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METHODOLOGIES AND APPLICATION

A novel task scheduling scheme in a cloud computing environment
using hybrid biogeography-based optimization

Zhao Tong1 • Hongjian Chen1 • Xiaomei Deng1 • Kenli Li2,3 • Keqin Li2,3,4

� Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Task scheduling, which plays a crucial role in cloud computing and is the critical factor influencing the performance of

cloud computing, is an NP-hard problem that can be solved with a heuristic algorithm. In this paper, we propose a novel

heuristic algorithm, called biogeography-based optimization (BBO), and a new hybrid migrating BBO (HMBBO) algo-

rithm, which integrates the migration strategy with particle swarm optimization (PSO). Both methods are proposed to solve

the problem of scheduling-directed acyclic graph tasks in a cloud computing environment. The basic idea of our approach

is to exploit the advantages of the PSO and BBO algorithms while avoiding their drawbacks. In HMBBO, the flight strategy

under the BBO migration structure is hybridized to accelerate the search speed, and HEFT_D is used to evaluate the task

sequence. Based on the WorkflowSim, a comparative experiment is conducted with the makespan of task scheduling as the

objective function. In HMBBO, the flight strategy under the BBO migration structure is hybridized to accelerate the search

speed, and HEFT_D is used to evaluate the task sequence. Based on the WorkflowSim, a comparative experiment is

conducted with the makespan of task scheduling as the objective function. Both simulation and real-life experiments are

conducted to verify the effectiveness of HMBBO. The experiment shows that compared with several classic heuristic

algorithms, HMBBO has advantages in terms of global search ability, fast convergence rate and a high-quality solution,

and it provides a new method for task scheduling in cloud computing.

Keywords Biogeography-based optimization � Cloud computing � Directed acyclic graph � Task scheduling �
WorkflowSim

1 Introduction

Cloud computing is a resource- and service-managing IT

commercial model that is derived from parallel computing

and grid computing (Mei et al. 2015). In the age of big

data, cloud computing platforms provide services to

process big data and implement elastic computing. Task

scheduling is an NP-hard problem (Lo 1988) that plays a

critical role in traditional parallel computing and grid

computing. It also exists in the dynamic cloud computing

environment and is even more complicated. As the data

volume from all fields increases sharply, the task size is

also rapidly increasing. There is no particularly useful

method for the special nature of the task scheduling

problem. Guided-random-search-based (also called meta-Communicated by V. Loia.
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heuristic scheduling) is a new computing paradigm with

good ability to find optima and is a highly effective solu-

tion to the NP-hard problem. Many meta-heuristic

scheduling algorithms, such as genetic algorithm (GA)

(Holland 1992), tabu search algorithm (TS) (Larumbe and

Sanso 2013), particle swarm optimization (PSO) (Kennedy

and Eberhart 2002), and ant colony optimization (ACO)

(Ferrandi et al. 2010), are used in various domains. In recent

years, researchers have attempted to solve the task

scheduling problem with meta-heuristic scheduling and

have made plentiful and substantial achievements. With

further studies and tests of guided-random-search-based

algorithms, the advantages and disadvantages of each

algorithm have been revealed. Gradually, to make better use

of the advantages and avoid the shortcomings, researchers

have begun to adopt hybrid algorithm strategies.

The BBO algorithm (Simon 2008) created by Simon has

attracted attention since 2008. Because of its good opti-

mization ability, BBO has been applied in economics

(Bhattacharya and Chattopadhyay 2010a, b), electric power

(Rarick et al. 2009; Shafei et al. 2014), control decision and

other areas (Lozovyy et al. 2011; Rahmati and Zandieh

2012). Furthermore, various hybrid BBO algorithms have

been proposed (Gong et al. 2010; Herbadji et al. 2016;

Wang and Xu 2011). The hybrid BBO algorithm is among

the most popular in artificial intelligence research areas

(Yogesh et al. 2017).

Bharathi et al. (2008) offer researchers who work on

planning, scheduling, and execution a wide variety of sci-

entific workflows to evaluate the performance of their

implementations. The workflow benchmarks, which can be

described as basic workflow structures that are composed

into complex workflows by scientific communi ties, are

used in this paper, and we use meta-heuristic scheduling to

test these benchmarks.

In this paper, we also propose a new hybrid algorithm,

which is combined with the heterogeneous earliest-finish-

time (HEFT) (Topcuoglu et al. 2002) algorithm, called

HMBBO, which formulates the scheduling of directed

acyclic graph (DAG) tasks in a heterogeneous cloud

computing environment. Moreover, we use the Work-

flowSim simulation platform to simulate the performance

under the internal benchmark. There are four main

contributions:

– Proposal of the implementation of the BBO and PSO

algorithms for dependent task scheduling of DAG tasks.

– Hybridization of BBO and PSO to obtain a novel

algorithm called HMBBO to produce better solutions

and take advantage of the fast convergence rate and

high-quality solution.

– Proposal of a new way to combine the classical static

scheduling algorithm HEFT with downward static

scheduling and analysis of the rank order with test

algorithms.

– Assessment of the performance of the algorithms using

WorkflowSim and comparison with scientific work-

flows benchmark. The results show that our algorithm

improves the performance.

The remainder of this paper is organized as follows. In

section 2, the related work about scheduling algorithms in

cloud computing environment is presented. Section 3

describes the system and task model. Section 4 presents the

background knowledge of the basic BBO algorithm. Sec-

tion 5 compares the performance of the proposed algorithm

with existing classic heuristic algorithms and analyzes the

results. In section 6, the hybrid PSO and BBO scheduling

algorithm is presented for DAG task scheduling. The

optimization target is to minimize the makespan in a cloud

computing environment. Section 7 concludes the paper and

notes directions for future work.

2 Related work

In this section, we review recent works relevant to the task

scheduling in cloud computing. As a new commercial

model, makespan is one of the most important issues in

cloud computing, especially for the cloud users. According

to whether the task assigned to the cloud computing system

is determined, scheduling algorithms can be divided into

static scheduling and dynamic scheduling.

Static scheduling refers to the compile stage, where the

relationships between tasks are certain. Data dependencies

include communication and synchronization requirements

between tasks.

In dynamic scheduling, the number of tasks, the data

dependencies between tasks, and other factors are uncer-

tain. These factors may change at runtime. However, the

overhead of dynamic scheduling is much larger than that of

static scheduling. Therefore, cloud computing environ-

ments often use static scheduling.

Static task scheduling can be classified into two main

groups (Fig. 1), heuristic-based and guided-random-

search-based algorithms. The former can be further clas-

sified into three groups: list scheduling heuristics, cluster-

ing heuristics, and task duplication heuristics (Topcuoglu

et al. 2002).

List scheduling heuristics These algorithms maintain a

list of all tasks of a specific DAG per their priorities. Every

task of the graph is given a priority. Then, a task list is built

in decreasing order of priority. Lastly, following the list of

precedence given by the graph, the best computational

resource is selected for the task with the highest priority,

considering a previously defined cost function (Acevedo

Z. Tong et al.
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et al. 2017). The classic list-based heuristics scheduling

algorithms include heterogeneous earliest-finish-time

(HEFT) (Topcuoglu et al. 2002), stochastic dynamic level

scheduling (SDLS) (Li et al. 2015), predict earliest-finish-

time (PEFT) (Arabnejad and Barbosa 2014), and improved

predict earliest-finish-time (IPEFT) (Zhou et al. 2017).

Clustering heuristics These algorithms map all tasks

with indefinite quantity to different clusters (Boeres and

Rebello 2004; Yang and Gerasoulis 1994). In contrast to

list scheduling heuristics, clustering heuristics require a

second phase to schedule the task clusters to the processors.

Only a sufficient number of processors can result in an

advantage. The classic clustering heuristics algorithms

include dominant sequence clustering (DSC) (Gerasoulis

and Yang 1992), task duplication-based scheduling (TDS)

(Ranaweera and Agrawal 2000), and heterogeneous selec-

tion value (HSV) (Xie et al. 2015).

Task duplication heuristics Task duplication-based

heuristics can efficiently reduce the makespan of schedul-

ing DAG tasks when the communication cost is significant,

that is, the duplication method reduces or avoids inter-

processor communication. Many algorithms have been

proposed to incorporate this technique into scheduling

(Bansal et al. 2002; Liang and Pang 2016). Bozdag et al.

(2009) addressed the problem of schedules that requires a

prohibitively large number of processors and proposed a

combination of the SDS and SC algorithms to obtain a two-

stage scheduling algorithm that produces schedules with

high quality and low processor requirements.

Guided random search techniques Guided random

search techniques use random choice to guide themselves

through the problem space, which is not the same as per-

forming the random walks used in random search methods.

These techniques combine the knowledge gained from

previous search results with some randomized features to

generate new results. The genetic algorithm (Holland 1992;

McCall 2005), which was proposed by Holland in 1975,

searches for the optimal solution by simulating organic

evolution in nature and may be the best known of the

guided random search techniques for the task scheduling

problem. GA has the advantages of global search ability,

simple implementation, and flexibility and has been

applied in many fields, including task scheduling (Awadall

et al. 2013; Daoud and Kharma 2005; Wang et al. 2002; Xu

et al. 2014; Zhang et al. 2015). Like GA, biogeography-

based optimization (Simon 2008), particle swarm opti-

mization (Kennedy and Eberhart 2002), and ant colony

optimization (Ferrandi et al. 2010) follow similar methods

to obtain the optimal solution. Shojafar et al. (2016) pro-

posed a two-phase algorithm for scheduling in cloud

computing to decrease energy and makespan. The experi-

ment shows that TETS have an advantage over other two

compared algorithms.

In this paper, we take the trade-off between makespan

and convergence speed into consideration and develop a

hybrid approach by integrating BBO with heuristic

algorithms.

3 System model

In this section, we first describe the cloud computing

structure. Then, we introduce the task model and

scheduling model used in this paper.

3.1 Cloud computing model

In cloud computing, users submit tasks to a cloud platform,

which allocates these tasks to cloud nodes according to the

schedule strategy. Therefore, the schedule strategy is vital

for task completion time. Figure 2 illustrates the model of

task scheduling in cloud computing. In this paper, tasks are

scheduled before the relationships among tasks and the

number of task are known. We aim for the optimal distri-

bution strategy to the cloud nodes. Meanwhile, it is

assumed that the tasks submitted are non-preemptive. And

the task type belongs to DAG task; it means there are

dependencies between tasks, when the parent task is not

completed, and the child task cannot be executed.

3.2 Task model

Task scheduling models are usually composed of a set of

dependent tasks and an interconnected processor. The

dependency of the data and the order of execution can be

represented by a DAG. Therefore, the DAG scheduling

model can be defined as a quaternion (Kopka and Daly

2003):

G¼ T ;E;C;Wð Þ ð1Þ

where T ¼ tiji ¼ 1; 2; . . .; nf g denotes the collection of n

task nodes. Tj j ¼ n corresponds to the vertices in the DAG.

Each node in the DAG represents a task of a parallelFig. 1 Classification of static task scheduling algorithms
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program. It is usually a code or instruction in the program

and is the smallest unit of task scheduling, and it cannot be

preempted. The directional edges in the DAG

Eij ¼ e i; jð Þ
� �

2 E denote the relationship between task ti

and tj. When task ti is implemented, the results of ti must be

pass to tj. Therefore, we also call task ti the predecessor of

task tj (parent node), and task tj is the successor of task ti
(child node). The weight for the directed edge is defined as

which represents the communication cost between task ti
and task tj. However, a communication cost is only

required when two tasks are assigned to different com-

puting nodes. Therefore, the communication cost can be

ignored when the tasks are assigned to the same node. The

weight on a task ti is denoted as wi 2 W , which represents

the computation cost of the task.

Commonly used terms in DAG scheduling are shown in

Table 1.

Some of the definitions in DAG scheduling are as

follows:

Definition 1 The set of all parent nodes of node ti is called

the parent node set of ti and is denoted by pred(ti). The set

of all child nodes of node ti is called the child node set of ti
and is denoted by succ(ti).

Additionally, if a node does not have any parent nodes,

it is called an entry node, denoted by tentry. If a node does

not have any child nodes, it is called an exit node, denoted

by texit. If there are multiple entry nodes in a DAG, it is

necessary to add a virtual entry node to the DAG. This

node has zero cost on each processor, and all real entry

nodes are connected to the virtual entry node by a directed

edge with zero communication weight. Similarly, if there

are multiple exit nodes in a DAG, it is necessary to add a

virtual exit node to the DAG. This node has zero cost on

each processor, and all real exit nodes are connected to the

virtual exit node by a directed edge with zero weight. This

approach ensures that the DAG contains only one entry

node and only one exit node. It also guarantees the

equivalency of the DAG.

Definition 2 When processor pk has just started a task or

completed a task and becomes idle, the time is called the

processor idle time, denoted by AT(pk).

Definition 3 The start time of task ti on processor pk is

denoted as ST(ti:p
k):

ST ti : P
k

� �
¼ max

max
tj2pred tið Þ

FT tj : p
l

� �
þ C Eji

� ��
W pl; pk
� �� �

;AT pk
� �� �

ð2Þ

where FT tj : p
l

� �
is the completion time of task tj on pro-

cessor pl, tj 2 pred tið Þ. W pl; pk
� �

represents the communi-

cation rate between processor pl and processor pk. If l ¼ k,

then task ti and its parent task tj are assigned to the same

processor, and the communication cost between them is

zero.

Definition 4 The completion time of task ti on processor

pk is denoted as FT tj : p
k

� �
:

FT ti : p
k

� �
¼ ST ti : p

k
� �

þW ti : p
k

� �
ð3Þ

Definition 5 The earliest execution time of task ti on

processor pk represents earliest start time, denoted as

EST(ti):

EST ti; p
j

� �
¼ max availj;max AFT tkð Þ þ c tk;p

j
� �� �� �

;

tk 2 pred tið Þ
ð4Þ

where availj represents the earliest time to prepare for task

execution of processor pj. AFT(tk) denotes the actual

completion time. EST is calculated from tentry. Thus, the

earliest start time of task tentry is ESTentry;p j ¼ 0.

3.3 Scheduling model

In this paper, the task scheduling problem is defined as

mapping a set T of n subtasks in a DAG to a set P of

m computing nodes without prejudice to the task priority

constraints. Therefore, some relevant parameters in DAG

task scheduling, such as EFT, makespan, CCR (commu-

nication to computation ratio), etc., can be defined as

follows:

Definition 6 The minimum time for task ti to finish on all

processors is called the earliest-finish-time of the task,

denoted as EFT(ti):

Figure 3 shows an example DAG that contains ten tasks.

A circle represents a task, and the symbol in a circle

Fig. 2 Model of task scheduling in cloud computing

Z. Tong et al.
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represents the number of the task. A directed edge repre-

sents the dependency between tasks, and arrows represent

the parent–child relationship of tasks. The weight on the

edge represents the communication cost between tasks. t0 is

the entry task, and t9 is the exit task. Table 2 lists the

computational cost of each task on three processors (p1, p2,

p3). Figure 4 shows the execution schedule of the tasks on

all processors using the BBO algorithm.

Definition 7 The makespan refers to the earliest comple-

tion time, based on the specific scheduling, of all the tasks

on the computation nodes:

Makespan ¼ max
n

i¼1
EFT tið Þð Þ ð5Þ

CCR can be used to indicate whether a task graph is

computation-intensive or communication-intensive. For a

given DAG task graph, CCR is computed as the average

communication cost divided by the average computation

cost on a target computing system. The computation can be

formulated as follows:

CCR ¼

P
edge Ti;Tjð Þ2E C Ti; Tj

� �

P
Ti2T W Tið Þ ð6Þ

Speedup can be defined as follows:

Speedup ¼ Serial execution time

makespan
ð7Þ

In Eq. 7, the serial execution time is the sum of the

average computation times for all tasks, that is, the average

computing time on all processors for each task. Thus, the

sum of the average completion times for all task is called

the serial execution time. In fact, the serial execution time

is an approximation in an analog single-core environment.

The scheduling length is the use of the corresponding task

scheduling algorithm to obtain the execution time, which is

called the makespan. Thus, speedup represents the

Table 1 Commonly used terms

in DAG scheduling
Notation Definition

c(i,j) or Cij The communication cost between node i and node j and node j

e(i,j) or Eij Node i points to a directed edge of node j

ti Task node

wi The computational cost of node i

CP Critical path

EFT(ti) The earliest completion time of task (ti)

FT(ti:p
k) The completion time of task ti on processor pk Pk

IL(ti) The level of node ti

N Total number of nodes

Pk No. K processor

Pred(ti) The predecessor set of node ti

ST(ti: p
k) The start time of task ti on processor pk

Succ(ti) The successor set of node ti

Fig. 3 A simple DAG application model with 10 subtasks

Table 2 Computing nodes

computation speed matrix
ti p1 p2 p3

t0 14 11 17

t1 13 13 18

t2 10 13 18

t3 16 8 17

t4 12 15 10

t5 9 16 9

t6 7 14 11

t7 5 15 14

t8 15 12 17

t9 15 7 16

A novel task scheduling scheme in a cloud computing environment using hybrid biogeography…
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effectiveness of the task scheduling strategy. A higher

speedup indicates that the execution time is short and that

the scheduling strategy is good.

The efficiency index is the ratio of the speedup to the

number of processors and can be used to evaluate the

average disposal rate of all processors. The efficiency index

can be defined as follows:

Efficiency ¼ Speedup

Number of processors
ð8Þ

4 BBO algorithm description

In this section, a new heuristic algorithm is developed to

solve the DAG task scheduling problem. The BBO algo-

rithm was developed based on the migration of species

from one island to another and mutation, in other words,

the study of biological population distribution, migration,

variation and extinction. The research environment for

biogeography is an ecosystem, and there are multiple

habitats, as shown in Fig. 5. This algorithm consists of

three phases, namely migration, mutation, and clear

duplication. In the following subsections, the three phases

are presented in detail.

The relation among species, emigration rate, and

immigration rate can be found in Fig. 6, where the abscissa

axis indicates the number of species and the ordinate

indicates the migration ratio. k represents the rate of spe-

cies migration, and l represents the rate of removal of a

species. When there are no species in the habitat, the

number of species is zero. I indicates that the value of the

migration rate is maximized. When the number of species

in the habitat reaches the maximum value that the envi-

ronment can accommodate, the rate of removal reaches the

maximum, which is represented as E, indicating that the

species is most likely to leave the habitat for a new habitat.

When the emigration rate and immigration rate are equal,

the number of species reaches S0 state, and the habitat

reaches a state of dynamic equilibrium. When external

factors, such as the environment, break this balanced state,

the species shift to achieve a new dynamic balance.

The probability that the number of species in a habitat

reaches S is denoted as Ps. When the number of habitat

species is S, the immigration rate and emigration rate are

recorded as ks and ls. The change in Ps from time t to time

t ? Dt is shown in Eq. 9:

Ps t þ Dtð Þ ¼ Ps tð Þ 1� ksDt � lsDtð Þ þ Ps�1ks�1Dt
þ Psþ1lsþ1Dt ð9Þ

To maintain number of species S at the time t ? Dt, a
habitat must fulfill three conditions:

1. The number of habitat species at time t is S, and there

is no species immigration and emigration at time Dt;
2. The number of habitat species at time t is S - 1, and

only one species immigrates into the habitat at time Dt;
3. The number of habitat species at time t is S ? 1, and

only one species emigrates from the habitat at time Dt.

If Dt is near zero, immigration and emigration can be

ignored. When Dt ? 0, the limit to Eq. 9 can be found to

obtain Eq. 10:

P
0

s ¼
� ks þ lsð ÞPs þ lsþ1Psþ1; S ¼ 0

� ks þ lsð ÞPs þ ks�1Ps�1 þ lsþ1Psþ1; 1� S� Smax � 1

� ks þ lsð ÞPs þ ks�1Ps�1; S ¼ Smax

8
<

:

ð10Þ

By defining n = Smax, P = [P0…Pn]T, Eq. 11 can be

represented as P0 ¼ AP:

Fig. 4 A simple DAG application model with 10 subtasks

Fig. 5 Ecosystem

Fig. 6 Species model of a single habitat

Z. Tong et al.

123

Author's personal copy



A¼

� k0þl0ð Þ l1 0 . . . 0

k0 � k1þl1ð Þ l2
. .
. ..

.

..

. . .
. . .

. . .
. ..

.

..

. . .
.

kn�1 � kn�1þln�1ð Þ ln
0 . . . 0 kn�1 � knþlnð Þ

2

6666664

3

7777775

ð11Þ

If the number of habitats is k, the emigration rate can be

defined as Eq. 12:

lk ¼
Ek

n
ð12Þ

The immigration rate can be defined as Eq. 13:

kk ¼ I 1� k

n

� �
ð13Þ

Suppose E = I; then, kk? lk = E. In this case, we have

the A matrix becomes as follows:

A ¼ E

�1
1

n
0 . . . 0

n

n
�1

2

n
. .
. ..

.

..

. . .
. . .

. . .
. ..

.

..

. . .
. 2

n
�1

n

n

0 . . . 0
1

n
�1

2

666666666664

3

777777777775

¼EA0 ð14Þ

A in Eq. 14 represents the class of birth and death pro-

cesses in the Markov process. The eigenvalue of matrix A

is 0;�2=n;�4=n; . . .;�2½ �. When the eigenvalue is 0, the

corresponding eigenvector is:

v ¼ v1; v2; . . .; vn½ � ð15Þ

vi ¼

n!

n� 1� ið Þ! i� 1ð Þ! ; i ¼ 1; . . .;
nþ 1

2

	 
� �

vnþ2�i; i ¼ nþ 1

2

	 

þ 1; . . .; nþ 1

� �
:

8
>><

>>:
ð16Þ

where nþ 1=2d e is the smallest integer greater than

(n ? 1/2).

Definition 8 When the species in a habitat are in a steady

state, the corresponding probability is:

P nð Þ ¼ v

,
Xnþ1

i¼1

vi ð17Þ

where v and vi are given in Eqs. 15–16.

4.1 Algorithm flow

The whole algorithm can be divided into three parts:

migration, mutation, and clear duplication.

4.1.1 Migration

The BBO algorithm based on the migration model of

biogeography described above is used to solve the optimal

fitness value. Habitats encounter natural disasters, diseases,

and other factors that lead to changes in the environment.

Therefore, the number of habitat species can shift out of

balance, changing the habitat suitability values. The area

that a species lives is defined as the habitat, and the habitat-

related parameters include the following:

1. HSI (habitat suitability index)—a parameter that

describes the suitability of a habitat for species

survival. Higher HSI values indicate better conditions

for survival, resulting in more habitat species.

2. SIV (suitable index vector)—HSI-related feature vari-

ables form the SIV. Each suitability variable is called

an SIV. A habitat with a high HSI tends to have a good

solution and many species S.

According to biogeography, a suitable habitat has a

more competitive population and inadequate space, so

there are more chances to emigrate to nearby habitats.

Thus, high HSI habitats have a high emigration rate lk
Eq. 12 and low immigration rate kk Eq. 13, and the

opposite is true for habitats with low HSI. The number of

species is abstracted as the immigration and emigration

probability of each habitat. When the number of habitat

populations with higher HSI reaches a value in a saturated

state, the migration rate decreases and the removal rate

increases. Some species begin to leave the original habitat

to find a new habitat. Habitats with lower HSI values

increase their values as other species continue to move.

Therefore, the habitat HSI value is proportional to the

number of biological populations.

4.1.2 Mutation

The BBO algorithm uses a mutation operation to produce

this change. The mutation operator causes changes to the

simulated habitat due to natural disasters with a certain

mutation probability. The mutation rate m is the negative

correlation between the number of species. The mutation

rate can be obtained as follows:

m Sð Þ ¼ mmax

Pmax � Ps

Pmax

� �
ð18Þ

4.1.3 Flow of the BBO algorithm

The standard flowchart of the BBO algorithm is shown in

Fig. 7.

The standard steps in the BBO algorithm are shown in

the BBO algorithm’s pseudocode:

A novel task scheduling scheme in a cloud computing environment using hybrid biogeography…
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Algorithm 1 BB0 Algorithm
Require:

Initialize habitats parameters (shown in Table 3)
Ensure:

The best solution and finished
1: Initialize habitat parameters
2: Initialize a random set of habitats that consist of 

potential solutions to the given problem
3: Calculate the species of each habitat and use for Eq.

(12)-(13) to determine the immigration and emigration
probability according to the generated habitats

4: While (the termination conditions are not satisfied)
5: Update the species count for each habitat
6: Update the immigration and emigration probabilities 

for each habitat
7: Execute migration operation based on the immigrati-

on and emigration probabilities
8: Execute the mutation operation with mutation proba-

bility m, given in Eq. (18)
9: End While
10: Return best solution

4.2 Design principle

According to the attributes of the DAG, a random sequence

must satisfy a constraint that maintains a relationship

between tasks and subtasks. Note that the initial population

of the algorithm must generate sequence sets within the

constraint. To ensure efficiency of the initial population,

this paper initializes all the sequence solutions in a legal

sequence set, as shown in Fig. 8. Therefore, all the popu-

lations are legal, and the remaining operations of the

algorithm are also legal operations. The next section pre-

sents greater details of BBO and PSO.

4.2.1 BBO principle

When using the BBO algorithm, different parameters cor-

respond to various aspects of the problem. Each biological

habitat in the BBO algorithm corresponds to a method of

solving the problem. Each variable in the habitat corre-

sponds to the dimension of the issue. The suitability of

each habitat is calculated by the objective function of each

issue. The preferred solution has a high HSI value and

therefore a low HSI value. The migration mechanism of a

habitat achieves information transfer between methods.

A habitat task scheduling model using the BBO algo-

rithm to solve the task scheduling problem is shown in

Fig. 9. In this study, the habitat is modeled with real-

number encoding, and this solution vector must satisfy two

conditions:

1. Maintain a sequence of relationships between parent

tasks and subtasks.

2. All tasks from a DAG must be scheduled.

According to the above statement, a habitat represents a

legal sequence and the sequence from DAG. In this paper,

the migration operation generates new solutions by

exchanging the orders of two tasks. Moreover, the

exchanged tasks must be in the legal range, which maintains

the relationship between the task and subtask. A task’s legal

range is the range between the last precursor and the first

successor. Therefore, for two tasks to exchange positions, a

task must be within another task’s legal range. The legal

range for migration is illustrated in Fig. 10.

According to the migration strategy, a value in a habitat

will perform migration with another allele value in the

selected habitat using the roulette method. The nature of

the DAG forces the allele values to satisfy the condition

that both values are in the legal range of each other. The

exchange order operation is a legal operation. The migra-

tion operation is illustrated in Fig. 11.

Fig. 7 BBO algorithm flowchart Fig. 8 The all random sequence of a DAG
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In this paper, the mutation operation of the BBO algo-

rithm also generates a new legal sequence; the difference

with migration is the random method used to generate a

new sequence, that is to say, a mutated position (or mutated

task) is inserted at a random position to produce a new

sequence. The random position must be in the legal range

of the mutated task. The mutation process is shown in

Fig. 12.

4.2.2 PSO principle

PSO (Kennedy and Eberhart 2002) was created by Kenned

and Eberhart based on the foraging of swarm birds and has

been applied in practice due to its fast convergence rate,

memory function, and simple implementation. In PSO,

each particle is a solution vector that exchanges informa-

tion in flight. In this paper, a particle represents a sequence

order of a DAG. The velocity of the particle is defined as

the position that a task moves to. The task’s legal range in

the position update strategy is the same as that in migra-

tion. A particle updates its position based on the current

task’s legal range. The legal range of the flight strategy is

shown in Fig. 13.

Specifically, in each generation, every particle updates

its movement speed and position according to its personal

best and global best to obtain the optimal solution. In this

paper, the flight strategy of a particle is designed to update

position, that is to say, the VEL matrix represents the

positions of all values in a particle that fly. Indeed, the

positions of the values represent the execution sequence.

Moreover, a flight is invalid if a value in a particle flies to

the illegal range of the value, in which case the current

value does nothing. The particle velocity equation is given

in Eq. 19:

vkþ1
id ¼ x� vkid þ c1r1 pkid � xkid

� �
þ c2r2 gkid � xkid

� �
ð19Þ

The particle position update equation is given in Eq. 20.

xkþ1
id ¼ xkid þ vkþ1

id ð20Þ

In Eq. 19, $id$ denotes the dimensionality of a particle,

x is the inertia weight to implement the memory function,

k is the current search generation, v is the velocity of the

present particle, and c1 and c2 are acceleration constants.

Furthermore, in Eq. 20, x stands for the current position.

The above rules indicate that the update order operation

is a legal operation. The process of self-position updating is

shown in Fig. 14.

5 Experimental results and analysis

In this section, a series of simulation experiment are con-

ducted to verify the performance of BBO algorithm.

In this paper, the steps in all the compared algorithm

experiments are divided into sequence-get and processor-

allocate, and the minimum EFT of the task allocation

strategy is used for all algorithms. The structure of algo-

rithm is based on the HEFT algorithm. In HEFT, the

sequence-get part uses the DAG graph attributes to set the

Fig. 10 The legal range for migration

Fig. 11 The process of migration

Fig. 12 The process of mutation

Fig. 9 Model of a habitat
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task priorities, which are used to order themselves. The

tasks are ordered according to the priorities, which are

based on upward and downward ranking. The sequence-get

part is the set of legal sequences of the DAG. Moreover,

the processor-allocate part uses the same strategy to allo-

cate processors according to each task’s EFT as HEFT

uses. The best sequence that can be generated by each

generation is scheduled in the processor-allocate part. The

planning algorithm used to determine the best order is

illustrated in Fig. 15.

5.1 Simulation platform

Cloudsim, the could simulate platform that simulates the

cloud infrastructure and management service, was devel-

oped by Rajkumar Buyya and can be programmed in Java

(Calheiros et al. 2009, 2011). Users can obtain the open

source program on GitHub. Assigning operations to a cloud

simulation platform can save resources and repeated

debugging. In this paper, the objective function of the

analog simulation experiment is to reach the minimum

makespan of task scheduling in cloud computing. Fur-

thermore, Workflowsim (Chen and Deelman 2012) extends

the CloudSim simulation toolkit and supports a multilay-

ered model of failures and delays occurring in the various

levels of the Workflow management system.

Figure 16 shows the components of Workflowsim

involved in preparing and executing a workflow. All the

processing procedures form a workflow management sys-

tem (WMS), which is similar to that of the Pegasus WMS

(Deelman et al. 2005, 2015). In Fig. 16, the components

are the Workflow Mapper, Clustering Engine, Workflow

Engine, and Workflow Scheduler.

A Workflow Mapper parses imported DAG files for-

matted in XML. The Workflow Engine is used to handle

the data dependencies, and the Workflow Scheduler mat-

ches tasks to resources. The Clustering Engine merges

similar types of tasks into a massive job to improve the

execution efficiency.

The new features of WorkflowSim are the Failure

Generator, Failure feedback system and Overhead of

delays at different levels, which enable a more accurate

simulation of a real cloud computing environment. Some

necessary measures are fixed in WorkflowSim to support

static scheduling. First, the execution sequence generated

by HEFT is changed by the WMS because WMS structure

is suitable for dynamic scheduling. In WorkflowSim, the

WMS processes the DAG tasks according to the Sched-

uledList submitted by the scheduling method. The dynamic

schedulers are included in the package of org.work-

flowsim.scheduling and submit the execution order of the

DAG tasks to ScheduledList. However, the planning

Fig. 13 The legal range for the update strategy

Fig. 14 The particle update strategy Fig. 15 Planning algorithm to determine the best order
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algorithms do not submit the order to ScheduledList

directly. Furthermore, the task execution order is planned

by the planning algorithm, which indirectly considers the

state of CondorVM, that is, the program will not pass

WMS. Therefore, we extend only the modules in the

org.workflowsim.scheduling package that contain a objec-

tive function, processor allocation, validity check and so

on. Moreover, the set of HEFT is used to prove that the

program works well, and the results of HEFT planning are

shown in Fig. 17.

5.2 DAG benchmark

The planning and scheduling experiments require access to

multiple types of scientific workflows to evaluate the per-

formance (Xu et al. 2013). Four diverse scientific applica-

tions introduced in Xu et al. (2013) are used for the DAG

benchmark to evaluate the performance. The DAG bench-

marks include the following: Montage (Montage: An

astronomical image engine 2006), which was created by

NASA/IPAC Infrared Science Archive as an open source

toolkit. This toolkit can be used to generate custom mosaics

of the sky using input images in flexible image transport

system (FITS) format; CyberShake (Deelman et al. 2006)

which is used by the Southern California Earthquake Center

(SCEC) to characterize earthquake hazards in a region using

the probabilistic seismic hazard analysis (PSHA) technique;

Laser Interferometer Gravitational-Wave Observatory

(LIGO) Inspiral Analysis Workflow (Brown et al. 2007),

which is used to analyze the data obtained from coalescing

compact binary systems, such as binary neutron stars and

black holes; and the sRNA Identification Protocol using

High-throughput Technology (SIPHT) program (Livny

et al. 2008), which uses a workflow to automate the search

for sRNA-encoding genes for all the bacterial replicons in

the National Center for Biotechnology Information (NCBI)

database. More information about the workflows is given in

the workflow gallery (Workflow gallery 2018), which cat-

egorizes the workflows run by an application.

All the benchmarks can be generated with the Synthetic

Workflow Generators program, which can be used to eval-

uate the scheduling and provisioning algorithms for scien-

tific workflow management systems available at (Workflow

Generator 2006). The workflow generators (Bharathi et al.

2008; Da Silva et al. 2014; Juve et al. 2013) are based on

models of real applications that have been parameterized

with file size and task runtime data from execution logs and

publications that describe the workflows.

5.3 Benchmark experiments and results

The experiment compares the Makespan, convergence rate

and efficiency of BBO, PSO, and HEFT with static

downward and upward ranks (Topcuoglu et al. 2002). For

better performance than heuristic algorithms, HEFT is

selected as the experimental subject (Xu et al. 2013). We

choose PSO as a comparison algorithm because of its fast

convergence rate, wide use, memory function, and simple

implementation. The BBO and PSO parameter settings are

described in Tables 3 and 4. The parameters are the set-

tings that result in the best performance in the current

environment.

In this experiment, the settings of the simulation plat-

form WorkflowSim have no overhead and no clustering.

All the simulations are tested in the same software envi-

ronment with the same objective function, results read

function, and index settings. The bandwidth environment is

set to be homogenous to simplify the experimental settings,

i.e., the bandwidth is the same for all processors. Each

virtual machine has a different million instructions per

second (MIPS) range from 500 to 3600. With the sets of

WorkflowSim, the transfer cost between a parent and child

is calculated as the size of the input type file/bandwidth,

and the computation cost of a task on a virtual machine is

Fig. 16 Structure of WorkflowSim Fig. 17 The results of HEFT planning
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computed as the runtime of the task MIPS of the virtual

machine.

First, owing to its simple structure and accessibility, we

use the Inspiral DAG benchmark with 100 tasks. Inspiral

has a simple structure, with the shape shown in Fig. 18. In

the first experiment, Inspiral is tested on different numbers

of virtual machines (4, 8, 16, and 32) with a bandwidth of

500 Mb/s. We run each program ten times and take the

average. The maximum number of iterations for each

heuristic algorithm is 2000. Clearly, HEFT with downward

rank and upward rank runs only one time. For convenience,

the downward and upward rank methods of HEFT are,

respectively, abbreviated as HEFT_D and HEFT_U.

Figure 19 shows the makespan of the four algorithms

for different numbers of virtual machines. The makespan

shows a decreasing trend with increasing number of virtual

machines. BBO has the advantage among the four algo-

rithms with increasing number of virtual machines.

HEFT_D performs well when there are more than 4 virtual

machines, which demonstrates the validity of the classic

algorithm. By contrast, PSO and HEFT_U have relatively

poor performance due to a tendency to become trapped in

local minima as the number of virtual machines increases.

A comparison of the efficiency is shown in Fig. 20. The

efficiency with 32 virtual machines for 100 tasks is worse

in the parallel environment. Therefore, increasing the

number of processors may not be beneficial. As the fig-

ure shows, BBO and HEFT_D have better performance

because as the number of virtual machines increases, the

handling capacity increases, but the advantage of paral-

lelism decreases.

Figures 21, 22, 23 and 24 compare the convergence

rates of the four algorithms with 4, 8, 16 and 32 virtual

machines. BBO outperform HEFT_D with 4 and 8 virtual

machines, but its performance is poor under the other

conditions. Except with 16 virtual machines, BBO con-

verges at approximately the 500th generation. By contrast,

PSO prematurely converges in all situations in fewer

generations than BBO. Because BBO has excellent global

search ability and jumps out of local optima, the algorithm

produces better results when run on 4 and 8 virtual

machines. However, as the number of virtual machines

increases, the convergence rate slows and the results

become undesirable because the search space increases. As

a result, the greedy strategy (HEHT) produces better

performance.

The above experiments show that HEFT_D still

achieves better results than those of the other algorithms

Table 3 BBO parameters

Parameters Value

Number of habitats 50

Maximum mutation probability mmax 1

Number o f elitism habitats 2

Maximum immigration rate I 1

Maximum emigration rate E 1

Table 4 PSO parameters

Parameters Value

Number of particles 50

Number o f elitism particles 2

Inertia weight x 0.2

Acceleration constant c1 0.9

Acceleration constant c2 0.9

Fig. 18 Structure of Inspiral

Fig. 19 Makespan of the four algorithms with different numbers of

virtual machines
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and that setting the priority of each task in HEFT_D is still

a useful method to evaluate the sequence of tasks. By

contrast, BBO performs well in some situations, but the

results of other algorithms are better after too many gen-

erations. The premature termination of PSO in the search

process results in relatively poor solutions. The reason PSO

becomes trapped in local optima is that its memory func-

tion cannot adapt to obtain the sequence of tasks. Addi-

tionally, even though BBO is an excellent algorithm, it

does not work well in all situations. To overcome these

problems, hybrid migration BBO (HMBBO) is proposed in

the next section.

6 HMBBO algorithm

In this section, a novel hybrid algorithm has been proposed.

A series of simulation experiment and real experiment are

conduced to verify the performance of our algorithm.

In the first experiment, the HEFT_D algorithm produces

excellent results, and the PSO algorithm has a better con-

vergence rate. Although BBO does not produce good

results or have a fast convergence rate, its makespan is the

best. To improve the performance, we develop a hybrid of

the flight strategy under the BBO migration structure to

accelerate the search speed of BBO. Moreover, we use

HEFT_D to evaluate whether a task sequence is good. That

is to say, according to the downward method in HEFT, the

execution order of each task is based on its downward

order. The more significant the rank of a task is, the earlier

the task will be executed. The evaluation of a sequence as

good or bad based on an objective function method in each

migration consumes too much time, i.e., the process used to

allocate tasks to virtual machines according to a new

Fig. 20 Efficiency comparison for the Inspiral

Fig. 21 Comparison of the convergence rate for 4 virtual machines

Fig. 22 Comparison of the convergence rate for 8 virtual machines

Fig. 23 Comparison of the convergence rate for 16 virtual machines
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sequence has high time complexity. Therefore, Eq. 21

could be used to evaluate whether a sequence is good.

According to the proposed method, the tasks’ rank of a

DAG is calculated one time, and then, each task receives a

characteristic rank.

Srank ¼
XTaskNum�1

i¼0

TaskNum � ið Þ � rankið Þ2 ð21Þ

In Eq. 21, Srank denotes the rank of a sequence. Tas-

kNum is the task number of a sequence, and ranki denotes

the task’s rank based on the downward method, which is

precalculated. We use TaskNum - i as the precedence

function to weight the tasks in a sequence.

The flow of HMBBO algorithm is generally same as

BBO algorithm in initialization and mutation part. The

cross operation part is the most different; for save space,

this paper only gives the migration part. The detail of

HMBBO algorithm’s hybrid migration strategy is given in

pseudocode in Alg. 2.

In Alg. 2, it cloud be found that the time complexity in

cross operation part mainly comes from the calculation of

Eq. 21. Calculating Eq. 21 costs is O(TaskNum); therefore,

the time complexity of HMBBO cross operation part is

O(complexity of BBO cross operation ? TaskNum). From

the whole flow of HMBBO, the main time complexity is

the calculating of cross operation part. In this paper, con-

sider the time complexity of BBO and PSO are almost the

same, and then, the time complexity of HMBBO is the

same to BBO because every generation only execute either

BBO migration or PSO flight. Besides, the BBO habitats

and PSO particles have common structure and could share

the same space in program, so the space complexity have

no increase compare to BBO.

Algorithm 2 Hybrid migration strategy
Require:

Habitat x
Ensure:

The new habitat y
1: Select Value A of x by roulette selection to be operated

on
2: if A satisfies the legal range of BBO&PSO then
3: Get the maximum rank value x_r using Eq. (21) for

the three situations that contains the strategy BBO,
PSO and original sequence of x

4: switch x_r
5:     case: x_r = rank value of BBO
6:    Generate new habitat B with migration
7: case: x_r = rank value of PSO
8:          Generate new habitat B with update rate 

strategy
9: else if A only satisfies the legal range of BBO, then
10:    Generate new sequence with migration
11: else if A only satisfies the legal range of PSO, then
12:   Generate new sequence with update rate strategy
13: end if
14: return B

6.1 Benchmark DAG experiment

The second experiment is the same as the first but is based

on the makespan, efficiency, and convergence rate. All the

results are shown in Figs. 25, 26, 27, 28, 29, and 30.

As in the first experiment, the benchmarks include 100

tasks, except SIPHT with 97 tasks, and the results are

shown in Figs. 31, 32, and 33.

Fig. 25 Makespan of the five algorithms with different numbers of

virtual machines

Fig. 24 Comparison of the convergence rate for 32 virtual machines
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HMBBO outperforms the other methods on all four

benchmarks. Because the structure of each graph is dif-

ferent in the CCR environment, some of the DAG bench-

marks, such as Montage, CyberShake, and Sipht, result in

near-optimum solutions with our algorithms. In general,

the performance of HMBBO is better than that of the other

algorithms on all DAG benchmarks.

According to the results of the second experiment,

HMBBO inherits the strong ability for optimality from

BBO and has the advantages of simple implementation,

excellent performance, and fast convergence rate. More-

over, the makespan results of HMBBO are better than those

of HEFT_D. The most obvious advantage is the faster

convergence rate, which requires fewer generations to

surpass the results of the other algorithms. The results show

that the strategy achieves the desired goal and solves

Fig. 26 Efficiency comparison for Inspiral

Fig. 27 Comparison of the convergence rate for 4 virtual machines

Fig. 28 Comparison of the convergence rate for 8 virtual machines

Fig. 30 Comparison of the convergence rate for 32 virtual machines

Fig. 29 Comparison of the convergence rate for 16 virtual machines
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similar problems. The hybrid migration strategy balances

exploration and greed effectively, combining the advan-

tages of the good solutions of greedy strategies and the

powerful search ability of HEFT, BBO, and PSO.

In the third experiment, to further test the performance

of the algorithms under different heterogeneous conditions,

it is necessary to test different CCR values. Figure 34

shows the results of all the algorithms run on the Inspiral

benchmark with 100 tasks under different CCR values. As

the transfer costs increase, the makespan also increases.

HMBBO still has the advantage in all environments, and

HEFT_D produces poorer results with increasing CCR

values. Additionally, HEFT becomes less efficient in

communication-intensive applications. By contrast, the

other algorithms produce better results due to their wide

searches.

In the fourth experiment, we set the CCR value to 0.1, 1,

5, and 10 and use the DAG benchmarks Montage, Cyber-

Shake, Inspiral, and Sipht to test the performance under

different environments. The number of virtual machines is

8 or 32. Figures 35 and 36 show that HMBBO, BBO, and

PSO produce relatively optimal solutions, but the two

algorithms of HEFT have poor performance because HEFT

cannot adapt to every benchmark and the other meta-

heuristic scheduling algorithms produce relatively optimal

solutions. The results suggest that the HEFT algorithm is

limited by the different structures of the benchmarks. By

contrast, meta-heuristic scheduling has a broader applica-

tion due to its strong and general search ability.

Fig. 32 Makespan of five algorithms with different numbers of virtual

machines using CyberShake

Fig. 33 Makespan of five algorithms with different numbers of virtual

machines using Sipht

Fig. 34 Makespan of five algorithms under different CCR values

using Inspiral with 100 tasks; the number of virtual machines is 16

Fig. 31 Makespan of five algorithms with different numbers of virtual

machines using Montage
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In the fifth experiment, we test the influence of a dif-

ferent number of tasks for all algorithms. We vary the

number of tasks from 30 to 500. In one case, the number of

tasks is 238 because the workflow generator for Inspiral

with 238 is an integrity structure. The results in Fig. 37

show that as the number of tasks increases, the makespan

also increases. Furthermore, BBO and HEFT_D alternately

outperform each other, and HMBBO always produces the

best results. Therefore, the hybrid migration strategy can

adapt to different environments because of its strong ran-

dom-search ability.

Lastly, we use Matlab to fit the rank value of the final

sequences generated by BBO, HMBBO, and HEFT_D with

the toolkit smoothing spline with a smoothing parameter of

0.00067321295. The fitting curves are illustrated in

Figs. 38, 39, and 40, which show the tendencies of the best

sequences for the different algorithms. HEFT_D follows

the downward order of rank value. Owing to the HEFT_D

strategy, the distribution of the random value in HMBBO is

more concentrated than that of BBO, and the general trend

is more similar to that of HEFT_D. The results illustrate

that in guided-random-search-based algorithms, applying a

positive influence will improve the results of the entire

evolutionary system. Furthermore, in the task scheduling

problem, if we implement HEFT_D with the greedy

algorithm, maintaining an appropriate distance to HEFT_D

would result in better solutions.

Fig. 35 Makespan of five algorithms under different CCR values; the

number of virtual machines is 8

Fig. 36 Makespan of five algorithms under different CCR values; the

number of virtual machines is 32

Fig. 37 Makespan of different tasks using Inspiral, CCR = 1, and 16

virtual machines

Fig. 38 Rank value of best sequence with BBO
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7 Summary and future work

In this paper, we integrate a migration strategy with BBO

and PSO to solve the problem of scheduling DAG tasks in

a cloud computing environment. According to the experi-

mental results, HMBBO inherits the strong ability for

optimality from BBO and has the advantages of simple

implementation, excellent performance and fast conver-

gence rate with different benchmarks compared with BBO,

PSO, and HEFT, which proves that HMBBO can be

applied to task scheduling in cloud computing environ-

ments. Additionally, we propose a new way to combine the

method with the classic static algorithm HEFT and test

these algorithms on WorkflowSim run with scientific

workflow benchmarks.

In the future, we intend to propose a new method of

reinforcement learning to extend our algorithm to further

improve the results. Due to the development of cloud

computing, the number of tasks is increasing and data

environment has become complicated. The most important

point is the rapid development of artificial intelligence,

deep machine learning, and neural network engines to

make the process of optimum searching more intelligent.

Therefore, the addition of intelligence to our algorithm is

inevitable.
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