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As a new computing model, mobile edge computing (MEC) is designed to better deal with various forms 
of service requests, such as computing intensity and delay sensitivity, in the era of big data and the 
Internet of Things (IoT). However, the development of MEC is still in its infancy, and many issues need 
to be further investigated. One of the key issues that needs to be addressed in MEC is rational task 
offloading. Due to the dynamic, real time and complex nature of the MEC environment, the security and 
reliability of edge data are becoming increasingly important. Based on the above problems, we construct 
a task offloading integrated trust evaluation mechanism and, combined with the double deep Q-network 
(DDQN) algorithm in deep reinforcement learning (DRL), propose a novel task offloading algorithm, 
named DDTMOA. Simulation results show that the DDTMOA algorithm can effectively reduce the average 
task response time and total system energy consumption while ensuring task offloading performance 
compared to other classical algorithms.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

With the advent of the 5G network era, 5G communication 
technology is gradually moving toward standardization. The IoT [2]
and in-vehicle networks (IVNs) [17] are increasingly widely used in 
people’s daily lives. With the increase in terminal equipment, data 
present explosive growth. According to the latest results of the 
Cisco global cloud index, in 2021, the quantity of data generated 
by various terminal devices, humans, and machines reached 3.2 
zettabytes (ZB) [11]; additionally, Huawei predicts that by 2025, 
the number of terminal devices connected to the Internet of Things 
will be infinitely close to 100 billion [8].

MEC [1], as an effective supplement to cloud computing, gath-
ers various resources, such as computing, storage, intelligence, and 
application, at the edge of the network (near the user end). Part 
of the user’s service requests can be offloaded to a near-end MEC 
server for processing through the wireless channel so that delay-
sensitive tasks can respond quickly, reduce task response time, and 
improve the user’s Quality of Service (QoS) and Quality of Expe-
rience (QoE). Some tasks are offloaded to the MEC server, which 
can alleviate network bandwidth transmission pressure and reduce 
the transmission energy consumption and transmission overhead. 
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Some of the computationally intensive tasks can be offloaded to a 
remote cloud center with more sufficient computing and storage 
resources via edge base stations (BSs) through the core network 
for processing so that computationally intensive service requests 
can also be guaranteed. Therefore, reasonable task offloading (com-
puting offloading) is particularly important. Because of real-time 
dynamics and edge environment complexity, edge environment 
security, such as data offloading security, is also facing a great 
challenge. The reliability and security of edge data are becoming 
increasingly prominent [21], [9]. Therefore, to ensure the reliability 
and security of edge data, new methods of offloading data security 
tasks for edge computing are urgently needed.

Design efficient task scheduling and resource allocation strate-
gies is one of the ways to enhance the task offloading experience 
of mobile users in the MEC distributed systems. Currently, an in-
creasing number of scholars are using reinforcement learning to 
solve this problem [13], [34]. Among them, the Q-learning algo-
rithm determines the value of each state corresponding to the next 
action by constructing a Q-table. However, the low-dimensional in-
puts and outputs are not able to satisfy complex MEC scenarios. In 
the next step, many complex strategies use DRL to allocate tasks 
as well as resources [37]. In conjunction with deep learning, neu-
ral networks are used instead of the Q-table. While this approach 
enables deep Q network (DQN) to handle high-dimensional data, it 
tends to be limited to falling into suboptimal solutions [19], [25]. 
Therefore, to obtain a better offloading strategy when the num-
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ber of end devices is quite large, we design an offloading strategy 
based on the DRL algorithm DDQN. However, simply establishing
such an offloading strategy is not enough. Because there will be an 
other significant problem-trust management that should be con-
sidered [22], [30]. During the offloading process, the user’s identity 
authority and the trustworthiness of the compute node may pose 
a threat to security and privacy. To reduce these security risks, we 
propose a trust mechanism considering three aspects: identity, be-
havior, and capability.

Therefore, this paper studies the task offloading problem based 
on the integrated trust evaluation mechanism combined with 
DDQN [16] and proposes a novel task offloading algorithm, which 
provides a new idea for solving the task offloading problem in the 
MEC environment and has certain value and significance for future 
theoretical research and practical application significance.

The main contributions of this paper are as follows:

• To ensure the reliability, privacy, and security of edge data 
when solving the task offloading problem in mobile edge com-
puting, we propose a task offloading framework based on an 
integrated trust evaluation mechanism. The mechanism con-
sists of trusted identity, trusted behavior, and trusted capabil-
ity.

• We build a two-tier MEC model, and based on Markov decision 
theory, the task offloading problem under the two-tier MEC 
model is modeled as a Markov decision process (MDP), and 
explore the optimal strategy through the DRL method. We in-
tegrate the trust mechanism into the constraints of the model, 
which is a prerequisite for performing DRL.

• We study a biobjective problem in a two-tier MEC environ-
ment. To objectively describe the proportion of two optimiza-
tion objectives in the MEC scene, we use the entropy weight 
method to estimate the weight value of the optimization ob-
jectives.

• Based on the integrated trust mechanism and combined with 
the DDQN algorithm, we propose a novel task offloading algo-
rithm. Experimental results show that our proposed algorithm 
has better performance than other algorithms.

The rest of this paper is organized as follows. The Section 2 re-
views related work on the task offloading problem in the MEC en-
vironment. The Section 3 describes the MEC model, task type and 
definition, communication model, computation model, integrated 
trust mechanism, and task offloading problem. The Section 5 ex-
plains the MDP model, the DRL method and DDQN algorithm, and 
the main content and design principle of our algorithm. The Sec-
tion 6 compares the performance of our proposed algorithm with 
that of several other algorithms and analyzes the experimental re-
sults. Finally, the Section 7 summarizes this paper and provides 
potential directions for future work.

2. Related work

MEC, as a new computing model, has been widely considered 
by academia and industry since it was proposed. Many scholars 
have carried out in-depth research on MEC and have fully consid-
ered the security, reliability and privacy of edge data, task offload-
ing and resource allocation in the MEC environment. Efficient task 
offloading maximizes the benefits of user providers and improves 
the QoS and QoE of users as much as possible under limited re-
sources. Task offloading is a typical NP-hard problem [10].

At present, for the task offloading problem in an MEC environ-
ment, the main optimization objectives include energy consump-
tion, delay, and cost. For different optimization objectives, many 
optimization methods have been proposed. To minimize system 
energy consumption, the profits of mobile service providers (MSPs) 
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are maximized. Wang et al. [28] studied a unified MSP perfor-
mance tradeoff framework, using Lyapunov technology to optimize 
the framework, and the VariedLen algorithm to solve the optimiza-
tion problem. The experimental results show that this method can 
make the average MSP profit reach the optimal level under the 
premise of ensuring system stability and low congestion. To im-
prove the energy efficiency of an MEC system, Wang et al. [31]
proposed the joint energy minimization and resource allocation 
problem of CRAN and MEC and transformed the problem into a 
nonconvex optimization problem. Under the delay constraint, an 
iterative algorithm was used to solve the optimization problem 
to minimize the weighted sum of the two kinds of energy. The 
simulation results show that the method can improve system per-
formance and save energy.

The above task offloading optimization methods can improve 
the performance of MEC systems to a certain extent. However, 
the objectives of the above methods are relatively singular, and 
there may be a case of optimizing another objective at the cost 
of one resource. Therefore, the optimization of a single objective 
is not enough to verify that an optimization method is absolutely 
effective. [35] designed a task offloading optimization framework. 
Under this framework, an optimization problem was proposed to 
minimize both task execution delay and offloading failure probabil-
ity. The problem was transformed into a nonconvex optimization 
problem and solved by a heuristic algorithm. Numerical simulation 
results show that the proposed method can trade off task delay 
and energy consumption with less complexity.

The above methods consider the biobjective and multiob-
jective problems in MEC and solve the optimization problems 
through linear optimization, nonlinear optimization, convex op-
timization, combinatorial optimization and other mathematical 
methods, which reflects MEC performance to a certain extent. 
However, the above pure mathematical combination optimization 
methods have great limitations, the solution process is complex, 
the time and space complexity is high, and the universality is not 
strong, which is more reflected in the value of theoretical research. 
With the great breakthrough in artificial intelligence (AI), DRL has 
made considerable breakthroughs in the field of AI. In recent years, 
the DRL method has also been widely used in cloud computing 
and MEC scenarios. To solve the problem of multiservice node 
offloading and mobile task multidependence in large-scale het-
erogeneous MEC, Lu et al. [18] developed a new task offloading 
algorithm based on DRL and improved the algorithm by using an 
LSTM network. Simulation results showed that the algorithm is su-
perior to other algorithms in energy consumption, load balancing, 
delay and average execution time.

As mentioned above, the task offloading and resource alloca-
tion algorithm based on DRL can improve the performance of the 
MEC system to a certain extent. However, MEC wants to achieve 
comprehensive development, and the security, privacy and relia-
bility of edge data must be guaranteed. Elgendy et al. [7] created a 
multi-user resource allocation and computational offloading model 
with data security, taking into account the computational capac-
ity, resource constraints and data security of the MEC system. The 
model introduces AES encryption as a security layer to protect sen-
sitive information from network attacks. Finally, the least squares 
method is used to solve the task offloading problem. Simulation 
results show that the method can effectively improve the perfor-
mance of the system compared to local execution and complete 
offloading schemes. To ensure data security and integrity, Hou et 
al. [5] combined blockchain technology with MEC to propose a 
task allocation problem that considers node capacity and reward 
fairness, and solved it by a heuristic algorithm. To ensure the cred-
ibility of the computational results, a police patrol model was used 
to optimize the overall rewards of the system. Experimental results 
demonstrate the effectiveness of the algorithm.
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Fig. 1. Two-tier MEC model.

Currently, although researchers have carried out some research 
on related issues in MEC, most of the related research is in the 
initial stage, and many technologies are not mature enough. The 
traditional solutions to the security, reliability and privacy issues 
of cloud computing are not fully applicable to MEC. Therefore, op-
timizing the performance of MEC on the premise of ensuring the 
security and reliability of edge data is a problem worthy of fur-
ther study. For this reason, this paper proposes an integrated trust 
evaluation mechanism. Based on this mechanism, consider opti-
mizing dual objectives, including delay and energy consumption, 
combined with the DDQN [25], [32] algorithm is used to solve the 
task offloading problem in MEC. Experimental results show that 
our proposed algorithm can effectively reduce the average task 
response time and the total system energy consumption while en-
suring task offloading performance.

3. Overview of MEC model architecture

In this section, we describe the MEC model first. After that, 
we introduce the task type and definition. And we introduce the 
system submodels, including the communication model and the 
computation model.

3.1. MEC model

As shown in Fig. 1, in this paper, we consider a two-layer MEC 
model; the two layers are the local terminal equipment layer and 
the edge server layer. The local terminal equipment layer is com-
posed of various user equipment (UE) devices, and the local equip-
ment has certain computing and storage capabilities.

The edge server layer is composed of base stations (BSs) and 
edge servers. Edge servers have more computing and storage re-
sources and stronger task processing abilities than local devices. 
Each base station (BS) and multiple heterogeneous servers form 
an edge area, and the coverage of the edge area is limited. The 
UE communicates with the BS through the wireless network, and 
the BS interacts through the core network. The communication dis-
tance between UEs and BSs is different.

Task offloading can be divided into two types: partial offload-
ing and overall offloading. Partial offloading refers to decomposing 
an independent task into multiple subtasks; some subtasks are of-
floaded from the UE to the edge server for execution, and the 
remaining partial subtasks are reserved for processing on the lo-
cal UE. Overall offloading refers to offloading all tasks to the edge 
server for processing. This paper considers the overall offloading of 
tasks in the MEC model, and the tasks can only be processed on 
the edge server or UE alone. In the MEC model we consider, it is 
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assumed that the task needs to be offloaded from the local end 
to the edge server for processing. According to the task offloading 
strategy, in general, the task will be offloaded to the edge server 
near the edge area for execution. However, the task may also be 
offloaded to other edge servers in the far edge area, which will 
lengthen the communication distance and increase the task com-
munication delay.

3.2. Task type and definition

The big data era presents a variety of service requests (task re-
quests), which can be divided into different categories according to 
different task attributes. Considering whether there are dependen-
cies between tasks, tasks can be divided into independent tasks 
and nonindependent tasks. Independent tasks cannot be further 
subdivided, and there is no constraint relationship between tasks; 
nonindependent tasks include multiple tasks, and there are prior-
ity and constraint relationships between subtasks. Subtasks must 
wait for the completion of all parent tasks before they can start 
execution. Considering whether the task request is real time, the 
tasks can be divided into online tasks and offline tasks. Offline 
tasks indicate that the broker already knows the total number of 
tasks arriving at the data center, the arrival time of each task, the 
quantity of data, the requested computing resources and the stor-
age resources before starting to schedule and unload tasks. Online 
tasks refer to tasks that are generated in real time. Before schedul-
ing and unloading tasks, the broker does not know how many 
tasks will arrive in the data center and all related attributes of 
the tasks. Each task is processed every time it arrives. MEC con-
nects the wireless network and AI together, generally including 
the cloud, edge and user terminals. The user terminal generally 
refers to a mobile device such as mobile phones and notebook 
computers, and the tasks generated by these devices are small and 
independent. Therefore, this article simulates online independent 
tasks, the task queue is nonpreemptive, and the time interval for 
task generation to arrive at the data center obeys a Poisson distri-
bution. Task attributes can be defined as:

task = {idi, subi,di,memi, cpui,deadlinei, scti,areai} , (1)

where idi is the id of task i, subi is the submission time of task 
i, di represents the data size of task i, memi denotes the mem-
ory resources requested by task i, cpui indicates the computing 
resources requested by task i, deadlinei represents the maximum 
response time that task i can tolerate, scti denotes the minimum 
security level requirement for the computing node when task i re-
quests execution, and areai indicates the generation area of task 
i.

3.3. Communication model

The UE communicates with the edge BS through the wireless 
network. Assuming that the channel gain between the UE and the 
edge BS is g , the unit is dB, and the channel gain can be expressed 
as:

g = 127 + 25 · log 10 (D) , (2)

where D represents the communication distance between the UE 
and the edge BS. Assuming that task i needs to be offloaded to 
an edge server for execution, the transmission power of task i
offloaded from the UE to the edge server is p. According to the 
Shannon formula, the communication rate of task i can be given 
by:
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rl,e = B · log2

(
1 + p · g2

N · B

)
, (3)

where B represents the communication bandwidth of the wireless 
channel between the UE and the BS, and N represents the noise 
power density of the channel.

3.4. Computational model

In this subsection, we focus on the computational model in 
terms of response time and system energy consumption of the 
task, which include edge computing and local computing.

3.4.1. Local computing
The mobile UE at the local layer has certain computing and 

storage capabilities and can handle some lightweight task requests. 
The computing capability of the UE is represented by the CPU fre-
quency, which is fl . According to the task offloading strategy, if 
task i is assigned to be executed on the UE, then the execution 
time of task i on the UE and the response time of task i can be 
expressed as:

texe
i,l = di · C

fl
, (4)

tres
i,l = tct

i,l − subi, (5)

where C represents the CPU cycles required by the computing 
node to process 1 bit of data. tct

i,l represents the completion time of 
task i, which is the sum of the start execution time of task i and 
the execution time of task i. The task response time is the differ-
ence between the task completion time and the task submission 
time.

If task i is executed on the UE, there is no communication delay 
and no communication overhead. The energy consumption over-
head of task i on the UE is the execution energy consumption, and 
the execution energy consumption can be expressed as:

Eexe
i,l = η · ( fl)

2 · di · C, (6)

where η · ( fl)
2 is the energy consumption of the CPU cycle, η rep-

resents the energy factor, and the size depends on the CPU chip 
architecture [4].

3.4.2. Edge computing
Although the UE has certain computing and storage resources, 

compared to the edge server, its computing power and storage ca-
pacity are relatively limited, and it can only handle a small number 
of lightweight task requests. To better guarantee the user’s QoS re-
quest, according to the task offloading strategy, most of the task 
requests may be offloaded to the edge server for processing. The 
computing power of the edge server is defined as fe . Assuming 
that task i is offloaded to the edge server for processing, the exe-
cution time of task i on the edge server and communication time 
of task i can be expressed as:

texe
i,e = di · C

fe
, (7)

ttra
l,e = di

rl,e
. (8)

After the task is processed by the edge server, the data size in 
the result is far less than that before the task is processed, and the 
downlink rate is higher than the uplink rate. The return delay of 
the result can be ignored. Therefore, this paper is similar to the 
previous work on mobile edge computing [12], [23], which ignores 
the task in the edge server after processing, and the results are 
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returned to the local return delay. Similar to Eq. (5), the response 
time of task i processed on the edge server is defined as:

tres
i,e = tct

i,e − subi, (9)

where tct
i,e is the completion time of task i on the edge server. 

When task i is offloaded to the edge server for processing, there 
is communication energy consumption and execution energy con-
sumption on the edge server. Communication energy consumption 
and execution energy consumption are, respectively, expressed as:

Etra
l,e = p · ttra

l,e = p · di

rl,e
, (10)

Eexe
i,e = q · di, (11)

where q represents the energy consumption of processing 1 bit of 
data on the edge server. In summary, the total energy consump-
tion of the system is the sum of the energy consumption of task 
execution on the local UE, the communication energy consumption 
of task offloading to the edge server, and the energy consumption 
of task execution on the edge server.

4. Theoretical background

In this section, the theoretical background of DDQN is de-
scribed. First, we present a theoretical model of the MDP. Then, 
we present an elaboration of the details of the DRL approach.

4.1. Markov decision process

MDP [29] is a research theory used to solve sequential decision-
making problems in uncertain environments. Sequential decision-
making problems refer to problems in which the agent with 
decision-making ability needs to choose from many actions ac-
cording to the state of the current environment at each time that 
obeys the exponential distribution, and the state of the environ-
ment may change due to environmental uncertainty. Every time 
the agent makes a choice and performs an action, the agent re-
ceives a timely reward from the external environment. The reward 
affects the environmental state at the next decision time. In other 
words, in the current state, after the agent makes a decision and 
selects an action, it immediately obtains a reward value from the 
external environment and moves to the next state. With continu-
ous decision-making progress, the state continues to transfer until 
decision-making ends, and the whole decision-making process is 
completed. In essence, based on certain decision criteria, the agent 
continuously explores until it finally selects a set of optimal ac-
tions to maximize the long-term reward.

In summary, MDP is a mathematical model for the agent to 
continuously interact with the external environment, which can be 
represented by a quadruple (S, A, P , R):

• S represents the state space, which is a collection of nonempty 
finite states in the MEC scene.

• A represents the action space, which is a collection of all 
actions that can be selected in the MEC scene. As repre-
sents the set of all optional actions in the current state s, 
As = {a1,a2, ...,an}.

• P represents the state transition probability, and P
(
s′ |s,a

)
represents the probability of transition to the next state s′ af-
ter performing action a in the current state s.

• R represents the reward value function, and R (s,a) represents 
the reward value of the external environment obtained after 
action a is executed in the current state s.

To reasonably solve the task offloading problem in the MEC en-
vironment, this paper models the task offloading problem in the 
MEC environment as an MDP based on Markov decision theory.
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4.2. Deep reinforcement learning

Reinforcement learning (RL) [33] is an important branch of ma-
chine learning. In the past few years, a series of RL algorithms 
have been widely used in cloud computing environments to solve 
task scheduling and resource allocation problems. However, with 
the complexity of application scenarios, when RL algorithms deal 
with high-dimensional state space and action space problems, the 
defects that easily cause dimensional disasters are gradually in-
creased, and the performance of the algorithm gradually decreases. 
With the further breakthrough of technology, to compensate for 
the RL shortcomings, research scholars integrated RL and deep 
learning (DL) [15] and proposed a new learning method, DRL [20], 
[24]. DRL gives full play to the advantages of RL and DL. DL is 
a machine learning structure with multiple hidden layers derived 
from the study of artificial neural networks. Through a series of 
transformations on the initial features of a large number of low-
dimensional data in DL, the high-level data obtained can represent 
the relevant category attributes of data to a certain extent and find 
their distribution rules. In essence, DRL is a kind of method that 
uses a neural network as a value function estimator, specifically to 
the MEC scene, that is, fitting a high-dimensional action Q-value 
through a neural network. The neural network used to fit the Q-
value of action is generally called the Q-network, and its learning 
and fitting process can be expressed as:

N N (Q (s,a; θ)) ≈ Q ∗ (s,a) . (12)

The DDQN algorithm is a specific DRL algorithm that uses a 
deep neural network (DNN) [14] as a function approximator as a 
Q-network to fit the Q-value of the action in the scene. The al-
gorithm has two Q-networks with the same structure, one named 
the current Q-network and the other named the target Q-network. 
The current Q-network is used to estimate the current Q-value and 
update the network parameters; the target Q-network is used to 
calculate the target Q-value, and the target Q-network does not 
need to update the network parameters. After a certain training 
time step, the current Q-network will copy its network parame-
ters to the target Q-network, and the update formula of the target 
Q-value can be expressed as:

yt = r + γ · Q

(
st+1,arg max

a
Q (st+1,a; θt) ; θ−

t

)
, (13)

where r is the reward value, γ represents the discount factor, 
which is the tradeoff between the current reward and the future 
reward of the agent, and its value ranges from 0 to 1. The larger 
the value, the greater the agent values the current rewards; in con-
trast, the agent values the future rewards. θt is the parameter of 
the current Q-network at time t , and θ−

t is the parameter of the 
target Q-network at time t . arg max

a
Q (st+1,a; θt) represents the 

action a corresponding to the maximum Q-value obtained by the 
agent after executing all the decisions at the current moment.

In essence, calculating the target Q-value can be divided into 
two steps. First, an action is selected based on the current Q-
network; then, the action is used to calculate the target Q-value in 
the target Q-network. This process can also be understood as de-
coupling the target Q-value selection and the target Q-value calcu-
lation. The overestimation of the action Q-value can be eliminated 
through two steps so that the convergence speed of the algorithm 
can be accelerated. This process is also the key to improving the 
DDQN algorithm performance compared with that of other related 
RL and DRL algorithms.
189
The update of the current Q-network parameters is coordi-
nated by error backpropagation technology and the gradient de-
scent method according to the square difference loss between the 
target Q-value and the current Q-value. The loss function can be 
expressed as:

Loss (θ) = E
[
(yt − Q (st,a; θt))

2
]
. (14)

With continuous training, the loss value is constantly updated 
and adjusted. When the training reaches a certain number, the loss 
value is close to 0 and tends to be stable, indicating that the train-
ing is sufficient and the algorithm has converged. The pseudocode 
of the DDQN algorithm is shown in Algorithm 1.

Algorithm 1: The DDQN Online Algorithm.
Input: Scene state s
Output: Action a

1 Initialize replay memory and set its capacity to Crm;
2 Initialize current Q-network with para θ ;
3 Initialize target Q-network with para θ− = θ ;
4 for t = 1, T do
5 Select a random action at with probability ε; otherwise, select 

at = arg maxa (st ,a; θ);
6 Execute action at , obtain reward rt , transfer to the next state st+1;
7 Store experience tuple (st ,at , rt , st+1) in replay memory;
8 Sample random minibatch of transitions (s j ,a j, r j , s j+1

)
from replay 

memory;
9 Calculate the target Q-value using Eq. (13);

10 Perform a gradient descent step using Eq. (14);
11 Update current Q-network para θ ;
12 Every ξ steps, clone current Q-network paras to target Q-network;
13 end
14 Save current Q-network;
15 return a;

5. Algorithm design

In this section, first, we describe the integrated trust mecha-
nism. Secondly, we give a formal definition of the model optimiza-
tion problem. Finally, we present the DDTMOA detailed algorithm.

5.1. Integrated trust mechanism

In real scenarios, some criminals may attack the computing 
node with a virus, causing the computing node to be poisoned, 
paralyzed and unable to operate normally. Due to the dynamic, 
open and collaborative nature of the MEC network environment, 
it is difficult to ensure the security, privacy, and reliability of edge 
data during task offloading. To alleviate these problems, this paper 
proposes a task offloading integrated trust evaluation mechanism, 
which includes trusted identity, trusted behavior, and trusted capa-
bility. A certain proportion of untrusted cases will occur randomly 
in the computing nodes, and the specific proportion is less than or 
equal to 5%.

5.1.1. Trusted identity
Trusted identity refers to the credibility of the user’s identity 

and the executable credibility of the computing node, and its value 
is generally binary. The number 1 indicates that the identity is 
trusted, and 0 indicates that the identity is not trusted. The trusted 
identity value can be formalized as:

V ide =
{

0, untrusted identity;
1, trusted identity.

(15)

In real life, there may be some malicious intrusion into the net-
work to steal data, and there may also be criminals using viruses 
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to attack the computing node so that the computing node paralysis 
cannot work normally. Therefore, to be close to reality, this paper 
considers that users and computing nodes have a certain propor-
tion of untrusted cases. Only when the user’s identity is trusted 
and the computing node is trusted can the user’s service request 
be processed normally by the computing node.

5.1.2. Trusted behavior
Trusted behavior refers to the behavior rules that computing 

nodes must comply with. It is a subjective feeling about the degree 
of trust in the computing node behavior. It manifests as a subjec-
tive feeling in the process of completely distrusting the behavior 
of the computing node to complete trust. Its value is any value be-
tween 0 and 1. The higher the value is, the higher the credibility 
of the behavior; the lower the value is, the lower the credibility of 
the behavior.

Trusted behavior is related to the historical and current record-
ed behavior trust value. This paper uses the historical feedback of 
the computing node to determine its behavior trust value. Histori-
cal feedback is also the historical scheduling result. One of the best 
reflections of historical scheduling is the response time of task re-
quests, so behavioral trust is time-dependent, and users are more 
willing to trust the recent computing node scheduling. Therefore, 
the time decay function is introduced, and the time decay function 
can be defined as:

F (n) = tn − tn−1∑n
j=1

(
t j − t j−1

) , (16)

where t j represents the start time of the j-th task request re-
sponse. The larger F (n) is, the longer the interval between the 
start time of this task request response and the start time of the 
last task request response. In contrast, the shorter the time inter-
val.

Using the characteristics of the limit lim ex
x→−∞ = 0, the time delay 

factor Δtn = e−F (n) is defined to measure the freshness of the ser-
vice request. The higher the freshness is, the higher the behavior 
trust value. The behavior trust value can be defined as:

Tn = Tn−1 × Δtn−1. (17)

In this design, the behavior of all computing nodes is consid-
ered to be completely trusted at the beginning, that is, the behav-
ior trust value of all computing nodes is initialized to 1, and only 
when the behavior trust value of computing nodes is higher than 
the minimum trust value T low

n that can be accepted by the task 
request, can the task request be responded to.

5.1.3. Trusted capability
Trusted capability is the functional attribute displayed by the 

computing node, and it is a set of QoS-related indicators, for ex-
ample, computing power, storage space, memory size, deadline, 
bandwidth and computing node throughput. Only when the rel-
evant attributes of the task request are satisfied can the user’s task 
request respond to the computing node; otherwise, the task re-
quest cannot be responded to. The trusted indicators considered 
in this paper include the computing power, storage space, maxi-
mum response time deadline that task execution can tolerate, and 
security level of the computing node.

In summary, only when the trusted identity, trusted behavior, 
and trusted capability are all satisfied, can the user’s task request 
be successfully responded to.
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5.2. Problem description

5.2.1. Optimization objective
This paper proposes a new task offloading algorithm based on a 

comprehensive trusted mechanism and combined with the DDQN 
algorithm. The purpose of optimization is to ensure the offloading 
performance of the task while reducing the average response time 
of the task and the total system energy consumption. The aver-
age task response time is the quotient of the sum of the response 
times of all successfully executed tasks and the total number of 
successfully executed tasks, and the total energy consumption of 
the system is the total energy consumption of all tasks processed. 
Assume the total number of submitted tasks is M , and the num-
ber of successfully executed tasks is m. Then, the average response 
time of the task and the total energy consumption of the system 
can be expressed as:

Taveres =
m∑

i=1

(
tres

i,l + tres
i,e

)
/m, (18)

Etotal =
m∑

i=1

(
Eexe

i,l + Etra
l,e + Eexe

i,e

)
, (19)

if the task is executed on the UE, then tres
i,e , Etra

l,e , and Eexe
i,e are 0. 

Similarly, if the task is offloaded to the edge server for execution, 
then tres

i,l and Eexe
i,l are 0.

When the whole offloading process is completed, assume that 
the total number of tasks offloaded to the edge server is Y , and 
the number of tasks successfully executed on the edge server is 
y. Then, the task execution success rate and the task offloading 
success rate can be expressed as:

ser = m

M
, (20)

osr = y

Y
, (21)

where the task offloading success rate and the task execution suc-
cess rate are two important indicators that reflect the task offload-
ing performance. The higher the task offloading success rate and 
the task execution success rate, the better the task offloading per-
formance of the MEC system.

5.2.2. Objective function
Only successfully executed tasks have time and energy costs. 

The task offloading integrated trust evaluation mechanism pro-
posed in this paper ensures the security, privacy and reliability of 
the data during the offloading process. In other words, the inte-
grated trust mechanism is the evaluation mechanism of whether 
the task can be successfully executed. Only when identity, behav-
ior, and ability are trusted can the task be successfully responded 
to. Therefore, the objective function can be formulated as:

min Taveres and Etotal

s.t. C1: V user
ide = 1 and V cn

ide = 1,

C2: Tn � T low
n ,

C3: memi � memcn,

C4: cpui � cpucn,

C5: tres
i,l � deadlinei,

C6: tres
i,e � deadlinei,

C7: sct � sct ,

(22)
i cn
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where V user
ide and V cn

ide represent the identity trust value of users 
and computing nodes, respectively, and constraint C1 is the formal 
description of trusted identity. Constraint C2 is the formal descrip-
tion of trusted behavior. memcn and cpucn represent the storage 
resources and computing resources of the computing nodes, re-
spectively, and sctcn represents the security level of the computing 
nodes. The security levels of the edge layer computing nodes con-
sidered in this paper are low, medium, and high. Considering that 
the local layer UEs are generally personal terminal equipment, the 
security level of UEs is set to high. Constraints C3 to C7 are the 
formal description of the trusted capability.

5.2.3. Optimization objective weight estimation
To optimize the two objectives at the same time, a problem 

worth considering is how to allocate the weight of the two op-
timization objectives in the scene. At present, some researchers, 
when considering the biobjective problem, generally divide the 
weights of the two optimization objectives equally and integrate 
the two objectives through a subjective weighting method. In this 
way, considering the weight value of the optimization objective, 
the subjectivity is too strong and has some limitations, which may 
affect the convergence result of the algorithm, thereby affecting 
the optimization performance.

In information theory, entropy is a measure of the degree of 
chaos in the system. The more chaos there is in a system, the more 
effective information it contains and the higher the entropy value. 
Conversely, the smaller the degree of chaos in the system, the 
smaller the amount of information contained, and the smaller the 
entropy value. According to the characteristics of entropy, the en-
tropy weight method [38] is regarded as a more objective method 
for estimating the weight value of a single objective in multiple 
objectives. Therefore, in this paper, the entropy weight method is 
used to estimate the weight value of the task average response 
time and total system energy consumption.

Assuming there are h samples and l indicators in the scene, 
specifically, there are h computing nodes and l optimization ob-
jectives in the scene. The steps for calculating the optimal target 
weight value using the entropy weight method are as follows:

(1) Since the magnitude of the optimization objectives may not 
be uniform, it is necessary to standardize the objectives. The 
min-max standardized processing method is expressed as:

xi, j = xi, j − min
{

x1, j, ..., xh, j
}

max
{

x1, j, ..., xh, j
} − min

{
x1, j, ..., xh, j

} . (23)

(2) Calculate the proportion of each sample value in the objective 
under different objectives:

pi, j = xi, j∑h
i=1 xi, j

. (24)

(3) Calculate the entropy of different objectives:

e j = − (ln (n))−1
h∑

i=1

pi, j ln
(

pi, j
)
. (25)

(4) Calculate information entropy redundancy:

er j = 1 − e j. (26)

(5) Calculate the weight value of the optimization objective:

w j = er j∑l er
. (27)
j=1 j
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Fig. 2. The DDTMOA framework.

5.3. DDTMOA

This paper proposes a novel task offloading algorithm based 
on a self-defined integrated trust mechanism combined with the 
DDQN algorithm, named DDTMOA. The core idea is to use the DL 
method to fit the state of the scene and then use RL to make a 
reasonable decision and select the optimal action under the safe 
and reliable environment of task offloading. To determine whether 
the task needs to be offloaded, if necessary, determine which edge 
server the task is offloaded to for processing; if not, determine 
which UE device the task is allocated to for processing. Finally, 
the algorithm can effectively reduce the average response time of 
the task and the total system energy consumption while having a 
higher task offloading level. The DDTMOA algorithm framework is 
shown in Fig. 2.

As shown in Fig. 2, the DDTMOA algorithm continuously inter-
acts with the external environment through the Q-network agent. 
Based on the integrated trust mechanism according to certain 
learning strategies, the Q-network agent explores the optimal ac-
tion and executes the optimal decision. Each training generates an 
experience sample, which is stored in the experience replay pool. 
The experience samples in the experience replay pool are ran-
domly selected for replay to update the target Q-value. Experience 
replay technology can increase the learning speed of the algorithm 
and improve the oscillation and divergence caused by the correla-
tion of experience samples. The state set and action set of the MEC 
scene and reward function are designed as follows.

State Set. The state of the scene is used as the algorithm input. 
The state of the scene designed in this paper is simulated by the 
weighted sum of the response time and energy consumption of the 
task. The state space of the MEC scene can be expressed as:

S = {s1, s2, ..., si, ..., sh} , si = wk
res · tres

i + wk
pow · Ei, (28)

where tres
i , Ei represents the response time and energy consump-

tion of tasks processed on computing node i after standardized 
processing. wk

res and wk
pow represent the weight values of response 

time and energy consumption, respectively, in the scene when pro-
cessing task k.

Action Set. The action set of the scene is a collection of all ac-
tions that the agent can choose in each state. Specific to the MEC 
scenario, the action set is the collection of all computing nodes. 
The action set of the MEC scene can be expressed as:

A =
{

a1
cn,a2

cn, ...,ai
cn, ...,an

cn

}
, (29)
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where ai
cn = 1, which denotes that in this decision-making process, 

the agent selects action ai
cn; that is, the agent assigns the task to 

computing node i for execution.
Reward Function. Each time the agent executes a decision, it 

immediately obtains the reward value from the external environ-
ment. The reward value is used to evaluate the pros and cons of 
the action selected by the agent when executing a decision. Obvi-
ously, a well-trained Q-network should have the ability to evaluate 
the pros and cons of the selected actions, affirm reasonable de-
cisions, and deny unreasonable decisions so that the agent can 
explore maximizing long-term returns. Therefore, the reasonable 
design of the reward value plays an important role in algorithm 
performance. The reward value function is designed as:

r =
{

−1, the constraint does not hold;
wi

res

(
1 − tres

i

) + wi
pow (1 − Ei) , otherwise

(30)

where r = −1, which indicates that the agent does not assign an 
ideal executable computing node to the task during the decision-
making process, resulting in the task not responding. In this case, 
it should be given a negative value and set the worst reward 
value. When the task can respond, the reward value is set as the 
weighted sum of the two optimization objectives.

The pseudocode of the DDTMOA algorithm is shown in Algo-
rithm 2.

Algorithm 2: The DDTMOA algorithm.
Input: Task set
Output: Task average response time, total energy consumption, task 

offloading success rate, task execution success rate
1 for a task arrives in the task waiting queue do
2 Determine the generation area of the task;
3 Select a computing node for the task using the convergent Q-network 

in Algorithm 1, and based on the integrated trust mechanism;
4 if the selected computing node is UE then
5 Process the task on the local device UE;
6 Calculate the task response time and compute energy consumption;
7 end
8 else
9 Offload the task to an MEC server for processing;

10 Calculate the task response time, compute energy consumption and 
communication energy consumption;

11 end
12 end
13 Calculate the task average response time, total energy consumption, task 

offloading success rate, and task execution success rate;
14 return

6. Experiments and results analysis

In this section, extensive experiments are carried out, mainly 
to evaluate the performance of our proposed DDTMOA algorithm. 
First, we describe the experimental simulation environment, the 
MEC scenario parameters, and the Q-network parameters. Second, 
several classical algorithms that are compared with DDTMOA are 
presented. Finally, the feasibility and effectiveness of our proposed 
DDTMOA algorithm are verified through several sets of comparison 
experiments.

6.1. Simulation environment and experimental parameters

The experimental simulation environment was built on a 
Python 3.6 platform based on TensorFlow 1.13 under the Win-
dows 10 operating system. Our simulated tasks are generated in 
real time at the local end, mainly sorting out the real Google data 
sets. The Google dataset is downloaded from GitHub at https://
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github .com /google /cluster-data. The original Google dataset con-
tains many task attributes, such as machine ID, platform ID, and 
logical job name. However, not all of these attributes are required 
by us, and only some of them are used. In our task model, the task 
index, task commit time, CPU and memory resources required for 
execution are extracted directly from within the dataset, while the 
task data size is obtained based on the cycle time per instruction 
(CPI) and timestamp calculation. The main simulation parameters 
in the scenario were designed with similar principles to those in 
the literature [6], [35], [12], and [23], as shown in Table 1. The 
relevant hyperparameters in the Q-network are shown in Table 2.

6.2. Comparison algorithms

To verify and evaluate the performance of the task offloading 
algorithm proposed in this paper, we introduced several classical 
algorithms to compare with the DDTMOA algorithm. The first is 
the random offloading algorithm (Random), which refers to the 
random offloading of tasks to compute nodes for processing and 
is easy to understand and implement, with low time complexity. It 
has certain effects in solving tasks such as task scheduling and task 
offloading. The second is the weighted round-robin offloading algo-
rithm (WRR), which offloads tasks to compute nodes sequentially, 
and due to the difference in computational power between hetero-
geneous compute nodes, nodes with higher computational power 
generally set larger weights. The third and fourth comparison algo-
rithms are task offloading algorithms based on DQL [36] and DQN 
[26], [22]. DQL and DQN are both specific algorithms in the DRL 
method, which have been widely used in the MEC environment 
to solve task offloading and resource allocation problems with rel-
atively satisfactory results, and both can effectively improve MEC 
system performance. The great difference between these two algo-
rithms is that they have different network structures. DQL has only 
one deep neural network (DNN), which is used to approximate the 
action Q-value; DQN approximates the action Q-value through two 
DNNs with the same structure.

6.3. Performance evaluation

6.3.1. Weight comparison experiments
In this paper, the objective entropy weighting method is used 

to estimate the weight of different optimization objectives in the 
MEC scenario. To verify the feasibility, validity and impact on the 
algorithm performance of the objective entropy weighting method 
for estimating the weight of optimization objectives, a set of com-
parison experiments of objective weighting and subjective weight-
ing of the optimization objectives are set up in an MEC scenario 
with multiple edge regions, multiple heterogeneous edge servers 
and multiple UE to compare the convergence performance of the 
DDTMOA algorithm through different weighting methods. The con-
vergence results are shown in Fig. 3 and Fig. 4.

Fig. 3 shows a DDTMOA algorithm convergence graph using the 
objective entropy weighting method to estimate the optimization 
objective weights. Fig. 4 shows the DDTMOA algorithm conver-
gence graph obtained by optimizing the objective weights by the 
subjective mean. The subjective mean weighting approach, which 
is also a weighting approach that is currently the focus of some 
research scholars [27], [3], has certain limitations. From Fig. 3 and 
Fig. 4, it is clear that the DDTMOA algorithm converges faster and 
the final convergence result is more stable when using the entropy 
weighting method to estimate the optimization objective weights, 
which indicates that it is feasible and more effective to use the 
entropy weighting method to estimate the optimization objective 
weights.

To further verify whether the entropy weight method can im-
prove the performance of the algorithm. We compare the perfor-

https://github.com/google/cluster-data
https://github.com/google/cluster-data
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Table 1
Experimental Simulation Parameters.

Notation Description Value

C (cycle) The CPU cycles required to process 1 bit data 500

fl (GHz) The computing power of UE Uni f (0.5,1.0)

fe (GHz) The computing power of edge servers Uni f (5.0,10.0)

P (W) The transmit power 0.5

q (J) The energy consumption of edge servers to process 1 bit of data Uni f
(
1.0 × 10−9,2.0 × 10−9

)
B (MHz) The communication bandwidth 2.0

N (W/Hz) The noise power density of the channel 10−12

η The energy factor 10−28
D (km) The communication distance between UEs and BSs [0.1,0.2,0.3]

Table 2
Q-network Parameter Settings.

Parameters Value

The greedy coefficient ε 0.5

The discount factor γ 0.9

The learning rate α 0.01

The minibatch size Δ 32

Target Q-network parameter copy frequency ζ 20

The activation function ReLU

The gradient optimizer AdaDelta

The loss function Mean square error

Fig. 3. The objective entropy weight method DDTMOA algorithm convergence graph.

Fig. 4. The subjective weight method DDTMOA algorithm convergence graph.

mance of the DDTMOA algorithm when the optimization objec-
tive takes the subjective weight values and the objective entropy 
weight method to estimate the optimization objective weight val-
ues. Three sets of different subjective weight values are set: 1. the 
weight value of task response time is 0.5, and the weight value of 
energy consumption is 0.5 

(
wres = 0.5,w pow = 0.5

)
; 2. the weight 

value of task response time is 0.4, and the weight value of energy 
consumption is 0.6 

(
wres = 0.4,w pow = 0.6

)
; 3. the weight value 

of task response time is 0.6, and the weight value of energy con-
sumption is 0.4 

(
wres = 0.6,w pow = 0.4

)
. The experimental results 

are as follows:

Fig. 5. Task offloading success rate.

Fig. 6. Task execution success rate.
193
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Fig. 7. Total system energy consumption.

Fig. 8. Average task response time.

As shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8, when the objec-
tive entropy weight method is used to estimate the optimization 
objective weight values, the task offloading success rate and task 
execution success rate of the DDTMOA algorithm are smaller, and 
it has lower energy consumption and a smaller task average re-
sponse time, which further shows that the algorithm has better 
performance when estimating the optimization target weight val-
ues by the objective entropy weight method.

6.3.2. Basic experiments
To verify DDTMOA algorithm performance, this section conducts 

comparative experiments based on different numbers of task sets 
in an MEC scenario with 9 heterogeneous edge servers and 18 
heterogeneous UE devices. That is, in the basic experiment, we de-
signed the number of edge servers, BSs and UEs to be the same as 
in Fig. 1. The experimental results are as follows:

As shown in Fig. 9, the DDTMOA algorithm always maintains a 
high task offloading success rate under different numbers of task 
sets, the task offloading success rate of the DQN and DQL algo-
rithms is slightly lower than that of the DDTMOA algorithm, and 
the task offloading success rate of the WRR algorithm is lower 
than that of the DQN and DQL algorithms but higher than that of 
the random algorithm. This is because the random algorithm has 
greater randomness, randomly offloading tasks to different edge 
servers for processing, which can easily lead to violations under 
numerous trusted constraints, thus affecting the task offloading 
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Fig. 9. Task offloading success rate.

Fig. 10. Task execution success rate.

success rate. The core idea of the WRR algorithm is to assign dif-
ferent weight values to the computing nodes according to their 
computing power. The nodes with stronger computing power set 
relatively larger weight values so that more tasks are offloaded to 
the computing nodes with more sufficient resources. DQN and DQL 
are two specific DRL algorithms that have strong adaptive learn-
ing capabilities and can make decisions more rationally. Therefore, 
they have a high offloading success rate. However, the DDTMOA 
algorithm is a further optimization based on both DQN and DQL. 
Therefore, the DDTMOA algorithm has a high offloading success 
rate and is relatively stable.

As shown in Fig. 10, the DDTMOA algorithm also always has 
a high task execution success rate for different sets of tasks. The 
task execution success rate includes both cases where the task is 
offloaded to the edge and where the task is executed locally for 
successful execution. To ensure that the task can respond success-
fully, the DDTMOA algorithm eventually explores a set of optimal 
policies through adaptive learning to select the optimal action and 
reasonably assign the task to a more resource-rich computing node 
for processing. As a result, the proportion of tasks allocated to 
resource-poor UE will be relatively small, the default rate will be 
relatively low, and the task execution success rate will be relatively 
high.

As shown in Fig. 11, the DDTMOA algorithm maintains low total 
system energy consumption as the number of tasks continues to 
increase. This indicates that the DDTMOA algorithm can make de-
cisions more rationally and can reasonably offload tasks based on 



Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
Fig. 11. Total system energy consumption.

the number of resources requested for task execution and the re-
sources of the computing nodes. That is, tasks with relatively large 
quantities of data are offloaded to compute nodes with more suf-
ficient computational resources, while tasks with relatively small 
quantities of data are offloaded to compute nodes with fewer com-
putational resources. This ensures that the tasks can be success-
fully responded to and that the computing resources can be fully 
utilized, thus enabling the battery life of the UE on the local end. 
Combined with Fig. 10, it can be seen that the DDTMOA algorithm 
can maintain a high task execution success rate and has low en-
ergy consumption, which further illustrates the advantages of the 
DDTMOA algorithm over other algorithms.

It is not easy to ensure that no excessive system energy is 
consumed and that the task has a low response time. However, 
algorithm designs that sacrifice one goal to achieve another goal 
are not reasonable. Based on different numbers of task sets, the 
comparison results of the average response time of each algorithm 
are as follows:

Fig. 12. Average task response time.

As shown in Fig. 12, the DDTMOA algorithm has a low aver-
age task response time as the number of tasks increases, which 
indicates that when using the DDTMOA algorithm, more tasks are 
offloaded to computational nodes with more computing resources 
and computational power for execution, thus reducing the waiting 
time and execution time of tasks resulting in a more significant 
decrease in the overall task response time. Combined with Fig. 11, 
it can be seen that the DDTMOA algorithm better balances the two 
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Fig. 13. Task offloading success rate.

Fig. 14. Task execution success rate.

optimization objectives of total system energy consumption and 
average task response time compared to other algorithms.

6.3.3. Extension experiments
To further validate the scalability and stability of the DDTMOA 

algorithm, the MEC scenario simulated in this section was ex-
tended by increasing the number of UE devices at the local end 
from 18 to 50. Comparative experiments were conducted under 
different numbers of task sets based on the multiple UE sce-
nario.

As shown in Fig. 13 and Fig. 14, the DDTMOA algorithm main-
tains a low task offloading success rate and task execution success 
rate for different numbers of task sets as the number of compute 
nodes increases. This further shows that based on the more com-
plex MEC scenario, the DDTMOA algorithm can make more rational 
decisions than other algorithms and can more effectively deter-
mine whether a task needs to be offloaded and to which edge 
server it should be executed, thus ensuring that the task can be 
offloaded and executed successfully.

The battery life of UE devices at the local end is limited, and 
their computing power is relatively weak. Too many tasks assigned 
to the UE for execution may both consume resources and fail to 
meet the user’s QoS requirements. Task offloading to the edge 
server not only has execution energy consumption but also gen-
erates additional communication energy consumption. Therefore, 
reasonable task offloading to reduce system energy overhead is 
particularly important. As shown in Fig. 15, the DDTMOA algorithm 
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Fig. 15. Total system energy consumption.

Fig. 16. Average task response time.

maintains a low total system energy consumption for different 
numbers of task sets, which indicates that the DDTMOA algorithm 
can fully and reasonably utilize the various resources of the com-
puting nodes compared to other algorithms to ensure the energy 
consumption level of the system.

As shown in Fig. 16, the DDTMOA algorithm also always has a 
low average task response time and is relatively stable under dif-
ferent numbers of task sets. Combined with Fig. 15, it is easy to 
see that the DDTMOA algorithm is more effective than other algo-
rithms in balancing the energy and time overheads of the system 
and can reduce both the total energy consumption and the aver-
age response time of the tasks. This shows that DDTMOA is more 
intelligent than other algorithms and can make more reasonable 
decisions based on the resources requested by the tasks and the 
resources of the computing nodes.

To more intuitively reflect the robustness and stability of the al-
gorithm, this section also compares the standard deviation before 
and after the task offloading success rate, the average task energy 
consumption, and the average task response time of the basic ex-
periment and the extended experiment. The comparison results are 
shown in Figs. 17, 18, and 19.

As seen in Figs. 17, 18, and 19, the standard deviation of the 
task offloading success rate, the standard deviation of the task av-
erage energy consumption and the standard deviation of the task 
average response time for both the basic and extended experi-
ments of the DDTMOA algorithm are small compared to the other 
algorithms. Moreover, based on the overall view, the difference 
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Fig. 17. Task offloading success rate standard deviation comparison.

Fig. 18. Average task energy consumption standard deviation comparison.

Fig. 19. Average task response time standard deviation comparison.

between the standard deviation of each metric of the DDTMOA al-
gorithm in the basic and extended experiments is also small. This 
indicates that the fluctuations of the DDTMOA algorithm are min-
imal as the number of computational nodes increases, verifying 
that the DDTMOA algorithm has good stability and robustness.
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Based on all the above comparison experiments, it can be seen 
that the DDTMOA algorithm has better offloading performance 
than other algorithms, can effectively reduce the average task re-
sponse time and the total system energy consumption, and has 
good scalability, robustness and stability.

7. Conclusions and future work

This paper focuses on the problem of task offloading in the MEC 
environment. First, a two-tier, multiheterogeneous edge server, 
multiple UE device MEC scenario is constructed. Second, combined 
with the DDQN algorithm, we propose the DDTMOA. We con-
sider the security of offloading tasks in the MEC environment and 
construct a comprehensive trust evaluation mechanism for task of-
floading by discriminating the trusted identity, trusted behavior 
and trusted capability of users and computing nodes. We use a 
biobjective to train the algorithm for optimization, so we use an 
entropy weighting method to dynamically determine the weights 
of latency and energy consumption. Finally, we conducted basic 
and extended experiments to verify the effectiveness and robust-
ness of the algorithm using a real Google dataset.

In future work, we will consider more complex MEC scenarios, 
introduce cloud centers into MEC scenarios, realize cloud-edge col-
laboration, and better improve the MEC system performance. Ad-
ditionally, more comprehensive data communication methods will 
be considered.
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