
Journal of Systems Architecture 165 (2025) 103433

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

MADDPG-based task offloading and resource pricing in edge collaboration

environment
Zhao Tong a ,∗, Xin Deng a, Yuanyang Zhang a, Jing Mei a, Can Wang a, Keqin Li b,c
a College of Information Science and Engineering, Hunan Normal University, Changsha, 410012, China
b College of Information Science and Engineering, Hunan University, and National Supercomputing Center, 410082, Changsha, China
c Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

A R T I C L E I N F O

Keywords:
Mobile edge computing
Resource pricing
Stackelberg game
Task offloading

 A B S T R A C T

With the rapid advancement of fifth-generation communication technologies, the data produced by the Internet
of Everything is growing exponentially. As mobile cloud computing struggles to keep up with the demands
for massive data processing and low latency, mobile edge computing (MEC) has emerged as a solution. By
shifting services from centralized cloud platforms to edge servers located closer to data sources, MEC achieves
reduced latency, enhanced computing efficiency, and an improved user experience. This paper introduces a
task offloading algorithm designed for a multi-base station cooperative mobile edge environment, addressing
the challenges of task offloading and resource pricing. The system architecture includes a macro base station
and several micro base stations, strategically deployed in a densely populated mobile device area. Each mobile
device serves as an autonomous decision-making unit, offloading tasks to an optimal base station. We model the
interactions between base stations and end-users using a Stackelberg game approach, with strategy optimization
achieved through a multi-agent deep deterministic policy gradient algorithm. The proposed TO-SG-MADDPG
algorithm intelligently coordinates the policies of multiple base stations and end-users by centralized training
and distributed execution, resulting in globally optimal task offloading and resource pricing. The results
demonstrate that the proposed algorithm not only reduces the task loss rate but also safeguards the interests
of all stakeholders.
1. Introduction

As technologies like big data and blockchain evolve, an explosion
in the number of mobile devices connected to the Internet is occur-
ring [1,2]. In this dynamic network environment, data generated by
the internet of everything (IoE) is growing exponentially. This surge
in digital information is driving rapid technological advancements
across various sectors, particularly transforming urban living [3]. The
integration of smart homes with digital lifestyles is crafting a new
paradigm for urban residents, reshaping everyday experiences and
interactions. Cloud computing has emerged as a powerful computing
model that provides an efficient solution for processing and storing
large-scale data. It provides users with flexible and scalable services
by centralizing the management of computing resources [4]. As a
centralized data processing model, cloud computing solves the problem
of big data processing and application requirements to a certain extent.
However, this integration also poses challenges, particularly regarding
data transmission delays and increased network congestion [5]. The

∗ Corresponding author.
E-mail addresses: tongzhao@hunnu.edu.cn (Z. Tong), 202120293782@hunnu.edu.cn (X. Deng), 202220294007@hunnu.edu.cn (Y. Zhang),

jingmei1988@163.com (J. Mei), wangcan@hunnu.edu.cn (C. Wang), lik@newpaltz.edu (K. Li).

distance between cloud computing data centers and user terminals
often results in notable transmission delays, which become particularly
prominent in applications requiring immediate responses. Additionally,
the concentration of vast amounts of data processing in the cloud ex-
acerbates network bandwidth strain. This leads to frequent congestion
during peak hours, further impacting the efficiency and stability of data
transmission.

To address the above challenge, mobile edge computing (MEC)
emerges at the historic moment. MEC technology shifts the compu-
tational tasks from the cloud to the edge nodes near the source of
data generation for processing [6], thereby effectively mitigating the
issues associated with cloud computing. In modern residential life, end-
users (EUs) have increased demand for instantaneous and personalized
computing [7]. By deploying macro base stations (Ma-BSs) or multiple
micro base stations (Mi-BSs) in residential areas, MEC can provide
faster and more reliable computing services for multiple EUs. This
meets the diverse needs of EUs for smart homes, video surveillance,
social entertainment, etc. The advantages of MEC over traditional cloud
https://doi.org/10.1016/j.sysarc.2025.103433
Received 19 November 2024; Received in revised form 12 April 2025; Accepted 28
vailable online 15 May 2025
383-7621/© 2025 Published by Elsevier B.V.
 April 2025

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
https://orcid.org/0000-0002-8624-6364
mailto:tongzhao@hunnu.edu.cn
mailto:202120293782@hunnu.edu.cn
mailto:202220294007@hunnu.edu.cn
mailto:jingmei1988@163.com
mailto:wangcan@hunnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.sysarc.2025.103433
https://doi.org/10.1016/j.sysarc.2025.103433

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
computing are highlighted in three key fields. Firstly, by processing
tasks on servers located closer to users, MEC significantly reduces the
latency associated with task transmission. Secondly, offloading tasks
to the edge of the network significantly reduces the amount of data
that must be transmitted to central cloud servers, thereby alleviating
network bandwidth congestion. Finally, by processing tasks locally on
edge devices, MEC minimizes the risk of privacy breaches that could
occur when sensitive data is transmitted across the network [8]. In
particular, as sensitive user data is processed and stored locally rather
than being uploaded to centralized cloud servers, MEC reduces the
attack surface for potential data breaches [9,10].

Despite its significant advantages in reducing latency and enhancing
privacy protection, MEC faces several critical challenges, including
efficient task offloading, reliable cloud execution, and ensuring con-
sistent service delivery [11]. Among these, task offloading is a core
component, aiming to optimize the execution location of computing
tasks to improve system performance and quality of experience (QoE).
Task offloading involves migrating tasks from end users (EUs) to base
stations (BSs), but the diversity of tasks complicates this process. Dif-
ferent tasks have varying requirements: for example, video surveillance
involves computation-intensive tasks, virtual and augmented reality are
latency-sensitive, and simple operations like text processing require
minimal resources and low response times. This diversity necessitates
intelligent resource allocation to meet the varying demands of EUs.

Another key issue is service monetization, including pricing and
incentive mechanisms for computing resources [12]. Resource pricing
and task offloading in edge systems are particularly challenging due
to task heterogeneity, decentralized server placement, and competi-
tion for resources among EUs [13]. EUs aim to obtain maximum
computational resources at the lowest cost and prefer offloading to
the nearest BS with low latency, while BSs, constrained by limited
computational capacity, seek to maximize profits. For instance, Tong
et al. [14] proposed a Stackelberg game-based pricing model to address
the profit conflict between EUs and BSs in a single-server scenario with
homogeneous tasks [15]. However, this approach struggles to adapt
to heterogeneous or dynamic environments. Although the Stackelberg
game assumes rational decision-making, it provides a practical abstrac-
tion that simplifies complex interactions while remaining analytically
tractable. This makes it a widely used and effective framework for
modeling resource allocation and task offloading in MEC systems. To
address this limitation, our work investigates a more complex and
dynamic MEC system in a residential area, involving heterogeneous
computing resources (Ma-BS and Mi-BS) and multiple EUs with diverse
computing requirements. To balance resource allocation and enhance
the network’s computational capacity, we consider cooperative task
offloading between Ma-BSs and Mi-BSs.

To coordinate the conflicting interests of EUs and BSs, we introduce
the Stackelberg game as an effective tool for modeling the leader-
follower relationship. Specifically, Ma-BSs and Mi-BSs act as leaders,
setting resource prices, while EUs act as followers, responding with
optimal offloading strategies. The goal is to achieve a system-wide
equilibrium that maximizes utility for both parties. By leveraging deep
reinforcement learning, our approach uniquely combines the Stackel-
berg game and the MADDPG algorithm to model and solve this complex
task offloading problem. This combination explicitly considers task
heterogeneity by classifying tasks based on latency requirements and
task size. Tasks are optionally offloaded to Ma-BSs or neighboring Mi-
BSs, which are configured with energy harvesting devices to facilitate
sustainable task execution. Moreover, by integrating energy harvesting
in Mi-BSs, our approach enables efficient and sustainable task process-
ing. Experimental results demonstrate the effectiveness of this method
in reducing both latency and task loss rate. The contributions of this
paper can be concluded as follows:

• The study focuses on the task offloading problem in a residential
dense scenario, involving multiple Ma-BS, Mi-BSs, and numer-
ous EUs. In such a scenario, computational resources are shared
2
among BSs and work collaboratively to provide services to EUs.
Based on real-time state information observed, EUs autonomously
formulate and execute their offloading strategies.

• Considering the heterogeneity of tasks, the tasks randomly gener-
ated by EUs are categorized according to the latency requirement
and task size. Tasks can be optionally offloaded to a Ma-BS or
neighboring Mi-BSs, which are configured with energy harvesting
devices that can facilitate task execution by harvesting green
energy.

• The relationship between Ma-BS, Mi-BSs and EUs is formulated
as a Stackelberg game. The agents of BSs as the leader first deter-
mine the unit price of the resource, and the EUs as the followers
then decide the offloading location based on the resource price.
Both the leader and the followers know only incomplete infor-
mation about the environment and are committed to optimizing
their long-term average economic efficiency.

• The optimization problem is transformed into a Markov decision
process (MDP) and then solved by a multi-intelligence deep de-
terministic gradient policy algorithm. The innovative integration
of the MADDPG algorithm verifies that the proposed algorithm is
suitable for performing latency-sensitive tasks and is effective in
reducing the latency and task loss rate of the system.

The organization of the rest sections of this paper is shown below.
Section 2 demonstrates the related work on task offloading for edge
computing both nationally and internationally. Model definitions and
relevant assumptions are described in Section 3. Section 4 presents the
task offloading mechanism based on the Stackelberg game. Section 5
demonstrates our proposed task offloading and resource pricing algo-
rithm. In Section 6, we perform simulation experiments and analyze
the results. The conclusion of the paper and future perspectives are
presented in the last Section.

2. Related work

Task offloading is a pivotal research area in MEC due to its di-
rectly related to the performance enhancement of end-users and the
improvement of user experience [16]. This section presents an analysis
of research related to task offloading from the perspective of multi-type
system architectures.

2.1. MEC systems with single server and single user

Mao et al. [17] proposed low-complexity algorithms to minimize
the weighted sum of execution delay and device energy consump-
tion. This problem addresses joint task offloading and transmission
power allocation in MEC systems with multiple independent tasks.
Chen et al. [18] considered an edge offloading scenario where a single
end-user operates a multitude of applications in conjunction with a
base station. They introduced an optimization problem aimed at the
synergistic allocation of tasks and the strategic adjustment of CPU
cycle frequencies, thereby enhancing the efficiency and performance of
resource management in edge computing environments. Mao et al. [19]
investigated the computational offloading problem in green MEC sys-
tems with harvestable energy and proposed an online algorithm based
on Lyapunov optimization with low complexity.

Although single-server and single-user research provides a starting
point for understanding the fundamental issues of MEC task offloading,
research conducted on single-server and single-user system frameworks
has limitations. Such simplified models do not accurately reflect the
complexities of real-world environments. For instance, they do not
account for the variability of network conditions, resource competi-
tion among multiple users, or synergy issues among servers. These
shortcomings highlight the need for more sophisticated models and
approaches that can better capture the dynamics and intricacies of
multi-user and multi-server MEC systems.

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
2.2. MEC systems with single server and multiple users

To address above shortcomings, researchers have started to work
on single-server and multi-user systems [20–25]. In a dynamic MEC
environment under single-server-multi-user, Zhou et al. [20] proposed
a value iterative reinforcement learning method to determine the joint
offloading policy to minimize the average long-term energy consump-
tion in the system. To avoid dimensional catastrophe, the DDQN-based
offloading algorithm is further proposed. To mitigate the significant
dropout effect in federated learning, Ji et al. [21] proposed an edge-
assisted federated learning. The scheme helps the client train the model
by enabling the dropouts to transfer part of the computation to the edge
server. Experimental results demonstrate that the method effectively
optimizes the size of the offloaded data, significantly reduces the
system latency, and exhibits more outstanding performance compared
to traditional federated learning. To address the ongoing challenge
of insufficient battery capacity in IoT devices, Chen et al. [22] in-
troduced a comprehensive mixed energy supply model designed to
co-optimize local computing, offloading continuity, and edge comput-
ing decisions. They designed an online dynamic offloading algorithm
based on stochastic theory, which can effectively reduce the system
cost. In order to improve the utilization efficiency of computing re-
sources, Seo et al. [23] broke through the traditional uniform pricing
model and proposed a differentiated pricing algorithm that determines
the unit price of resources through the server’s computing resource
usage. Moreover, the relationship between the server and followers
is modeled as a Stackelberg game, and the equilibrium strategy is
obtained using supervised learning.

Although these studies advance the understanding of task offloading
in multi-user systems, they often overlook the challenges related to
task heterogeneity and do not adequately address the complexity of
collaborative edge resource management.

2.3. MEC systems with multiple servers and multiple users

As the number of EUs increases, a single server may face a perfor-
mance bottleneck, while multiple servers can share the load and in-
crease the concurrent processing capacity of the system. Liu et al. [26]
considered a three-tier MEC system that includes several smart devices
with randomly generated tasks, an edge server, and a cloud server that
acts as a secondary offload. They presented a task offloading scenario
that seeks to minimize average latency, then derived and solved it
using Lyapunov optimization and duality theory. Similarly, Bahreini
et al. [27] formulated the resource allocation problem in a three-tier
system as a mixed-integer nonlinear problem and solved it with an
envy-free auction mechanism, showing improvements in social welfare
and revenue. Pang et al. [28] introduced an ID-assisted computational
model to minimize user costs and maximize server and ID profits, ad-
dressing conflicts of interest and outperforming comparison algorithms
in response time and energy consumption. Mitsis et al. [29] proposed a
dynamic price-aware MEC model to derive optimal offloading strategies
and service prices for MEC servers, using prospect theory to capture
user satisfaction. While comprehensive, this model does not account for
latency constraints. Xiao et al. [30] introduced a priority-based schedul-
ing strategy for IoT applications, using deep reinforcement learning to
optimize task offloading while controlling energy consumption.

In contrast to the above existing research, this work investigates task
offloading strategies in a residential dense edge environment. Collab-
oration among edge servers to enhance resource utilization efficiency
is fully considered. A Stackelberg game model is developed to ensure
the economic efficiency of BSs and EUs. At the same time, delay and
energy consumption are reduced. Unlike traditional single-server or
single-task models, our work accounts for the heterogeneity of tasks in
practical MEC scenarios. Based on this framework, this work presents
a task offloading and pricing scheme for MEC collaborative environ-
ments, achieving a more realistic representation of diverse scenarios
and improving upon single-task models.
3
Fig. 1. Task offloading architecture under the multi-BS collaborative MEC system.
Multiple EUs are offloading computational tasks to Ma-BS or a Mi-BS, and both parties
are playing for their own optimal benefit.

3. Model description and assumptions

This section introduces the task offloading model tailored for the
MEC server collaborative computing environment, detailing both the
systemic framework and the operational mechanisms of task offloading.

3.1. MEC system model

This paper investigates the problem of task offloading in a multi-
BS multi-EU MEC environment, in which a Ma-BS with abundant
computational resources and a number of auxiliary computational Mi-
BSs together form a computational network. The proposed MEC system
architecture is shown in Fig. 1. Both Ma-BS and Mi-BSs are installed
with computationally capable MEC servers that supply computational
and caching resources within their network coverage. Each BS is also
fitted with an energy harvesting device that relies on renewable energy
sources for computing. In the following discussion, unless explicitly
stated, Ma-BS and Mi-BSs represent the MEC servers connected to them,
respectively. During the task offloading process, orthogonal frequency
division multiple access (OFDMA) technique is used to divide the
spectrum into overlappable subcarriers. The orthogonality between
subcarriers is utilized to achieve simultaneous transmission between
multiple EUs. The total channel bandwidth of each BS is shared by
all the EUs offloaded to the BS. Based on the task requirements, the
offloading strategy is developed to meet the EUs’ needs. Let 𝛥𝑡 denotes
the length of each time slot. The main parameters of this paper are
listed in Table 1.

For edge service providers, the number of Mi-BSs is denoted by 𝑚
and the set of Mi-BSs is = {1, 2,… , 𝑗,… , 𝑚 − 1, 𝑚}. Ma-BS and Mi-
BSs will provide network bandwidth and computation within a certain
range, and the network coverage information of Ma-BS is denoted by
{𝛽0, 𝛾0}. Its network coverage is a circle with 𝛽0 as the center and
𝛾0 as the radius, and all the EUs within the circle can offload the
generated tasks to the Ma-BS for computation. It is assumed that all
EUs are located within the network coverage of the Ma-BS. Similar
to the Ma-BS, the network coverage information of the 𝑗th Mi-BS is
denoted as {𝛽𝑗 , 𝛾𝑗}. Moreover, denote the set of EUs in the network
by = {1, 2,… , 𝑖,… , 𝑛 − 1, 𝑛}. Assume that the EUs do not possess
computational capabilities and need to offload the tasks entirely, with
no computation performed locally. End-users (EUs) transmit their task
attributes (e.g., size, latency tolerance) and real-time network state
information (e.g., channel gain, BS availability) to the nearest BS or the

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
Table 1
Definition of notations.
 Symbol Definition
 The set of Mi-BSs
 The set of EUs
 𝑓 The computational power possessed by the BS
 𝐵 The channel bandwidth
 𝐼 The average interference power of the BS
 𝑔𝑖 The task generation symbol for EU 𝑖
 𝑞𝑖 The size of the tasks generated by EU 𝑖
 𝑐𝑖 The average number of CPU cycles required for 1-bit EU 𝑖’s task
 𝜏𝑖 The maximum task latency tolerance of EU 𝑖
 𝛼𝑖 The type indication of the task generated by EU 𝑖
 𝑞𝑜𝑠𝑖 The task priority symbol of EU 𝑖
 𝑟𝑖 The task transmission rate from EU 𝑖 to BS
 𝑑𝑡𝑟

𝑖 The task transmission delay from EU 𝑖 to BS
 𝑒𝑡𝑟𝑖 The task transmission energy consumption from EU 𝑖 to BS
 𝑑𝑒𝑥𝑒

𝑖 The task execution delay of EU 𝑖 at the BS
 𝑒𝑒𝑥𝑒𝑖 The task execution energy consumption of EU 𝑖 at the BS
 𝜎𝑒𝑥𝑒 The penalty for a BS’s execution of task time-outs
 𝛤 The penalty for a BS’s task being lost
 𝐺𝐿 The utility function of the leader
 𝐺𝐹

𝑖 The utility function of the 𝑖th follower
 𝑁𝑖 The signaling coverage of EU 𝑖
 𝑃𝑖 The transmission power of EU 𝑖
 𝑄𝑒 The available energy for the BS

BS with the strongest channel gain within their coverage. This initial
transmission enables the selected BS to execute the pre-trained TO-
SG-MADDPG model and determine the optimal offloading destination
(Ma-BS or Mi-BS). Once the decision is made, the EU directly offloads
the task to the target BS. The initial transmission of task metadata
(e.g., task size, QoS requirements) incurs negligible overhead compared
to the actual task data transmission, as metadata is small in size.
Consequently, the model focuses on the energy and latency costs of
offloading the full task to the final BS, as formulated in Eqs. (3)–(5).
The signaling coverage of EU 𝑖 at time slice 𝑡 is indicated by 𝑁𝑖(𝑡). If
EU 𝑖 is within the signaling range of the Ma-BS only, then 𝑁𝑖(𝑡) = ∅.
Instead, 𝑁𝑖(𝑡) = {𝑚, 𝑛} denotes that EU 𝑖 is within the coverage range
of the Ma-BS, Mi-BS 𝑚 and Mi-BS 𝑛.

In general, the process of offloading tasks from EU 𝑖 to Ma-BS or Mi-
BS 𝑗 is divided into three phases. First, the EU offloads the generated
task to the Ma-BS/Mi-BS 𝑗 over the wireless channel. Then, the Ma-BS
and Mi-BS 𝑗 caches and executes the task. Finally, the corresponding
server returns the computed results to EU 𝑖. Similar to [31], this
paper omit the delay in returning the results since the returned result
data is much smaller compared to the offloaded tasks. Next, the task
model, task offloading to Ma-BS and Mi-BSs are described in detail,
respectively.

3.2. End-user task model

Assume that the tasks generated by the EUs are all independently
and identically distributed. For clarity in modeling and analysis, at each
time slot, each EU randomly generates tasks according to the Bernoulli
distribution obeying the parameter 𝜆 ∈ [0, 1]. 𝑔𝑖(𝑡) ∈ {0, 1} (𝑖 ∈ 𝑁)
denotes the task arrival indicator, where 𝑔𝑖(𝑡) = 1 denotes that EU 𝑖
generates a task at moment 𝑡 and 𝑔𝑖(𝑡) = 0 indicates that EU 𝑖 does
not generate any task at moment 𝑡. Despite the statistical similarity of
tasks, the network conditions experienced by each EU, such as channel
quality, proximity to different BSs, and BS load, vary significantly. This
necessitates individual offloading strategies to optimize performance.

The task attributes of the EUs are represented by the quintuple
𝑡𝑎𝑠𝑘𝑖(𝑡) = (𝑞𝑖(𝑡), 𝑐𝑖(𝑡), 𝜏𝑖(𝑡), 𝛼𝑖(𝑡), 𝑞𝑜𝑠𝑖(𝑡)), where the workload characteris-
tics are represented at the bit level to reflect both data transmission and
4
computational demands. 𝑞𝑖(𝑡) denotes the data size of the task generated
by the EU 𝑖. 𝑐𝑖(𝑡) is the number of CPU cycles required to execute 1 bit
of that task, providing a direct measure of the computational cost that
aligns with the data-centric nature of MEC tasks. Furthermore, 𝜏𝑖(𝑡)
denotes the delay tolerance of the EU 𝑖 for that task, 𝑖.𝑒. , the maximum
value of the execution delay. In addition, the task type flag is denoted
as 𝛼𝑖(𝑡). The 𝑞𝑜𝑠𝑖(𝑡) indicates the priority level of the task, which divides
the task into two categories: high-priority tasks and low-priority tasks.
When the task has high priority, make 𝑞𝑜𝑠𝑖(𝑡) = 1, otherwise, 𝑞𝑜𝑠𝑖(𝑡) = 0.
Due to diverse user scenarios, multiple types of tasks are considered.
The parameter settings for each task type are as follows,

𝛼𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

0, generate a standard task,
1, generate a delay-sensitive task,
2, generate a computation-intensive task.

When the task generated by EU 𝑖 at moment 𝑡 is a standard task, pa-
rameters such as task size and CPU consumption are set with reference
to [32], and 𝑞𝑜𝑠𝑖(𝑡) = 0. Similarly, when the generated task is a delay-
sensitive task, making 𝑞𝑜𝑠𝑖(𝑡) equal to 1. When a computation-intensive
task is generated, its values of task size and CPU consumption are
larger. At each time slot 𝑡, EU 𝑖 offloads the generated task to the Ma-BS
or a neighboring Mi-BS for computation. The task going to be executed
at time slot 𝑡 of EU 𝑖 is denoted by 𝑎𝑖(𝑡) as

𝑎𝑖(𝑡) =
{

0, offload task to the Ma-BS,
𝑗, offload task to the Mi-BS 𝑗.

When the task is offloaded to the Ma-BS, then 𝑎𝑖(𝑡) = 0. Alternatively,
𝑎𝑖(𝑡) = 𝑗 means that the task will be offloaded to the Mi-BS 𝑗 for execu-
tion. Correspondingly, the task offloading indicators for the Ma-BS and
Mi-BS are defined as:
{

𝟏𝑎𝑖(𝑡)=0 = 1, offload task to the Ma-BS,
𝟏𝑎𝑖(𝑡)=𝑗 = 1, offload task to the Mi-BS 𝑗.

(1)

These indicators are essential for distinguishing the task offloading
decisions between the Ma-BS and Mi-BS and are used in the task
execution and transmission delay models.

3.3. Task offload to edge servers (Ma-BS and Mi-BSs)

The EUs within the coverage of the wireless network can offload
tasks to the Ma-BS or Mi-BS. The MEC servers deployed on the Ma-
BS and Mi-BSs collaboratively provide computational resources to the
EUs based on the network environment. In this section, we describe
the generalized communication model and task execution model, which
apply to both Ma-BS and Mi-BSs. The differences between them are
highlighted where necessary.

3.3.1. Communication model
The initial transmission of task metadata (e.g., QoS requirements,

task size) to the decision-making BS is assumed to occupy minimal
bandwidth and energy due to its small data volume. Thus, its overhead
is negligible compared to the subsequent task offloading phase. This
simplification ensures tractability while preserving the model’s focus
on optimizing the dominant costs of task execution and transmission.
Assume that the number of tasks offloaded to the edge servers at time 𝑡
is denoted as 𝑉𝑏(𝑡) for the Ma-BS and 𝑉𝑗 (𝑡)for the Mi-BS. For the sake of
generality, we set the channel as a Gaussian white noise channel, which
is a classical model that captures the primary noise characteristics in
wireless communication. This choice provides a controlled environment
for theoretical analysis. Denote the channel gain at time slice 𝑡 as
𝑔𝑏(𝑡) for the Ma-BS and 𝑔𝑗 (𝑡) for the Mi-BS. To minimize transmission
overhead, EU 𝑖 selects the nearest BS or the BS with the strongest

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
channel gain 𝑔𝑏(𝑡) or 𝑔𝑗 (𝑡), based on real-time network conditions. Then
the task transmission rate of EU 𝑖 offloaded to the edge server is
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑟𝑖,𝑏(𝑡) =
𝐵𝑏

|𝑉𝑏(𝑡)|
⋅ log2

(

1 + 𝐼−1𝑏 ⋅ 𝑃𝑖,𝑏 ⋅ 𝑔𝑏(𝑡)
)

,

𝑟𝑖,𝑗 (𝑡) =
𝐵𝑗

|𝑉𝑗 (𝑡)|
⋅ log2

(

1 + 𝐼−1𝑗 ⋅ 𝑃𝑖,𝑗 ⋅ 𝑔𝑗 (𝑡)
)

.
(2)

where ‖
‖

𝑉𝑏(𝑡)‖‖, ‖‖
‖

𝑉𝑗 (𝑡)
‖

‖

‖

 is the number of tasks offloaded to the Ma-
BS, Mi-BS. 𝐵𝑏 and 𝐵𝑗 represent the channel bandwidths of the Ma-BS
and Mi-BS, respectively. Similarly, 𝐼𝑏 and 𝐼𝑗 presents the average
interference power of the edge server, capturing overall interference
effects while simplifying the model by avoiding explicit modeling of
all interference sources. 𝑃𝑖,𝑏 and 𝑃𝑖,𝑗 is the transmission power of EU 𝑖
for the Ma-BS and Mi-BS, respectively.

Then, the transmission delay of the EU 𝑖 offloading task to the edge
server is
⎧

⎪

⎨

⎪

⎩

𝑑𝑡𝑟𝑖,𝑏(𝑡) =
𝑞𝑖

𝑟𝑖,𝑏(𝑡)
⋅ 𝟏𝑎𝑖(𝑡)=0,

𝑑𝑡𝑟𝑖,𝑗 (𝑡) =
𝑞𝑖

𝑟𝑖,𝑗 (𝑡)
⋅ 𝟏𝑎𝑖(𝑡)=𝑗 .

(3)

Subsequently, the energy consumption of EU 𝑖 during the transmis-
sion process can be obtained as
{

𝑒𝑡𝑟𝑖,𝑏(𝑡) = 𝑑𝑡𝑟𝑖,𝑏(𝑡) ⋅ 𝑃𝑖,𝑏,

𝑒𝑡𝑟𝑖,𝑗 (𝑡) = 𝑑𝑡𝑟𝑖,𝑗 (𝑡) ⋅ 𝑃𝑖,𝑗 .
(4)

Eventually, the total transmission delay 𝑑𝑡𝑟𝑏 of the EUs offloaded to
the Ma-BS, 𝑑𝑡𝑟𝑗 of the EUs offloaded to the Mi-BS can be obtained as

⎧

⎪

⎨

⎪

⎩

𝑑𝑡𝑟𝑏 (𝑡) = max
𝑖∈𝑉𝑏(𝑡)

𝑑𝑡𝑟𝑖,𝑏(𝑡),

𝑑𝑡𝑟𝑗 (𝑡) = max
𝑖∈𝑉𝑗 (𝑡)

𝑑𝑡𝑟𝑖,𝑗 (𝑡).
(5)

3.3.2. Task execution model
Assume that once when all the tasks arrive at the edge server, the

server starts to perform the execution of the tasks. The server first sorts
the arriving tasks and then executes them in order. The details are
described below.

After the EU 𝑖 offloads a task to the edge server, the task execution
time for a device offloading a task to Ma-BS or Mi-BS is given by
⎧

⎪

⎨

⎪

⎩

𝑑𝑒𝑥𝑒𝑖,𝑏 (𝑡) =
𝑐𝑖 ⋅ 𝑞𝑖
𝑓𝑏

⋅ 𝟏𝑎𝑖(𝑡)=0,

𝑑𝑒𝑥𝑒𝑖,𝑗 (𝑡) =
𝑐𝑖 ⋅ 𝑞𝑖
𝑓𝑗

⋅ 𝟏𝑎𝑖(𝑡)=𝑗 ,
(6)

where 𝑓𝑏 and 𝑓𝑗 denotes the computational power possessed by the
MEC server of Ma-BS and Mi-BS, respectively, which is equally dis-
tributed among the users.

It is assumed that all EUs send tasks simultaneously in each time
slot. For both Ma-BS and Mi-BSs, tasks are categorized and managed
based on their characteristics and quality of service (QoS) require-
ments.

For standard and computation-intensive tasks, a queue 𝑄𝑡𝑟
𝑏,𝑞𝑜𝑠=0(𝑡)

for the Ma-BS and 𝑄𝑡𝑟
𝑗,𝑞𝑜𝑠=0(𝑡) for the Mi-BS 𝑗 is generated by ordering

the task arrival times according to their transmission delays. Simi-
larly, delay-sensitive tasks are sorted based on the increasing order of
their transmission delays, forming queues 𝑄𝑡𝑟

𝑏,𝑞𝑜𝑠=1(𝑡) for the Ma-BS and
𝑄𝑡𝑟

𝑗,𝑞𝑜𝑠=1(𝑡) for the Mi-BS 𝑗.
These two queues for each base station are then merged, with the

delay-sensitive tasks 𝑄𝑡𝑟
𝑏,𝑞𝑜𝑠=1(𝑡) and 𝑄𝑡𝑟

𝑗,𝑞𝑜𝑠=1(𝑡) being prioritized and in-
serted before the standard tasks 𝑄𝑡𝑟

𝑏,𝑞𝑜𝑠=0(𝑡) and 𝑄𝑡𝑟
𝑗,𝑞𝑜𝑠=0(𝑡), respectively.

This process results in new queues 𝑄𝑡𝑟
𝑏 (𝑡) for the Ma-BS and 𝑄𝑡𝑟

𝑗 (𝑡) for
the Mi-BS 𝑗.

The edge servers, both Ma-BS and Mi-BSs, execute tasks sequentially
according to their respective queues 𝑄𝑡𝑟(𝑡) and 𝑄𝑡𝑟(𝑡), ensuring that
𝑏 𝑗

5
latency-sensitive tasks are prioritized for execution. If a task 𝑖 ∈ 𝑉𝑏(𝑡)
(for Ma-BS) or 𝑖 ∈ 𝑉𝑗 (𝑡) (for Mi-BS 𝑗) is the 𝑘-th task in its queue, the
delay 𝑑𝑖,𝑏|𝑖∈𝑉𝑏(𝑡)(𝑡) or 𝑑𝑖,𝑗|𝑖∈𝑉𝑗 (𝑡)(𝑡) represents the time the task waits for
execution and the sum of the execution times of the previous 𝑘 tasks at
the respective base station.

Denote the penalty for performing a task beyond the tolerance
latency constraint at time slot t as 𝜎𝑒𝑥𝑒𝑏 (𝑡) when tasks are offloaded to
Ma-BS, and as 𝜎𝑒𝑥𝑒𝑗 (𝑡) when tasks are offloaded to Mi-BS. Let 𝐿 denote
the set of tasks that are not completed on time, where there are 𝑙 tasks.
Then 𝜎𝑒𝑥𝑒𝑏 (𝑡) and 𝜎𝑒𝑥𝑒𝑗 (𝑡) can be denoted as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎𝑒𝑥𝑒𝑏 (𝑡) =
𝑙

∑

𝑖=1
𝟏𝑑𝑖,𝑏(𝑡)+𝑑𝑡𝑟𝑏 (𝑡)>𝜏𝑖(𝑡)|𝑎𝑖(𝑡)=0,

𝜎𝑒𝑥𝑒𝑗 (𝑡) =
𝑙𝑗
∑

𝑖=1
𝟏𝑑𝑖,𝑗 (𝑡)+𝑑𝑡𝑟𝑗 (𝑡)>𝜏𝑖(𝑡)|𝑎𝑖(𝑡)=𝑗 .

(7)

where the value of 𝟏 is 1 if the condition 𝑑𝑖,𝑏(𝑡)+𝑑𝑡𝑟𝑏 (𝑡) > 𝜏𝑖(𝑡)|𝑎𝑖(𝑡) = 0 is
satisfied; otherwise, the value of 𝟏 is 0. The application of the indicator
function for the Mi-BS follows the same rationale as for the Ma-BS.

In addition, the task discard penalty for the edge server is defined. If
the aggregate of the transmission delay, waiting delay, and execution
delay of the 𝑚𝑡ℎ task in 𝑄𝑡𝑟(𝑡) does not exceed 𝛿𝑡, while that of the
(𝑚+1)𝑡ℎ task is greater than 𝛿𝑡, the tasks after the 𝑚𝑡ℎ task are discarded.
In our experiments, the duration of each time slot 𝛥𝑡 is set to 0.1𝑠. The
corresponding penalty can be expressed as
𝛤𝑏(𝑡) = {‖𝑉𝑏(𝑡)‖ − 𝑚}+, 𝛤𝑗 (𝑡) = {‖𝑉𝑗 (𝑡)‖ − 𝑚𝑗}+, (8)

where 𝑚 and 𝑚𝑗 represent the number of tasks in 𝑄𝑡𝑟
𝑏 and 𝑄𝑡𝑟

𝑗 that cannot
be completed on time within time slice 𝑡 respectively. The standby
energy consumption of Ma-BS and Mi-BS is denoted by 𝑒await𝑏 and 𝑒await𝑗 ,
respectively. The task execution energy consumption for the two base
stations can be expressed as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑒exe𝑏 (𝑡) =
𝑛
∑

𝑖=1
𝑘𝑏 ⋅ ∫𝛥𝑡𝑖

|

|

|

𝑓𝑏(𝑡) ⋅ 𝟏𝑎𝑖(𝑡)=0
|

|

|

2
𝑑𝑡,

𝑒exe𝑗 (𝑡) =
𝑛
∑

𝑖=1
𝑘𝑗 ⋅ ∫𝛥𝑡𝑖

|

|

|

𝑓𝑗 (𝑡) ⋅ 𝟏𝑎𝑖(𝑡)=𝑗
|

|

|

2
𝑑𝑡,

(9)

where 𝛥𝑡𝑖 is the task execution latency of EU 𝑖, and 𝑘𝑏 and 𝑘𝑗 are the
energy consumption factors relevant to the chip structures of Ma-BS
and Mi-BS, respectively.

Based on the above, the energy queue dynamics for Ma-BS and
Mi-BS can be unified as:
𝑄𝑒

𝑏(𝑡 + 1) = min
{

[

𝑄𝑒
𝑏(𝑡) − 𝑒exe𝑏 (𝑡) − 𝑒await𝑏

]+ + 𝑒ℎ𝑏 (𝑡), 𝐸
max
𝑏

}

, (10)

𝑄𝑒
𝑗 (𝑡 + 1) = min

{

[

𝑄𝑒
𝑗 (𝑡) − 𝑒exe𝑗 (𝑡) − 𝑒await𝑗

]+
+ 𝑒ℎ𝑗 (𝑡), 𝐸

max
𝑗

}

. (11)

Here, 𝑒ℎ𝑏 (𝑡) and 𝑒ℎ𝑗 (𝑡) denote the energy harvested by the Ma-BS and
Mi-BS at time 𝑡, while 𝐸max

𝑏 and 𝐸max
𝑗 represent the maximum energy

capacities of the two base stations, respectively.

4. Task offloading and resource allocation scheme based on Stack-
elberg

In this section, the task offloading and resource allocation problem
for Ma-BSs, Mi-BSs and EUs based on Stackelberg is first introduced.
This optimization problem is then transformed into a MDP problem (see
Table 2).

4.1. Problem formulation

To enable the system to support efficient computation, storage
and location awareness, co-existence and collaboration among various
computation nodes has been an innovative computing paradigm. As

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
Table 2
Definition of notations.
 Symbol Definition
 𝑢(𝑡) Leader’s computing resource pricing strategy
 𝑎(𝑡) Task offloading strategies of EUs
 𝐺𝐿[𝑢(𝑡), 𝑎(𝑡)] Leader’s utility function at time 𝑡
 𝐺𝐹

𝑖 [𝑢(𝑡), 𝑎(𝑡)] Followers’ utility function at time 𝑡
 𝜔1 , 𝜔2 , 𝜔3 , 𝜔4 Weight coefficients for the leader’s utility components
 𝜆1 , 𝜆2 , 𝜆3 Weight coefficients for the followers’ cost components

shown in Fig. 1, multiple BSs with different computational capabil-
ities, location information, and energy harvesting characteristics are
deployed around the EUs. The tasks generated by the EUs have different
priorities, computational requirements, and latency constraints. There-
fore, efficient collaboration between Ma-BS and Mi-BSs is important to
improve the task offloading efficiency of heterogeneous MEC systems.
EUs dynamically select the nearest BS or the BS with the strongest
channel gain to offload tasks, based on real-time network conditions.
This enables efficient resource utilization and reduces transmission
overhead.

In order to promote the long-term network benefits of the cell, all
heterogeneous MEC servers (Ma-BS or Mi-BSs) cooperatively manage
the computational resources based on their observed information about
the environment and the EUs, and together provide services to the EUs.
Meanwhile, the EUs can automatically choose which server to offload
tasks to based on the observed information. Thus, the problem can be
formulated as a two-stage Stackelberg game where the servers is the
leader and the EUs are the followers.

To better quantify the leader’s benefits, denote the leader’s utility
function 𝐺𝐿(𝑡) as

𝐺𝐿[𝑢(𝑡), 𝑎(𝑡)] = 𝜔1 ⋅ (
𝑛
∑

𝑖=1
𝑢𝑏(𝑡) ⋅ 𝑞𝑖(𝑡) ⋅ 𝑐𝑖(𝑡) ⋅ 𝟏𝑎𝑖(𝑡)=0+

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
𝑢𝑗 (𝑡) ⋅ 𝑞𝑖(𝑡) ⋅ 𝑐𝑖(𝑡) ⋅ 𝟏𝑎𝑖(𝑡)=𝑗) − 𝜔2 ⋅ (𝛤𝑏(𝑡) +

𝑚
∑

𝑗=1
𝛤𝑗 (𝑡))

− 𝜔3 ⋅ (𝑒𝑒𝑥𝑒𝑏 (𝑡) +
𝑚
∑

𝑗=1
𝑒𝑒𝑥𝑒𝑗 (𝑡)) − 𝜔4 ⋅ (𝜎𝑒𝑥𝑒𝑏 (𝑡) +

𝑚
∑

𝑗=1
𝜎𝑒𝑥𝑒𝑗 (𝑡)),

(12)

where 𝑢(𝑡) = {𝑢𝑏(𝑡), 𝑢1(𝑡),… , 𝑢𝑗 (𝑡),… , 𝑢𝑚(𝑡)}. The 𝑢(𝑡) and 𝑎(𝑡) are the
leader’s computing resource pricing strategy and the task offloading
strategies.

The leader’s utility function in time slice 𝑡 consists of four main
components: the EUs’ resource payment, the task discarding penalty,
the task execution energy consumption, and the exceeding tolerance
delay penalty. Besides, 𝑤1, 𝑤2, 𝑤3 and 𝑤4 are the weight coefficients
of the corresponding components.

The utility function of each follower is expressed as its expense,
such as resource payment, delay overhead and transmission energy
consumption. It is worth stating that since the penalty for exceeding
the tolerated delay is considered in the utility function of the leader,
it is not considered from the followers’ point of view. In order to more
visually compare the reward values of the leader and the follower, the
cost function of the follower is deformed so that the result is set to a
positive value. The utility function of each follower is expressed by

𝐺𝐹
𝑖 [𝑢(𝑡), 𝑎(𝑡)] = 𝜆1 ⋅ (𝑢𝑏(𝑡) ⋅ 𝑞𝑖(𝑡) ⋅ 𝑐𝑖(𝑡) ⋅ 𝟏𝑎𝑖(𝑡)=0 +

𝑚
∑

𝑖=1
𝑢𝑗 (𝑡)

⋅ 𝑞𝑖(𝑡) ⋅ 𝑐𝑖(𝑡) ⋅ 𝟏𝑎𝑖(𝑡)=𝑗) + 𝜆2 ⋅ ((𝑑𝑡𝑟𝑖,𝑏(𝑡) + 𝑑𝑖,𝑏(𝑡)) ⋅ 𝟏𝑎𝑖(𝑡)=0+
𝑚
∑

𝑖=1
(𝑑𝑡𝑟𝑖,𝑗 (𝑡) + 𝑑𝑖,𝑗 (𝑡)) ⋅ 𝟏𝑎𝑖(𝑡)=𝑗) + 𝜆3 ⋅ (𝑒𝑡𝑟𝑖,𝑏 ⋅ 𝟏𝑎𝑖(𝑡)=0 +

𝑚
∑

𝑖=1
𝑒𝑡𝑟𝑖,𝑗

⋅ 𝟏𝑎𝑖(𝑡)=𝑗) + 𝜉,

(13)

where the weighting coefficients are constants. The 𝜆1, 𝜆2, 𝜆3 are
negative and 𝜉 is positive.
6
At each time slot, the ability of Ma-BS and Mi-BS to consume
energy is limited by the current energy queue level. In addition, to
develop resource pricing strategies and task offloading decisions with
a long-term perspective, based on Eqs. (12) and (13), we state the
optimal problem as maximizing the leader’s mean long-run aggregate
returns 𝐺𝐿 and minimizing the followers’ average long-term cumulative
overhead 𝐺𝐹

𝑖 as follows.

P1 ∶max𝐺𝐿 = 1
𝑇

𝑇
∑

𝑡=1
𝐺𝐿(𝑡), (14)

min𝐺𝐹
𝑖 = 1

𝑇

𝑇
∑

𝑡=1
𝐺𝐹
𝑖 (𝑡), (15)

s.t. 𝑎𝑖(𝑡) ∈ {0, 1,… , 𝑛}, (16)

𝑒𝑒𝑥𝑒𝑏 (𝑡) ≤ 𝑄𝑒
𝑏(𝑡), 𝑒𝑒𝑥𝑒𝑗 (𝑡) ≤ 𝑄𝑒

𝑗 (𝑡), (17)

where the constraint Eq. (16) indicates that the offloading decision of
the EUs may be either Ma-BS or Mi-BS within a time slot. Constraint
(17) denotes that the task execution energy consumption of Ma-BSs and
Mi-BSs cannot exceed the energy level of the current time slot.

The above optimization problem aims to maximize the utility of
the leader (BSs) and minimize the costs of the followers (EUs). Since
resource pricing, offloading decisions, and communication are coupled
with each other, the computational complexity increases dramatically
as the number of EUs increases. Traditional optimization methods are
difficult to solve this problem quickly, so a deep reinforcement learning
(DRL) approach is used to deal with the proposed resource pricing and
task offloading problem.

4.2. Optimizing problems with MDP conversion

To solve the formulated problem P1 using DRL, it is essential to
transform it into the standard form of MDP.

We use the MADDPG method to train the model. The training
process is conducted offline at the BSs with sufficient computational
resources. Then, the optimal offloading and resource allocation strate-
gies are obtained based on the trained model. The leader and each
follower act as an agent for reaching the desired goal in the complex
competitive and cooperative environment. During each stage, by ob-
serving and reacting to the environment, each agent searches for the
best solution of the problem. In the following, key components of this
transformation are described, including the player set, the environment
space set, the observation space set, the action space set, and the reward
function [33].

4.2.1. Player set
The player set containing 𝑛 + 1 elements is denoted as 𝑷 ≜

{𝐿, 𝐹1, 𝐹2,… , 𝐹𝑛}, where 𝐿 denotes the server player (leader) agent and
𝐹𝑖 denotes the 𝑖th EUs player (follower).

4.2.2. Environment state space
The state of the environment for each time slice consists of the

following main components. The first is the state of the leader. In each
time slice, the environment is changing in real time. Therefore. The
leader’s state consists of the available energy levels of Ma-BSs 𝑄𝑒

𝑏(𝑡)
and Mi-BSs 𝑄𝑒

𝑗 (𝑡) (𝑗 ∈ 𝑀) and the energy harvested by Ma-BSs 𝑒ℎ𝑏 (𝑡)
and Mi-BSs 𝑒ℎ𝑗 (𝑡) (𝑗 ∈ 𝑀) in each time slice. The second is the state of
the follower. For each EU, its state is mainly its location information.
Denote the network coverage information of each EU by 𝑁𝑖(𝑡). 𝑁𝑖(𝑡) =
{𝑚, 𝑛} denotes that EU 𝑖 is within the coverage range of the Ma-BS,
Mi-BS 𝑚 and Mi-BS 𝑛. The last component is the channel state, which
mainly consists of the channel gains of Ma-BS 𝑔𝑏(𝑡) and Mi-BSs 𝑔𝑗 (𝑡)
(𝑗 ∈ 𝑀).

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
Thus, at time slice t, the environmental state space 𝑠(𝑡) can be
represented as
𝑠(𝑡) ≜ { 𝑄𝑒

𝑏(𝑡), 𝑄
𝑒
1(𝑡),… , 𝑄𝑒

𝑗 (𝑡),… , 𝑄𝑒
𝑚(𝑡),

𝑒ℎ𝑏 (𝑡), 𝑒
ℎ
1 (𝑡),… , 𝑒ℎ𝑗 (𝑡),… , 𝑒ℎ𝑚(𝑡),

𝑁1(𝑡),… , 𝑁𝑖(𝑡),… , 𝑁𝑛(𝑡),

𝑔𝑏(𝑡), 𝑔1(𝑡),… , 𝑔𝑗 (𝑡),… , 𝑔𝑚(𝑡)}

(18)

4.2.3. Observation state space
The observation state space reflects the strategically important in-

formation in the environment that each agent needs to have to make
decisions. At the start, the observation state space of the leader agent
𝑂𝐿 consists of the current energy levels of the Ma-BS and Mi-BSs as
well as the location information of each EU, which can be represented
as
𝑜𝐿(𝑡) ≜ { 𝑄𝑒

𝑏(𝑡), 𝑄
𝑒
1(𝑡),… , 𝑄𝑒

𝑗 (𝑡),… , 𝑄𝑒
𝑚(𝑡),

𝑁1(𝑡),… , 𝑁𝑖(𝑡),… , 𝑁𝑛(𝑡)}.
(19)

The observation state space of the 𝑖th follower agent 𝑜𝐹𝑖 (𝑡) ∈ 𝑂𝐹
𝑖 (𝑡)

is its location information, denoted as
𝑜𝐹𝑖 (𝑡) ≜ 𝑁𝑖(𝑡). (20)

The observation state space of the 𝑖th follower agent 𝑜𝐹𝑖 (𝑡) includes
its location 𝑁𝑖(𝑡) and the channel gains 𝑔𝑏(𝑡), 𝑔𝑖(𝑡) of all BSs within its
coverage. This allows EUs to proactively assess BS suitability without
additional coordination.

4.2.4. Action space
The action state space contains all the decisions that each agent

may take. In time slice 𝑡, the leader agent sets the selling price of the
resource for each Ma-BS and Mi-BS, and its action state space can be
characterized as
𝑎𝐿(𝑡) ≜ 𝑢(𝑡) = {𝑢𝑏(𝑡), 𝑢1(𝑡),… , 𝑢𝑗 (𝑡),… , 𝑢𝑚(𝑡)}. (21)

Then, each follower makes a decision to offload the task based on
the price set by the leader and its own location information. The action
state space of the follower 𝑖 can be expressed as
𝑎𝑖(𝑡) ≜ {0, 1,… , 𝑗,… , 𝑚}. (22)

4.2.5. Reward function
After executing an action, every agent gets an instant return that

measures the impact of the action taken by the agent in the current
environment 𝑠(𝑡). Subsequently, each agent will reach the next envi-
ronment state and update its strategy based on the reward received
to guide to an optimal state. Based on Eqs. (12) and (13), the reward
functions for the leader 𝑟𝐿 and the follower 𝑟𝐹𝑖 in time slice 𝑡 are defined
respectively as
𝑟𝐿[𝑠(𝑡), 𝑢(𝑡)] = 𝐺𝐿[𝑢(𝑡), 𝑎(𝑡)], (23)

𝑟𝐹𝑖 [𝑠(𝑡), 𝑎(𝑡)] = 𝐺𝐹
𝑖 [𝑢(𝑡), 𝑎(𝑡)]. (24)

The leader agent aims to maximize the comprehensive revenue of
all servers, while all follower agents aim to minimize their own costs.
To obtain the optimal resource pricing strategy and offloading strategy,
this paper introduces a task offloading algorithm which combines the
Stackelberg game and MADDPG (TO-SG-MADDPG). The algorithm is
presented in the next section.

5. Solutions for Stackelberg game

In this section, the MADDPG-based task offloading mechanism is
introduced. Next, the workflow of the MADDPG algorithm is described,
and then the proposed TO-SG-MADDPG algorithm is introduced and
analyzed. Our experiments are based on a simulated residential dense
environment, ensuring that the evaluation closely reflects real-world
scenarios.
7
5.1. Workflow of MADDPG algorithm

The proposed task offloading system contains a leader agent used
for edge server co-computation and 𝑛 EU agents. The deep deterministic
policy gradient (DDPG) algorithm of a single agent only considers the
states it observes [34]. Whereas, in the proposed system, the policies
made by each agent interact with each other, e.g., when an EU offloads
a task to a certain Ma-BS/Mi-BS, the computational resources of this
BS will be reduced. Then, other EUs might select to offload the task
to a Ma-BS/adjacent Mi-BS with sufficient computational resources. In
addition, the status of each agent in the traditional MADDPG algorithm
is parallel, which cannot reflect the sequential decision order of the
leader and the follower, so this paper incorporates the Stackelberg
game into the MADDPG algorithm.

MADDPG is a multi-agent reinforcement learning algorithm which
is an extension of DDPG. It is specifically designed to solve the problem
of collaborative decision making by multiple agents [35]. MADDPG
is based on the actor–critic algorithm. Each agent has its own actor
network and critic network with parameters 𝜃𝜇𝑖 and 𝜃𝑄𝑖 , respectively,
to obtain resource pricing and task offloading strategies through the
DDPG algorithm. The actor network makes action decisions based on
the agent’s state, while the critic network is responsible for evaluating
the goodness of the agent’s actions. To improve the stability of the
algorithm, each agent also has a target actor network with parameter
𝜃𝜇

′

𝑖 and a target critic network with parameter 𝜃𝑄′

𝑖 . To enhance the
efficiency and robustness of training, the MADDPG algorithm utilizes
an experience replay buffer mechanism to store previous experiences
observed by agents in the environment, including information such as
states, actions and rewards. In each training period, the agents are
trained with random samples from the experience replay buffer to
minimize the correlation between the samples. Aiming to be flexible in
dynamically changing multi-agent environments, the MADDPG mecha-
nism improves the elements of the experience replay buffer compared
to the DDPG algorithm. Each agent’s transition also contains the states
and actions of other agents. The workflow of the MADDPG algorithm
is described as follows.

Each agent possesses four deep neural networks: current actor net-
work, current critic network, and the corresponding target actor net-
work and target critic network, respectively. The latter two are used to
guide the stability and convergence of the learning process. To begin
with, a centralized joint state-value function 𝑄𝑖(𝑠, 𝑎) is defined for all
agents. During training, the critic network evaluates the current state
and actions based on global information, and simultaneously adjusts
the strategies of the actor network. The actor network then makes the
optimal strategy 𝑎𝑖(𝑡) = 𝜇(𝑠𝑖(𝑡), 𝜃

𝜇
𝑖) based on local observations. At each

iteration, the agents update the parameters of the actor network and the
critical network by randomly sampling mini-batch from the experience
replay buffer. For the actor network, its parameters are updated by
minimizing the gradient of the agent policy, which is given by

∇𝜃𝜇𝑖
𝐽 (𝜇𝑖) =

1
𝜒

∑

𝑗
∇𝜃𝜇𝑖

𝜇𝑖(𝑜
𝑗
𝑖)∇𝑎𝑖𝑄

𝜇
𝑖 (𝑠

𝑗 , 𝑎𝑗1,… , 𝑎𝑗𝑖 ,… ,

𝑎𝑗𝑁+1)|𝑎𝑖=𝜇𝑖(𝑜𝑗𝑖)
,

(25)

where 𝑗 is the index of the sample and 𝜒 is the size of the mini-batch.
In addition, 𝑄𝜇

𝑖 denotes the state–action value function used by the 𝑖th
agent as centralized training.

Different from the actor network, the parameters of the critic net-
work are updated by minimizing the mean-square error loss function,
which is denoted as
𝐿(𝜃𝑄𝑖) =

1
𝜒

∑

𝑗
(𝑦𝑗 −𝑄𝜇

𝑖 (𝑠
𝑗 , 𝑎𝑗1,… , 𝑎𝑗𝑁+1))

2,

𝑦𝑗 = 𝑟𝑗𝑖 + 𝛾𝑄𝜇
𝑖
′(𝑠

′𝑗 , 𝑎′1,… , 𝑎′𝑁+1)|𝑎′𝑘=𝜇′𝑘(𝑜
𝑗
𝑘)
,

(26)

where 𝑦𝑗 denotes the value of target 𝑄 and 𝛾 is the discount factor.
𝑄𝜇

𝑖
′(𝑠′𝑗 , 𝑎′1,… , 𝑎′𝑁+1)|𝑎′𝑘=𝜇′𝑘(𝑜

𝑗
𝑘)
 is the state–action value at the next time

step.

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
Fig. 2. Framework for TO-SG-MADDPG algorithm in the proposed MEC system.
Finally, the parameters of the target network are updated by soft
update. The update formula for the target actor network and the target
critic network is given by

𝜃𝜇𝑖
′ ← 𝜏𝜃𝜇𝑖 + (1 − 𝜏)𝜃𝜇𝑖

′, (27)

𝜃𝑄𝑖
′ ← 𝜏𝜃𝑄𝑖 + (1 − 𝜏)𝜃𝑄𝑖

′, (28)

where the soft update parameter is expressed as 𝜏 ∈ [0, 1].

5.2. TO-SG-MADDPG algorithm

To solve the game problem in the proposed model, it is feasible
to centrally train service provider agent and user agents using the
MADDPG algorithm based on the Stackelberg game (TO-SG-MADDPG).
For a clearer understanding, Fig. 2 shows the framework of the al-
gorithm. Agents can update their strategies independently based on
their reward function, actor network and critic network. Different
from the traditional MADDPG algorithm, during the training of the
TO-SG-MADDPG, the leader (𝐿) first formulates a strategy according
to observation. Each follower agent (𝐹𝑖, 𝑖 ∈ 𝑁) receive the leader’s
strategy and subsequently update their own strategies. Resource pricing
and task offloading strategies can be extracted from the model after the
model has been well-trained.

The TO-SG-MADDPG algorithm for the optimization problem of the
model is concluded in Algorithm 1, where 𝑇 time slots are included in
each episode.

Next, the computational complexity of TO-SG-MADDPG algorithm
is analyzed. The computational complexity of the training process is
primarily associated with the layers of the deep neural network (DNN)
utilized by each agent and the number of neurons in each layer.
Specifically, let 𝑆𝐿 and 𝜁𝐿𝑠 denote the number of layers in the leader’s
DNN and the number of neurons in 𝑠th layer. 𝑆𝐹

𝑖 and 𝜁𝐹𝑖,𝑠 are the number
of layers in the follower 𝑖’s DNN and the number of neurons in 𝑠th layer,
respectively. In a single training step, the computational complexity
of the DNN is (𝑁(

∑𝑆𝐿−1
𝑠=1 𝜁𝐿𝑠 𝜁

𝐿
𝑠+1) +

∑𝑛
𝑖=1 𝑁(

∑𝑆𝐹
𝑖

𝑠=1 𝜁
𝐹
𝑖,𝑠𝜁

𝐹
𝑖,𝑠+1)), where

𝑁 is the mini-batch size [36]. Since the TO-SG-MADDPG algorithm
is completed by a finite number of DNNs and each agent only needs
to deal with its own strategy. Therefore, the computational complexity
of the leader and follower is (∑𝑆𝐿−1

𝑠=1 𝜁𝐿𝑠 𝜁
𝐿
𝑠+1) and (

∑𝑆𝐹
𝑖

𝑠=1 𝜁
𝐹
𝑖,𝑠𝜁

𝐹
𝑖,𝑠+1),

respectively.
8
Algorithm 1: TO-SG-MADDPG Algorithm for Resource Pricing
and Task Offloading

Input: Number of agents, actor network architecture, critical
network architecture

Output: Parameters of the target network
1 Initialize the parameters of actor network 𝜃𝜇 and critic network

𝜃𝑄, the parameters of target actor network 𝜃𝜇 ′ and critic
network 𝜃𝑄′ ;

2 Initialize the experience replay buffer for each agent;
3 for each episode do
4 Initialize the initial state 𝑜𝐿(𝑡) for Ma-BSs and Mi-BSs, and

the initial state 𝑜𝐹𝑖 (𝑡) for each EU;
5 Obtain the environment initial state space 𝑠(𝑡);
6 for each time slot t = 1,2,...,T do
7 For agent 𝐿, select action 𝑎𝐿(𝑡) = 𝜇𝜃𝐿 (𝑜𝐿(𝑡));
8 For each agent 𝐹𝑖, select action 𝑎𝑖(𝑡) = 𝜇𝜃𝐹𝑖 (𝑜

𝐹
𝑖 (𝑡));

9 Execute action 𝑎(𝑡) = (𝑎𝐿(𝑡), 𝑎1(𝑡), ..., 𝑎𝑁 (𝑡)), obtain its
reward 𝑟𝐿(𝑡), 𝑟𝑖(𝑡) and next observation 𝑜(𝑡 + 1);

10 for each agent i ∈ {𝐿, 𝐹1, ..., 𝐹𝑁} do
11 Randomly sample a minibatch of 𝜒 samples from the

replay buffer ;
12 Set 𝑦𝑗 = 𝑟𝑗𝑖 + 𝛾𝑄𝜇

𝑖
′ (𝑠′𝑗 , 𝑎′1, ..., 𝑎

′

𝑁+1)|𝑎′𝑘=𝜇
′
𝑘(𝑜

𝑗
𝑘)
;

13 Update critic’s online network through minimizing
the loss 𝐿(𝜃𝑄𝑖) = 1

𝜒
∑

𝑗
(𝑦𝑗 −𝑄𝜇

𝑖 (𝑠
𝑗 , 𝑎𝑗1, ..., 𝑎

𝑗
𝑁+1))

2;

14 Update actor’s online network utilizing the policy
gradient according to Eq. (25);

15 end
16 Update target network parameters for each agent based

on Eqs. (27) and (28).
17 end
18 end

6. Performance evaluation

In this section, the effectiveness of the TO-SG-MADDPG algorithm
is evaluated through simulation. we evaluate the effectiveness of the
TO-SG-MADDPG algorithm through simulation, aiming to approximate

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
Table 3
Configurations of simulation parameters.
 Parameters Value
 The Channel Bandwidth of Ma-BS 80 MHz
 The Channel Bandwidth of Mi-BS 40 MHz
 The network coverage radius of Ma-BS 40
 The network coverage radius of Mi-BS 20
 Maximum available energy for Ma-BS 1 × 103 mJ
 Maximum available energy for Mi-BS 1 × 103 mJ
 The maximum delay tolerance of EU 𝑖 [0.002, 0.01] s
 The size of the experience buffer 20 000
 Learning rate for action and value networks 0.0001
 Activation function for action and value networks Relu

a realistic multi-user MEC scenario. Firstly, the parameter settings of
the experiments are introduced, and then 4 sets of experiments are
designed to verify the convergence as well as the performance of the
algorithm.

6.1. Experimental setup

Python and TensorFlow are utilized to perform the TO-SG-MADDPG
algorithm for resource pricing and task offloading. Consider a dynamic
time-varying multi-resident MEC system with randomly distributed 1
Ma-BS and 𝑚 = 2 Mi-BSs. The bandwidth of the Ma-BS is 80 MHz and
the bandwidth of each Mi-BS is 40 MHz. The network coverage radius
𝛾0, 𝛾𝑗 of the two types of BSs are 40 and 20, respectively. The 𝑛 = 6 EUs
are randomly distributed around the BSs. While the simulation setup is
relatively small in scale, it is designed to clearly validate the core mech-
anisms of the algorithm. With its distributed decision-making structure
and DRL-based framework, the algorithm can efficiently scale to larger
MEC systems. Assume that the energy collected by Ma-BS in each time
slot is a random number obeying a uniform distribution within [20, 80]
mW. The energy collected by Mi-BSs obeys a uniform distribution of
[10, 40] mW [19,37]. Besides, the channel gain of the wireless network
of Ma-BS is randomly selected within a set {−15, −12, −9, −7, −5} dB.
The set interval of the channel gain of Mi-BSs is {−10, −8, −5, −3,
−2} dB. The parameters in the utility function of the leader are set as
𝜔1 = 0.5, 𝜔2 = 0.2, 𝜔3 = 0.1, and 𝜔4 = 0.2. The setting of parameters
in the cost function for each follower are 𝜆1 = 0.6, 𝜆2 = 0.2, and
𝜆3 = 0.2. These values were chosen based on the relative importance
of each component in practical edge computing scenarios, ensuring a
balanced trade-off between cost, task execution efficiency, and system
latency. Both actor network and critical network in our proposed TO-
SG-MADDPG algorithm are four-layer fully connected neural networks.
The ReLU function is employed as the activation function for both the
actor network and the critical network. The tasks in the simulation are
divided into three categories: standard (40%), delay-sensitive (30%),
and computation-intensive (30%).

Furthermore, the values of other important experimental parame-
ters are demonstrated in Table 3.

6.2. Result analysis

6.2.1. Convergence experiment on reward value
In the experiments, the convergence of the proposed mechanism

is verified. The arrival probability of the task for EUs is set to be
𝜆 = 0.5, and 𝜉 = 0.4. Fig. 3 shows the trend of the leader and follower
reward values. As can be seen, the Q-values of both the leader and
follower agents gradually stabilize after approximately 250 iterations,
demonstrating the algorithm’s relatively fast convergence speed in
MEC systems. This is because the network parameters are randomly
initialized for every agent. In the early stages of training, the agents
will try various strategies for different explorations, as the agents may
not have learned the optimal strategy. As the training progresses, the
agents gradually shift to stable strategies that can achieve high rewards.
9
Fig. 3. Average rewards for leader and followers during the training period.

Fig. 4. Average latency trend for each EU during the training period.

Fig. 5. Task loss amount trend for each EU during the training period.

As shown in Fig. 3, the fluctuation in reward values after convergence
is minimal, indicating that the algorithm not only converges quickly
but also achieves stable, reliable results, demonstrating its robustness
in maintaining performance over time.

This convergence process highlights the dynamic adjustment of
the leader’s pricing strategy during the training phase. The leader
(BSs) refines the resource pricing based on task demands and follower
(EUs) responses, gradually guiding the system to an equilibrium where
resource allocation and task offloading are optimized.

6.2.2. Performance experiments for each EU
Figs. 4 and 5 demonstrate the effectiveness of the algorithm for the

performance at the EU side. The 6 EUs are denoted by EU 1 to EU 6.
Additionally, we analyze the performance of TO-SG-MADDPG from the

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
Fig. 6. The trends of average latency for different task types.

Fig. 7. The trends of task loss amount for different task types.

perspective of latency and task loss amount of the EUs. The task loss
amount is calculated as the ratio of lost tasks to the total number of
tasks.

Fig. 4 illustrates the variation of the latency of the six EUs with it-
erations. At the beginning of the iteration, the latency of all EUs except
EU 2 is high due to the randomness of the initial value. Subsequently,
the latency of EU 2 slowly rises while the latency of the remaining
EUs decreases rapidly. This is because the leader agent allocates more
resources to EU 2 during the early stage of the experiment. With the
resource competition among the EUs, the Ma-BS and Mi-BSs adjust
their pricing strategies and gradually allocate reasonable computational
resources to the EUs. The latency of each EUs reaches stabilization
when it proceeds to about the 200th generation.

Task loss amount is a direct measure of user experience and system
performance, by which we can effectively evaluate the proposed algo-
rithm. As shown in Fig. 5, the task loss shows significant fluctuations
within the first 100 iterations, indicating that the resource allocation
strategy is still adapting. After approximately 100 iterations, the task
loss stabilizes, reflecting the fast convergence of the system. Moreover,
the low fluctuation of the task loss after stabilization demonstrates
the high convergence accuracy of the algorithm, ensuring stable and
efficient task execution. With continued iterations, the leader agent
gradually adapts its pricing strategy to allocate intelligent resources
depending on task prioritization and the performance of the EUs. This
makes the system gradually converge to a resource allocation with a
more reasonable amount of task loss after 100 iterations, and achieves
stable and efficient task execution.

6.2.3. Performance experiments on different task types
In this part, we analyze and compare the average latency, task loss

amount and energy consumption of the three task types. The value
10
Fig. 8. The trends of energy consumption for different task types.

intervals for the size and computational density of the computationally
intensive tasks are [3, 9] × 103 and [6, 10] × 104, respectively.

According to Fig. 6, the average latency of the three tasks gradually
decreases as the number of iterations increases. This is because the
agents adapt to the different task attributes by learning and adjusting
so that the system can effectively satisfy the task requirements. This
demonstrates the robustness of the algorithm in dynamically learning
and adapting to various task demands. Under different task attributes,
the latency curves show different trends. Computation-intensive tasks
have the highest latency, which is due to the fact that such tasks re-
quire more computational resources and may be constrained by system
resources resulting in higher latency. Standard tasks have the second
highest latency and latency-sensitive tasks have the lowest latency.
Latency-sensitive tasks are more likely to receive timely response and
resource allocation, and thus perform better in terms of latency.

The pricing mechanism ensures that latency-sensitive tasks, which
are more time-critical, are prioritized in resource allocation by dy-
namically adjusting the price to reflect their urgency. This enables the
system to handle task heterogeneity more effectively and achieve better
overall performance.

Similar to the latency experiment, Fig. 7 shows that the amount of
lost tasks decreases gradually with iterations. Specifically, computation-
intensive tasks have the most amount of loss, followed by delay-
sensitive and standard tasks second and third, respectively. This phe-
nomenon can be explained by the characterization of task attributes.
For computation-intensive tasks, initially, the random allocation of
resources may make it difficult for such tasks to obtain sufficient
computational resources, which leads to higher task loss. As the system
optimizes the resource allocation, the loss of computation-intensive
tasks gradually decreases. In addition, since delay-sensitive tasks have
high requirements on delay, the uncertainty of resources at the be-
ginning of the experiment leads to a higher amount of task loss for
such tasks. Subsequently, the system intelligently adjusts the resource
allocation so that the amount of task loss gradually decreases. The
observed trends further validate the effectiveness of the pricing strategy
in allocating resources to tasks based on their specific requirements.
By leveraging the Stackelberg game framework, the leader agent opti-
mally prices resources to balance the task loss and system efficiency.
In addition, standard tasks have relatively balanced requirements on
computational resources and timeliness, and thus show a lower amount
of task loss at the beginning of the experiment. As the agents learn and
adjust, the amount of lost tasks for this type of task still decreases, but
its reduction is relatively slow.

Fig. 8 reflects the variation in energy consumption for each type
of task. The three curves in the figure all decrease and then stabilize.
Latency-sensitive tasks require tasks to be completed in a shorter time.
In order to ensure timeliness, the leader agent prefers to allocate
more resources, resulting in higher energy consumption for this type

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
Fig. 9. The trend of average latency based on computing capacity.

Fig. 10. The trend of task loss amount based on computing capacity.

of tasks. The reason for the low energy consumption of computation-
intensive tasks is related to factors such as more task loss. The leader
agent prioritizes delay-sensitive tasks, resulting in the lowest energy
consumption for computation-intensive tasks. This reflects the relative
advantage of the proposed algorithm in adapting to delay-sensitive
tasks and standard tasks.

6.2.4. Comparative experiment on computational capacity
Due to differences in application scenarios, experimental setup and

optimization objectives, it is difficult to directly compare the proposed
TO-SG-MADDPG algorithm with other more advanced algorithms. In
this part, we used the classical MADDPG algorithm as a comparison
algorithm to conduct experiments on the computational capacity of Ma-
BS. The MADDPG algorithm used in this experiment is a multi-agent
reinforcement learning algorithm where all agents act simultaneously
and learn their policies in a decentralized manner. It involves initializ-
ing actor and critic networks, selecting actions based on observations,
executing actions and storing transitions, training the networks by min-
imizing prediction errors, and periodically updating target networks.
The computational capacity of Mi-BSs is kept at one-half of that of
Ma-BS.

In Fig. 9, the latency of both the MADDPG algorithm and the TO-
SG-MADDPG algorithm decreases significantly as the computational
capacity of the BSs increases. The increase in the computational capac-
ity of the BSs allows the EUs to obtain more computational resources,
thus reducing the latency of the task execution. Results show that the
TO-SG-MADDPG algorithm has lower latency compared to the MAD-
DPG algorithm. It is because the TO-SG-MADDPG algorithm utilizes
the idea of Stackelberg game. The leader agent makes the decision first
and the follower agents adjust their strategies according to the leader’s
11
Fig. 11. Average latency comparison of different algorithms.

Fig. 12. Task loss amount comparisons of performance of different algorithms.

decision, which can better coordinate the resource allocation of the
whole system.

Fig. 10 shows that the TO-SG-MADDPG algorithm has relatively low
task loss for all kinds of computational capacities. As the computational
capacity of BSs increases, the gap between the MADDPG algorithm
and the TO-SG-MADDPG algorithm on the amount of task loss grad-
ually decreases. This is because both algorithms are able to allocate
resources flexibly as the computational capacity increases. However,
the TO-SG-MADDPG algorithm still shows better performance with less
computational capacity.

6.2.5. Comparisons with state-of-the-art methods
In order to compare the performance of the proposed TO-SG-

MADDPG algorithm with state-of-the-art methods, we conducted exper-
iments evaluating its performance against several advanced reinforce-
ment learning algorithms: MADDPG, DDPG, and Q-Learning.

MADDPG: A multi-agent reinforcement learning algorithm where
all agents act simultaneously and learn their policies in a decentral-
ized manner.

DDPG: A model-free, off-policy algorithm used in single-agent en-
vironments for continuous action spaces.

Q-Learning: A classical reinforcement learning algorithm that is
widely used in single-agent settings and focuses on learning an
optimal policy using value iteration.

In Fig. 11, as the number of iterations increases, the average latency
for each algorithm decreases. This is due to the algorithms gradually

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
refining their policies as training progresses. The TO-SG-MADDPG al-
gorithm demonstrates significantly lower latency compared to the other
algorithms. This can be attributed to the Stackelberg game-based struc-
ture of TO-SG-MADDPG, where the leader agent makes decisions first,
and the follower agents adjust their strategies accordingly. This ap-
proach facilitates better resource allocation and coordination, leading
to reduced delays in task execution.

Fig. 12 presents the task loss amount for each algorithm. As the
number of iterations increases, task loss decreases for all algorithms, re-
flecting better learning and resource allocation over time. Specially, the
TO-SG-MADDPG algorithm consistently shows lower task loss across all
stages of training.

The results from Figs. 11 and 12 illustrate that, compared to the
other state-of-the-art algorithms, the TO-SG-MADDPG algorithm per-
forms better in both minimizing average latency and reducing task
loss. It shows effectiveness in resource-constrained multi-agent environ-
ments.

These comparisons further demonstrate the advantage of incor-
porating a pricing mechanism in the TO-SG-MADDPG algorithm. By
optimizing resource pricing, the system achieves better coordination
between leaders and followers, leading to more efficient task execution
and lower task loss. This pricing mechanism enhances the adaptability
of the algorithm to different system configurations and task demands,
further strengthening its robustness.

7. Conclusions and future work

This paper designs a mobile edge computing task offloading sys-
tem based on multi-base station cooperation. The system takes into
account the cooperative computing capabilities of macro and micro
base stations, as well as the stochastic nature of task arrival and energy
collection in real application scenarios. Facing three kinds of tasks
characterized by computation-intensive, delay-sensitive, and standard,
a Stackelberg game is introduced to find the balance point of economic
efficiency between base stations and terminal devices. By converting
the original problem into a MDP, a task offloading algorithm based
on multi-intelligence deep reinforcement learning is proposed. The
algorithm is able to learn historical data to optimize task offloading and
pricing decisions. Experiments demonstrate that the algorithm is able
to reduce latency and task loss while improving system effectiveness.
While the proposed model assumes negligible overhead for metadata
transmission to the decision-making BS, future work will incorporate
fine-grained modeling of initial coordination costs, particularly in sce-
narios with highly dynamic network conditions or large metadata sizes.
The random distribution and mobility of EUs make resource allocation
challenging. Future research will explore dynamic resource allocation
strategies that consider EU mobility. Based on the real-time location
of EUs, resources are flexibly allocated to further improve resource
efficiency and system performance.

CRediT authorship contribution statement

Zhao Tong: Funding acquisition, Formal analysis, Data curation,
Conceptualization. Xin Deng: Methodology, Conceptualization.
Yuanyang Zhang: Investigation, Formal analysis. Jing Mei:
Software, Resources. Can Wang: Writing – review & editing,
Visualization, Supervision, Project administration, Formal analysis,
Conceptualization. Keqin Li: Validation, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.
12
Data availability

The data that has been used is confidential.

References

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge computing: Vision and challenges,
IEEE Internet Things J. 3 (5) (2016) 637–646.

[2] J. Du, Z. Kong, A. Sun, J. Kang, D. Niyato, X. Chu, F.R. Yu, MADDPG-based joint
service placement and task offloading in MEC empowered air-ground integrated
networks, IEEE Internet Things J. (2023).

[3] Z. Tong, F. Ye, M. Yan, H. Liu, S. Basodi, A survey on algorithms for intelligent
computing and smart city applications, Big Data Min. Anal. 4 (3) (2021)
155–172.

[4] Q. Zhang, L. Cheng, R. Boutaba, Cloud computing: state-of-the-art and research
challenges, J. Internet Serv. Appl. 1 (2010) 7–18.

[5] J.W. Rittinghouse, J.F. Ransome, Cloud Computing: Implementation, Manage-
ment, and Security, CRC Press, 2017.

[6] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge computing research, IEEE
Access 8 (2020) 85714–85728.

[7] Z. Tong, X. Deng, Z. Xiao, D. He, A.T. Chronopoulos, S. Dustdar, A bilateral game
approach for task outsourcing in multi-access edge computing, IEEE Trans. Netw.
Serv. Manag. (2023).

[8] Y. Chiang, Y. Zhang, H. Luo, T.-Y. Chen, G.-H. Chen, H.-T. Chen, Y.-J. Wang,
H.-Y. Wei, C.-T. Chou, Management and orchestration of edge computing for iot:
A comprehensive survey, IEEE Internet Things J. (2023).

[9] F. You, X. Yuan, W. Ni, A. Jamalipour, A novel privacy-preserving incentive
mechanism for multi-access edge computing, IEEE Trans. Cogn. Commun. Netw.
10 (5) (2024) 1928–1943.

[10] P. Zhao, J. Tao, K. Lui, G. Zhang, F. Gao, Deep reinforcement learning-based joint
optimization of delay and privacy in multiple-user MEC systems, IEEE Trans.
Cloud Comput. 11 (2) (2023) 1487–1499.

[11] C. Dong, Y. Tian, Z. Zhou, W. Wen, X. Chen, Joint power allocation and task
offloading for reliability-aware services in NOMA-enabled MEC, IEEE Trans.
Wirel. Commun. (2023).

[12] B. Baek, J. Lee, Y. Peng, S. Park, Three dynamic pricing schemes for resource
allocation of edge computing for IoT environment, IEEE Internet Things J. 7 (5)
(2020) 4292–4303.

[13] K. Sadatdiynov, L. Cui, L. Zhang, J.Z. Huang, S. Salloum, M.S. Mahmud, A review
of optimization methods for computation offloading in edge computing networks,
Digit. Commun. Netw. (2022).

[14] Z. Tong, X. Deng, J. Mei, L. Dai, K. Li, K. Li, Stackelberg game-based task
offloading and pricing with computing capacity constraint in mobile edge
computing, J. Syst. Archit. 137 (2023) 102847.

[15] Z. Tong, Y. Zhang, J. Mei, W. Ai, K. Li, K. Li, Stackelberg game-based bandwidth
allocation and resource pricing for multiuser in MEC system, IEEE Internet Things
J. 11 (13) (2024) 23737–23751.

[16] A. Islam, A. Debnath, M. Ghose, S. Chakraborty, A survey on task offloading in
multi-access edge computing, J. Syst. Archit. 118 (2021) 102225.

[17] Y. Mao, J. Zhang, K.B. Letaief, Joint task offloading scheduling and transmit
power allocation for mobile-edge computing systems, in: 2017 IEEE Wireless
Communications and Networking Conference, WCNC, 2017, pp. 1–6.

[18] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, X.S. Shen, TOFFEE: Task
offloading and frequency scaling for energy efficiency of mobile devices in mobile
edge computing, IEEE Trans. Cloud Comput. 9 (4) (2021) 1634–1644.

[19] Y. Mao, J. Zhang, K.B. Letaief, Dynamic computation offloading for mobile-edge
computing with energy harvesting devices, IEEE J. Sel. Areas Commun. 34 (12)
(2016) 3590–3605.

[20] H. Zhou, K. Jiang, X. Liu, X. Li, V.C. Leung, Deep reinforcement learning for
energy-efficient computation offloading in mobile-edge computing, IEEE Internet
Things J. 9 (2) (2021) 1517–1530.

[21] Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, F.R. Yu, Computation offloading
for edge-assisted federated learning, IEEE Trans. Veh. Technol. 70 (9) (2021)
9330–9344.

[22] Y. Chen, F. Zhao, Y. Lu, X. Chen, Dynamic task offloading for mobile edge
computing with hybrid energy supply, Tsinghua Sci. Technol. 28 (3) (2022)
421–432.

[23] H. Seo, H. Oh, J.K. Choi, S. Park, Differential pricing-based task offloading for
delay-sensitive IoT applications in mobile edge computing system, IEEE Internet
Things J. 9 (19) (2022) 19116–19131.

[24] M. Tao, X. Li, K. Ota, M. Dong, Single-cell multiuser computation offloading in
dynamic pricing-aided mobile edge computing, IEEE Trans. Comput. Soc. Syst.
(2023).

http://refhub.elsevier.com/S1383-7621(25)00105-5/sb1
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb1
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb1
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb2
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb2
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb2
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb2
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb2
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb3
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb3
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb3
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb3
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb3
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb4
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb4
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb4
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb5
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb5
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb5
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb6
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb6
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb6
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb7
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb7
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb7
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb7
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb7
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb8
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb8
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb8
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb8
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb8
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb9
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb9
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb9
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb9
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb9
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb10
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb10
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb10
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb10
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb10
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb11
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb11
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb11
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb11
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb11
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb12
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb12
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb12
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb12
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb12
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb13
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb13
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb13
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb13
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb13
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb14
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb14
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb14
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb14
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb14
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb15
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb15
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb15
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb15
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb15
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb16
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb16
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb16
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb17
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb17
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb17
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb17
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb17
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb18
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb18
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb18
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb18
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb18
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb19
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb19
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb19
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb19
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb19
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb20
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb20
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb20
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb20
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb20
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb21
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb21
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb21
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb21
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb21
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb22
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb22
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb22
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb22
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb22
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb23
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb23
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb23
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb23
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb23
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb24
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb24
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb24
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb24
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb24

Z. Tong et al. Journal of Systems Architecture 165 (2025) 103433
[25] B. Zhu, K. Chi, J. Liu, K. Yu, S. Mumtaz, Efficient offloading for minimizing
task computation delay of NOMA-based multiaccess edge computing, IEEE Trans.
Commun. 70 (5) (2022) 3186–3203.

[26] T. Liu, S. Sheng, L. Fang, Y. Zhang, T. Zhang, W. Tong, Latency-minimized and
energy-efficient online task offloading for mobile edge computing with stochastic
heterogeneous tasks, in: 2019 IEEE 25th International Conference on Parallel and
Distributed Systems, ICPADS, IEEE, 2019, pp. 376–383.

[27] T. Bahreini, H. Badri, D. Grosu, Mechanisms for resource allocation and pricing
in mobile edge computing systems, IEEE Trans. Parallel Distrib. Syst. 33.

[28] S. Pang, X. He, S. Yu, M. Wang, S. Qiao, H. Gui, Y. Qi, A stackelberg
game scheme for pricing and task offloading based on idle node-assisted edge
computational model, Simul. Model. Pr. Theory 124 (2023) 102725.

[29] G. Mitsis, E.E. Tsiropoulou, S. Papavassiliou, Price and risk awareness for data
offloading decision-making in edge computing systems, IEEE Syst. J. 16 (4)
(2022) 6546–6557.

[30] H. Xiao, C. Xu, Y. Ma, S. Yang, L. Zhong, G.-M. Muntean, Edge intelligence: A
computational task offloading scheme for dependent IoT application, IEEE Trans.
Wirel. Commun. 21 (9) (2022) 7222–7237.

[31] S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing
resource management with energy harvesting for heterogeneous MEC-enabled
IoT, IEEE Trans. Wirel. Commun. 20 (10) (2021) 6743–6757.

[32] S. Xia, Z. Yao, G. Wu, Y. Li, Distributed offloading for cooperative intelligent
transportation under heterogeneous networks, IEEE Trans. Intell. Transp. Syst.
23 (9) (2022) 16701–16714.

[33] X. Zhang, J. Zhang, Z. Liu, Q. Cui, X. Tao, S. Wang, MDP-based task offloading
for vehicular edge computing under certain and uncertain transition probabilities,
IEEE Trans. Veh. Technol. 69 (3) (2020) 3296–3309.

[34] H. Gao, X. Wang, W. Wei, A. Al-Dulaimi, Y. Xu, Com-DDPG: task offloading based
on multiagent reinforcement learning for information-communication-enhanced
mobile edge computing in the internet of vehicles, IEEE Trans. Veh. Technol.
(2023).

[35] Z. Cheng, M. Min, M. Liwang, L. Huang, Z. Gao, Multiagent DDPG-based joint
task partitioning and power control in fog computing networks, IEEE Internet
Things J. 9 (1) (2021) 104–116.

[36] X. Guo, Y. Chen, Y. Wang, Learning-based robust and secure transmission for
reconfigurable intelligent surface aided millimeter wave UAV communications,
IEEE Wirel. Commun. Lett. 10 (8) (2021) 1795–1799.

[37] G. Zhang, W. Zhang, Y. Cao, D. Li, L. Wang, Energy-delay tradeoff for dynamic
offloading in mobile-edge computing system with energy harvesting devices, IEEE
Trans. Ind. Inform. 14 (10) (2018) 4642–4655.

Zhao Tong received the Ph.D. degree in computer science
from Hunan University, Changsha, China, in 2014. From
2017 to 2018, he was a visiting scholar at the Georgia
State University. He is currently a full professor at the
College of Information Science and Engineering of Hunan
Normal University. His research interests include parallel
and distributed computing systems, resource management,
machine learning algorithm and big data. He has published
more than 25 research papers in international conferences
and journals. He is a senior member of the IEEE and a senior
member of the China Computer Federation (CCF).
13
Xin Deng received the B.S. degree in computer science and
technology from Hengyang Normal University, Hengyang,
China, in 2020. She is currently working toward the M.S.
degree at the College of Information Science and Engi-
neering, Hunan Normal University, Changsha, China. Her
research interests focus on distributed parallel computing,
modeling and resource pricing and allocation in mobile edge
computing systems, and game theory.

Yuanyang Zhang received the B.S. degree in software
engineering from Central South University of Forestry and
Technology, Changsha, China, in 2022. She is currently
pursuing a master’s degree at the College of Information
Science and Engineering, Hunan Normal University, located
in Changsha, China. Her research interests mainly revolve
around the areas of mobile edge computing and game
theory.

Jing Mei received the Ph.D. in computer science from
Hunan University, China, in 2015. She is currently an
associate professor in the College of Information Science
and Engineering at Hunan Normal University. Her research
interests include parallel and distributed computing, cloud
computing, etc. She has published 12 research articles in
international conference and journals. She is a member of
the IEEE.

Can Wang received the BE degree from Tianjin Normal Uni-
versity, Tianjin, China, in 2023. She is currently pursuing
the M.S. degree with the College of Information Science and
Engineering, Hunan Normal University, Changsha, China.
Her research interests focus on mobile edge computing, task
offloading and objective optimization.

Keqin Li is a SUNY Distinguished Professor of computer
science with the State University of New York. He is
also a Distinguished Professor at Hunan University, China.
His current research interests include cloud computing,
fog computing and mobile edge computing, energy-efficient
computing and communication, embedded systems and
cyber–physical systems, heterogeneous computing systems,
high-performance computing, computer architectures and
systems, CPU–GPU hybrid and cooperative computing, com-
puter networking, machine learning, intelligent and soft
computing. He has authored or coauthored over 850 journal
articles, book chapters, and refereed conference papers,
and has received several best paper awards. He currently
serves or has served on the editorial boards of the IEEE
Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Computers, the IEEE Transactions on Cloud
Computing, the IEEE Transactions on Services Computing,
and the IEEE Transactions on Sustainable Computing. He is
an IEEE Fellow.

http://refhub.elsevier.com/S1383-7621(25)00105-5/sb25
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb25
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb25
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb25
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb25
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb26
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb26
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb26
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb26
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb26
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb26
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb26
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb27
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb27
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb27
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb28
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb28
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb28
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb28
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb28
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb29
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb29
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb29
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb29
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb29
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb30
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb30
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb30
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb30
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb30
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb31
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb31
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb31
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb31
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb31
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb32
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb32
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb32
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb32
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb32
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb33
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb33
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb33
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb33
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb33
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb34
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb34
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb34
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb34
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb34
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb34
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb34
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb35
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb35
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb35
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb35
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb35
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb36
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb36
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb36
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb36
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb36
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb37
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb37
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb37
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb37
http://refhub.elsevier.com/S1383-7621(25)00105-5/sb37

	MADDPG-based task offloading and resource pricing in edge collaboration environment
	Introduction
	Related Work
	MEC Systems With Single Server and Single User
	MEC Systems With Single Server and Multiple Users
	MEC Systems With Multiple Servers and Multiple Users

	Model description and Assumptions
	MEC System Model
	End-User Task Model
	Task Offload To Edge Servers (Ma-BS and Mi-BSs)
	Communication Model
	Task Execution Model

	Task offloading and resource allocation scheme based on Stackelberg
	Problem Formulation
	Optimizing Problems with MDP Conversion
	Player Set
	Environment State Space
	Observation State Space
	Action Space
	Reward Function

	Solutions For Stackelberg Game
	Workflow of MADDPG Algorithm
	TO-SG-MADDPG Algorithm

	Performance Evaluation
	Experimental Setup
	Result Analysis
	Convergence Experiment On Reward Value
	Performance Experiments For Each EU
	Performance Experiments On Different Task Types
	Comparative Experiment on Computational Capacity
	Comparisons with State-of-the-Art Methods

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

