
Journal of Parallel and Distributed Computing 169 (2022) 185–198

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

A novel task offloading algorithm based on an integrated trust

mechanism in mobile edge computing

Zhao Tong a,∗, Feng Ye a, Jing Mei a, Bilan Liu a, Keqin Li b

a College of Information Science and Engineering, Hunan Normal University, Changsha, 410012, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 July 2021
Received in revised form 15 May 2022
Accepted 7 July 2022
Available online 19 July 2022

Keywords:
Deep reinforcement learning
Integrated trust mechanism
Mobile edge computing
Task offloading

As a new computing model, mobile edge computing (MEC) is designed to better deal with various forms
of service requests, such as computing intensity and delay sensitivity, in the era of big data and the
Internet of Things (IoT). However, the development of MEC is still in its infancy, and many issues need
to be further investigated. One of the key issues that needs to be addressed in MEC is rational task
offloading. Due to the dynamic, real time and complex nature of the MEC environment, the security and
reliability of edge data are becoming increasingly important. Based on the above problems, we construct
a task offloading integrated trust evaluation mechanism and, combined with the double deep Q-network
(DDQN) algorithm in deep reinforcement learning (DRL), propose a novel task offloading algorithm,
named DDTMOA. Simulation results show that the DDTMOA algorithm can effectively reduce the average
task response time and total system energy consumption while ensuring task offloading performance
compared to other classical algorithms.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

With the advent of the 5G network era, 5G communication
technology is gradually moving toward standardization. The IoT [2]
and in-vehicle networks (IVNs) [17] are increasingly widely used in
people’s daily lives. With the increase in terminal equipment, data
present explosive growth. According to the latest results of the
Cisco global cloud index, in 2021, the quantity of data generated
by various terminal devices, humans, and machines reached 3.2
zettabytes (ZB) [11]; additionally, Huawei predicts that by 2025,
the number of terminal devices connected to the Internet of Things
will be infinitely close to 100 billion [8].

MEC [1], as an effective supplement to cloud computing, gath-
ers various resources, such as computing, storage, intelligence, and
application, at the edge of the network (near the user end). Part
of the user’s service requests can be offloaded to a near-end MEC
server for processing through the wireless channel so that delay-
sensitive tasks can respond quickly, reduce task response time, and
improve the user’s Quality of Service (QoS) and Quality of Expe-
rience (QoE). Some tasks are offloaded to the MEC server, which
can alleviate network bandwidth transmission pressure and reduce
the transmission energy consumption and transmission overhead.

* Corresponding author.
E-mail address: tongzhao@hunnu.edu.cn (Z. Tong).
https://doi.org/10.1016/j.jpdc.2022.07.006
0743-7315/© 2022 Elsevier Inc. All rights reserved.
Some of the computationally intensive tasks can be offloaded to a
remote cloud center with more sufficient computing and storage
resources via edge base stations (BSs) through the core network
for processing so that computationally intensive service requests
can also be guaranteed. Therefore, reasonable task offloading (com-
puting offloading) is particularly important. Because of real-time
dynamics and edge environment complexity, edge environment
security, such as data offloading security, is also facing a great
challenge. The reliability and security of edge data are becoming
increasingly prominent [21], [9]. Therefore, to ensure the reliability
and security of edge data, new methods of offloading data security
tasks for edge computing are urgently needed.

Design efficient task scheduling and resource allocation strate-
gies is one of the ways to enhance the task offloading experience
of mobile users in the MEC distributed systems. Currently, an in-
creasing number of scholars are using reinforcement learning to
solve this problem [13], [34]. Among them, the Q-learning algo-
rithm determines the value of each state corresponding to the next
action by constructing a Q-table. However, the low-dimensional in-
puts and outputs are not able to satisfy complex MEC scenarios. In
the next step, many complex strategies use DRL to allocate tasks
as well as resources [37]. In conjunction with deep learning, neu-
ral networks are used instead of the Q-table. While this approach
enables deep Q network (DQN) to handle high-dimensional data, it
tends to be limited to falling into suboptimal solutions [19], [25].
Therefore, to obtain a better offloading strategy when the num-

https://doi.org/10.1016/j.jpdc.2022.07.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.07.006&domain=pdf
mailto:tongzhao@hunnu.edu.cn
https://doi.org/10.1016/j.jpdc.2022.07.006

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
ber of end devices is quite large, we design an offloading strategy
based on the DRL algorithm DDQN. However, simply establishing
such an offloading strategy is not enough. Because there will be an
other significant problem-trust management that should be con-
sidered [22], [30]. During the offloading process, the user’s identity
authority and the trustworthiness of the compute node may pose
a threat to security and privacy. To reduce these security risks, we
propose a trust mechanism considering three aspects: identity, be-
havior, and capability.

Therefore, this paper studies the task offloading problem based
on the integrated trust evaluation mechanism combined with
DDQN [16] and proposes a novel task offloading algorithm, which
provides a new idea for solving the task offloading problem in the
MEC environment and has certain value and significance for future
theoretical research and practical application significance.

The main contributions of this paper are as follows:

• To ensure the reliability, privacy, and security of edge data
when solving the task offloading problem in mobile edge com-
puting, we propose a task offloading framework based on an
integrated trust evaluation mechanism. The mechanism con-
sists of trusted identity, trusted behavior, and trusted capabil-
ity.

• We build a two-tier MEC model, and based on Markov decision
theory, the task offloading problem under the two-tier MEC
model is modeled as a Markov decision process (MDP), and
explore the optimal strategy through the DRL method. We in-
tegrate the trust mechanism into the constraints of the model,
which is a prerequisite for performing DRL.

• We study a biobjective problem in a two-tier MEC environ-
ment. To objectively describe the proportion of two optimiza-
tion objectives in the MEC scene, we use the entropy weight
method to estimate the weight value of the optimization ob-
jectives.

• Based on the integrated trust mechanism and combined with
the DDQN algorithm, we propose a novel task offloading algo-
rithm. Experimental results show that our proposed algorithm
has better performance than other algorithms.

The rest of this paper is organized as follows. The Section 2 re-
views related work on the task offloading problem in the MEC en-
vironment. The Section 3 describes the MEC model, task type and
definition, communication model, computation model, integrated
trust mechanism, and task offloading problem. The Section 5 ex-
plains the MDP model, the DRL method and DDQN algorithm, and
the main content and design principle of our algorithm. The Sec-
tion 6 compares the performance of our proposed algorithm with
that of several other algorithms and analyzes the experimental re-
sults. Finally, the Section 7 summarizes this paper and provides
potential directions for future work.

2. Related work

MEC, as a new computing model, has been widely considered
by academia and industry since it was proposed. Many scholars
have carried out in-depth research on MEC and have fully consid-
ered the security, reliability and privacy of edge data, task offload-
ing and resource allocation in the MEC environment. Efficient task
offloading maximizes the benefits of user providers and improves
the QoS and QoE of users as much as possible under limited re-
sources. Task offloading is a typical NP-hard problem [10].

At present, for the task offloading problem in an MEC environ-
ment, the main optimization objectives include energy consump-
tion, delay, and cost. For different optimization objectives, many
optimization methods have been proposed. To minimize system
energy consumption, the profits of mobile service providers (MSPs)
186
are maximized. Wang et al. [28] studied a unified MSP perfor-
mance tradeoff framework, using Lyapunov technology to optimize
the framework, and the VariedLen algorithm to solve the optimiza-
tion problem. The experimental results show that this method can
make the average MSP profit reach the optimal level under the
premise of ensuring system stability and low congestion. To im-
prove the energy efficiency of an MEC system, Wang et al. [31]
proposed the joint energy minimization and resource allocation
problem of CRAN and MEC and transformed the problem into a
nonconvex optimization problem. Under the delay constraint, an
iterative algorithm was used to solve the optimization problem
to minimize the weighted sum of the two kinds of energy. The
simulation results show that the method can improve system per-
formance and save energy.

The above task offloading optimization methods can improve
the performance of MEC systems to a certain extent. However,
the objectives of the above methods are relatively singular, and
there may be a case of optimizing another objective at the cost
of one resource. Therefore, the optimization of a single objective
is not enough to verify that an optimization method is absolutely
effective. [35] designed a task offloading optimization framework.
Under this framework, an optimization problem was proposed to
minimize both task execution delay and offloading failure probabil-
ity. The problem was transformed into a nonconvex optimization
problem and solved by a heuristic algorithm. Numerical simulation
results show that the proposed method can trade off task delay
and energy consumption with less complexity.

The above methods consider the biobjective and multiob-
jective problems in MEC and solve the optimization problems
through linear optimization, nonlinear optimization, convex op-
timization, combinatorial optimization and other mathematical
methods, which reflects MEC performance to a certain extent.
However, the above pure mathematical combination optimization
methods have great limitations, the solution process is complex,
the time and space complexity is high, and the universality is not
strong, which is more reflected in the value of theoretical research.
With the great breakthrough in artificial intelligence (AI), DRL has
made considerable breakthroughs in the field of AI. In recent years,
the DRL method has also been widely used in cloud computing
and MEC scenarios. To solve the problem of multiservice node
offloading and mobile task multidependence in large-scale het-
erogeneous MEC, Lu et al. [18] developed a new task offloading
algorithm based on DRL and improved the algorithm by using an
LSTM network. Simulation results showed that the algorithm is su-
perior to other algorithms in energy consumption, load balancing,
delay and average execution time.

As mentioned above, the task offloading and resource alloca-
tion algorithm based on DRL can improve the performance of the
MEC system to a certain extent. However, MEC wants to achieve
comprehensive development, and the security, privacy and relia-
bility of edge data must be guaranteed. Elgendy et al. [7] created a
multi-user resource allocation and computational offloading model
with data security, taking into account the computational capac-
ity, resource constraints and data security of the MEC system. The
model introduces AES encryption as a security layer to protect sen-
sitive information from network attacks. Finally, the least squares
method is used to solve the task offloading problem. Simulation
results show that the method can effectively improve the perfor-
mance of the system compared to local execution and complete
offloading schemes. To ensure data security and integrity, Hou et
al. [5] combined blockchain technology with MEC to propose a
task allocation problem that considers node capacity and reward
fairness, and solved it by a heuristic algorithm. To ensure the cred-
ibility of the computational results, a police patrol model was used
to optimize the overall rewards of the system. Experimental results
demonstrate the effectiveness of the algorithm.

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
Fig. 1. Two-tier MEC model.

Currently, although researchers have carried out some research
on related issues in MEC, most of the related research is in the
initial stage, and many technologies are not mature enough. The
traditional solutions to the security, reliability and privacy issues
of cloud computing are not fully applicable to MEC. Therefore, op-
timizing the performance of MEC on the premise of ensuring the
security and reliability of edge data is a problem worthy of fur-
ther study. For this reason, this paper proposes an integrated trust
evaluation mechanism. Based on this mechanism, consider opti-
mizing dual objectives, including delay and energy consumption,
combined with the DDQN [25], [32] algorithm is used to solve the
task offloading problem in MEC. Experimental results show that
our proposed algorithm can effectively reduce the average task
response time and the total system energy consumption while en-
suring task offloading performance.

3. Overview of MEC model architecture

In this section, we describe the MEC model first. After that,
we introduce the task type and definition. And we introduce the
system submodels, including the communication model and the
computation model.

3.1. MEC model

As shown in Fig. 1, in this paper, we consider a two-layer MEC
model; the two layers are the local terminal equipment layer and
the edge server layer. The local terminal equipment layer is com-
posed of various user equipment (UE) devices, and the local equip-
ment has certain computing and storage capabilities.

The edge server layer is composed of base stations (BSs) and
edge servers. Edge servers have more computing and storage re-
sources and stronger task processing abilities than local devices.
Each base station (BS) and multiple heterogeneous servers form
an edge area, and the coverage of the edge area is limited. The
UE communicates with the BS through the wireless network, and
the BS interacts through the core network. The communication dis-
tance between UEs and BSs is different.

Task offloading can be divided into two types: partial offload-
ing and overall offloading. Partial offloading refers to decomposing
an independent task into multiple subtasks; some subtasks are of-
floaded from the UE to the edge server for execution, and the
remaining partial subtasks are reserved for processing on the lo-
cal UE. Overall offloading refers to offloading all tasks to the edge
server for processing. This paper considers the overall offloading of
tasks in the MEC model, and the tasks can only be processed on
the edge server or UE alone. In the MEC model we consider, it is
187
assumed that the task needs to be offloaded from the local end
to the edge server for processing. According to the task offloading
strategy, in general, the task will be offloaded to the edge server
near the edge area for execution. However, the task may also be
offloaded to other edge servers in the far edge area, which will
lengthen the communication distance and increase the task com-
munication delay.

3.2. Task type and definition

The big data era presents a variety of service requests (task re-
quests), which can be divided into different categories according to
different task attributes. Considering whether there are dependen-
cies between tasks, tasks can be divided into independent tasks
and nonindependent tasks. Independent tasks cannot be further
subdivided, and there is no constraint relationship between tasks;
nonindependent tasks include multiple tasks, and there are prior-
ity and constraint relationships between subtasks. Subtasks must
wait for the completion of all parent tasks before they can start
execution. Considering whether the task request is real time, the
tasks can be divided into online tasks and offline tasks. Offline
tasks indicate that the broker already knows the total number of
tasks arriving at the data center, the arrival time of each task, the
quantity of data, the requested computing resources and the stor-
age resources before starting to schedule and unload tasks. Online
tasks refer to tasks that are generated in real time. Before schedul-
ing and unloading tasks, the broker does not know how many
tasks will arrive in the data center and all related attributes of
the tasks. Each task is processed every time it arrives. MEC con-
nects the wireless network and AI together, generally including
the cloud, edge and user terminals. The user terminal generally
refers to a mobile device such as mobile phones and notebook
computers, and the tasks generated by these devices are small and
independent. Therefore, this article simulates online independent
tasks, the task queue is nonpreemptive, and the time interval for
task generation to arrive at the data center obeys a Poisson distri-
bution. Task attributes can be defined as:

task = {idi, subi,di,memi, cpui,deadlinei, scti,areai} , (1)

where idi is the id of task i, subi is the submission time of task
i, di represents the data size of task i, memi denotes the mem-
ory resources requested by task i, cpui indicates the computing
resources requested by task i, deadlinei represents the maximum
response time that task i can tolerate, scti denotes the minimum
security level requirement for the computing node when task i re-
quests execution, and areai indicates the generation area of task
i.

3.3. Communication model

The UE communicates with the edge BS through the wireless
network. Assuming that the channel gain between the UE and the
edge BS is g , the unit is dB, and the channel gain can be expressed
as:

g = 127 + 25 · log 10 (D) , (2)

where D represents the communication distance between the UE
and the edge BS. Assuming that task i needs to be offloaded to
an edge server for execution, the transmission power of task i
offloaded from the UE to the edge server is p. According to the
Shannon formula, the communication rate of task i can be given
by:

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
rl,e = B · log2

(
1 + p · g2

N · B

)
, (3)

where B represents the communication bandwidth of the wireless
channel between the UE and the BS, and N represents the noise
power density of the channel.

3.4. Computational model

In this subsection, we focus on the computational model in
terms of response time and system energy consumption of the
task, which include edge computing and local computing.

3.4.1. Local computing
The mobile UE at the local layer has certain computing and

storage capabilities and can handle some lightweight task requests.
The computing capability of the UE is represented by the CPU fre-
quency, which is fl . According to the task offloading strategy, if
task i is assigned to be executed on the UE, then the execution
time of task i on the UE and the response time of task i can be
expressed as:

texe
i,l = di · C

fl
, (4)

tres
i,l = tct

i,l − subi, (5)

where C represents the CPU cycles required by the computing
node to process 1 bit of data. tct

i,l represents the completion time of
task i, which is the sum of the start execution time of task i and
the execution time of task i. The task response time is the differ-
ence between the task completion time and the task submission
time.

If task i is executed on the UE, there is no communication delay
and no communication overhead. The energy consumption over-
head of task i on the UE is the execution energy consumption, and
the execution energy consumption can be expressed as:

Eexe
i,l = η · (fl)

2 · di · C, (6)

where η · (fl)
2 is the energy consumption of the CPU cycle, η rep-

resents the energy factor, and the size depends on the CPU chip
architecture [4].

3.4.2. Edge computing
Although the UE has certain computing and storage resources,

compared to the edge server, its computing power and storage ca-
pacity are relatively limited, and it can only handle a small number
of lightweight task requests. To better guarantee the user’s QoS re-
quest, according to the task offloading strategy, most of the task
requests may be offloaded to the edge server for processing. The
computing power of the edge server is defined as fe . Assuming
that task i is offloaded to the edge server for processing, the exe-
cution time of task i on the edge server and communication time
of task i can be expressed as:

texe
i,e = di · C

fe
, (7)

ttra
l,e = di

rl,e
. (8)

After the task is processed by the edge server, the data size in
the result is far less than that before the task is processed, and the
downlink rate is higher than the uplink rate. The return delay of
the result can be ignored. Therefore, this paper is similar to the
previous work on mobile edge computing [12], [23], which ignores
the task in the edge server after processing, and the results are
188
returned to the local return delay. Similar to Eq. (5), the response
time of task i processed on the edge server is defined as:

tres
i,e = tct

i,e − subi, (9)

where tct
i,e is the completion time of task i on the edge server.

When task i is offloaded to the edge server for processing, there
is communication energy consumption and execution energy con-
sumption on the edge server. Communication energy consumption
and execution energy consumption are, respectively, expressed as:

Etra
l,e = p · ttra

l,e = p · di

rl,e
, (10)

Eexe
i,e = q · di, (11)

where q represents the energy consumption of processing 1 bit of
data on the edge server. In summary, the total energy consump-
tion of the system is the sum of the energy consumption of task
execution on the local UE, the communication energy consumption
of task offloading to the edge server, and the energy consumption
of task execution on the edge server.

4. Theoretical background

In this section, the theoretical background of DDQN is de-
scribed. First, we present a theoretical model of the MDP. Then,
we present an elaboration of the details of the DRL approach.

4.1. Markov decision process

MDP [29] is a research theory used to solve sequential decision-
making problems in uncertain environments. Sequential decision-
making problems refer to problems in which the agent with
decision-making ability needs to choose from many actions ac-
cording to the state of the current environment at each time that
obeys the exponential distribution, and the state of the environ-
ment may change due to environmental uncertainty. Every time
the agent makes a choice and performs an action, the agent re-
ceives a timely reward from the external environment. The reward
affects the environmental state at the next decision time. In other
words, in the current state, after the agent makes a decision and
selects an action, it immediately obtains a reward value from the
external environment and moves to the next state. With continu-
ous decision-making progress, the state continues to transfer until
decision-making ends, and the whole decision-making process is
completed. In essence, based on certain decision criteria, the agent
continuously explores until it finally selects a set of optimal ac-
tions to maximize the long-term reward.

In summary, MDP is a mathematical model for the agent to
continuously interact with the external environment, which can be
represented by a quadruple (S, A, P , R):

• S represents the state space, which is a collection of nonempty
finite states in the MEC scene.

• A represents the action space, which is a collection of all
actions that can be selected in the MEC scene. As repre-
sents the set of all optional actions in the current state s,
As = {a1,a2, ...,an}.

• P represents the state transition probability, and P
(
s′ |s,a

)
represents the probability of transition to the next state s′ af-
ter performing action a in the current state s.

• R represents the reward value function, and R (s,a) represents
the reward value of the external environment obtained after
action a is executed in the current state s.

To reasonably solve the task offloading problem in the MEC en-
vironment, this paper models the task offloading problem in the
MEC environment as an MDP based on Markov decision theory.

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
4.2. Deep reinforcement learning

Reinforcement learning (RL) [33] is an important branch of ma-
chine learning. In the past few years, a series of RL algorithms
have been widely used in cloud computing environments to solve
task scheduling and resource allocation problems. However, with
the complexity of application scenarios, when RL algorithms deal
with high-dimensional state space and action space problems, the
defects that easily cause dimensional disasters are gradually in-
creased, and the performance of the algorithm gradually decreases.
With the further breakthrough of technology, to compensate for
the RL shortcomings, research scholars integrated RL and deep
learning (DL) [15] and proposed a new learning method, DRL [20],
[24]. DRL gives full play to the advantages of RL and DL. DL is
a machine learning structure with multiple hidden layers derived
from the study of artificial neural networks. Through a series of
transformations on the initial features of a large number of low-
dimensional data in DL, the high-level data obtained can represent
the relevant category attributes of data to a certain extent and find
their distribution rules. In essence, DRL is a kind of method that
uses a neural network as a value function estimator, specifically to
the MEC scene, that is, fitting a high-dimensional action Q-value
through a neural network. The neural network used to fit the Q-
value of action is generally called the Q-network, and its learning
and fitting process can be expressed as:

N N (Q (s,a; θ)) ≈ Q ∗ (s,a) . (12)

The DDQN algorithm is a specific DRL algorithm that uses a
deep neural network (DNN) [14] as a function approximator as a
Q-network to fit the Q-value of the action in the scene. The al-
gorithm has two Q-networks with the same structure, one named
the current Q-network and the other named the target Q-network.
The current Q-network is used to estimate the current Q-value and
update the network parameters; the target Q-network is used to
calculate the target Q-value, and the target Q-network does not
need to update the network parameters. After a certain training
time step, the current Q-network will copy its network parame-
ters to the target Q-network, and the update formula of the target
Q-value can be expressed as:

yt = r + γ · Q

(
st+1,arg max

a
Q (st+1,a; θt) ; θ−

t

)
, (13)

where r is the reward value, γ represents the discount factor,
which is the tradeoff between the current reward and the future
reward of the agent, and its value ranges from 0 to 1. The larger
the value, the greater the agent values the current rewards; in con-
trast, the agent values the future rewards. θt is the parameter of
the current Q-network at time t , and θ−

t is the parameter of the
target Q-network at time t . arg max

a
Q (st+1,a; θt) represents the

action a corresponding to the maximum Q-value obtained by the
agent after executing all the decisions at the current moment.

In essence, calculating the target Q-value can be divided into
two steps. First, an action is selected based on the current Q-
network; then, the action is used to calculate the target Q-value in
the target Q-network. This process can also be understood as de-
coupling the target Q-value selection and the target Q-value calcu-
lation. The overestimation of the action Q-value can be eliminated
through two steps so that the convergence speed of the algorithm
can be accelerated. This process is also the key to improving the
DDQN algorithm performance compared with that of other related
RL and DRL algorithms.
189
The update of the current Q-network parameters is coordi-
nated by error backpropagation technology and the gradient de-
scent method according to the square difference loss between the
target Q-value and the current Q-value. The loss function can be
expressed as:

Loss (θ) = E
[
(yt − Q (st,a; θt))

2
]
. (14)

With continuous training, the loss value is constantly updated
and adjusted. When the training reaches a certain number, the loss
value is close to 0 and tends to be stable, indicating that the train-
ing is sufficient and the algorithm has converged. The pseudocode
of the DDQN algorithm is shown in Algorithm 1.

Algorithm 1: The DDQN Online Algorithm.
Input: Scene state s
Output: Action a

1 Initialize replay memory and set its capacity to Crm;
2 Initialize current Q-network with para θ ;
3 Initialize target Q-network with para θ− = θ ;
4 for t = 1, T do
5 Select a random action at with probability ε; otherwise, select

at = arg maxa (st ,a; θ);
6 Execute action at , obtain reward rt , transfer to the next state st+1;
7 Store experience tuple (st ,at , rt , st+1) in replay memory;
8 Sample random minibatch of transitions (s j ,a j, r j , s j+1

)
from replay

memory;
9 Calculate the target Q-value using Eq. (13);

10 Perform a gradient descent step using Eq. (14);
11 Update current Q-network para θ ;
12 Every ξ steps, clone current Q-network paras to target Q-network;
13 end
14 Save current Q-network;
15 return a;

5. Algorithm design

In this section, first, we describe the integrated trust mecha-
nism. Secondly, we give a formal definition of the model optimiza-
tion problem. Finally, we present the DDTMOA detailed algorithm.

5.1. Integrated trust mechanism

In real scenarios, some criminals may attack the computing
node with a virus, causing the computing node to be poisoned,
paralyzed and unable to operate normally. Due to the dynamic,
open and collaborative nature of the MEC network environment,
it is difficult to ensure the security, privacy, and reliability of edge
data during task offloading. To alleviate these problems, this paper
proposes a task offloading integrated trust evaluation mechanism,
which includes trusted identity, trusted behavior, and trusted capa-
bility. A certain proportion of untrusted cases will occur randomly
in the computing nodes, and the specific proportion is less than or
equal to 5%.

5.1.1. Trusted identity
Trusted identity refers to the credibility of the user’s identity

and the executable credibility of the computing node, and its value
is generally binary. The number 1 indicates that the identity is
trusted, and 0 indicates that the identity is not trusted. The trusted
identity value can be formalized as:

V ide =
{

0, untrusted identity;
1, trusted identity.

(15)

In real life, there may be some malicious intrusion into the net-
work to steal data, and there may also be criminals using viruses

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
to attack the computing node so that the computing node paralysis
cannot work normally. Therefore, to be close to reality, this paper
considers that users and computing nodes have a certain propor-
tion of untrusted cases. Only when the user’s identity is trusted
and the computing node is trusted can the user’s service request
be processed normally by the computing node.

5.1.2. Trusted behavior
Trusted behavior refers to the behavior rules that computing

nodes must comply with. It is a subjective feeling about the degree
of trust in the computing node behavior. It manifests as a subjec-
tive feeling in the process of completely distrusting the behavior
of the computing node to complete trust. Its value is any value be-
tween 0 and 1. The higher the value is, the higher the credibility
of the behavior; the lower the value is, the lower the credibility of
the behavior.

Trusted behavior is related to the historical and current record-
ed behavior trust value. This paper uses the historical feedback of
the computing node to determine its behavior trust value. Histori-
cal feedback is also the historical scheduling result. One of the best
reflections of historical scheduling is the response time of task re-
quests, so behavioral trust is time-dependent, and users are more
willing to trust the recent computing node scheduling. Therefore,
the time decay function is introduced, and the time decay function
can be defined as:

F (n) = tn − tn−1∑n
j=1

(
t j − t j−1

) , (16)

where t j represents the start time of the j-th task request re-
sponse. The larger F (n) is, the longer the interval between the
start time of this task request response and the start time of the
last task request response. In contrast, the shorter the time inter-
val.

Using the characteristics of the limit lim ex
x→−∞ = 0, the time delay

factor Δtn = e−F (n) is defined to measure the freshness of the ser-
vice request. The higher the freshness is, the higher the behavior
trust value. The behavior trust value can be defined as:

Tn = Tn−1 × Δtn−1. (17)

In this design, the behavior of all computing nodes is consid-
ered to be completely trusted at the beginning, that is, the behav-
ior trust value of all computing nodes is initialized to 1, and only
when the behavior trust value of computing nodes is higher than
the minimum trust value T low

n that can be accepted by the task
request, can the task request be responded to.

5.1.3. Trusted capability
Trusted capability is the functional attribute displayed by the

computing node, and it is a set of QoS-related indicators, for ex-
ample, computing power, storage space, memory size, deadline,
bandwidth and computing node throughput. Only when the rel-
evant attributes of the task request are satisfied can the user’s task
request respond to the computing node; otherwise, the task re-
quest cannot be responded to. The trusted indicators considered
in this paper include the computing power, storage space, maxi-
mum response time deadline that task execution can tolerate, and
security level of the computing node.

In summary, only when the trusted identity, trusted behavior,
and trusted capability are all satisfied, can the user’s task request
be successfully responded to.
190
5.2. Problem description

5.2.1. Optimization objective
This paper proposes a new task offloading algorithm based on a

comprehensive trusted mechanism and combined with the DDQN
algorithm. The purpose of optimization is to ensure the offloading
performance of the task while reducing the average response time
of the task and the total system energy consumption. The aver-
age task response time is the quotient of the sum of the response
times of all successfully executed tasks and the total number of
successfully executed tasks, and the total energy consumption of
the system is the total energy consumption of all tasks processed.
Assume the total number of submitted tasks is M , and the num-
ber of successfully executed tasks is m. Then, the average response
time of the task and the total energy consumption of the system
can be expressed as:

Taveres =
m∑

i=1

(
tres

i,l + tres
i,e

)
/m, (18)

Etotal =
m∑

i=1

(
Eexe

i,l + Etra
l,e + Eexe

i,e

)
, (19)

if the task is executed on the UE, then tres
i,e , Etra

l,e , and Eexe
i,e are 0.

Similarly, if the task is offloaded to the edge server for execution,
then tres

i,l and Eexe
i,l are 0.

When the whole offloading process is completed, assume that
the total number of tasks offloaded to the edge server is Y , and
the number of tasks successfully executed on the edge server is
y. Then, the task execution success rate and the task offloading
success rate can be expressed as:

ser = m

M
, (20)

osr = y

Y
, (21)

where the task offloading success rate and the task execution suc-
cess rate are two important indicators that reflect the task offload-
ing performance. The higher the task offloading success rate and
the task execution success rate, the better the task offloading per-
formance of the MEC system.

5.2.2. Objective function
Only successfully executed tasks have time and energy costs.

The task offloading integrated trust evaluation mechanism pro-
posed in this paper ensures the security, privacy and reliability of
the data during the offloading process. In other words, the inte-
grated trust mechanism is the evaluation mechanism of whether
the task can be successfully executed. Only when identity, behav-
ior, and ability are trusted can the task be successfully responded
to. Therefore, the objective function can be formulated as:

min Taveres and Etotal

s.t. C1: V user
ide = 1 and V cn

ide = 1,

C2: Tn � T low
n ,

C3: memi � memcn,

C4: cpui � cpucn,

C5: tres
i,l � deadlinei,

C6: tres
i,e � deadlinei,

C7: sct � sct ,

(22)
i cn

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
where V user
ide and V cn

ide represent the identity trust value of users
and computing nodes, respectively, and constraint C1 is the formal
description of trusted identity. Constraint C2 is the formal descrip-
tion of trusted behavior. memcn and cpucn represent the storage
resources and computing resources of the computing nodes, re-
spectively, and sctcn represents the security level of the computing
nodes. The security levels of the edge layer computing nodes con-
sidered in this paper are low, medium, and high. Considering that
the local layer UEs are generally personal terminal equipment, the
security level of UEs is set to high. Constraints C3 to C7 are the
formal description of the trusted capability.

5.2.3. Optimization objective weight estimation
To optimize the two objectives at the same time, a problem

worth considering is how to allocate the weight of the two op-
timization objectives in the scene. At present, some researchers,
when considering the biobjective problem, generally divide the
weights of the two optimization objectives equally and integrate
the two objectives through a subjective weighting method. In this
way, considering the weight value of the optimization objective,
the subjectivity is too strong and has some limitations, which may
affect the convergence result of the algorithm, thereby affecting
the optimization performance.

In information theory, entropy is a measure of the degree of
chaos in the system. The more chaos there is in a system, the more
effective information it contains and the higher the entropy value.
Conversely, the smaller the degree of chaos in the system, the
smaller the amount of information contained, and the smaller the
entropy value. According to the characteristics of entropy, the en-
tropy weight method [38] is regarded as a more objective method
for estimating the weight value of a single objective in multiple
objectives. Therefore, in this paper, the entropy weight method is
used to estimate the weight value of the task average response
time and total system energy consumption.

Assuming there are h samples and l indicators in the scene,
specifically, there are h computing nodes and l optimization ob-
jectives in the scene. The steps for calculating the optimal target
weight value using the entropy weight method are as follows:

(1) Since the magnitude of the optimization objectives may not
be uniform, it is necessary to standardize the objectives. The
min-max standardized processing method is expressed as:

xi, j = xi, j − min
{

x1, j, ..., xh, j
}

max
{

x1, j, ..., xh, j
} − min

{
x1, j, ..., xh, j

} . (23)

(2) Calculate the proportion of each sample value in the objective
under different objectives:

pi, j = xi, j∑h
i=1 xi, j

. (24)

(3) Calculate the entropy of different objectives:

e j = − (ln (n))−1
h∑

i=1

pi, j ln
(

pi, j
)
. (25)

(4) Calculate information entropy redundancy:

er j = 1 − e j. (26)

(5) Calculate the weight value of the optimization objective:

w j = er j∑l er
. (27)
j=1 j

191
Fig. 2. The DDTMOA framework.

5.3. DDTMOA

This paper proposes a novel task offloading algorithm based
on a self-defined integrated trust mechanism combined with the
DDQN algorithm, named DDTMOA. The core idea is to use the DL
method to fit the state of the scene and then use RL to make a
reasonable decision and select the optimal action under the safe
and reliable environment of task offloading. To determine whether
the task needs to be offloaded, if necessary, determine which edge
server the task is offloaded to for processing; if not, determine
which UE device the task is allocated to for processing. Finally,
the algorithm can effectively reduce the average response time of
the task and the total system energy consumption while having a
higher task offloading level. The DDTMOA algorithm framework is
shown in Fig. 2.

As shown in Fig. 2, the DDTMOA algorithm continuously inter-
acts with the external environment through the Q-network agent.
Based on the integrated trust mechanism according to certain
learning strategies, the Q-network agent explores the optimal ac-
tion and executes the optimal decision. Each training generates an
experience sample, which is stored in the experience replay pool.
The experience samples in the experience replay pool are ran-
domly selected for replay to update the target Q-value. Experience
replay technology can increase the learning speed of the algorithm
and improve the oscillation and divergence caused by the correla-
tion of experience samples. The state set and action set of the MEC
scene and reward function are designed as follows.

State Set. The state of the scene is used as the algorithm input.
The state of the scene designed in this paper is simulated by the
weighted sum of the response time and energy consumption of the
task. The state space of the MEC scene can be expressed as:

S = {s1, s2, ..., si, ..., sh} , si = wk
res · tres

i + wk
pow · Ei, (28)

where tres
i , Ei represents the response time and energy consump-

tion of tasks processed on computing node i after standardized
processing. wk

res and wk
pow represent the weight values of response

time and energy consumption, respectively, in the scene when pro-
cessing task k.

Action Set. The action set of the scene is a collection of all ac-
tions that the agent can choose in each state. Specific to the MEC
scenario, the action set is the collection of all computing nodes.
The action set of the MEC scene can be expressed as:

A =
{

a1
cn,a2

cn, ...,ai
cn, ...,an

cn

}
, (29)

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
where ai
cn = 1, which denotes that in this decision-making process,

the agent selects action ai
cn; that is, the agent assigns the task to

computing node i for execution.
Reward Function. Each time the agent executes a decision, it

immediately obtains the reward value from the external environ-
ment. The reward value is used to evaluate the pros and cons of
the action selected by the agent when executing a decision. Obvi-
ously, a well-trained Q-network should have the ability to evaluate
the pros and cons of the selected actions, affirm reasonable de-
cisions, and deny unreasonable decisions so that the agent can
explore maximizing long-term returns. Therefore, the reasonable
design of the reward value plays an important role in algorithm
performance. The reward value function is designed as:

r =
{

−1, the constraint does not hold;
wi

res

(
1 − tres

i

) + wi
pow (1 − Ei) , otherwise

(30)

where r = −1, which indicates that the agent does not assign an
ideal executable computing node to the task during the decision-
making process, resulting in the task not responding. In this case,
it should be given a negative value and set the worst reward
value. When the task can respond, the reward value is set as the
weighted sum of the two optimization objectives.

The pseudocode of the DDTMOA algorithm is shown in Algo-
rithm 2.

Algorithm 2: The DDTMOA algorithm.
Input: Task set
Output: Task average response time, total energy consumption, task

offloading success rate, task execution success rate
1 for a task arrives in the task waiting queue do
2 Determine the generation area of the task;
3 Select a computing node for the task using the convergent Q-network

in Algorithm 1, and based on the integrated trust mechanism;
4 if the selected computing node is UE then
5 Process the task on the local device UE;
6 Calculate the task response time and compute energy consumption;
7 end
8 else
9 Offload the task to an MEC server for processing;

10 Calculate the task response time, compute energy consumption and
communication energy consumption;

11 end
12 end
13 Calculate the task average response time, total energy consumption, task

offloading success rate, and task execution success rate;
14 return

6. Experiments and results analysis

In this section, extensive experiments are carried out, mainly
to evaluate the performance of our proposed DDTMOA algorithm.
First, we describe the experimental simulation environment, the
MEC scenario parameters, and the Q-network parameters. Second,
several classical algorithms that are compared with DDTMOA are
presented. Finally, the feasibility and effectiveness of our proposed
DDTMOA algorithm are verified through several sets of comparison
experiments.

6.1. Simulation environment and experimental parameters

The experimental simulation environment was built on a
Python 3.6 platform based on TensorFlow 1.13 under the Win-
dows 10 operating system. Our simulated tasks are generated in
real time at the local end, mainly sorting out the real Google data
sets. The Google dataset is downloaded from GitHub at https://
192
github .com /google /cluster-data. The original Google dataset con-
tains many task attributes, such as machine ID, platform ID, and
logical job name. However, not all of these attributes are required
by us, and only some of them are used. In our task model, the task
index, task commit time, CPU and memory resources required for
execution are extracted directly from within the dataset, while the
task data size is obtained based on the cycle time per instruction
(CPI) and timestamp calculation. The main simulation parameters
in the scenario were designed with similar principles to those in
the literature [6], [35], [12], and [23], as shown in Table 1. The
relevant hyperparameters in the Q-network are shown in Table 2.

6.2. Comparison algorithms

To verify and evaluate the performance of the task offloading
algorithm proposed in this paper, we introduced several classical
algorithms to compare with the DDTMOA algorithm. The first is
the random offloading algorithm (Random), which refers to the
random offloading of tasks to compute nodes for processing and
is easy to understand and implement, with low time complexity. It
has certain effects in solving tasks such as task scheduling and task
offloading. The second is the weighted round-robin offloading algo-
rithm (WRR), which offloads tasks to compute nodes sequentially,
and due to the difference in computational power between hetero-
geneous compute nodes, nodes with higher computational power
generally set larger weights. The third and fourth comparison algo-
rithms are task offloading algorithms based on DQL [36] and DQN
[26], [22]. DQL and DQN are both specific algorithms in the DRL
method, which have been widely used in the MEC environment
to solve task offloading and resource allocation problems with rel-
atively satisfactory results, and both can effectively improve MEC
system performance. The great difference between these two algo-
rithms is that they have different network structures. DQL has only
one deep neural network (DNN), which is used to approximate the
action Q-value; DQN approximates the action Q-value through two
DNNs with the same structure.

6.3. Performance evaluation

6.3.1. Weight comparison experiments
In this paper, the objective entropy weighting method is used

to estimate the weight of different optimization objectives in the
MEC scenario. To verify the feasibility, validity and impact on the
algorithm performance of the objective entropy weighting method
for estimating the weight of optimization objectives, a set of com-
parison experiments of objective weighting and subjective weight-
ing of the optimization objectives are set up in an MEC scenario
with multiple edge regions, multiple heterogeneous edge servers
and multiple UE to compare the convergence performance of the
DDTMOA algorithm through different weighting methods. The con-
vergence results are shown in Fig. 3 and Fig. 4.

Fig. 3 shows a DDTMOA algorithm convergence graph using the
objective entropy weighting method to estimate the optimization
objective weights. Fig. 4 shows the DDTMOA algorithm conver-
gence graph obtained by optimizing the objective weights by the
subjective mean. The subjective mean weighting approach, which
is also a weighting approach that is currently the focus of some
research scholars [27], [3], has certain limitations. From Fig. 3 and
Fig. 4, it is clear that the DDTMOA algorithm converges faster and
the final convergence result is more stable when using the entropy
weighting method to estimate the optimization objective weights,
which indicates that it is feasible and more effective to use the
entropy weighting method to estimate the optimization objective
weights.

To further verify whether the entropy weight method can im-
prove the performance of the algorithm. We compare the perfor-

https://github.com/google/cluster-data
https://github.com/google/cluster-data

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198

Table 1
Experimental Simulation Parameters.

Notation Description Value

C (cycle) The CPU cycles required to process 1 bit data 500

fl (GHz) The computing power of UE Uni f (0.5,1.0)

fe (GHz) The computing power of edge servers Uni f (5.0,10.0)

P (W) The transmit power 0.5

q (J) The energy consumption of edge servers to process 1 bit of data Uni f
(
1.0 × 10−9,2.0 × 10−9

)
B (MHz) The communication bandwidth 2.0

N (W/Hz) The noise power density of the channel 10−12

η The energy factor 10−28
D (km) The communication distance between UEs and BSs [0.1,0.2,0.3]

Table 2
Q-network Parameter Settings.

Parameters Value

The greedy coefficient ε 0.5

The discount factor γ 0.9

The learning rate α 0.01

The minibatch size Δ 32

Target Q-network parameter copy frequency ζ 20

The activation function ReLU

The gradient optimizer AdaDelta

The loss function Mean square error

Fig. 3. The objective entropy weight method DDTMOA algorithm convergence graph.

Fig. 4. The subjective weight method DDTMOA algorithm convergence graph.

mance of the DDTMOA algorithm when the optimization objec-
tive takes the subjective weight values and the objective entropy
weight method to estimate the optimization objective weight val-
ues. Three sets of different subjective weight values are set: 1. the
weight value of task response time is 0.5, and the weight value of
energy consumption is 0.5

(
wres = 0.5,w pow = 0.5

)
; 2. the weight

value of task response time is 0.4, and the weight value of energy
consumption is 0.6

(
wres = 0.4,w pow = 0.6

)
; 3. the weight value

of task response time is 0.6, and the weight value of energy con-
sumption is 0.4

(
wres = 0.6,w pow = 0.4

)
. The experimental results

are as follows:

Fig. 5. Task offloading success rate.

Fig. 6. Task execution success rate.
193

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
Fig. 7. Total system energy consumption.

Fig. 8. Average task response time.

As shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8, when the objec-
tive entropy weight method is used to estimate the optimization
objective weight values, the task offloading success rate and task
execution success rate of the DDTMOA algorithm are smaller, and
it has lower energy consumption and a smaller task average re-
sponse time, which further shows that the algorithm has better
performance when estimating the optimization target weight val-
ues by the objective entropy weight method.

6.3.2. Basic experiments
To verify DDTMOA algorithm performance, this section conducts

comparative experiments based on different numbers of task sets
in an MEC scenario with 9 heterogeneous edge servers and 18
heterogeneous UE devices. That is, in the basic experiment, we de-
signed the number of edge servers, BSs and UEs to be the same as
in Fig. 1. The experimental results are as follows:

As shown in Fig. 9, the DDTMOA algorithm always maintains a
high task offloading success rate under different numbers of task
sets, the task offloading success rate of the DQN and DQL algo-
rithms is slightly lower than that of the DDTMOA algorithm, and
the task offloading success rate of the WRR algorithm is lower
than that of the DQN and DQL algorithms but higher than that of
the random algorithm. This is because the random algorithm has
greater randomness, randomly offloading tasks to different edge
servers for processing, which can easily lead to violations under
numerous trusted constraints, thus affecting the task offloading
194
Fig. 9. Task offloading success rate.

Fig. 10. Task execution success rate.

success rate. The core idea of the WRR algorithm is to assign dif-
ferent weight values to the computing nodes according to their
computing power. The nodes with stronger computing power set
relatively larger weight values so that more tasks are offloaded to
the computing nodes with more sufficient resources. DQN and DQL
are two specific DRL algorithms that have strong adaptive learn-
ing capabilities and can make decisions more rationally. Therefore,
they have a high offloading success rate. However, the DDTMOA
algorithm is a further optimization based on both DQN and DQL.
Therefore, the DDTMOA algorithm has a high offloading success
rate and is relatively stable.

As shown in Fig. 10, the DDTMOA algorithm also always has
a high task execution success rate for different sets of tasks. The
task execution success rate includes both cases where the task is
offloaded to the edge and where the task is executed locally for
successful execution. To ensure that the task can respond success-
fully, the DDTMOA algorithm eventually explores a set of optimal
policies through adaptive learning to select the optimal action and
reasonably assign the task to a more resource-rich computing node
for processing. As a result, the proportion of tasks allocated to
resource-poor UE will be relatively small, the default rate will be
relatively low, and the task execution success rate will be relatively
high.

As shown in Fig. 11, the DDTMOA algorithm maintains low total
system energy consumption as the number of tasks continues to
increase. This indicates that the DDTMOA algorithm can make de-
cisions more rationally and can reasonably offload tasks based on

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
Fig. 11. Total system energy consumption.

the number of resources requested for task execution and the re-
sources of the computing nodes. That is, tasks with relatively large
quantities of data are offloaded to compute nodes with more suf-
ficient computational resources, while tasks with relatively small
quantities of data are offloaded to compute nodes with fewer com-
putational resources. This ensures that the tasks can be success-
fully responded to and that the computing resources can be fully
utilized, thus enabling the battery life of the UE on the local end.
Combined with Fig. 10, it can be seen that the DDTMOA algorithm
can maintain a high task execution success rate and has low en-
ergy consumption, which further illustrates the advantages of the
DDTMOA algorithm over other algorithms.

It is not easy to ensure that no excessive system energy is
consumed and that the task has a low response time. However,
algorithm designs that sacrifice one goal to achieve another goal
are not reasonable. Based on different numbers of task sets, the
comparison results of the average response time of each algorithm
are as follows:

Fig. 12. Average task response time.

As shown in Fig. 12, the DDTMOA algorithm has a low aver-
age task response time as the number of tasks increases, which
indicates that when using the DDTMOA algorithm, more tasks are
offloaded to computational nodes with more computing resources
and computational power for execution, thus reducing the waiting
time and execution time of tasks resulting in a more significant
decrease in the overall task response time. Combined with Fig. 11,
it can be seen that the DDTMOA algorithm better balances the two
195
Fig. 13. Task offloading success rate.

Fig. 14. Task execution success rate.

optimization objectives of total system energy consumption and
average task response time compared to other algorithms.

6.3.3. Extension experiments
To further validate the scalability and stability of the DDTMOA

algorithm, the MEC scenario simulated in this section was ex-
tended by increasing the number of UE devices at the local end
from 18 to 50. Comparative experiments were conducted under
different numbers of task sets based on the multiple UE sce-
nario.

As shown in Fig. 13 and Fig. 14, the DDTMOA algorithm main-
tains a low task offloading success rate and task execution success
rate for different numbers of task sets as the number of compute
nodes increases. This further shows that based on the more com-
plex MEC scenario, the DDTMOA algorithm can make more rational
decisions than other algorithms and can more effectively deter-
mine whether a task needs to be offloaded and to which edge
server it should be executed, thus ensuring that the task can be
offloaded and executed successfully.

The battery life of UE devices at the local end is limited, and
their computing power is relatively weak. Too many tasks assigned
to the UE for execution may both consume resources and fail to
meet the user’s QoS requirements. Task offloading to the edge
server not only has execution energy consumption but also gen-
erates additional communication energy consumption. Therefore,
reasonable task offloading to reduce system energy overhead is
particularly important. As shown in Fig. 15, the DDTMOA algorithm

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
Fig. 15. Total system energy consumption.

Fig. 16. Average task response time.

maintains a low total system energy consumption for different
numbers of task sets, which indicates that the DDTMOA algorithm
can fully and reasonably utilize the various resources of the com-
puting nodes compared to other algorithms to ensure the energy
consumption level of the system.

As shown in Fig. 16, the DDTMOA algorithm also always has a
low average task response time and is relatively stable under dif-
ferent numbers of task sets. Combined with Fig. 15, it is easy to
see that the DDTMOA algorithm is more effective than other algo-
rithms in balancing the energy and time overheads of the system
and can reduce both the total energy consumption and the aver-
age response time of the tasks. This shows that DDTMOA is more
intelligent than other algorithms and can make more reasonable
decisions based on the resources requested by the tasks and the
resources of the computing nodes.

To more intuitively reflect the robustness and stability of the al-
gorithm, this section also compares the standard deviation before
and after the task offloading success rate, the average task energy
consumption, and the average task response time of the basic ex-
periment and the extended experiment. The comparison results are
shown in Figs. 17, 18, and 19.

As seen in Figs. 17, 18, and 19, the standard deviation of the
task offloading success rate, the standard deviation of the task av-
erage energy consumption and the standard deviation of the task
average response time for both the basic and extended experi-
ments of the DDTMOA algorithm are small compared to the other
algorithms. Moreover, based on the overall view, the difference
196
Fig. 17. Task offloading success rate standard deviation comparison.

Fig. 18. Average task energy consumption standard deviation comparison.

Fig. 19. Average task response time standard deviation comparison.

between the standard deviation of each metric of the DDTMOA al-
gorithm in the basic and extended experiments is also small. This
indicates that the fluctuations of the DDTMOA algorithm are min-
imal as the number of computational nodes increases, verifying
that the DDTMOA algorithm has good stability and robustness.

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
Based on all the above comparison experiments, it can be seen
that the DDTMOA algorithm has better offloading performance
than other algorithms, can effectively reduce the average task re-
sponse time and the total system energy consumption, and has
good scalability, robustness and stability.

7. Conclusions and future work

This paper focuses on the problem of task offloading in the MEC
environment. First, a two-tier, multiheterogeneous edge server,
multiple UE device MEC scenario is constructed. Second, combined
with the DDQN algorithm, we propose the DDTMOA. We con-
sider the security of offloading tasks in the MEC environment and
construct a comprehensive trust evaluation mechanism for task of-
floading by discriminating the trusted identity, trusted behavior
and trusted capability of users and computing nodes. We use a
biobjective to train the algorithm for optimization, so we use an
entropy weighting method to dynamically determine the weights
of latency and energy consumption. Finally, we conducted basic
and extended experiments to verify the effectiveness and robust-
ness of the algorithm using a real Google dataset.

In future work, we will consider more complex MEC scenarios,
introduce cloud centers into MEC scenarios, realize cloud-edge col-
laboration, and better improve the MEC system performance. Ad-
ditionally, more comprehensive data communication methods will
be considered.

CRediT authorship contribution statement

Zhao Tong: Idea, Survey, Optimization, Reviewing.
Feng Ye: Survey, Implement, Experiments, Writing - original

draft.
Jing Mei: Optimization, Reviewing.
Bilan Liu: Suggestions, Reviewing.
Keqin Li: Suggestions, Reviewing.

Declaration of competing interest

We wish to draw the attention of the Editor to the following
facts which may be considered as potential conflicts of interest and
to significant financial contributions to this work.

We wish to confirm that there are no known conflicts of inter-
est associated with this publication and there has been no signifi-
cant financial support for this work that could have influenced its
outcome.

We confirm that the manuscript has been read and approved
by all named authors and that there are no other persons who
satisfied the criteria for authorship but are not listed. We further
confirm that the order of authors listed in the manuscript has been
approved by all of us.

We confirm that we have given due consideration to the pro-
tection of intellectual property associated with this work and that
there are no impediments to publication, including the timing of
publication, with respect to intellectual property. In so doing we
confirm that we have followed the regulations of our institutions
concerning intellectual property.

We further confirm that any aspect of the work covered in this
manuscript that has involved either experimental animals or hu-
man patients has been conducted with the ethical approval of all
relevant bodies and that such approvals are acknowledged within
the manuscript.

Acknowledgments

This work was supported by the Program of the National Natu-
ral Science Foundation of China (Grant Nos. 62072174, 61502165,
197
61602170), the National Natural Science Foundation of Hunan
Province, China (Grant No. 2020JJ5370), and the National Outstand-
ing Youth Science Program of the National Natural Science Foun-
dation of China (Grant No. 61625202).

References

[1] N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: a survey,
IEEE Int. Things J. 5 (1) (2017) 450–465.

[2] Y. Ai, M. Peng, K. Zhang, Edge computing technologies for internet of things: a
primer, Digital Communications and Networks 4 (2) (2018) 77–86.

[3] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, J. Hu, iraf: a deep reinforcement
learning approach for collaborative mobile edge computing iot networks, IEEE
Int. Things J. 6 (4) (2019) 7011–7024.

[4] K. Cheng, Y. Teng, W. Sun, A. Liu, X. Wang, Energy-efficient joint offloading
and wireless resource allocation strategy in multi-mec server systems, in: 2018
IEEE International Conference on Communications (ICC), IEEE, 2018, pp. 1–6.

[5] L. Cui, S. Yang, Z. Chen, Y. Pan, Z. Ming, M. Xu, A decentralized and trusted
edge computing platform for internet of things, IEEE Int. Things J. 7 (5) (2019)
3910–3922.

[6] T.Q. Dinh, J. Tang, Q.D. La, T.Q. Quek, Offloading in mobile edge computing: task
allocation and computational frequency scaling, IEEE Trans. Commun. 65 (8)
(2017) 3571–3584.

[7] I.A. Elgendy, W. Zhang, Y.-C. Tian, K. Li, Resource allocation and computation
offloading with data security for mobile edge computing, Future Gener. Com-
put. Syst. 100 (2019) 531–541.

[8] D. Evans, The internet of everything: how more relevant and valuable connec-
tions will change the world, Cisco IBSG 2012 (2012) 1–9.

[9] B.S. Gu, L. Gao, X. Wang, Y. Qu, S. Yu, Privacy on the edge: customizable
privacy-preserving context sharing in hierarchical edge computing, IEEE Trans.
Netw. Sci. Eng. 7 (4) (2019) 2298–2309.

[10] H. He, G. Xu, S. Pang, Z. Zhao, Amts: adaptive multi-objective task scheduling
strategy in cloud computing, China Commun. 13 (4) (2016) 162–171.

[11] C.G.C. Index, C. Index, Forecast and Methodology, 2016–2021; White Paper,
Cisco Systems, Inc., San Jose, CA, USA, 2017.

[12] C. Kai, H. Zhou, Y. Yi, W. Huang, Collaborative cloud-edge-end task offloading
in mobile-edge computing networks with limited communication capability,
IEEE Trans. Cogn. Commun. Netw. (2020), https://doi .org /10 .1109 /TCCN.2020 .
3018159.

[13] N. Kiran, C. Pan, S. Wang, C. Yin, Joint resource allocation and computation
offloading in mobile edge computing for sdn based wireless networks, J. Com-
mun. Netw. 22 (1) (2019) 1–11.

[14] G. Li, S.K.S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, S.W. Keckler, Un-
derstanding error propagation in deep learning neural network (dnn) accelera-
tors and applications, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2017, pp. 1–12.

[15] H. Li, K. Ota, M. Dong, Learning iot in edge: deep learning for the internet of
things with edge computing, IEEE Netw. 32 (1) (2018) 96–101.

[16] T. Liu, Y. Zhang, Y. Zhu, W. Tong, Y. Yang, Online computation offloading and
resource scheduling in mobile edge computing, IEEE Int. Things J. 8 (8) (2021)
6649–6664.

[17] Y. Liu, H. Yu, S. Xie, Y. Zhang, Deep reinforcement learning for offloading and
resource allocation in vehicle edge computing and networks, IEEE Trans. Veh.
Technol. 68 (11) (2019) 11158–11168.

[18] H. Lu, C. Gu, F. Luo, W. Ding, X. Liu, Optimization of lightweight task offload-
ing strategy for mobile edge computing based on deep reinforcement learning,
Future Gener. Comput. Syst. 102 (2020) 847–861.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M.
Riedmiller, Playing atari with deep reinforcement learning, Comput. Sci. (2013).

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529–533.

[21] M. Mukherjee, R. Matam, C.X. Mavromoustakis, H. Jiang, M. Guo, Intelligent
edge computing: security and privacy challenges, IEEE Commun. Mag. 58 (9)
(2020) 26–31.

[22] Z. Peng, J. Lin, D. Cui, Q. Li, J. He, A multi-objective trade-off framework for
cloud resource scheduling based on the deep q-network algorithm, Clust. Com-
put. 10 (2020).

[23] J. Ren, G. Yu, Y. He, G.Y. Li, Collaborative cloud and edge computing for latency
minimization, IEEE Trans. Veh. Technol. 68 (5) (2019) 5031–5044.

[24] Z. Tong, F. Ye, M. Yan, H. Liu, S. Basodi, A survey on algorithms for intelli-
gent computing and smart city applications, Big Data Min. Anal. 4 (3) (2021)
155–172.

http://refhub.elsevier.com/S0743-7315(22)00171-X/bibAFF2AEC5954781639BBFCD527C495F85s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibAFF2AEC5954781639BBFCD527C495F85s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibE3DFB68B1B52DEC0FE5499D8F6968F8Fs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibE3DFB68B1B52DEC0FE5499D8F6968F8Fs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibDFEBCC1969C3B8A3D7A871328824CBF5s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibDFEBCC1969C3B8A3D7A871328824CBF5s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibDFEBCC1969C3B8A3D7A871328824CBF5s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib7EE6C04636A1CDE410772446F1BD6A38s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib7EE6C04636A1CDE410772446F1BD6A38s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib7EE6C04636A1CDE410772446F1BD6A38s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib7045959B01D9022E82B63CE01F079C48s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib7045959B01D9022E82B63CE01F079C48s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib7045959B01D9022E82B63CE01F079C48s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib7F8F6F323739213C61E416344A37E0CCs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib7F8F6F323739213C61E416344A37E0CCs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib7F8F6F323739213C61E416344A37E0CCs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib56100A7D393AFA292DE2B2F1360D3072s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib56100A7D393AFA292DE2B2F1360D3072s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib56100A7D393AFA292DE2B2F1360D3072s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib15BED56600354B4E262D08D5375A03A2s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib15BED56600354B4E262D08D5375A03A2s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibDCEEC699D1B5C6C6B6323B3D958720CFs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibDCEEC699D1B5C6C6B6323B3D958720CFs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibDCEEC699D1B5C6C6B6323B3D958720CFs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibEEDA514761F5A4108F7C21AE23912430s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibEEDA514761F5A4108F7C21AE23912430s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib649FF2FFC2155C1062C310D3A4F53374s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib649FF2FFC2155C1062C310D3A4F53374s1
https://doi.org/10.1109/TCCN.2020.3018159
https://doi.org/10.1109/TCCN.2020.3018159
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibC604A192097A84A0E08B6EA2B2175F79s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibC604A192097A84A0E08B6EA2B2175F79s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibC604A192097A84A0E08B6EA2B2175F79s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib06E0E632BB5E5134AAFA899AEDC21ADAs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib06E0E632BB5E5134AAFA899AEDC21ADAs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib06E0E632BB5E5134AAFA899AEDC21ADAs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib06E0E632BB5E5134AAFA899AEDC21ADAs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibC5F57177F56278569A1239AEE13D5796s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibC5F57177F56278569A1239AEE13D5796s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib56D7477338A8D9DE82A81BAEC2225CC8s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib56D7477338A8D9DE82A81BAEC2225CC8s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib56D7477338A8D9DE82A81BAEC2225CC8s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibF4D57373BB45D44F59BF718BB2EAC472s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibF4D57373BB45D44F59BF718BB2EAC472s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibF4D57373BB45D44F59BF718BB2EAC472s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib12C94464B008A6762A290918012558C2s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib12C94464B008A6762A290918012558C2s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib12C94464B008A6762A290918012558C2s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibBB11DFC02FC54FA3081046FDA5F6C547s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibBB11DFC02FC54FA3081046FDA5F6C547s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib84824326C621334EF64ACFB56EB46EFBs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib84824326C621334EF64ACFB56EB46EFBs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib84824326C621334EF64ACFB56EB46EFBs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib75FEF2EDD621D3CECE8778DE5287A819s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib75FEF2EDD621D3CECE8778DE5287A819s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib75FEF2EDD621D3CECE8778DE5287A819s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibD03959D6B8A531691009A311C43D8A9Es1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibD03959D6B8A531691009A311C43D8A9Es1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibD03959D6B8A531691009A311C43D8A9Es1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibE7335B06AD75E06362E37D964111A1E1s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibE7335B06AD75E06362E37D964111A1E1s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibF69B54219C94A537F28E8506C71AF9BEs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibF69B54219C94A537F28E8506C71AF9BEs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibF69B54219C94A537F28E8506C71AF9BEs1

Z. Tong, F. Ye, J. Mei et al. Journal of Parallel and Distributed Computing 169 (2022) 185–198
[25] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double
q-learning, in: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 30, 2016, pp. 2094–2100.

[26] M. Volodymyr, K. Koray, S. David, A.A. Rusu, V. Joel, M.G. Bellemare, G. Alex,
R. Martin, A.K. Fidjeland, O. a Georg, Human-level control through deep rein-
forcement learning, Nature 518 (7540) (2019) 529–533.

[27] J. Wang, L. Zhao, J. Liu, N. Kato, Smart resource allocation for mobile edge
computing: a deep reinforcement learning approach, IEEE Trans. Emerg. Top.
Comput. (2019), https://doi .org /10 .1109 /TETC .2019 .2902661.

[28] K. Wang, K. Yang, C.S. Magurawalage, Joint energy minimization and resource
allocation in c-ran with mobile cloud, IEEE Trans. Cloud Comput. 6 (3) (2016)
760–770.

[29] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, K.K. Leung, Dynamic service mi-
gration in mobile edge computing based on Markov decision process, IEEE/ACM
Trans. Netw. 27 (3) (2019) 1272–1288.

[30] T. Wang, H. Luo, X. Zheng, M. Xie, Crowdsourcing mechanism for trust evalu-
ation in cpcs based on intelligent mobile edge computing, ACM Trans. Intell.
Syst. Technol. 10 (6) (2019) 1–19.

[31] X. Wang, K. Wang, S. Wu, S. Di, H. Jin, K. Yang, S. Ou, Dynamic resource
scheduling in mobile edge cloud with cloud radio access network, IEEE Trans.
Parallel Distrib. Syst. 29 (11) (2018) 2429–2445.

[32] L. Xi, L. Yu, Y. Xu, S. Wang, X. Chen, A novel multi-agent ddqn-ad method-based
distributed strategy for automatic generation control of integrated energy sys-
tems, IEEE Trans. Sustain. Energy 11 (4) (2019) 2417–2426.

[33] J. Yang, X. You, G. Wu, M.M. Hassan, A. Almogren, J. Guna, Application of rein-
forcement learning in uav cluster task scheduling, Future Gener. Comput. Syst.
95 (2019) 140–148.

[34] Z. Yang, Y. Liu, Y. Chen, N. Al-Dhahir, Cache-aided noma mobile edge comput-
ing: a reinforcement learning approach, IEEE Trans. Wirel. Commun. 19 (10)
(2020) 6899–6915.

[35] J. Zhang, X. Hu, Z. Ning, E.C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, B. Hu, Energy-
latency tradeoff for energy-aware offloading in mobile edge computing net-
works, IEEE Int. Things J. 5 (4) (2017) 2633–2645.

[36] Q. Zhang, M. Lin, L.T. Yang, Z. Chen, P. Li, Energy-efficient scheduling for real-
time systems based on deep q-learning model, IEEE Trans. Sustain. Comput.
4 (1) (2017) 132–141.

[37] R. Zhao, X. Wang, J. Xia, L. Fan, Deep reinforcement learning based mobile edge
computing for intelligent internet of things, Phys. Commun. 43 (2020) 101184.

[38] Y. Zhu, D. Tian, F. Yan, Effectiveness of entropy weight method in decision-
making, Math. Probl. Eng. 2020 (2020) 1–5.

Zhao Tong received the PhD degree in computer
science from Hunan University, China in 2014. He was
a visiting scholar at the Georgia State University from
2017 to 2018. He is currently an associate professor
at the College of Information Science and Engineer-
ing of Hunan Normal University. His research interests
include modeling and scheduling for parallel and dis-
tributed computing systems. He has published more
than 15 research papers in international conferences

and journals, such as IEEE Transactions on Parallel and Distributed Sys-
tems, Information Sciences, Neural Computing and Applications, and Jour-
nal of Parallel and Distributed System. He is a member of CCF.

Feng Ye received the BE degree from Hunan In-
stitute of Science and Technology, Yueyang, China in
2018. He is currently a master student at the College
of Information Science and Engineering, Hunan Nor-
mal University, Changsha, China. His research interests
include cloud computing, mobile edge computing, ob-
jective optimization, task scheduling, machine learn-
ing, and artificial intelligence.

Jing Mei received the Ph.D. in computer science
from Hunan University, China, in 2015. She is cur-
rently an assistant professor in the College of In-
formation Science and Engineering at Hunan Normal
University. Her research interests include parallel and
distributed computing, cloud computing, etc. She has
published 12 research articles in international con-
ference and journals, such as IEEE Transactions on
Computers, IEEE Transactions on Service Computing,

Cluster Computing, Journal of Grid Computing, Journal of Supercomputing.

Bilan Liu received the BE degree from Hunan In-
stitute of Science and Technology, Yueyang, China in
2020. She is currently pursuing a MS degree in the
College of Information Science and Engineering of Hu-
nan Normal University, Changsha, China. Her research
interests include Cloud-edge collaborative computing,
deep learning algorithms and combinatorial optimiza-
tion.

Keqin Li is a SUNY Distinguished Professor of
computer science with the State University of New
York. He is also a Distinguished Professor at Hunan
University, China. His current research interests in-
clude cloud computing, fog computing and mobile
edge computing, energy-efficient computing and com-
munication, embedded systems and cyber–physical
systems, heterogeneous computing systems, big data
computing, high-performance computing, CPU–GPU

hybrid and cooperative computing, computer architectures and systems,
computer networking, machine learning, intelligent and soft computing.
He has published over 680 journal articles, book chapters, and refereed
conference papers, and has received several best paper awards. He cur-
rently serves or has served on the editorial boards of the IEEE Transactions
on Parallel and Distributed Systems, the IEEE Transactions on Computers,
the IEEE Transactions on Cloud Computing, the IEEE Transactions on Ser-
vices Computing, and the IEEE Transactions on Sustainable Computing. He
is an IEEE Fellow.
198

http://refhub.elsevier.com/S0743-7315(22)00171-X/bib12D44FC18D38FD615BDD468A7A3A1F21s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib12D44FC18D38FD615BDD468A7A3A1F21s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib12D44FC18D38FD615BDD468A7A3A1F21s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib1B30C0D7AB743D4F08E90530B41551CCs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib1B30C0D7AB743D4F08E90530B41551CCs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib1B30C0D7AB743D4F08E90530B41551CCs1
https://doi.org/10.1109/TETC.2019.2902661
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib9236E4E10498EEDA5C4C8F7263FA0D7Ds1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib9236E4E10498EEDA5C4C8F7263FA0D7Ds1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib9236E4E10498EEDA5C4C8F7263FA0D7Ds1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib224D9E333F0476D6D30485CD217408DBs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib224D9E333F0476D6D30485CD217408DBs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib224D9E333F0476D6D30485CD217408DBs1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib9DF613233BE88F56B20177BA99068C26s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib9DF613233BE88F56B20177BA99068C26s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib9DF613233BE88F56B20177BA99068C26s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibB5EE077085E76213301AFF61784A95A3s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibB5EE077085E76213301AFF61784A95A3s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bibB5EE077085E76213301AFF61784A95A3s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib776AD83BC4B09B55F879AD6C520FFC53s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib776AD83BC4B09B55F879AD6C520FFC53s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib776AD83BC4B09B55F879AD6C520FFC53s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib6F7440B089F9CC7F08F1F6A1A6B30362s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib6F7440B089F9CC7F08F1F6A1A6B30362s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib6F7440B089F9CC7F08F1F6A1A6B30362s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib1DEA5DCB75602287289531619F658648s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib1DEA5DCB75602287289531619F658648s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib1DEA5DCB75602287289531619F658648s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib384BAD73AC7E0DC7B26A6F012E6CFFD9s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib384BAD73AC7E0DC7B26A6F012E6CFFD9s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib384BAD73AC7E0DC7B26A6F012E6CFFD9s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib36B97B2E0BD3628B30C9886F1D56F752s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib36B97B2E0BD3628B30C9886F1D56F752s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib36B97B2E0BD3628B30C9886F1D56F752s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib19F9D6778BB4E9CDEDF1846D68DDBBD6s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib19F9D6778BB4E9CDEDF1846D68DDBBD6s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib6B806DB6FE795673C8AED993EECF2207s1
http://refhub.elsevier.com/S0743-7315(22)00171-X/bib6B806DB6FE795673C8AED993EECF2207s1

	A novel task offloading algorithm based on an integrated trust mechanism in mobile edge computing
	1 Introduction
	2 Related work
	3 Overview of MEC model architecture
	3.1 MEC model
	3.2 Task type and definition
	3.3 Communication model
	3.4 Computational model
	3.4.1 Local computing
	3.4.2 Edge computing

	4 Theoretical background
	4.1 Markov decision process
	4.2 Deep reinforcement learning

	5 Algorithm design
	5.1 Integrated trust mechanism
	5.1.1 Trusted identity
	5.1.2 Trusted behavior
	5.1.3 Trusted capability

	5.2 Problem description
	5.2.1 Optimization objective
	5.2.2 Objective function
	5.2.3 Optimization objective weight estimation

	5.3 DDTMOA

	6 Experiments and results analysis
	6.1 Simulation environment and experimental parameters
	6.2 Comparison algorithms
	6.3 Performance evaluation
	6.3.1 Weight comparison experiments
	6.3.2 Basic experiments
	6.3.3 Extension experiments

	7 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

