exacerbate latency issues. The
system latency first declines and then rises as the 𝛽 value varies, reach-
ing optimal performance at 𝛽 = 0.5, which enables effective response
to tenant state changes without excessive compensation. By applying
corresponding actions for these four states, the fairness controller can
rapidly detect and respond to each tenant’s resource adjustment re-
quirements, thereby enhancing system stability and fairness across all
tenants.

3.4. Dynamic budget compensation

To enable the adaptive adjustment of resource allocation strategy
according to the actual resource consumption and demands of each
tenant, the budget compensation module estimates the request costs
associated with each I/O operation. Given that read and write requests
exhibit distinct characteristics and consequently impose varying levels

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
Table 2
Overhead in average latency (μs)
 Test Case Native Virtio SPDK LPNS Ours
 rand-read-n1d1 99.94 209.32 103.27 101.39 99.5
 rand-write-n1d1 14.75 70.87 18.48 15.47 15.73
 rand-read-n4d4 147.03 172.54 130.47 121.91 123.47
 rand-write-n4d4 53.66 150.29 53.81 54.36 53.73

of resource consumption. Write requests generally exhibit higher la-
tency and demand more extensive processing resources compared to
read requests. FairNVMe estimates the costs of read and write opera-
tions independently. The estimator gathers detailed I/O request data for
each 𝑇 𝑒𝑛𝑎𝑛𝑡𝑖, including the number of requests 𝑅𝑒𝑞𝑖, the access modes
(read or write), and the corresponding time cost, denoted as 𝑇 𝑖𝑚𝑒𝑟𝑖 for
read operations and 𝑇 𝑖𝑚𝑒𝑤𝑖 for write operations. Upon detecting signals
of unfairness or overload, FairNVMe calculates the associated request
costs and initiates the budget compensation process using the following
predefined models:

𝐵𝑢𝑑𝑔𝑒𝑡𝑖 =
𝑊 𝑒𝑖𝑔ℎ𝑡𝑖 × (𝐶𝑜𝑠𝑡𝑟𝑖 + 𝐶𝑜𝑠𝑡𝑤𝑖)

∑𝑁
𝑗=1 𝑊 𝑒𝑖𝑔ℎ𝑡𝑗 × (𝐶𝑜𝑠𝑡𝑟𝑗 + 𝐶𝑜𝑠𝑡𝑤𝑗)

× 𝐵𝑡𝑜𝑡𝑎𝑙 , (5)

𝐶𝑜𝑠𝑡𝑟𝑖 = 𝑅𝑒𝑞𝑖 × (1 − 𝑅𝑎𝑡𝑖𝑜𝑤𝑖) × 𝑇 𝑖𝑚𝑒𝑟𝑖 , (6)

𝐶𝑜𝑠𝑡𝑤𝑖 = 𝑅𝑒𝑞𝑖 × 𝑅𝑎𝑡𝑖𝑜𝑤𝑖 × 𝑇 𝑖𝑚𝑒𝑤𝑖 . (7)

The budget allocation for each 𝑇 𝑒𝑛𝑎𝑛𝑡𝑖 denoted as 𝐵𝑢𝑑𝑔𝑒𝑡𝑖 is deter-
mined in proportion to its assigned weight 𝑊 𝑒𝑖𝑔ℎ𝑡𝑖. The total available
time budget is represented as 𝐵𝑡𝑜𝑡𝑎𝑙. Consumed budgets for completing
read and write requests are denoted as 𝐶𝑜𝑠𝑡𝑟𝑖 and 𝐶𝑜𝑠𝑡𝑤𝑖 , respectively.
The parameter 𝑅𝑎𝑡𝑖𝑜𝑤𝑖 reflects the ratio of write requests relative to the
total number of I/O requests 𝑅𝑒𝑞𝑖. Through dynamic budget compen-
sation, FairNVMe ensures that tenants with higher weights or greater
resource demands receive an appropriate share of the total available
budget.

4. Discussion

4.1. Overhead of FairNVMe

FairNVMe implements a range of advanced mechanisms to ensure
fair I/O queue scheduling in multi-tenant environments. Nevertheless,
their implementation inherently introduces certain performance and
resource overheads. Firstly, FairNVMe necessitates continuous monitor-
ing of system status and dynamic adjustment of time budgets allocated
to each tenant. This process involves frequent calculations and up-
dates to the time budgets based on runtime statistics, which inevitably
contribute to additional latency within the system. Table 2 presents a
comparative analysis of the native behavior of physical devices against
the average latency observed by Virtio, SPDK, LPNS, and FairNVMe. Ex-
perimental results demonstrate that FairNVMe can achieve near-native
efficiency and the additional overhead induced by FairNVMe is negligi-
ble. Notably, FairNVMe even surpasses native results in 4K random read
I/O benchmarks configured with numjobs=4 and iodepth=4, owing to
its ability to fully exploit multi-queue features of NVMe devices through
polling mode.

Secondly, FairNVMe continuously monitors a private state for each
tenant and employs dedicated polling threads to facilitate detailed
statistics gathering, which introduces additional overhead in terms of
CPU cycles and memory utilization. To thoroughly evaluate the re-
source overhead of FairNVMe, we increase the number of tenants from
1 to 8 and assess the corresponding changes in resource utilization.
Our measurements reveal that the additional resource occupancy in-
troduced by FairNVMe remains minimal and within acceptable bounds,
with an observed increase of less than 1.8 percent.
6
4.2. Comparison with device-level fair scheduler

Since the firmware of commercial products is typically closed and
cannot be modified, existing device-level I/O schedulers are usually
implemented using SSD simulators [41,42]. While these simulators
effectively model the internal logic and I/O performance of SSDs, they
do not expose block device interfaces to the host or virtualization
environments. This limitation makes it unsuitable for direct comparison
with FairNVMe, as our work focuses on NVMe virtualization solutions
aimed at mitigating performance interference and ensuring fairness
among multiple tenants. Therefore, in this subsection, we perform
a theoretical analysis to examine the advantages and limitations of
FairNVMe in comparison with FLIN [26], a representative device-level
scheduling framework.

FLIN is a device-level interference-aware scheduler implemented
within the SSD controller firmware using the MQSim simulator [43].
It protects against the four primary sources of interference among I/O
flows (i.e., I/O intensity, access pattern, read/write ratio, and garbage
collection) to balance slowdowns and ensure fairness across diverse
applications. Although device-level solutions like FLIN are expected to
achieve better fairness through fine-grained flow control, they are con-
strained by the following limitations: (1) Implementation complexity:
Designing and deploying them requires modifications to the underlying
SSD controller firmware, which increases the algorithm complexity
and implementation costs [15]. (2) Limited Portability: They are often
tightly coupled with specific hardware, making them less portable or
reusable across diverse platforms [44]. (3) Scalability issues: In dis-
tributed or cloud environments involving multiple devices, device-level
schedulers might lack a system-wide perspective, potentially leading to
suboptimal global fairness [45]. In contrast, while FairNVMe cannot
directly perceive and address some underlying sources of interference,
such as garbage collection, it offers notable advantages as an OS-
level software strategy. As a kernel module, FairNVMe offers enhanced
flexibility for modifications and updates. Furthermore, it can enforce
fairness across the entire system, which is crucial in multi-tenant cloud
environments.

5. Evaluation

In this section, we conduct a comprehensive evaluation of our
proposed FairNVMe alongside three mainstream NVMe virtualization
mechanisms, including the para-virtualization abstraction Virtio [9],
the SPDK 𝑣ℎ𝑜𝑠𝑡-𝑠𝑐𝑠𝑖 [12], and a mediated pass-through solution LPNS
[15]. Since LPNS has already demonstrated superior effectiveness over
SR-IOV [16], we only need to compare FairNVMe with LPNS in the
experiments. Our assessment covers a range of critical metrics, includ-
ing overall system performance (IOPS, average latency, and tail latency
distribution), and fairness (fairness index, maximum slowdown, and
system stability). To assess the scalability of FairNVMe across diverse
load situations, we augment the workload intensity by increasing the
number of jobs and I/O queue depths across various scenarios, in-
cluding random read, random write, and mixed random read&write
conditions.

5.1. Experimental setup

(1) Experimental Platform
The host server is equipped with an Intel Xeon(R) Platinum 8171M

52-core processor running at 2.6GHz, 128GB DRAM. To simulate CPU
resource contention scenarios, the number of available CPU cores are
constrained to 24. We build the experimental setup using the Intel
DC P3520 1.2T NVMe SSD, which is a 3D NAND-based SSD designed
specifically for data centers. Different from conventional flash-based
SSDs such as the P3700 series, which focuses on high-performance
storage, the 3D NAND-based P3520 can realize higher density at lower

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
Fig. 4. Throughput performance of IOPS under 12 test cases across three distinct I/O patterns.
Table 3
Workload configuration.
 Test Case Description

I/O scarce

rand-read-n1d1 4K random read, numjobs=1, iodepth=1
 rand-write-n1d1 4K random write, numjobs=1, iodepth=1
 rand-rw 4K mixed random read&write,
 n1d1-read numjobs=1, iodepth=1, read 70%
 rand-rw 4K mixed random read&write,
 n1d1-write numjobs=1, iodepth=1, write 30%

I/O moderate

rand-read-n4d4 4K random read, numjobs=4, iodepth=4
 rand-write-n4d4 4K random write, numjobs=4, iodepth=4
 rand-rw 4K mixed random read&write,
 n4d4-read numjobs=4, iodepth=4, read 70%
 rand-rw 4K mixed random read&write,
 n4d4-write numjobs=4, iodepth=4, write 30%

I/O intensive

rand-read-n4d32 4K random read, numjobs=4, iodepth=32
 rand-write-n4d32 4K random write, numjobs=4, iodepth=32
 rand-rw 4K mixed random read&write,
 n4d32-read numjobs=4, iodepth=32, read 70%
 rand-rw 4K mixed random read&write,
 n4d32-write numjobs=4, iodepth=32, write 30%

cost and power consumption [46]. To comprehensively assess the sys-
tem fairness, we also deploy FairNVMe on the Samsung PM1735 [47],
which is an enterprise-grade SSD capable of supporting up to 1000K
IOPS in 4K random read and 200K IOPS in 4K random write.

We install the Ubuntu 18.04 operating system for the host server
with Linux kernel 5.5.0, guests are instantiated with identical OS image
versions based on KVM/QEMU hypervisor infrastructure. Virt-manager
is used for VM creation and management, ensuring streamlined orches-
tration of virtualized environments. Each virtual machine is endowed
with 4 CPU cores and configured to accommodate 4 virtual queues.
During experiments, we allocate fixed 64GB NVMe SSD storage to each
VM.

(2) Workload Configuration
Flexible I/O Tester (FIO) [48] and Yahoo! Cloud Serving Benchmark

(YCSB) [49] are utilized as benchmarking tools to assess system per-
formance comprehensively. To analyze system behavior from multiple
dimensions, we adjust FIO configuration parameters and design 12 test
cases across three I/O patterns, including I/O scarce, I/O moderate,
and I/O intensive. Configuration details are summarized in Table 3. We
augment the workload intensity by manipulating the value of 𝑛𝑢𝑚𝑗𝑜𝑏𝑠
(i.e., the amount of concurrent threads) and 𝑖𝑜𝑑𝑒𝑝𝑡ℎ (i.e., the number
of requests queued per thread). Aligned with real-world data center
benchmarks derived from CAMELab Flash-based Block Traces (CAME-
TBT) [50], we set the block size across all test cases as 4𝐾. The 𝑖𝑜𝑒𝑛𝑔𝑖𝑛𝑒
parameter is designated as 𝑙𝑖𝑏𝑎𝑖𝑜, enabling enhanced asynchronous I/O
operations. In pursuit of realistic test outcomes, we employ 𝐷𝑖𝑟𝑒𝑐𝑡 mode
to bypass the I/O buffer. Moreover, YCSB is employed to simulate key–
value store workloads on RocksDB databases, providing insights into
the system’s efficiency under realistic application scenarios.
7
5.2. Overall performance

(1) Throughput
Initially, we instantiate virtual environments with eight virtual

machines and evaluate the IOPS throughput under 12 test cases across
three distinct I/O patterns. The experimental results, depicted in Fig.
4, demonstrate that FairNVMe exhibits superior behavior in the ma-
jority of scenarios when compared to other virtualization methods.
In scenarios characterized by single-threaded, non-intensive workloads
(e.g., n1d1), where ample CPU and NVMe disk resources are available,
the throughput differential between FairNVMe and alternative virtu-
alization mechanisms is relatively modest. As the workload intensity
and queue depth escalate, the efficiency of FairNVMe becomes more
pronounced, particularly under multi-threaded, intensive I/O loads
(e.g., n4d32), where resource contention becomes a critical factor.
Specifically, FairNVMe enhances the IOPS by up to 3.02x, 23.5%,
and 31.2% compared with Virtio, SPDK, and LPNS, respectively. This
phenomenon can be attributed to the state-driven fairness controller
employed by FairNVMe, which ensures the appropriate allocation of
physical queue resources based on the private state of each tenant and
alleviates contention among multiple virtual machines.

(2) Average Latency
As illustrated in Fig. 5, with higher workload intensity, the scarcity

of physical resources becomes more pronounced, resulting in prolonged
response time for I/O requests. As a universal I/O virtualization in-
terface with no specific optimization for NVMe, Virtio gains poor
performance in average latency. To mitigate I/O latency, SPDK intro-
duces a zero-copy approach that avoids data replication between user
space and kernel space. Additionally, it employs user space drivers
instead of kernel drivers, thereby minimizing the frequent context
switching between them. However, its static I/O resource allocation
strategy makes it less suitable for scenarios that require flexible and
dynamic resource management, as resources are allocated prior to ap-
plication runtime. While LPNS enhances latency predictability through
self-feedback mechanisms, it ignores the resource contention for shared
NVMe devices among multiple virtual machines, which can lead to
potential degradation. In contrast, FairNVMe outperforms Virtio, SPDK,
and LPNS, achieving up to 91.9%, 22.1%, and 24.5% latency op-
timization, respectively. This superior performance is attributed to
FairNVMe’s budget compensation strategy, which dynamically adjusts
physical I/O queue resource allocation according to the requirements
of individual VMs, effectively reducing queuing delays and request
processing times.

(3) Tail Latency
Fig. 6 provides a comprehensive evaluation of tail latency at various

percentiles across four scenarios, including random read, random write,
and mixed random read and write operations. The latency results are
presented using a logarithmic scale for enhanced clarity, with both
the number of jobs and queue depths set to 4. Tail latency is primar-
ily determined by the slowest operations, which directly impact user
experience due to delayed responses. The experimental results reveal
a trend similar to that observed in average latency measurements.
Specifically, FairNVMe reduces the tail latency by up to 94.5%, 61.2%,
and 79.5% compared with the other three methods, respectively. These
results underscore FairNVMe’s ability to substantially reduce the tail

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
Fig. 5. The average latency under 12 test cases across three distinct I/O patterns.
Fig. 6. Tail latency distribution across four scenarios with a logarithmic scale coordinate of latency results.
Fig. 7. Fairness index based on Eq. (2), indicating the ratio of the minimum to maximum slowdowns (higher values indicate better fairness).
latency, particularly for the 99.9th percentile, which is critical for
maintaining high-quality service in cloud environments. Through fair
resource allocation, FairNVMe optimizes the processing of the slow-
est operations and minimizes request delays, thereby enhancing the
overall effectiveness and user experience, making it a superior choice
in cloud scenarios where both performance and fairness are critical
considerations.

5.3. Fairness evaluation

In this subsection, we present a detailed analysis of system fairness
evaluation, focusing on three key metrics: the fairness index, the maxi-
mum slowdown caused by mutual interference, and the system stability
under contention. To comprehensively evaluate FairNVMe’s fairness
behavior, we conduct a series of experiments on both Intel P3520 and
Samsung PM1735.

(1) Fairness Index
Fig. 7 illustrates the fairness results calculated based on Eq. (2),

which represents the ratio of the minimum to the maximum slowdowns
experienced by VMs. The fairness index ranges from 0 to 1, with higher
values indicating better fairness. FairNVMe improves the fairness index
across eight test cases, outperforming Virtio, SPDK, and LPNS by up
to 51.4%, 15.6%, and 73.2%, respectively. This improvement high-
lights FairNVMe’s capability to enable fair resource allocation among
multiple tenants, reducing disparities in performance slowdowns.

(2) Maximum Slowdown
We also evaluate the maximum slowdown caused by mutual inter-

ference across various workload patterns. As depicted in Figs. 8 and
9, the system experiences significant slowdowns, with values reaching
8
up to 96x under certain conditions. Despite SPDK and LPNS mitigating
resource contention and performance degradation to some extent, they
still encounter notable slowdowns. In contrast, with efficient fairness
control mechanisms, FairNVMe effectively manages mutual interfer-
ence, reducing the maximum slowdown value by up to 92.1%, 59.2%,
and 58.2% compared with Virtio, SPDK, and LPNS, respectively.

(3) System Stability
To further demonstrate the stability of FairNVMe, we measure the

standard deviation (STDEV) of latency behavior, which quantifies the
variability and consistency in system performance. With the increase
in workload intensity, resource contention among multiple tenants
exacerbates, leading to noticeable latency fluctuation and increased
STDEV values. As demonstrated in Figs. 10 and 11, FairNVMe provides
stable request latency for each tenant, reducing the STDEV value by
up to 95.1%, 73.7%, and 91.4% compared to other methods. Through
fair I/O queue scheduling, FairNVMe provides a high level of system
stability and ensures reliable performance in multi-tenant cloud envi-
ronments, where consistent latency is essential for sustaining system
efficiency and responsiveness.

5.4. Real-world application

(1) YCSB Benchmarks
To evaluate system efficiency under real-world application scenar-

ios, we utilize the YCSB benchmark [49] to generate key–value store
workloads on RocksDB databases. We deploy six guest machines run-
ning standard YCSB workloads, ranging from 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑎 to 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑓 .
Each workload corresponds to different combinations of read-to-write
ratios and access patterns, reflecting distinct use cases in database

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
Fig. 8. Maximum slowdown caused by mutual interference on Intel P3520 (lower values indicate superior outcomes).
Fig. 9. Maximum slowdown caused by mutual interference on Samsung PM1735 (lower values indicate superior outcomes).
Fig. 10. Standard deviation of latency results on Intel P3520 (lower values indicate better stability).
Fig. 11. Standard deviation of latency results on Samsung PM1735 (lower values indicate better stability).
systems. To simulate resource contention scenarios, we intensify the
workload by increasing the 𝑟𝑒𝑐𝑜𝑟𝑑𝑐𝑜𝑢𝑛𝑡 and 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡 parameters,
which result in larger data volumes and higher operation rates, re-
spectively. Fig. 12 illustrates the average latency and corresponding
slowdown observed across YCSB workloads. As depicted in Fig. 12(a),
FairNVMe exhibits superior latency results on the YCSB benchmarks,
achieving average latency reductions of up to 61.0%, 51.4%, and
73.0% compared to Virtio, SPDK, and LPNS, respectively. Additionally,
by leveraging state-driven fairness control strategies, FairNVMe effec-
tively mitigates slowdowns and enhances system fairness in real-world
scenarios.

(2) Testing under Extreme Workloads
To further evaluate FairNVMe’s responsiveness under extreme sce-

narios, we deploy four tenants, each exhibiting significant disparities
and heterogeneous configurations in workload characteristics. Two
of these tenants execute specific application workloads generated by
Filebench [34], including a webserver and a fileserver. The webserver
workload simulates a typical web server environment, focusing on
server behavior when handling numerous small files, while the file-
server primarily tests system efficiency when dealing with large files.
9
Following the configuration in FinNVMe [14], the number of threads
is set to eight. The remaining two tenants are assigned extreme FIO
workloads with distinct characteristics. One tenant executes an I/O
scarce workload that employs random read patterns (configured with
numjobs=1 and iodepth=1), imposing minimal resource demands on
the system. The other tenant is dedicated to an I/O intensive workload
involving a random write pattern with high concurrency and through-
put requirements (configured with numjobs=8 and iodepth=32). Fig.
13 presents the normalized p99.9 tail latency results and system fair-
ness metrics. Without flexible I/O scheduling and fairness control, Vir-
tio, SPDK, and LPNS fail to effectively manage the disparities in work-
load demands, leading to suboptimal resource allocation and higher la-
tency. In contrast, FairNVMe maintains high performance and enhances
system fairness even under extreme and heterogeneous workload situ-
ations.

5.5. Scalability

To evaluate the scalability of FairNVMe in multi-tenant environ-
ments, we expand the number of VMs from 1 to 16 and measure the

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
Fig. 12. The average latency and corresponding slowdowns observed in YCSB bench-
mark evaluations.

Fig. 13. The tail latency distribution and system fairness assessment under extreme
workload scenarios.

overall system IOPS across all tenants. As illustrated in Fig. 14, we
assess the IOPS of FairNVMe across various test cases. Under conditions
with limited I/O demands, characterized by a small number of jobs and
queue depths, the available capacity is not fully utilized. Consequently,
deploying additional VMs in these scenarios enhances the utilization of
queue resources, leading to a noticeable increase in overall IOPS. As
the load intensity rises, system throughput begins to stabilize due to the
saturation of I/O queue resources. These findings indicate that FairN-
VMe efficiently manages the available resources, allowing multi-VMs
to operate concurrently without considerable degradation.

Furthermore, we evaluate the IOPS distribution across multiple
VMs and the system fairness metrics under intensive random read I/O
workloads. As depicted in Fig. 15, when increasing the number of VMs
from 1 to 16, the throughput remains evenly distributed across all
VMs. FairNVMe prevents any single VM from dominating the I/O queue
resources, sustaining consistent and predictable performance for all
tenants. Moreover, although the increase in the number of tenants leads
to intensified resource contention and a decline in fairness metrics,
FairNVMe consistently upholds system fairness, maintaining a fairness
metric value of at least 0.905 even as the number of VMs scales to 16. In
conclusion, FairNVMe exhibits excellent scalability by enabling fairness
control and near-native performance across multiple tenants, which is
crucial for the cloud service provider seeking to maximize resource
10
Fig. 14. Scalability of FairNVMe in multi-tenant environments.

Fig. 15. IOPS distribution of FairNVMe among multiple VMs.

utilization while guaranteeing fairness and stability in multi-tenant
cloud environments.

5.6. Workload diversity evaluation

As the former evaluation primarily focuses on 4K random
read/write operations, in this subsection, we expand workload diversity
by incorporating sequential I/O patterns and variable block sizes to
better reflect real-world scenarios. As illustrated in Fig. 16, we evaluate
the average latency and maximum performance slowdown across seven
distinct I/O block sizes (ranging from 512B to 64K) under intensive
sequential read and random write workloads. The average latency
results are presented using a logarithmic scale to effectively capture
the wide range of latency values. Our experimental analysis reveals that
average latency exhibits a slight decrease as block size increases from
512B to 4K, primarily due to improved I/O queue utilization at small
block sizes. Furthermore, since most file systems and SSD hardware
devices are typically configured with a default block size of 4K, system
latency exhibits a decreasing trend when the block size of I/O requests
aligns with the 4K boundary. However, we observe a progressive
increase in latency from 4K to 64K, which can be attributed to the
inherent overhead associated with I/O block separations and the inten-
sified contention in queue resource allocation under larger block sizes.
Despite these challenges, our experimental results demonstrate that
FairNVMe consistently maintains robust latency performance across
various block sizes and diverse I/O patterns, including both sequen-
tial and random workloads. Moreover, FairNVMe effectively mitigates
performance degradation, validating its adaptability to real-world I/O
scenarios.

6. Related work

NVMe Virtualization. As a universal Linux I/O para virtualization
framework, Virtio [9] offers a unified interface for various I/O devices.
Without specific optimization for NVMe storage devices, it fails to
accommodate the unique characteristics of modern high-speed storage
technologies. VFIO [29] employs direct pass-through techniques and

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
Fig. 16. The average latency and maximum performance slowdown across distinct I/O
block sizes under sequential and random I/O patterns.

allocates NVMe devices to individual VMs. Guests can access hard-
ware devices directly via the VFIO-PCI driver, attaining nearly 95%
of native results, but the direct passthrough approach hinders device
sharing among multiple virtual machines. Fam Zheng [11] presents
a userspace NVMe driver based on QEMU, running modified NVMe
drivers within the Linux userspace. While Fam Zheng streamlines the
software stack involved in I/O request handling and delivers enhanced
NVMe virtualization services, the adoption of QEMU-based userspace
drivers introduces certain challenges. In particular, the necessity to trap
and simulate privileged operations, such as device management and
creation, imposes additional software processing overhead and exacer-
bates tail latency issues. SPDK [12] employs polling mode to mitigate
degradation and high latency caused by interrupt-driven mechanisms.
By leveraging lock-free queues for message delivery, SPDK optimizes
NVMe efficiency, thereby ensuring efficient NVMe virtualization and
facilitating device-sharing capabilities. However, SPDK’s dependence
on Hugepage memory introduces substantial memory resource pres-
sure on physical servers and may limit scalability for the multi-tenant
cloud. Mdev-NVMe [13] presents an innovative NVMe storage virtu-
alization mechanism with mediated pass-through, using active polling
mode for efficient queue handling. To achieve workload-aware manage-
ment and latency-predictable QoS control, Peng et al. further propose
FinNVMe [14] and LPNS [15] to optimize the performance of medi-
ated pass-through NVMe virtualization, offering enhanced throughput
and processing efficiency. Although the aforementioned techniques
facilitate the fundamental use of NVMe device virtualization, they over-
look the critical fairness requirements in scenarios involving multiple
tenants.

Fairness Control. To address the fairness requirements of SSD de-
vices, researchers have explored various solutions [44,51,52]. For in-
stance, FIOS [44] proposes a flash I/O scheduler integrating timeslice
management, enabling timeslice fragmentation and concurrent request
issuance. Nevertheless, adopting timeslice-based I/O schedulers may
result in time slice waste and malicious occupation, leading to poor
responsiveness. To eliminate such unresponsiveness, FlashFQ [52] es-
timates the process of each running flow based on the request costs,
and presents a throttled dispatch technique to throttle flows that sig-
nificantly outpace others to enhance fairness. Moreover, approaches
like Fuzzy [27] and FLIN [26] delve into device-level I/O schedul-
ing. Fuzzy [27] introduces a fuzzy logic-based fairness control policy,
assigning priority levels to workloads based on their flow intensity.
It assigns higher priority to low-intensity workloads since they are
more prone to slowdown. FLIN [26] proposes a lightweight transaction
11
scheduler for modern multi-queue SSDs. FLIN identifies four major
sources of interference contributing to unfairness and designs a three-
stage scheduling algorithm to mitigate interference while adhering to
the application-level priorities designated by the host. However, its
implementation within the SSD controller firmware escalates the com-
plexity and implementation costs. Different from the above-mentioned
methods, FairNVMe emphasizes fairness enhancement in NVMe virtu-
alization and adopts a more flexible approach by implementing fair-
ness mechanisms at the OS level, thereby reducing implementation
complexity and enhancing its adaptability to diverse cloud scenarios.

7. Conclusion

In this paper, we introduce FairNVMe, a novel NVMe virtualization
solution designed to facilitate effective fairness control in multi-tenant
cloud storage systems. To guarantee fair I/O queue scheduling, FairN-
VMe categorizes tenant status into four distinct levels and generates
control signals upon detecting unbalanced or saturated states among
tenants, guiding the system to trigger dynamic budget compensation
based on the estimated request costs. Beyond its technical contribu-
tions, FairNVMe holds broader implications for cloud service providers,
particularly in meeting stringent Service Level Agreements (SLAs).
By delivering consistent and predictable I/O performance, FairNVMe
enhances QoS for tenants, which is critical in dense cloud environments
where competition for resources is often intense. Furthermore, the
core principles of FairNVMe, such as state-driven resource management
and dynamic budget compensation, can be extended to other resource
allocation challenges in cloud computing, offering a pathway to more
efficient and equitable resource utilization.

CRediT authorship contribution statement

Zhaoyang Huang: Writing – original draft, Methodology, Concep-
tualization. Yifu Zhu: Software, Investigation. Xin Kuang: Validation,
Formal analysis. Yanjie Tan: Visualization, Data curation. Huailiang
Tan: Resources, Project administration. Keqin Li: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The data that has been used is confidential.

References

[1] A. Ali, Ö. Özkasap, Spatial and thermal aware methods for efficient workload
management in distributed data centers, Future Gener. Comput. Syst. 153 (2024)
360–374.

[2] S.B. Nath, S.K. Addya, S. Chakraborty, S.K. Ghosh, CSMD: Container state
management for deployment in cloud data centers, Future Gener. Comput. Syst.
162 (2025) 107495.

[3] Z. Jia, J. Zhan, L. Wang, C. Luo, W. Gao, Y. Jin, R. Han, L. Zhang, Understanding
big data analytics workloads on modern processors, IEEE Trans. Parallel Distrib.
Syst. 28 (6) (2016) 1797–1810.

[4] Nvmepress, NVMe specifications, 2021, http://www.nvmexpress.org/
specifications/.

[5] L.A. Barroso, J. Clidaras, The datacenter as a computer: An introduction to the
design of warehouse-scale machines, Springer Nature, 2022.

[6] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica, {Disk-locality} in dat-
acenter computing considered irrelevant, in: 13th Workshop on Hot Topics in
Operating Systems (HotOS XIII), 2011.

[7] Y. Son, H. Han, H.Y. Yeom, Optimizing file systems for fast storage devices,
in: Proceedings of the 8th ACM International Systems and Storage Conference,
2015, pp. 1–6.

http://refhub.elsevier.com/S0167-739X(25)00197-9/sb1
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb1
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb1
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb1
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb1
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb2
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb2
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb2
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb2
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb2
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb3
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb3
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb3
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb3
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb3
http://www.nvmexpress.org/specifications/
http://www.nvmexpress.org/specifications/
http://www.nvmexpress.org/specifications/
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb5
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb5
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb5
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb6
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb6
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb6
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb6
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb6
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb7
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb7
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb7
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb7
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb7

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
[8] B. Jun, D. Shin, Workload-aware budget compensation scheduling for NVMe
solid state drives, in: 2015 IEEE Non-Volatile Memory System and Applications
Symposium, NVMSA, IEEE, 2015, pp. 1–6.

[9] R. Russell, Virtio: towards a de-facto standard for virtual I/O devices, ACM
SIGOPS Oper. Syst. Rev. 42 (5) (2008) 95–103.

[10] Z. Yang, M. Hoseinzadeh, P. Wong, J. Artoux, C. Mayers, D.T. Evans, R.T. Bolt,
J. Bhimani, N. Mi, S. Swanson, H-NVMe: A hybrid framework of NVMe-based
storage system in cloud computing environment, in: 2017 IEEE 36th International
Performance Computing and Communications Conference, IPCCC, IEEE, 2017,
pp. 1–8.

[11] F. Zheng, Userspace NVMe driver in QEMU, in: KVM Forum 2017, 2017, pp.
25–27.

[12] Z. Yang, J.R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao, J.
Stern, V. Verma, L.E. Paul, SPDK: A development kit to build high performance
storage applications, in: 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), IEEE, 2017, pp. 154–161.

[13] B. Peng, H. Zhang, J. Yao, Y. Dong, Y. Xu, H. Guan, {Mdev-nvme}: A {nvme}
storage virtualization solution with mediated {pass-through}, in: 2018 USENIX
Annual Technical Conference (USENIX ATC 18), 2018, pp. 665–676.

[14] B. Peng, M. Yang, J. Yao, H. Guan, A throughput-oriented nvme storage
virtualization with workload-aware management, IEEE Trans. Comput. 70 (12)
(2020) 2112–2124.

[15] B. Peng, C. Guo, J. Yao, H. Guan, {LpNS}: Scalable and {latency-predictable}
local storage virtualization for unpredictable {nvme}{SSDs} in clouds, in: 2023
USENIX Annual Technical Conference (USENIX ATC 23), 2023, pp. 785–800.

[16] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, H. Guan, High performance net-
work virtualization with SR-IOV, J. Parallel Distrib. Comput. 72 (11) (2012)
1471–1480.

[17] H. Li, M. Hao, S. Novakovic, V. Gogte, S. Govindan, D.R. Ports, I. Zhang, R.
Bianchini, H.S. Gunawi, A. Badam, Leapio: Efficient and portable virtual nvme
storage on arm socs, in: Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems,
2020, pp. 591–605.

[18] D. Kwon, J. Boo, D. Kim, J. Kim, {FVM}:{fpga-assisted} virtual device emulation
for fast, scalable, and flexible storage virtualization, in: 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20), 2020, pp. 955–971.

[19] J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian, M. Chun, M.T. Kandemir,
N.S. Kim, J. Kim, et al., {FlashShare}: Punching through server storage stack from
kernel to firmware for {ultra-low} latency {SSDs}, in: 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), 2018, pp. 477–492.

[20] C. Ji, L. Wang, Q. Li, C. Gao, L. Shi, C.-L. Yang, C.J. Xue, Fair down to the
device: A GC-aware fair scheduler for SSD, in: 2019 IEEE Non-Volatile Memory
Systems and Applications Symposium, NVMSA, IEEE, 2019, pp. 1–6.

[21] C.-H. Wu, L.-T. Chen, R.-J. Hsu, J.-Y. Dai, A state-aware method for flows with
fairness on NVMe SSDs with load balance, IEEE Trans. Cloud Comput. 11 (3)
(2023) 3040–3054.

[22] S. Metin, C. Özturan, Quantised and simulated max–min fairness in blockchain
ecosystems, Future Gener. Comput. Syst. 151 (2024) 260–271.

[23] L.K. Organization, CFQ (complete fairness queueing), 2020, https://www.kernel.
org/doc/Documentation/block/cfq-iosched.txt.

[24] P. Valente, M. Andreolini, Improving application responsiveness with the bfq
disk i/o scheduler, in: Proceedings of the 5th Annual International Systems and
Storage Conference, 2012, pp. 1–12.

[25] Axboe, Mq-Deadline: Add blk-mq adaptation of the Deadline IO scheduler, 2021,
https://patchwork.kernel.org/patch/9475509/.

[26] A. Tavakkol, M. Sadrosadati, S. Ghose, J. Kim, Y. Luo, Y. Wang, N.M. Ghiasi,
L. Orosa, J. Gómez-Luna, O. Mutlu, FLIN: Enabling fairness and enhancing
performance in modern NVMe solid state drives, in: 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architecture, ISCA, IEEE, 2018,
pp. 397–410.

[27] S. Tripathy, D. Sahoo, M. Satpathy, M. Mutyam, Fuzzy fairness controller for
NVMe SSDs, in: Proceedings of the 34th ACM International Conference on
Supercomputing, 2020, pp. 1–12.

[28] R. Liu, Z. Tan, Y. Shen, L. Long, D. Liu, Fair-ZNS: Enhancing fairness in ZNS SSDs
through self-balancing I/O scheduling, in: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2024, pp. 2012–2022.

[29] A. Williamson, VFIO: A user’s perspective, in: KVM Forum, 2012.
[30] Y. Peng, H. Peng, InferFair: Towards qos-aware scheduling for performance

isolation guarantee in heterogeneous model serving systems, Future Gener.
Comput. Syst. 150 (2024) 10–20.

[31] F. Xu, F. Liu, H. Jin, Heterogeneity and interference-aware virtual machine
provisioning for predictable performance in the cloud, IEEE Trans. Comput. 65
(8) (2015) 2470–2483.

[32] S.A. Murad, Z.R.M. Azmi, A.J.M. Muzahid, M.K.B. Bhuiyan, M. Saib, N. Rahimi,
N.J. Prottasha, A.K. Bairagi, SG-PBFS: Shortest gap-priority based fair scheduling
technique for job scheduling in cloud environment, Future Gener. Comput. Syst.
150 (2024) 232–242.

[33] R. Liu, Z. Tan, L. Long, Y. Wu, Y. Tan, D. Liu, Improving fairness for SSD devices
through DRAM over-provisioning cache management, in: IEEE Transactions on
Parallel and Distributed Systems, 2022, pp. 2444–2454.
12
[34] T. Vasily, Filebench: A flexible framework for file system benchmarking.; login,
USENIX Mag. 41 (2016) 6.

[35] S.S. Mousavi Nik, M. Naghibzadeh, Y. Sedaghat, Task replication to improve
the reliability of running workflows on the cloud, Clust. Comput. 24 (1) (2021)
343–359.

[36] N. Jia, VFIO mediated devices, 2016, https://www.kernel.org/doc/
Documentation/vfio-mediated-device.txt.

[37] A. Gulati, A. Merchant, M. Uysal, P. Padala, P. Varman, Efficient and adaptive
proportional share I/O scheduling, ACM SIGMETRICS Perform. Eval. Rev. 37 (2)
(2009) 79–80.

[38] H. Tan, L. Huang, Z. He, Y. Lu, X. He, DMVL: An I/O bandwidth dynamic
allocation method for virtual networks, J. Netw. Comput. Appl. 39 (2014)
104–116.

[39] J.S. Hunter, The exponentially weighted moving average, J. Qual. Technol. 18
(4) (1986) 203–210.

[40] G. Carlucci, L. De Cicco, S. Holmer, S. Mascolo, Congestion control for web
real-time communication, IEEE/ACM Trans. Netw. 25 (5) (2017) 2629–2642.

[41] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, S. Zhang, Performance impact
and interplay of SSD parallelism through advanced commands, allocation strat-
egy and data granularity, in: Proceedings of the International Conference on
Supercomputing, 2011, pp. 96–107.

[42] Y. Kim, B. Tauras, A. Gupta, B. Urgaonkar, Flashsim: A simulator for nand flash-
based solid-state drives, in: 2009 First International Conference on Advances in
System Simulation, IEEE, 2009, pp. 125–131.

[43] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, O. Mutlu, {Mqsim}: A
framework for enabling realistic studies of modern {multi-queue}{sSD} devices,
in: 16th USENIX Conference on File and Storage Technologies (FAST 18), 2018,
pp. 49–66.

[44] S. Park, K. Shen, FIOS: a fair, efficient flash I/O scheduler., in: FAST, vol. 12,
2012, 13–13.

[45] M. Hedayati, K. Shen, M.L. Scott, M. Marty, {Multi-queue} fair queuing, in: 2019
USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp. 301–314.

[46] J. Coulter, Intel DC P3520 series enterprise nvme ssd, 2020, https:
//www.tweaktown.com/reviews/8010/intel-dc-p3520-2tb-enterprise-pcie-nvme-
ssd-review/index.html.

[47] Samsung, Samsung enterprise SSD PM1735, 2024, https://semiconductor.
samsung.com/cn/ssd/enterprise-ssd/pm1733-pm1735/.

[48] J. Axboe, FIO: Flexible IO tester, 2024, https://github.com/axboe/fio.
[49] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking

cloud serving systems with YCSB, in: Proceedings of the 1st ACM Symposium
on Cloud Computing, 2010, pp. 143–154.

[50] Camelab, Flash-based block traces, 2020, http://trace.camelab.org/2016/03/01/
flash.html.

[51] Q. Zhang, D. Feng, F. Wang, Y. Xie, An efficient, qos-aware I/O scheduler for
solid state drive, in: 2013 IEEE 10th International Conference on High Perfor-
mance Computing and Communications & 2013 IEEE International Conference
on Embedded and Ubiquitous Computing, IEEE, 2013, pp. 1408–1415.

[52] K. Shen, S. Park, {FlashFQ}: A fair queueing {I/O} scheduler for {flash-
based}{ssds}, in: 2013 USENIX Annual Technical Conference (USENIX ATC 13),
2013, pp. 67–78.

Zhaoyang Huang received the BS degree in Computer
Science and Technology from the China West Normal Uni-
versity in 2020. She is currently working toward the PhD
degree in the College of Computer Science and Electronic
Engineering at Hunan University. Her current research
interests include cloud computing and data centers.

Yifu Zhu received the BS degree in the College of Electronic
Science and Engineering from Jilin University in 2019,
and the MS degree from Hunan University in 2023. He is
currently working toward the PhD degree in the College
of Computer Science and Electronic Engineering, Hunan
University. His current research interests include FPGA and
real-time systems

http://refhub.elsevier.com/S0167-739X(25)00197-9/sb8
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb8
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb8
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb8
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb8
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb9
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb9
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb9
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb10
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb10
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb10
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb10
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb10
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb10
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb10
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb10
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb10
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb11
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb11
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb11
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb12
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb12
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb12
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb12
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb12
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb12
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb12
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb13
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb13
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb13
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb13
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb13
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb14
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb14
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb14
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb14
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb14
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb15
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb15
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb15
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb15
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb15
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb16
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb16
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb16
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb16
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb16
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb17
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb17
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb17
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb17
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb17
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb17
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb17
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb17
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb17
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb18
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb18
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb18
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb18
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb18
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb19
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb19
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb19
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb19
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb19
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb19
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb19
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb20
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb20
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb20
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb20
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb20
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb21
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb21
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb21
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb21
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb21
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb22
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb22
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb22
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb24
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb24
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb24
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb24
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb24
https://patchwork.kernel.org/patch/9475509/
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb26
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb26
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb26
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb26
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb26
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb26
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb26
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb26
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb26
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb27
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb27
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb27
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb27
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb27
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb28
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb28
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb28
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb28
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb28
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb29
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb30
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb30
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb30
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb30
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb30
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb31
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb31
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb31
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb31
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb31
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb32
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb32
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb32
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb32
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb32
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb32
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb32
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb33
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb33
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb33
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb33
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb33
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb34
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb34
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb34
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb35
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb35
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb35
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb35
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb35
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb37
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb37
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb37
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb37
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb37
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb38
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb38
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb38
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb38
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb38
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb39
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb39
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb39
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb40
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb40
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb40
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb41
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb41
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb41
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb41
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb41
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb41
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb41
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb42
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb42
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb42
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb42
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb42
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb43
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb43
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb43
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb43
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb43
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb43
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb43
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb44
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb44
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb44
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb45
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb45
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb45
https://www.tweaktown.com/reviews/8010/intel-dc-p3520-2tb-enterprise-pcie-nvme-ssd-review/index.html
https://www.tweaktown.com/reviews/8010/intel-dc-p3520-2tb-enterprise-pcie-nvme-ssd-review/index.html
https://www.tweaktown.com/reviews/8010/intel-dc-p3520-2tb-enterprise-pcie-nvme-ssd-review/index.html
https://www.tweaktown.com/reviews/8010/intel-dc-p3520-2tb-enterprise-pcie-nvme-ssd-review/index.html
https://www.tweaktown.com/reviews/8010/intel-dc-p3520-2tb-enterprise-pcie-nvme-ssd-review/index.html
https://semiconductor.samsung.com/cn/ssd/enterprise-ssd/pm1733-pm1735/
https://semiconductor.samsung.com/cn/ssd/enterprise-ssd/pm1733-pm1735/
https://semiconductor.samsung.com/cn/ssd/enterprise-ssd/pm1733-pm1735/
https://github.com/axboe/fio
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb49
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb49
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb49
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb49
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb49
http://trace.camelab.org/2016/03/01/flash.html
http://trace.camelab.org/2016/03/01/flash.html
http://trace.camelab.org/2016/03/01/flash.html
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb51
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb51
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb51
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb51
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb51
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb51
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb51
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb52
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb52
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb52
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb52
http://refhub.elsevier.com/S0167-739X(25)00197-9/sb52

Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902
Xin Kuang received the BS degree in Computer Science
and Technology from Jiangxi University of Science and
Technology in 2020, and the MS degree from Hunan Uni-
versity in 2023. Her current research interests include GPU
Virtualization and Virtual Desktop Infrastructure.

Yanjie Tan is a postdoctor in the College of Computer
Science and Electronic Engineering at Hunan University. He
received the BS degree and the MS degree from Huazhong
University of Science and Technology, China, in 2011 and
2015, and the PhD degree from Hunan University, China, in
2021. His current research interests include real-time system
and image and video processing.

Huailiang Tan received the BS degree from Central South
University, China, in 1992, and the MS degree from Hunan
University, China, in 1995, and the PhD degree from Central
South University, China, in 2001. He has more than eight
years of industrial research and development experience
in the field of information technology. He was a visiting
scholar at Virginia Commonwealth University from 2010 to
2011. He is currently a full professor of Computer Science
and Technology with Hunan University, China. His research
interests include high performance I/O, image and video
processing, and embedded systems.
13
Keqin Li received a B.S. degree in computer science from
Tsinghua University in 1985 and a Ph.D. degree in computer
science from the University of Houston in 1990. He is
a SUNY Distinguished Professor with the State University
of New York and a National Distinguished Professor with
Hunan University (China). He has authored or co-authored
more than 1000 journal articles, book chapters, and ref-
ereed conference papers. He received several best paper
awards from international conferences including PDPTA-
1996, NAECON- 1997, IPDPS-2000, ISPA-2016, NPC-2019,
ISPA-2019, and CPSCom-2022. He holds nearly 75 patents
announced or authorized by the Chinese National Intellec-
tual Property Administration. He is among the world’s top
five most influential scientists in parallel and distributed
computing in terms of single-year and career-long impacts
based on a composite indicator of the Scopus citation
database. He was a 2017 recipient of the Albert Nelson
Marquis Lifetime Achievement Award for being listed in
Marquis Who’s Who in Science and Engineering, Who’s
Who in America, Who’s Who in the World, and Who’s
Who in American Education for over twenty consecutive
years. He received the Distinguished Alumnus Award from
the Computer Science Department at the University of
Houston in 2018. He received the IEEE TCCLD Research
Impact Award from the IEEE CS Technical Committee on
Cloud Computing in 2022 and the IEEE TCSVC Research
Innovation Award from the IEEE CS Technical Community
on Services Computing in 2023. He won the IEEE Region
1 Technological Innovation Award (Academic) in 2023. He
is a Member of the SUNY Distinguished Academy. He is an
AAAS Fellow, an IEEE Fellow, an AAIA Fellow, and an ACIS
Founding Fellow. He is an Academician Member and Fellow
of the International Artificial Intelligence Industry Alliance.
He is a Member of Academia Europaea (Academician of the
Academy of Europe).

	State-driven fairness control for efficient I/O queue scheduling in NVMe virtualization
	Introduction
	Background and Motivation
	NVMe Protocol
	Fairness Definition
	Motivation

	Design and Implementation
	Architecture Overview
	Tenant State Classifier
	State-Driven Fairness Controller
	Dynamic Budget Compensation

	Discussion
	Overhead of FairNVMe
	Comparison with Device-level Fair Scheduler

	Evaluation
	Experimental Setup
	Overall Performance
	Fairness Evaluation
	Real-World Application
	Scalability
	Workload Diversity Evaluation

	Related Work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

