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 A B S T R A C T

As data centers and cloud environments expand, enhancing fairness in I/O queue resource scheduling has 
become increasingly urgent in the field of Non-Volatile Memory Express (NVMe) storage virtualization. Existing 
methods usually focus on metrics such as Input/Output Operations Per Second (IOPS) enhancement or latency 
reduction, overlooking fairness issues among virtual machines (VMs) which may lead to significant resource 
contention and performance degradation. In this paper, we propose FairNVMe, a novel NVMe virtualization 
solution that enables fair I/O queue scheduling among multiple tenants through effective fairness control. 
FairNVMe introduces a state-driven fairness controller that assigns a private state for each tenant and triggers 
adaptive resource adjustments when unfair tenant states are detected. Specifically, FairNVMe employs time 
budget-based I/O queue scheduling with dynamic budget compensation, reallocating time budgets based on 
actual resource consumption and requirements of each tenant. Experimental results demonstrate that FairNVMe 
alleviates mutual competition among multiple tenants and outperforms existing solutions in terms of both 
system performance and fairness, reaching up to 94.5%, 61.2%, and 79.5% tail latency optimization, enhancing 
the fairness by up to 51.4%, 15.6%, and 73.2%, and mitigates maximum slowdowns by up to 92.1%, 59.2%, 
and 58.2% compared with Virtio, SPDK, and LPNS, respectively.
1. Introduction

The rapid advancement of new-generation information technologies 
such as 5G, cloud computing, and artificial intelligence has rendered 
data centers a crucial component for modern information infrastruc-
ture [1,2]. Simultaneously, the volume of data transmitted and pro-
cessed within cloud environments is experiencing explosive growth, 
presenting challenges in data management and processing efficiency
[3]. To mitigate these challenges and achieve faster data transmission 
speeds with lower latency, NVMe devices are widely deployed in data 
centers and cloud platforms [4–6].

NVMe storage virtualization has emerged as a prominent area of 
research due to its potential to enhance the effectiveness and scala-
bility of storage devices while reducing the operational costs of data 
centers [7,8]. Traditional storage virtualization technologies, such as 
VirtIO [9], H-NVMe [10], FamZ userspace NVMe driver [11], and 
Storage Performance Development Kit (SPDK) [12] employ universal 
Linux I/O virtualization frameworks. These methods involve complex 
software stacks and may not be fully optimized to exploit the high-
speed capabilities of NVMe devices, resulting in potential processing 
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inefficiencies. MDev-NVMe [13] introduces a full NVMe virtualization 
framework with mediated pass-through, where each guest runs a na-
tive NVMe driver and facilitates device sharing. By passing through 
performance-critical resources, MDev-NVMe increases the utilization 
and scalability of storage devices. For enhanced workload-aware man-
agement and latency-predictable I/O control, Peng et al. further pro-
pose FinNVMe [14] and LPNS [15], which provide improved I/O 
throughput and operational efficiency within virtualized environments. 
However, they fail to ensure fair I/O queue resource allocation among 
tenants. Hardware-assisted approaches, such as Single Root I/O Vir-
tualization (SR-IOV) [16], LeapIO [17], and FVM [18], enable the 
partitioning of physical I/O devices into virtual functions, facilitating 
direct access by multiple VMs. Nevertheless, these solutions rely on 
dedicated hardware support and exhibit limited flexibility, constraining 
their deployment by cloud vendors across diverse hardware platforms.

With the sustained increase in cloud users, improving the fairness 
of physical resource allocation and maintaining the stability of tenant 
request processing has become an urgent challenge [19–22]. Co-located 
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 data mining, AI training, and similar technologies. 
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Table 1
Related work of storage virtualization solutions.
 Technology Methods High Flexible I/O Fairness Description and Limitation  
 Performance Scheduling Control  
 PT VFIO [29] ✓ × × Pass-through technology assigns 

the entire NVMe device to a 
single VM, failing to achieve 
device sharing.

 

 
Para

Virtio [9] × × × Virtio lacks specific optimization 
for NVMe devices. SPDK

 

 SPDK [12] ✓ × × relies on Hugepage memory, 
imposing additional pressure.

 

 
SR-IOV

FVM [18] ✓ × × Hardware-assisted virtualization 
relies on dedicated hardware

 

 LeapIO [17] × × × support and exhibit limited 
flexibility.

 

 

MPT

Mdev-NVMe [13] ✓ × × Existing mediated pass-through 
NVMe virtualization

 

 FinNVMe [14] ✓ ✓ × focuses on I/O performance 
enhancement and fail to address

 

 LPNS [15] ✓ ✓ × the critical issue of fair I/O 
queue resource allocation.

 

 FairNVMe (Ours) ✓ ✓ ✓ The first NVMe virtualization 
with effective fairness control.

 

* PT: Pass-through. MPT: Mediated Pass-through.
tenants share underlying physical NVMe devices, leading to inevitable 
competition and potential interference. To address these issues, the 
Linux kernel introduces several I/O fair scheduling algorithms, such 
as CFQ [23], BFQ [24], and mq-deadline [25]. While effective in 
traditional systems, these algorithms fail to fully perceive distinct I/O 
load characteristics of individual virtual machines, making it hard to 
achieve optimal scheduling in dynamic virtualization environments. 
Recent research has introduced device-level fair I/O scheduling strate-
gies tailored for NVMe SSDs [26–28]. FLIN [26] performs an in-depth 
analysis of interference in multi-queue SSDs and proposes a flash-level 
interference-aware scheduler that aims to balance slowdowns while 
adhering to application-level priorities assigned by the host system. 
Fuzzy [27] focuses on the interference at the data cache level of the 
SSD and presents a fuzzy logic-based fairness controller. Fair-ZNS [28] 
targets the specialized NVMe Zoned Namespace (ZNS) storage interface 
and introduces a self-balance I/O scheduling mechanism dedicated 
to ZNS SSDs. Unfortunately, these fairness control strategies often 
require modifications to the underlying SSD controller, which increases 
the algorithm complexity and implementation cost, restricting their 
deployment in practical data centers.

Existing NVMe storage virtualization techniques fail to address the 
critical issue of fair I/O queue resource allocation in multi-tenant cloud 
storage systems with constrained resources. It may result in severe im-
balances in system efficiency and degrade the quality of service (QoS) 
delivered to affected tenants, failing to meet their performance expecta-
tions and negatively impacting user satisfaction [30–32]. In response to 
these challenges, we introduce FairNVMe, a novel NVMe virtualization 
solution that incorporates effective fairness control mechanisms to 
enable flexible I/O queue scheduling and mitigate resource contention 
among multiple tenants. Firstly, FairNVMe classifies tenant states into 
four distinct levels based on predefined latency thresholds and mea-
sured I/O latency, facilitating real-time assessment of tenant load and 
system fairness conditions. Secondly, FairNVMe employs a state-driven 
fairness control strategy that continuously monitors the runtime state of 
each tenant and generates control signals to initiate adaptive resource 
adjustments when state transitions are detected. Finally, the system 
integrates a time budget-based I/O queue scheduling approach with 
dynamic budget compensation. This mechanism allocates specific time 
budgets to tenants and dynamically adjusts them based on request cost 
estimation, thereby offering a comprehensive understanding of each 
tenant’s actual resource consumption and requirements.

The main contributions of our work are as follows.
2 
• We present FairNVMe, a novel OS-level mediated pass-through 
NVMe virtualization solution with effective fairness control. FairN-
VMe guarantees fair I/O queue scheduling among multiple tenants, 
addressing the critical issue of resource contention in multi-tenant 
clouds.

• We introduce a state-driven fairness controller that continuously 
upholds an individual state for each tenant. The controller triggers 
an unfairness signal whenever it identifies unbalanced or saturated 
states among tenants. To ensure balanced resource distribution, 
we estimate the time cost of each read/write operation and in-
tegrate time budget-based I/O scheduling with dynamic budget 
compensation.

• We conduct an extensive series of experiments to compare the 
proposed FairNVMe with three mainstream NVMe virtualization 
frameworks, including para-virtualization Virtio, SPDK, and LPNS 
with mediated pass-through. Experimental results demonstrate 
that FairNVMe maintains the high performance of NVMe devices 
while effectively managing fairness among multiple tenants, out-
performing existing solutions in terms of both system performance 
and fairness.

The remainder of this paper is organized as follows. Section 2 pro-
vides a comprehensive overview of the background and motivation. In 
Section 3, we illustrate the design and implementation of FairNVMe in 
detail. Section 4 presents the discussion. Experimental results compared 
the proposed FairNVMe architecture with Virtio, SPDK, and LPNS are 
demonstrated in Section 5. Section 6 introduces related works. Finally, 
the conclusion is drawn in Section 7.

2. Background and motivation

2.1. NVMe protocol

NVMe is an advanced storage access and transport protocol specif-
ically designed for SSD devices [4]. NVMe operations can be classified 
into two primary categories: Admin Commands and I/O Commands. 
Admin Commands undertake administrative tasks such as I/O queue 
management, device parameter configuration, and function manage-
ment. On the other hand, I/O Commands are responsible for data 
transmission between the host system and SSD.

The NVMe architecture is built around three principal components: 
Submission Queue (SQ), Completion Queue (CQ), and Doorbell Register 
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(DB). The SQ serves as the host system’s interface for dispatching 
commands to the SSD, encompassing both Admin and I/O Commands. 
CQ receives updates and completion notifications from the SSD, pro-
viding essential feedback to the host system. The DB plays a crucial 
role in signaling between the host and the SSD device. When the host 
system enqueued Admin and I/O Commands into the SQ, it rings the 
doorbell to alert the SSD hardware controller of pending tasks. The 
controller periodically checks for modifications in the doorbell register 
and retrieves commands from the SQ for execution. Upon completing 
command execution, the controller writes relevant information to the 
CQ and triggers a Message Signaled Interrupt (MSI/MSI-X) in the 
DB to notify the host system of task completion. After receiving the 
interrupt, the host system reads the information from the CQ, updates 
the command status, and prepares for subsequent command processing.

2.2. Fairness definition

To quantify the fairness of NVMe virtualization, we follow the 
definition in prior research [26,28,33]. Fairness is defined as the ratio 
between the minimum slowdown value and the maximum slowdown 
value, formulated as follows: 

𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛𝑖 =
𝑅𝐿𝑆ℎ𝑎𝑟𝑒𝑑

𝑖

𝑅𝐿𝐴𝑙𝑜𝑛𝑒
𝑖

, (1)

𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 =
min𝑖{𝑆𝑙𝑜𝑤𝑖}
max𝑖{𝑆𝑙𝑜𝑤𝑖}

. (2)

When multiple I/O flows run simultaneously, they can negatively in-
terfere with each other, leading to performance degradation. The slow-
down metric 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛𝑖 measures the performance loss experienced 
by each I/O flow due to resource contention. Specifically, 𝑅𝐿𝑆ℎ𝑎𝑟𝑒𝑑

𝑖
refers to the request latency of the 𝑖th I/O flow when it operates 
under shared conditions, where multiple I/O flows run concurrently. 
𝑅𝐿𝐴𝑙𝑜𝑛𝑒

𝑖  denotes the request latency when the flow is running alone. The 
fairness metric 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠, derived from these slowdown values, provides 
a comprehensive measure of the equitability of resource allocation 
among multiple I/O flows. 𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 ranges from 0 to 1, where a higher 
value indicates a more balanced system. The fairness value approaching 
1 signifies an ideal system condition where all I/O flows experience 
similar slowdown levels due to resource contention, implying that the 
system facilitates fair resource distribution.

2.3. Motivation

Table  1 categorizes existing NVMe virtualization mechanisms [9,
12–15,17,18,29] into four categories, including pass-through, para-
virtualization, hardware-assisted virtualization, and mediated pass-
through. Although existing NVMe virtualization methods have achieved 
reasonable efficiency, they fail to address the following critical chal-
lenges inherent in cloud environments.

(1) Performance degradation. When multiple co-located tenants si-
multaneously access shared underlying NVMe devices, the contention 
for I/O resources inevitably leads to increased latency and reduced 
throughput. This slowdown has a direct and adverse impact on the 
QoS experienced by each tenant, as tenants may face delays in data 
processing, which can be particularly detrimental to time-sensitive ap-
plications. For instance, in financial services, where real-time transac-
tion processing is essential, any lag can lead to substantial operational 
challenges and financial losses. To quantify the slowdown caused by 
mutual interference among tenants, we evaluate the IOPS, average 
latency, and corresponding slowdown metrics for each virtual machine 
running intensive 4K random read and write operations. The detailed 
experimental setup is described in Section 5.1. As depicted in Fig.  1, 
the performance of each VM utilizing Virtio and LPNS exhibits varying 
levels of degradation, highlighting resource contention and mutual 
interference in multi-tenant environments. Although SPDK preserves a 
3 
Fig. 1. System performance (histogram) and corresponding slowdown (line graph) 
caused by mutual resource contention among multiple VMs.

Fig. 2. The stability of I/O throughput under real-world application scenarios.

relatively consistent slowdown among VMs, it still suffers from severe 
degradation in system efficiency under high contention scenarios.

(2) Instability. System instability and fluctuations introduced by 
resource contention can complicate resource management and lead 
to inconsistent application behaviors. The performance of individual 
tenants can vary unpredictably, which poses challenges in preserving 
consistent service levels. To assess system stability under real-world 
scenarios, we assign two VMs to execute application workloads web-
server and fileserver generated by Filebench [34]. The other two VMs 
run intensive FIO workloads, characterized by random read and ran-
dom write operations, configured with numjobs=4 and iodepth=32. 
As illustrated in Fig.  2, we observe the system IOPS over a 100-second 
interval. The experimental results reveal that the throughput of Virtio, 
SPDK, and LPNS fluctuates significantly over time due to resource 
contention among co-located tenants. As evaluated in Section 5.3, 
we also quantify the stability of tenant latency using the standard 
deviation metric and observe that resource contention also contributes 
to substantial latency variability. Such instability might make it hard 
to ensure the reliability and predictability of cloud services [35].

(3) Unfairness in resource allocation. Unfair resource allocation can 
lead to scenarios where some tenants experience severe degradation 
while others benefit disproportionately from the shared resources. For 
example, as depicted in Fig.  1(a), the IOPS throughput of 𝑉𝑀  using 
6
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Fig. 3. System architecture of FairNVMe.

LPNS experiences considerably higher slowdowns compared to 𝑉𝑀5. 
This imbalance considerably affects the overall efficiency and fairness 
of cloud environments. Maintaining fairness in resource distribution 
is essential for enhancing tenant satisfaction and optimizing the uti-
lization of cloud resources. To address the above critical challenges 
and enable fair NVMe virtualization, we introduce a state-driven fair-
ness controller and integrate time budget-based I/O scheduling with 
dynamic budget compensation.

3. Design and implementation

In this section, we introduce FairNVMe, a novel NVMe virtualization 
framework with effective fairness control to mitigate mutual interfer-
ence among multiple tenants and enable fair I/O queue scheduling.

3.1. Architecture overview

FairNVMe is designed based on mediated pass-through technique 
[36] and implemented as a kernel module on the Linux host system 
(kernel version 5.5.0). FairNVMe offers full virtualization support for 
NVMe devices without necessitating any modifications to the guest OS 
kernel. The system architecture is depicted in Fig.  3. For simplicity 
in model design, we assume that each tenant contains only a single 
VM, with fairness achieved at the VM level. Nevertheless, the proposed 
model can be easily extended to other scenarios where tenants hold 
multiple VMs. FairNVMe inherits the physical I/O queue pool and 
I/O queue shadowing design principles from previous mediated pass-
through NVMe virtualization solutions [13,14]. In FairNVMe, each 
tenant is allocated virtual I/O queues, which comprise virtual submis-
sion queues (VSQs) and virtual completion queues (VCQs). Commands 
from each tenant are initially delivered to the VSQs and then passed 
through to the shadowing physical queue via Direct Memory Access 
(DMA) and the translation of Guest Physical Address (GPA) to Host 
Physical Address (HPA). To achieve fairness in I/O queue management, 
FairNVMe presents several key components: a tenant state classifier, a 
state-driven fairness controller, and a dynamic budget compensation 
module.

The tenant state classifier categorizes tenant states into four distinct 
levels based on predefined thresholds: idle, balanced, unbalanced, and 
saturated. Each category reflects the current load and performance 
status of tenants’ I/O operations. To flexibly adapt to tenant state 
transitions, FairNVMe employs dedicated polling threads to handle I/O 
commands while continuously monitoring the status of each tenant. 
Upon detecting unfairness or overload conditions, the fairness con-
troller adjusts the latency thresholds and associated weights while 
activating the budget compensation process to maintain system fair-
ness and efficiency. The budget compensation module estimates the 
4 
request cost associated with read/write operations, enabling resource 
allocation strategies to be adjusted according to the actual resource 
consumption and demands. Further details on the implementation and 
functionality of these components will be presented in the following 
subsection.

3.2. Tenant state classifier

Accurate assessments of each tenant’s fairness state are crucial for 
implementing effective fairness control. Motivated by research pre-
sented in [37,38], which define fairness as the variance between the 
expected and actual weight of each tenant. We utilize the difference 
between measured latency and predefined target levels as an indi-
cator of potential unfairness. However, determining suitable latency 
thresholds poses challenges. The performance characteristics of each 
virtual machine are unpredictable and influenced by a multitude of 
factors, including request size (average and distribution), operation mix 
(the percentage of read versus write operations), and workload access 
patterns (sequential or random). These dynamic variations make it hard 
for a fixed latency threshold to be universally applicable across diverse 
scenarios. In response, we introduce an adaptive latency threshold 
adjustment mechanism that dynamically updates the threshold value, 
denoted as 𝑇ℎ𝑟𝑒𝑠ℎ𝑐𝑢𝑟, by leveraging the exponentially weighted moving 
averages (EWMA) [39].

Tenant states are further categorized into four distinct levels based 
on measured latency 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 in relation to the minimum threshold 
𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛, the adaptive current threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑐𝑢𝑟, and the maxi-
mum threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥. (1) Idle (𝐿𝑎𝑡𝑒𝑛𝑐𝑦 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛): allocated 
resources are underutilized. (2) Balanced (𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛 ≤ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 <
𝑇ℎ𝑟𝑒𝑠ℎ𝑐𝑢𝑟): the ideal state for achieving optimal system efficiency and 
effective resource management. (3) Unbalanced (𝑇ℎ𝑟𝑒𝑠ℎ𝑐𝑢𝑟 ≤ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 <
𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥): suggesting that the current resource distribution may be 
suboptimal, potentially leading to system unfairness and inefficiencies. 
(4) Saturated (𝐿𝑎𝑡𝑒𝑛𝑐𝑦 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥): the demand for system resources 
surpasses the available capacity, resulting in significant performance 
delays. Typically observed in scenarios with excessive task volumes or 
insufficient resource allocation.

As the lower bound of 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 state, 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛 must exceed the 
maximum latency observed when the I/O flow operates in isolation, 
i.e., 𝑚𝑎𝑥(𝑅𝐿𝐴𝑙𝑜𝑛𝑒). We configure 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛 to 600 μs to ensure the 
system remains within the 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 state under light load conditions. 
The upper threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥 is critical in enabling efficient resource 
utilization under heavy loads while avoiding frequent transitions into 
the 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 state, which could compromise the system stability. To 
strike the optimal balance, we set 𝑇ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥 to 3500 μs, which is 
slightly higher than the latency observed as the device approaches 
saturation. Moreover, to effectively accommodate dynamic workloads 
and diverse SSD hardware characteristics, we adopt a feedback loop-
based threshold adjustment strategy. Inspired by the adaptive threshold 
design in GCC [40], we continuously monitor latency trends and dy-
namically update the minimum and maximum threshold using the 
following equation: 
𝑇ℎ𝑟𝑒𝑠ℎ(𝑡𝑖) = 𝑇ℎ𝑟𝑒𝑠ℎ(𝑡𝑖−1) + 𝑘 ⋅ (𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑡𝑖) − 𝑇ℎ𝑟𝑒𝑠ℎ(𝑡𝑖−1)), (3)

𝑘 =

{

𝑘𝑢, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦(𝑡𝑖) > 𝑇ℎ𝑟𝑒𝑠ℎ(𝑡𝑖−1),
𝑘𝑑 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(4)

The adaptation parameters 𝑘𝑢 and 𝑘𝑑 control the rates of threshold 
increase or decrease. Similar to GCC [40], we employ an asymmetric 
adaptation ratio (𝑘𝑢 = 0.01 ≫ 𝑘𝑑 = 0.001) to ensure rapid response 
to latency increases while maintaining smooth recovery during stable 
periods. Our parameter sensitivity analysis also confirms that this 
configuration optimally balances system responsiveness and stability 
across diverse SSD workloads. Notably, the computational overhead 
of this adaptive mechanism is negligible, as it only requires simple 
arithmetic operations without introducing additional I/O operations or 
costly computations.



Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902 
Algorithm 1 Fair I/O Queue Scheduling through State-Driven Fairness 
Control
Input: Number of tenants 𝑁 , predefined weight 𝑤𝑒𝑖𝑔ℎ𝑡[𝑁], maximum 
and minimum threshold 𝑡ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥, 𝑡ℎ𝑟𝑒𝑠ℎ𝑚𝑖𝑛
Output: Budget allocation results for each tenant 𝑏𝑢𝑑𝑔𝑒𝑡[𝑁]
1: for 𝑖 = 1 to 𝑁
2:    while 𝑟𝑒𝑞[𝑖] > 0
3:       if 𝑏𝑢𝑑𝑔𝑒𝑡[𝑖] > 0 then 
4:          𝑙𝑎𝑡𝑒𝑛𝑐𝑦[𝑖] = request_processing(𝑟𝑒𝑞); 
5:          𝑏𝑢𝑑𝑔𝑒𝑡[𝑖] -= 𝑐𝑜𝑠𝑡[𝑖]; 
6:          if 𝑠𝑡𝑎𝑡𝑒[𝑖] == 𝐼𝑑𝑙𝑒 && 𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] > 𝛽 then 
7:             𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] -= 𝛽; 
8:             𝑡ℎ𝑟𝑒𝑠ℎ[𝑖] = ewma(𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑡ℎ𝑟𝑒𝑠ℎ); 
9:          else if 𝑠𝑡𝑎𝑡𝑒[𝑖] == 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 then 
10:          /* Keep the current weight and time budget */ 
11:            𝑡ℎ𝑟𝑒𝑠ℎ[𝑖] = ewma(𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑡ℎ𝑟𝑒𝑠ℎ); 
12:         else if 𝑠𝑡𝑎𝑡𝑒[𝑖] == 𝑈𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 then 
13:            𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] += 𝛽; 
14:            𝑡ℎ𝑟𝑒𝑠ℎ[𝑖] = (𝑡ℎ𝑟𝑒𝑠ℎ[𝑖] + 𝑡ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥[𝑖]) / 2; 
15:            𝑐𝑜𝑠𝑡 = cost_estimation(𝑟𝑒𝑞); 
16:            𝑏𝑢𝑑𝑔𝑒𝑡 = budget_compensate(𝑤𝑒𝑖𝑔ℎ𝑡, 𝑐𝑜𝑠𝑡); 
17:            return 𝑏𝑢𝑑𝑔𝑒𝑡; 
18:         else 
19:            𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] += 2𝛽; 
20:             𝑡ℎ𝑟𝑒𝑠ℎ[𝑖] = 𝑡ℎ𝑟𝑒𝑠ℎ𝑚𝑎𝑥[𝑖]; 
21:            𝑐𝑜𝑠𝑡 = cost_estimation(𝑟𝑒𝑞); 
22:            𝑏𝑢𝑑𝑔𝑒𝑡 = budget_compensate(𝑤𝑒𝑖𝑔ℎ𝑡, 𝑐𝑜𝑠𝑡); 
23:            return 𝑏𝑢𝑑𝑔𝑒𝑡; 
24:         end if 
25:      else /* Tenant exhausts allocated time budgets */ 
26:         Break; /* Excluded from the scheduling unit */ 
27:         if 𝑖==𝑁 /* All tenants run out of budgets */ 
28:            𝑏𝑢𝑑𝑔𝑒𝑡 = budget_reallocate(𝑤𝑒𝑖𝑔ℎ𝑡, 𝑐𝑜𝑠𝑡); 
29:            return 𝑏𝑢𝑑𝑔𝑒𝑡; 
30:         end if 
31:      end if 
32:   end while 
33: end for 
34: End

3.3. State-driven fairness controller

For flexible I/O queue scheduling, FairNVMe integrates a time 
budget-based I/O queue scheduling mechanism with a state-driven 
fairness controller. Specifically, FairNVMe continuously monitors the 
tenant status to identify varying levels of unfairness, guiding the system 
to apply either aggressive or gradual time budget adjustments based on 
the severity of the imbalance.

The procedure for the fair I/O queue scheduling is outlined in 
Algorithm 1, which exhibits a time complexity of 𝑂(𝑁 ⋅ 𝑚𝑎𝑥(𝑟𝑒𝑞𝑖)). 
This complexity arises from the nested loop structure: the outer loop 
iterates over 𝑁 tenants, while the inner loop processes up to 𝑚𝑎𝑥(𝑟𝑒𝑞𝑖)
requests for each tenant. Since operations within the inner loop have 
a constant time complexity, the total number of operations in the 
worst case is proportional to 𝑁 ⋅ max(𝑟𝑒𝑞𝑖). Initially, each tenant is 
assigned a default weight of 1 upon creation, which determines its 
proportion of resource allocation and is subsequently dynamically ad-
justed based on the tenant’s status. The system then fairly allocates time 
budgets among tenants according to their associated weights. As I/O 
requests are processed, the time budget is incrementally reduced based 
on the estimated costs (Steps 1 to 5). During execution, the system 
continuously monitors the runtime state of each tenant according to 
their measured I/O latency and corresponding thresholds. Upon detect-
ing state transitions, the algorithm dynamically modifies the relevant 
5 
weights and thresholds. Additionally, it triggers cost estimation and 
budget compensation processes (as described in Section 3.4) when 
necessary to maintain system fairness and efficiency (Steps 6 to 24). 
Once a tenant’s allocated time budget is exhausted, their request queue 
is temporarily excluded from the scheduling unit until the budget is 
replenished in the next scheduling cycle, preventing any single tenants 
from monopolizing system resources and ensuring that all tenants have 
equitable access over time (Steps 25 to 26). In scenarios where all 
tenants exhaust their time budgets and there are still pending requests, 
the scheduler resets the time budgets, allowing the system to continue 
processing I/O operations without introducing significant delays (Steps 
27 to 34). Detailed explanations of the control actions associated with 
each state are provided below.

(1) Releasing unused resources during the idle state. Idle state indi-
cates the potential for redistributing unused capacity to other tenants 
experiencing higher demand, particularly those in unbalanced or sat-
urated states for overall performance optimization. To facilitate this, 
we introduce a new parameter 𝛽 for tenant resource allocation weight 
adjustments in response to state transitions. Specifically, the fairness 
controller reduces the weight associated with idle tenants by 𝛽 and 
updates the current threshold using the EWMA method (Steps 6 to 8).

(2) Preserving optimal efficiency in the balanced state. The fairness 
controller preserves the current resource allocation strategy as no 
immediate adjustments are necessary (Steps 9 to 11).

(3) Gradually mitigating unfairness in the unbalanced state. This state 
serves as an early warning that system fairness is facing degradation. 
In response, the algorithm implements proactive actions to correct 
these imbalances before they escalate into more severe issues (i.e., the 
saturated state). Initially, the system gradually increases the weight 
associated with unbalanced tenants by 𝛽 to enhance its I/O queue 
resource allocation ratio (Steps 12 to 13). To reduce the frequency 
of transitions into the unbalanced state, the algorithm incrementally 
adjusts the 𝑇ℎ𝑟𝑒𝑠ℎ𝑐𝑢𝑟 to the midpoint between the current threshold 
and the maximum threshold (Step 14). Additionally, it triggers cost 
estimation and budget compensation processes to maintain system 
fairness (Steps 15 to 17).

(4) Aggressively addressing system stress in the saturated state. The 
tenant load is either approaching or exceeding the system’s process-
ing capacity, necessitating immediate intervention to prevent further 
system degradation and ensure stability. Specifically, we aggressively 
increase the weight associated with saturated tenants by 2𝛽, thereby 
prioritizing their resource allocation (Steps 18 to 19). Moreover, the 
controller activates the dynamic budget compensation process and 
updates the current threshold to align with the maximum threshold 
value, preventing further performance degradation and enabling the 
system to quickly adapt to extreme load conditions (Steps 20 to 24).

To ensure accurate control, we perform a sensitivity analysis on the 
parameter 𝛽 and observe that smaller values of 𝛽 potentially delay the 
resolution of unfairness among tenants. Conversely, a larger 𝛽 enables 
more aggressive adjustments in resource allocation but heightens the 
risk of overcompensation, which could exacerbate latency issues. The 
system latency first declines and then rises as the 𝛽 value varies, reach-
ing optimal performance at 𝛽 = 0.5, which enables effective response 
to tenant state changes without excessive compensation. By applying 
corresponding actions for these four states, the fairness controller can 
rapidly detect and respond to each tenant’s resource adjustment re-
quirements, thereby enhancing system stability and fairness across all 
tenants.

3.4. Dynamic budget compensation

To enable the adaptive adjustment of resource allocation strategy 
according to the actual resource consumption and demands of each 
tenant, the budget compensation module estimates the request costs 
associated with each I/O operation. Given that read and write requests 
exhibit distinct characteristics and consequently impose varying levels 
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Table 2
Overhead in average latency (μs)
 Test Case Native Virtio SPDK LPNS Ours  
 rand-read-n1d1 99.94 209.32 103.27 101.39 99.5  
 rand-write-n1d1 14.75 70.87 18.48 15.47 15.73  
 rand-read-n4d4 147.03 172.54 130.47 121.91 123.47 
 rand-write-n4d4 53.66 150.29 53.81 54.36 53.73  

of resource consumption. Write requests generally exhibit higher la-
tency and demand more extensive processing resources compared to 
read requests. FairNVMe estimates the costs of read and write opera-
tions independently. The estimator gathers detailed I/O request data for 
each 𝑇 𝑒𝑛𝑎𝑛𝑡𝑖, including the number of requests 𝑅𝑒𝑞𝑖, the access modes 
(read or write), and the corresponding time cost, denoted as 𝑇 𝑖𝑚𝑒𝑟𝑖  for 
read operations and 𝑇 𝑖𝑚𝑒𝑤𝑖  for write operations. Upon detecting signals 
of unfairness or overload, FairNVMe calculates the associated request 
costs and initiates the budget compensation process using the following 
predefined models: 

𝐵𝑢𝑑𝑔𝑒𝑡𝑖 =
𝑊 𝑒𝑖𝑔ℎ𝑡𝑖 × (𝐶𝑜𝑠𝑡𝑟𝑖 + 𝐶𝑜𝑠𝑡𝑤𝑖 )

∑𝑁
𝑗=1 𝑊 𝑒𝑖𝑔ℎ𝑡𝑗 × (𝐶𝑜𝑠𝑡𝑟𝑗 + 𝐶𝑜𝑠𝑡𝑤𝑗 )

× 𝐵𝑡𝑜𝑡𝑎𝑙 , (5)

𝐶𝑜𝑠𝑡𝑟𝑖 = 𝑅𝑒𝑞𝑖 × (1 − 𝑅𝑎𝑡𝑖𝑜𝑤𝑖 ) × 𝑇 𝑖𝑚𝑒𝑟𝑖 , (6)

𝐶𝑜𝑠𝑡𝑤𝑖 = 𝑅𝑒𝑞𝑖 × 𝑅𝑎𝑡𝑖𝑜𝑤𝑖 × 𝑇 𝑖𝑚𝑒𝑤𝑖 . (7)

The budget allocation for each 𝑇 𝑒𝑛𝑎𝑛𝑡𝑖 denoted as 𝐵𝑢𝑑𝑔𝑒𝑡𝑖 is deter-
mined in proportion to its assigned weight 𝑊 𝑒𝑖𝑔ℎ𝑡𝑖. The total available 
time budget is represented as 𝐵𝑡𝑜𝑡𝑎𝑙. Consumed budgets for completing 
read and write requests are denoted as 𝐶𝑜𝑠𝑡𝑟𝑖  and 𝐶𝑜𝑠𝑡𝑤𝑖 , respectively. 
The parameter 𝑅𝑎𝑡𝑖𝑜𝑤𝑖  reflects the ratio of write requests relative to the 
total number of I/O requests 𝑅𝑒𝑞𝑖. Through dynamic budget compen-
sation, FairNVMe ensures that tenants with higher weights or greater 
resource demands receive an appropriate share of the total available 
budget.

4. Discussion

4.1. Overhead of FairNVMe

FairNVMe implements a range of advanced mechanisms to ensure 
fair I/O queue scheduling in multi-tenant environments. Nevertheless, 
their implementation inherently introduces certain performance and 
resource overheads. Firstly, FairNVMe necessitates continuous monitor-
ing of system status and dynamic adjustment of time budgets allocated 
to each tenant. This process involves frequent calculations and up-
dates to the time budgets based on runtime statistics, which inevitably 
contribute to additional latency within the system. Table  2 presents a 
comparative analysis of the native behavior of physical devices against 
the average latency observed by Virtio, SPDK, LPNS, and FairNVMe. Ex-
perimental results demonstrate that FairNVMe can achieve near-native 
efficiency and the additional overhead induced by FairNVMe is negligi-
ble. Notably, FairNVMe even surpasses native results in 4K random read 
I/O benchmarks configured with numjobs=4 and iodepth=4, owing to 
its ability to fully exploit multi-queue features of NVMe devices through 
polling mode.

Secondly, FairNVMe continuously monitors a private state for each 
tenant and employs dedicated polling threads to facilitate detailed 
statistics gathering, which introduces additional overhead in terms of 
CPU cycles and memory utilization. To thoroughly evaluate the re-
source overhead of FairNVMe, we increase the number of tenants from 
1 to 8 and assess the corresponding changes in resource utilization. 
Our measurements reveal that the additional resource occupancy in-
troduced by FairNVMe remains minimal and within acceptable bounds, 
with an observed increase of less than 1.8 percent.
6 
4.2. Comparison with device-level fair scheduler

Since the firmware of commercial products is typically closed and 
cannot be modified, existing device-level I/O schedulers are usually 
implemented using SSD simulators [41,42]. While these simulators 
effectively model the internal logic and I/O performance of SSDs, they 
do not expose block device interfaces to the host or virtualization 
environments. This limitation makes it unsuitable for direct comparison 
with FairNVMe, as our work focuses on NVMe virtualization solutions 
aimed at mitigating performance interference and ensuring fairness 
among multiple tenants. Therefore, in this subsection, we perform 
a theoretical analysis to examine the advantages and limitations of 
FairNVMe in comparison with FLIN [26], a representative device-level 
scheduling framework.

FLIN is a device-level interference-aware scheduler implemented 
within the SSD controller firmware using the MQSim simulator [43]. 
It protects against the four primary sources of interference among I/O 
flows (i.e., I/O intensity, access pattern, read/write ratio, and garbage 
collection) to balance slowdowns and ensure fairness across diverse 
applications. Although device-level solutions like FLIN are expected to 
achieve better fairness through fine-grained flow control, they are con-
strained by the following limitations: (1) Implementation complexity: 
Designing and deploying them requires modifications to the underlying 
SSD controller firmware, which increases the algorithm complexity 
and implementation costs [15]. (2) Limited Portability: They are often 
tightly coupled with specific hardware, making them less portable or 
reusable across diverse platforms [44]. (3) Scalability issues: In dis-
tributed or cloud environments involving multiple devices, device-level 
schedulers might lack a system-wide perspective, potentially leading to 
suboptimal global fairness [45]. In contrast, while FairNVMe cannot 
directly perceive and address some underlying sources of interference, 
such as garbage collection, it offers notable advantages as an OS-
level software strategy. As a kernel module, FairNVMe offers enhanced 
flexibility for modifications and updates. Furthermore, it can enforce 
fairness across the entire system, which is crucial in multi-tenant cloud 
environments.

5. Evaluation

In this section, we conduct a comprehensive evaluation of our 
proposed FairNVMe alongside three mainstream NVMe virtualization 
mechanisms, including the para-virtualization abstraction Virtio [9], 
the SPDK 𝑣ℎ𝑜𝑠𝑡-𝑠𝑐𝑠𝑖 [12], and a mediated pass-through solution LPNS 
[15]. Since LPNS has already demonstrated superior effectiveness over 
SR-IOV [16], we only need to compare FairNVMe with LPNS in the 
experiments. Our assessment covers a range of critical metrics, includ-
ing overall system performance (IOPS, average latency, and tail latency 
distribution), and fairness (fairness index, maximum slowdown, and 
system stability). To assess the scalability of FairNVMe across diverse 
load situations, we augment the workload intensity by increasing the 
number of jobs and I/O queue depths across various scenarios, in-
cluding random read, random write, and mixed random read&write 
conditions.

5.1. Experimental setup

(1) Experimental Platform
The host server is equipped with an Intel Xeon(R) Platinum 8171M 

52-core processor running at 2.6GHz, 128GB DRAM. To simulate CPU 
resource contention scenarios, the number of available CPU cores are 
constrained to 24. We build the experimental setup using the Intel 
DC P3520 1.2T NVMe SSD, which is a 3D NAND-based SSD designed 
specifically for data centers. Different from conventional flash-based 
SSDs such as the P3700 series, which focuses on high-performance 
storage, the 3D NAND-based P3520 can realize higher density at lower 
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Fig. 4. Throughput performance of IOPS under 12 test cases across three distinct I/O patterns.
Table 3
Workload configuration.
 Test Case Description  
 

I/O scarce

rand-read-n1d1 4K random read, numjobs=1, iodepth=1  
 rand-write-n1d1 4K random write, numjobs=1, iodepth=1  
 rand-rw 4K mixed random read&write,  
 n1d1-read numjobs=1, iodepth=1, read 70%  
 rand-rw 4K mixed random read&write,  
 n1d1-write numjobs=1, iodepth=1, write 30%  
 

I/O moderate

rand-read-n4d4 4K random read, numjobs=4, iodepth=4  
 rand-write-n4d4 4K random write, numjobs=4, iodepth=4  
 rand-rw 4K mixed random read&write,  
 n4d4-read numjobs=4, iodepth=4, read 70%  
 rand-rw 4K mixed random read&write,  
 n4d4-write numjobs=4, iodepth=4, write 30%  
 

I/O intensive

rand-read-n4d32 4K random read, numjobs=4, iodepth=32  
 rand-write-n4d32 4K random write, numjobs=4, iodepth=32 
 rand-rw 4K mixed random read&write,  
 n4d32-read numjobs=4, iodepth=32, read 70%  
 rand-rw 4K mixed random read&write,  
 n4d32-write numjobs=4, iodepth=32, write 30%  

cost and power consumption [46]. To comprehensively assess the sys-
tem fairness, we also deploy FairNVMe on the Samsung PM1735 [47], 
which is an enterprise-grade SSD capable of supporting up to 1000K 
IOPS in 4K random read and 200K IOPS in 4K random write.

We install the Ubuntu 18.04 operating system for the host server 
with Linux kernel 5.5.0, guests are instantiated with identical OS image 
versions based on KVM/QEMU hypervisor infrastructure. Virt-manager 
is used for VM creation and management, ensuring streamlined orches-
tration of virtualized environments. Each virtual machine is endowed 
with 4 CPU cores and configured to accommodate 4 virtual queues. 
During experiments, we allocate fixed 64GB NVMe SSD storage to each 
VM.

(2) Workload Configuration
Flexible I/O Tester (FIO) [48] and Yahoo! Cloud Serving Benchmark 

(YCSB) [49] are utilized as benchmarking tools to assess system per-
formance comprehensively. To analyze system behavior from multiple 
dimensions, we adjust FIO configuration parameters and design 12 test 
cases across three I/O patterns, including I/O scarce, I/O moderate, 
and I/O intensive. Configuration details are summarized in Table  3. We 
augment the workload intensity by manipulating the value of 𝑛𝑢𝑚𝑗𝑜𝑏𝑠
(i.e., the amount of concurrent threads) and 𝑖𝑜𝑑𝑒𝑝𝑡ℎ (i.e., the number 
of requests queued per thread). Aligned with real-world data center 
benchmarks derived from CAMELab Flash-based Block Traces (CAME-
TBT) [50], we set the block size across all test cases as 4𝐾. The 𝑖𝑜𝑒𝑛𝑔𝑖𝑛𝑒
parameter is designated as 𝑙𝑖𝑏𝑎𝑖𝑜, enabling enhanced asynchronous I/O 
operations. In pursuit of realistic test outcomes, we employ 𝐷𝑖𝑟𝑒𝑐𝑡 mode 
to bypass the I/O buffer. Moreover, YCSB is employed to simulate key–
value store workloads on RocksDB databases, providing insights into 
the system’s efficiency under realistic application scenarios.
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5.2. Overall performance

(1) Throughput
Initially, we instantiate virtual environments with eight virtual 

machines and evaluate the IOPS throughput under 12 test cases across 
three distinct I/O patterns. The experimental results, depicted in Fig. 
4, demonstrate that FairNVMe exhibits superior behavior in the ma-
jority of scenarios when compared to other virtualization methods. 
In scenarios characterized by single-threaded, non-intensive workloads 
(e.g., n1d1), where ample CPU and NVMe disk resources are available, 
the throughput differential between FairNVMe and alternative virtu-
alization mechanisms is relatively modest. As the workload intensity 
and queue depth escalate, the efficiency of FairNVMe becomes more 
pronounced, particularly under multi-threaded, intensive I/O loads 
(e.g., n4d32), where resource contention becomes a critical factor. 
Specifically, FairNVMe enhances the IOPS by up to 3.02x, 23.5%, 
and 31.2% compared with Virtio, SPDK, and LPNS, respectively. This 
phenomenon can be attributed to the state-driven fairness controller 
employed by FairNVMe, which ensures the appropriate allocation of 
physical queue resources based on the private state of each tenant and 
alleviates contention among multiple virtual machines.

(2) Average Latency
As illustrated in Fig.  5, with higher workload intensity, the scarcity 

of physical resources becomes more pronounced, resulting in prolonged 
response time for I/O requests. As a universal I/O virtualization in-
terface with no specific optimization for NVMe, Virtio gains poor 
performance in average latency. To mitigate I/O latency, SPDK intro-
duces a zero-copy approach that avoids data replication between user 
space and kernel space. Additionally, it employs user space drivers 
instead of kernel drivers, thereby minimizing the frequent context 
switching between them. However, its static I/O resource allocation 
strategy makes it less suitable for scenarios that require flexible and 
dynamic resource management, as resources are allocated prior to ap-
plication runtime. While LPNS enhances latency predictability through 
self-feedback mechanisms, it ignores the resource contention for shared 
NVMe devices among multiple virtual machines, which can lead to 
potential degradation. In contrast, FairNVMe outperforms Virtio, SPDK, 
and LPNS, achieving up to 91.9%, 22.1%, and 24.5% latency op-
timization, respectively. This superior performance is attributed to 
FairNVMe’s budget compensation strategy, which dynamically adjusts 
physical I/O queue resource allocation according to the requirements 
of individual VMs, effectively reducing queuing delays and request 
processing times.

(3) Tail Latency
Fig.  6 provides a comprehensive evaluation of tail latency at various 

percentiles across four scenarios, including random read, random write, 
and mixed random read and write operations. The latency results are 
presented using a logarithmic scale for enhanced clarity, with both 
the number of jobs and queue depths set to 4. Tail latency is primar-
ily determined by the slowest operations, which directly impact user 
experience due to delayed responses. The experimental results reveal 
a trend similar to that observed in average latency measurements. 
Specifically, FairNVMe reduces the tail latency by up to 94.5%, 61.2%, 
and 79.5% compared with the other three methods, respectively. These 
results underscore FairNVMe’s ability to substantially reduce the tail 



Z. Huang et al. Future Generation Computer Systems 173 (2025) 107902 
Fig. 5. The average latency under 12 test cases across three distinct I/O patterns.
Fig. 6. Tail latency distribution across four scenarios with a logarithmic scale coordinate of latency results.
Fig. 7. Fairness index based on Eq. (2), indicating the ratio of the minimum to maximum slowdowns (higher values indicate better fairness).
latency, particularly for the 99.9th percentile, which is critical for 
maintaining high-quality service in cloud environments. Through fair 
resource allocation, FairNVMe optimizes the processing of the slow-
est operations and minimizes request delays, thereby enhancing the 
overall effectiveness and user experience, making it a superior choice 
in cloud scenarios where both performance and fairness are critical 
considerations.

5.3. Fairness evaluation

In this subsection, we present a detailed analysis of system fairness 
evaluation, focusing on three key metrics: the fairness index, the maxi-
mum slowdown caused by mutual interference, and the system stability 
under contention. To comprehensively evaluate FairNVMe’s fairness 
behavior, we conduct a series of experiments on both Intel P3520 and 
Samsung PM1735.

(1) Fairness Index
Fig.  7 illustrates the fairness results calculated based on Eq. (2), 

which represents the ratio of the minimum to the maximum slowdowns 
experienced by VMs. The fairness index ranges from 0 to 1, with higher 
values indicating better fairness. FairNVMe improves the fairness index 
across eight test cases, outperforming Virtio, SPDK, and LPNS by up 
to 51.4%, 15.6%, and 73.2%, respectively. This improvement high-
lights FairNVMe’s capability to enable fair resource allocation among 
multiple tenants, reducing disparities in performance slowdowns.

(2) Maximum Slowdown
We also evaluate the maximum slowdown caused by mutual inter-

ference across various workload patterns. As depicted in Figs.  8 and
9, the system experiences significant slowdowns, with values reaching 
8 
up to 96x under certain conditions. Despite SPDK and LPNS mitigating 
resource contention and performance degradation to some extent, they 
still encounter notable slowdowns. In contrast, with efficient fairness 
control mechanisms, FairNVMe effectively manages mutual interfer-
ence, reducing the maximum slowdown value by up to 92.1%, 59.2%, 
and 58.2% compared with Virtio, SPDK, and LPNS, respectively.

(3) System Stability
To further demonstrate the stability of FairNVMe, we measure the 

standard deviation (STDEV) of latency behavior, which quantifies the 
variability and consistency in system performance. With the increase 
in workload intensity, resource contention among multiple tenants 
exacerbates, leading to noticeable latency fluctuation and increased 
STDEV values. As demonstrated in Figs.  10 and 11, FairNVMe provides 
stable request latency for each tenant, reducing the STDEV value by 
up to 95.1%, 73.7%, and 91.4% compared to other methods. Through 
fair I/O queue scheduling, FairNVMe provides a high level of system 
stability and ensures reliable performance in multi-tenant cloud envi-
ronments, where consistent latency is essential for sustaining system 
efficiency and responsiveness.

5.4. Real-world application

(1) YCSB Benchmarks
To evaluate system efficiency under real-world application scenar-

ios, we utilize the YCSB benchmark [49] to generate key–value store 
workloads on RocksDB databases. We deploy six guest machines run-
ning standard YCSB workloads, ranging from 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑎 to 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑓 . 
Each workload corresponds to different combinations of read-to-write 
ratios and access patterns, reflecting distinct use cases in database 
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Fig. 8. Maximum slowdown caused by mutual interference on Intel P3520 (lower values indicate superior outcomes).
Fig. 9. Maximum slowdown caused by mutual interference on Samsung PM1735 (lower values indicate superior outcomes).
Fig. 10. Standard deviation of latency results on Intel P3520 (lower values indicate better stability).
Fig. 11. Standard deviation of latency results on Samsung PM1735 (lower values indicate better stability).
systems. To simulate resource contention scenarios, we intensify the 
workload by increasing the 𝑟𝑒𝑐𝑜𝑟𝑑𝑐𝑜𝑢𝑛𝑡 and 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡 parameters, 
which result in larger data volumes and higher operation rates, re-
spectively. Fig.  12 illustrates the average latency and corresponding 
slowdown observed across YCSB workloads. As depicted in Fig.  12(a), 
FairNVMe exhibits superior latency results on the YCSB benchmarks, 
achieving average latency reductions of up to 61.0%, 51.4%, and 
73.0% compared to Virtio, SPDK, and LPNS, respectively. Additionally, 
by leveraging state-driven fairness control strategies, FairNVMe effec-
tively mitigates slowdowns and enhances system fairness in real-world 
scenarios.

(2) Testing under Extreme Workloads
To further evaluate FairNVMe’s responsiveness under extreme sce-

narios, we deploy four tenants, each exhibiting significant disparities 
and heterogeneous configurations in workload characteristics. Two 
of these tenants execute specific application workloads generated by 
Filebench [34], including a webserver and a fileserver. The webserver 
workload simulates a typical web server environment, focusing on 
server behavior when handling numerous small files, while the file-
server primarily tests system efficiency when dealing with large files. 
9 
Following the configuration in FinNVMe [14], the number of threads 
is set to eight. The remaining two tenants are assigned extreme FIO 
workloads with distinct characteristics. One tenant executes an I/O 
scarce workload that employs random read patterns (configured with 
numjobs=1 and iodepth=1), imposing minimal resource demands on 
the system. The other tenant is dedicated to an I/O intensive workload 
involving a random write pattern with high concurrency and through-
put requirements (configured with numjobs=8 and iodepth=32). Fig. 
13 presents the normalized p99.9 tail latency results and system fair-
ness metrics. Without flexible I/O scheduling and fairness control, Vir-
tio, SPDK, and LPNS fail to effectively manage the disparities in work-
load demands, leading to suboptimal resource allocation and higher la-
tency. In contrast, FairNVMe maintains high performance and enhances 
system fairness even under extreme and heterogeneous workload situ-
ations.

5.5. Scalability

To evaluate the scalability of FairNVMe in multi-tenant environ-
ments, we expand the number of VMs from 1 to 16 and measure the 
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Fig. 12. The average latency and corresponding slowdowns observed in YCSB bench-
mark evaluations.

Fig. 13. The tail latency distribution and system fairness assessment under extreme 
workload scenarios.

overall system IOPS across all tenants. As illustrated in Fig.  14, we 
assess the IOPS of FairNVMe across various test cases. Under conditions 
with limited I/O demands, characterized by a small number of jobs and 
queue depths, the available capacity is not fully utilized. Consequently, 
deploying additional VMs in these scenarios enhances the utilization of 
queue resources, leading to a noticeable increase in overall IOPS. As 
the load intensity rises, system throughput begins to stabilize due to the 
saturation of I/O queue resources. These findings indicate that FairN-
VMe efficiently manages the available resources, allowing multi-VMs 
to operate concurrently without considerable degradation.

Furthermore, we evaluate the IOPS distribution across multiple 
VMs and the system fairness metrics under intensive random read I/O 
workloads. As depicted in Fig.  15, when increasing the number of VMs 
from 1 to 16, the throughput remains evenly distributed across all 
VMs. FairNVMe prevents any single VM from dominating the I/O queue 
resources, sustaining consistent and predictable performance for all 
tenants. Moreover, although the increase in the number of tenants leads 
to intensified resource contention and a decline in fairness metrics, 
FairNVMe consistently upholds system fairness, maintaining a fairness 
metric value of at least 0.905 even as the number of VMs scales to 16. In 
conclusion, FairNVMe exhibits excellent scalability by enabling fairness 
control and near-native performance across multiple tenants, which is 
crucial for the cloud service provider seeking to maximize resource 
10 
Fig. 14. Scalability of FairNVMe in multi-tenant environments.

Fig. 15. IOPS distribution of FairNVMe among multiple VMs.

utilization while guaranteeing fairness and stability in multi-tenant 
cloud environments.

5.6. Workload diversity evaluation

As the former evaluation primarily focuses on 4K random
read/write operations, in this subsection, we expand workload diversity 
by incorporating sequential I/O patterns and variable block sizes to 
better reflect real-world scenarios. As illustrated in Fig.  16, we evaluate 
the average latency and maximum performance slowdown across seven 
distinct I/O block sizes (ranging from 512B to 64K) under intensive 
sequential read and random write workloads. The average latency 
results are presented using a logarithmic scale to effectively capture 
the wide range of latency values. Our experimental analysis reveals that 
average latency exhibits a slight decrease as block size increases from 
512B to 4K, primarily due to improved I/O queue utilization at small 
block sizes. Furthermore, since most file systems and SSD hardware 
devices are typically configured with a default block size of 4K, system 
latency exhibits a decreasing trend when the block size of I/O requests 
aligns with the 4K boundary. However, we observe a progressive 
increase in latency from 4K to 64K, which can be attributed to the 
inherent overhead associated with I/O block separations and the inten-
sified contention in queue resource allocation under larger block sizes. 
Despite these challenges, our experimental results demonstrate that 
FairNVMe consistently maintains robust latency performance across 
various block sizes and diverse I/O patterns, including both sequen-
tial and random workloads. Moreover, FairNVMe effectively mitigates 
performance degradation, validating its adaptability to real-world I/O 
scenarios.

6. Related work

NVMe Virtualization. As a universal Linux I/O para virtualization 
framework, Virtio [9] offers a unified interface for various I/O devices. 
Without specific optimization for NVMe storage devices, it fails to 
accommodate the unique characteristics of modern high-speed storage 
technologies. VFIO [29] employs direct pass-through techniques and 
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Fig. 16. The average latency and maximum performance slowdown across distinct I/O 
block sizes under sequential and random I/O patterns.

allocates NVMe devices to individual VMs. Guests can access hard-
ware devices directly via the VFIO-PCI driver, attaining nearly 95% 
of native results, but the direct passthrough approach hinders device 
sharing among multiple virtual machines. Fam Zheng [11] presents 
a userspace NVMe driver based on QEMU, running modified NVMe 
drivers within the Linux userspace. While Fam Zheng streamlines the 
software stack involved in I/O request handling and delivers enhanced 
NVMe virtualization services, the adoption of QEMU-based userspace 
drivers introduces certain challenges. In particular, the necessity to trap 
and simulate privileged operations, such as device management and 
creation, imposes additional software processing overhead and exacer-
bates tail latency issues. SPDK [12] employs polling mode to mitigate 
degradation and high latency caused by interrupt-driven mechanisms. 
By leveraging lock-free queues for message delivery, SPDK optimizes 
NVMe efficiency, thereby ensuring efficient NVMe virtualization and 
facilitating device-sharing capabilities. However, SPDK’s dependence 
on Hugepage memory introduces substantial memory resource pres-
sure on physical servers and may limit scalability for the multi-tenant 
cloud. Mdev-NVMe [13] presents an innovative NVMe storage virtu-
alization mechanism with mediated pass-through, using active polling 
mode for efficient queue handling. To achieve workload-aware manage-
ment and latency-predictable QoS control, Peng et al. further propose 
FinNVMe [14] and LPNS [15] to optimize the performance of medi-
ated pass-through NVMe virtualization, offering enhanced throughput 
and processing efficiency. Although the aforementioned techniques 
facilitate the fundamental use of NVMe device virtualization, they over-
look the critical fairness requirements in scenarios involving multiple 
tenants.

Fairness Control. To address the fairness requirements of SSD de-
vices, researchers have explored various solutions [44,51,52]. For in-
stance, FIOS [44] proposes a flash I/O scheduler integrating timeslice 
management, enabling timeslice fragmentation and concurrent request 
issuance. Nevertheless, adopting timeslice-based I/O schedulers may 
result in time slice waste and malicious occupation, leading to poor 
responsiveness. To eliminate such unresponsiveness, FlashFQ [52] es-
timates the process of each running flow based on the request costs, 
and presents a throttled dispatch technique to throttle flows that sig-
nificantly outpace others to enhance fairness. Moreover, approaches 
like Fuzzy [27] and FLIN [26] delve into device-level I/O schedul-
ing. Fuzzy [27] introduces a fuzzy logic-based fairness control policy, 
assigning priority levels to workloads based on their flow intensity. 
It assigns higher priority to low-intensity workloads since they are 
more prone to slowdown. FLIN [26] proposes a lightweight transaction 
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scheduler for modern multi-queue SSDs. FLIN identifies four major 
sources of interference contributing to unfairness and designs a three-
stage scheduling algorithm to mitigate interference while adhering to 
the application-level priorities designated by the host. However, its 
implementation within the SSD controller firmware escalates the com-
plexity and implementation costs. Different from the above-mentioned 
methods, FairNVMe emphasizes fairness enhancement in NVMe virtu-
alization and adopts a more flexible approach by implementing fair-
ness mechanisms at the OS level, thereby reducing implementation 
complexity and enhancing its adaptability to diverse cloud scenarios.

7. Conclusion

In this paper, we introduce FairNVMe, a novel NVMe virtualization 
solution designed to facilitate effective fairness control in multi-tenant 
cloud storage systems. To guarantee fair I/O queue scheduling, FairN-
VMe categorizes tenant status into four distinct levels and generates 
control signals upon detecting unbalanced or saturated states among 
tenants, guiding the system to trigger dynamic budget compensation 
based on the estimated request costs. Beyond its technical contribu-
tions, FairNVMe holds broader implications for cloud service providers, 
particularly in meeting stringent Service Level Agreements (SLAs). 
By delivering consistent and predictable I/O performance, FairNVMe 
enhances QoS for tenants, which is critical in dense cloud environments 
where competition for resources is often intense. Furthermore, the 
core principles of FairNVMe, such as state-driven resource management 
and dynamic budget compensation, can be extended to other resource 
allocation challenges in cloud computing, offering a pathway to more 
efficient and equitable resource utilization.
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