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Abstract With the research and development of 5G
technology, emerging markets such as Wise Infor-
mation Technology of med, smart transportation and
industrial Internet are gradually growing, which not
only provide convenience to people’s life, but also
put forward increasingly urgent demand for efficient
parallel and distributed technologies. Therefore, in
order to meet the need of high computing amount
for application diversification, this paper proposes a
novel scheduling solution with data security, aiming
at simultaneously optimizing the system response time
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and the user’s energy consumption. First, we model
the scheduling problem in a mobile edge comput-
ing (MEC) environment as a Markov decision process
(MDP) problem, and a three-tier collaboration model
considering data security in the MEC environment is
constructed. Second, the system response time and the
energy consumption are simultaneously optimized in
this paper, with objective weights which change in real-
time. At the same time, load balancing at the edge layer
is considered. Third, a deep reinforcement learning
(DRL)-based secure offloading (DRLSO) algorithm is
given as the solution for the research problem. In exper-
iments from multiple angles, the proposed algorithm
has good performance.

Keywords Collaborative optimization · Data security ·
Deep reinforcement learning (DRL) · Mobile edge
computing (MEC) · Task offloading

1 Introduction

The rapid development of information technology has
brought people various application services, such as
image recognition, audio processing, video processing,
and augmented reality [8,38]. Correspondingly, higher
requirements are also placed on the device’s comput-
ing power. Even in this era, there have been significant
breakthroughs in transistor technology, allowing CPUs
to contain more transistors while maintaining the same
package size [24]. The computing power of end devices
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(EDs) has improved qualitatively and has specific pro-
cessing capability; however, it still struggles to cope
with the high computing demands brought by increas-
ingly complex usage scenarios [21,33]. Therefore, this
paper proposes a three-tier model for cooperation with
a mobile edge computing (MEC) platform and a mobile
cloud computing (MCC) platform with powerful com-
puting capabilities. The device can upload tasks to plat-
forms with excess computing capabilities. Through this
collaborative mode, applications are no longer limited
by resources and can complete multiple scenarios on
the terminal, bringing richer experience to users.

The three-tier model combines the three layers’
advantages to utilize resources fully. EDs can handle
lightweight tasks without transmission with high secu-
rity. MEC handles computationally intensive tasks, but
it requires transmission. The computing power of MCC
is more powerful than that of MEC, but the transmis-
sion is longer than MEC, and the transmission over-
head is higher than the latter. Long-distance transmis-
sion means high transmission costs and higher security
risks [5,29]. The attacker may intercept the data packet
during the transmission of the task to obtain the data
content [18]. For this reason, advanced encryption stan-
dard (AES) encryption technology is used in this paper
to ensure the security of the task [1]. Therefore, if the
task is offloaded to the remote, the processing costs are
saved, but it generates additional overhead.

Based on the above situation, it is necessary to rea-
sonably schedule limited computing resources [2,28].
A reasonable allocation strategy can find a better bal-
ance among contradictory goals, and has better per-
formance on the premise of controlling costs. How-
ever, a poor strategy will weaken performance and
waste resources [9,26]. Many methods are used to pro-
vide a solution, such as heuristic algorithms, numeri-
cal optimization methods, greedy algorithms. However,
heuristic algorithm is proposed by experience, but lacks
solid theoretical foundation. Numerical optimization
method takes too long to solve problems. Greedy algo-
rithms are often trapped in local optimal solutions and
cannot obtain global optimal solutions. Therefore, this
paper proposes an adaptive algorithm based on deep
reinforcement learning to meet the needs of large-scale
application scenarios, which can learn and adjust strate-
gies adaptively. By sensing the current environment and
combining the task’s attributes, appropriate computing
nodes are allocated to the task.

Thus, a deep reinforcement learning (DRL)-based
secure offloading (DRLSO) algorithm is proposed in
this paper to provide a solution for the research prob-
lem. The main contributions are as follows.

1. The heterogeneous three-tier task offloading model
in MEC environment is constructed. This model
considers data transmission mode when tasks are
offloaded to the remote.

2. The task offloading problem in MEC environment is
modeled as a Markov decision process (MDP), and
an adaptive solution for simultaneously optimizing
dual objectives is proposed.

3. The experiments are set up to verify the performance
of the DRLSO algorithm, and the proposed algo-
rithm shows a better performance than other com-
parison algorithms.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the current research status of this field.
Section 3 shows the constructed three-tier scheduling
model in the MEC environment and the objective func-
tion. Section 4 introduces the proposed algorithm and
gives pseudocode. Section 5 designs experiments to test
the performance of the proposed algorithm. Section 6
is a general summary of this paper.

2 Related Work

With the constant explosion of data volume, allocat-
ing appropriate computing nodes for tasks to ensure
efficient utilization of limited resources has attracted
widespread attention. Scholars have published many
high-quality articles, and several recent works in related
fields are listed below [4,10,27].

Yao et al. [34] considered a task assignment prob-
lem with path planning constraints among multiple
robots. To solve the coupling problem, they proposed
the homotopic method with two homotopy primitives,
which performs better than traditional methods in
experimental results. Sujaudeen et al. [25] constructed
a task-aware resource allocation framework based on
neural networks to allocate resources cost-effectively.
The neural network classified tasks autonomously, and
the proposed algorithm was applied to scheduling tasks,
effectively reducing the probability of task migration.
Chowdhary et al. [3] considered the problem of improv-
ing the quality of service (QoS) of educational services
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in the cloud Internet of Things environment. The tasks
were prioritized at first. Then, a suitable machine were
assigned to each task to speed up the execution of the
tasks, achieving a throughput performance of more than
90 percent. Guo [6] proposed a scheduling algorithm
based on fuzzy self-defense in cloud computing envi-
ronment, which has a good optimization effect in terms
of resource utilization rate, default rate and comple-
tion time. Zhang et al. [36] proposed a scheme that
comprehensively considered task scheduling and con-
tainerization to improve the efficiency of edge servers.
Simulation results show that the proposed scheme can
effectively improve the execution efficiency and elim-
inate redundant container operations.

The research mentioned above proposed corre-
sponding scheduling models based on problems in dif-
ferent application scenarios; however, it ignores the
heterogeneity of computing resources. A single type
of resource has its limitations. According to the char-
acteristics of different resources, this paper proposes a
model that combines the advantages of three different
computing resources and cooperates to process tasks,
so that the resources are used efficiently.

Xu et al. [32] proposed a reference vector-guided
evolutionary algorithm based on the angle-penalty
distance of normal distribution (RVEA-NDAPD) to
prompt the multi-objective scheduling efficiency of
the cloud server, and the proposed algorithm had a
great performance compared to the MaOEAs method.
Wang et al. [30] studied the joint optimization problem
for task allocation and power allocation under differ-
ent channel conditions and computing resources. The
solution proposed based on the matching theory could
effectively save the system’s energy consumption, and
have good adaptability to the system. Niu et al. [19]
proposed a geo-aware workflow allocation method in
a cloud environment, which reduced delay and traffic
overhead of the system through reasonable task dupli-
cation. Liu et al. [15] introduced particle computing to
divide tasks into three different types of tasks based on
information particles. A scheduling strategy based on
greedy strategy is proposed and its optimization effect
on energy consumption is proved by numerical exper-
iments. Hagras et al. [7] considered the problem of
energy waste caused by replication in the repetitive
list-based heuristic scheduling scheme, and proposes a
mechanism to reduce repetition, which can effectively
reduce energy consumption while maintaining delay.

The research mentioned above had designed an effec-
tive solution under the constructed scenarios. However,
the solution proposed in this paper based on DRL has a
stronger adaptive ability than traditional methods, and
the application of neural networks has better perfor-
mance even in the case of large data dimensions.

Shao et al. [23] considered the problem of optimiz-
ing the real-time performance of tasks in the online
monitoring scenario in the smart grid, and built a
scheduling model that considers cable distribution
characteristics and task attributes in the MEC environ-
ment. The proposed method based on improved parti-
cle swarm optimization effectively reduced the average
delay and improved the grid’s reliability. From the per-
spective of a cloud service provider, Rekha et al. [22]
studied the solution based on a genetic algorithm in
the cloud environment to improve the performance of
the cloud server while ensuring a fast response. Li et
al. [14] built a multi-agent system (MAS) model and
proposed a method to solve the multi-task multi-agent
assignment problem, aiming at optimizing resource uti-
lization, agent satisfaction, task assignment time, task
completion time, etc. Moreover, the effectiveness of
the proposed algorithm was verified in different scenar-
ios. Li et al. [13] proposed a solution with high prof-
itability and success rate in multi-agent systems, the
proposed algorithm, which has a better stability sys-
tem and reduces the total execution time. Kanemitsu
et al. [11] considered the problem that shared con-
tainers, high parallelism and high resource utilization
could not be satisfied simultaneously when schedul-
ing containerized tasks in workflow. They proposed
a cluster-based containerization scheduling scheme,
which used shared containers to reduce the required
computing power resources and thus reduce the task
response time. Wang et al. [31] proposed a scheduling
optimization model with caching mechanism to ensure
privacy through decentralized offloading of tasks. The
proposed solutions based on genetic differential evolu-
tion had a good performance in reducing latency.

The research mentioned above had good perfor-
mance on the objective targets. However, in reality,
there are a few cases where only one factor needs to
be considered, and most need to balance contradic-
tory goals. Therefore, the selection of weights indi-
cating the importance of goals is also very important.
The algorithm proposed in this paper calculates the
weights through the objective weighting method, and
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can update the weights in real-time according to the
status of the system.

3 The TCM Model

In this section, a three-tier model is introduced to
describe the task scenarios. We first illustrate the com-
ponents of the model in detail. Second, the entire work-
flow of the system is set forth through formal language.
Third, the specific description of the problem studied
in this paper, and the objective function are given.

3.1 System Model

The three-tier collaboration model in MEC (TCM)
environment is considered in this paper. The three com-
ponents of the TCM model are the local layer, the edge
layer and the cloud layer. The TCM model is shown in
Fig. 1.

• The local layer: This layer is composed of EDs in
the area, including mobile phones, laptops, traffic
lights, fax machines, etc. These devices are both
generators of task requests and receivers of result-
ing data.

• The edge layer: This layer distributes edge servers,
which are used to process task requests sent by EDs.
In this paper, we design three edge regions with the

same construction as an example to provide com-
puting services for the upper layer.

• The cloud layer: This layer has quietly suffi-
cient computing resources, but it needs to bear
higher transmission costs. Therefore, it is suitable
for processing computation-sensitive tasks but not
transmission-sensitive tasks.

Those EDs at the local layer generate task requirements,
denoted as task = (

ided , idt , tsi , ci , slotsubi

)
, which

represent the device that generates this task, the task
identification, task size, the number of CPU revolutions
required to calculate a unit of data, and the submission
time, respectively. According to the characteristics of
the task and the real-time status of the system, the task
can be processed locally, on the edge, or on the cloud.
When the task is selected to be offloaded to remote
to process, the data will have an encryption process to
ensure the security of the transmission process. Among
them, tasks are divided into two types: cooperative
tasks (CT) and non-cooperative tasks (NCT), which
depend on the location of the ED which generates the
task. If the ED is at the junction of multiple edge
regions, we regard this task as a cooperative task,
defined as

taski =
{
CT i f locut ∈ Aes

j ∩ Aes
k , j �= k,

NCT other,
(1)

Fig. 1 The TCM
scheduling model
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where locut is the plane coordinates of the ED, and Aes
j

and Aes
k are the service area of the given edge server.

For cooperative tasks, on the basis of the original three
options, they have additional multiple edge regions to
choose from. The ED is in constant motion and its loca-
tion is not fixed.

3.2 Response Time

Every once in a while the ED generates a task request.
If the local computing power is sufficient and the task
is processed locally, then no transfer is needed. In this
case, the response time only includes local procession
time, defined as

T u
i = tsi × ci

fu
, (2)

where tsi is the size of task i . ci is the number of cpu
cycles required to calculate one unit of data. fu is the
local computing frequency. Otherwise, the ED needs
to encrypt the task data, and then send it to the remote
to ensure the security of the transmission process.

It is a wireless transmission from the ED to the edge.
The channel-to-interference plus-noise ratio (CINR) is
defined as

γe,b = Pege,b∑
i∈E, j �=b Pmaxgi, j + σ 2 , (3)

where Pe is the ED transmit power. The channel gain
ge,b is obtained through ge,b = (

diste,b
)−δ , where δ is

the path loss factor, and diste,b is the distance between
EDs and the edge.

∑
i∈E, j �=b Pmaxgi, j represents the

inferences from EDs in other edge areas. σ 2 is the noise
power. When multiple EDs in the same area access
simultaneously, the data communication follows the
connection mode of frequency division multiple access
(FDMA) method. Therefore, the transmission in the
region is independent of each other, and interference
is not considered. However, interference from EDs in
other regions at the same time is considered; Therefore,
the wireless transmission ratio is

re,b = B

Ub
log2

(
1 + γe,b

)
, (4)

where B is the bandwidth. Ub is the number of EDs in
the same edge region at the same time.

Due to the limited capability of EDs, a lot of tasks
need to be offloaded to the remote. However, frequent
data interaction also brings data security risks. There-
fore, secure transmission is meaningful to prevent the
attacker from easily obtaining the data content when
the user data is intercepted by malicious means. Tasks
transmitted to the remote needs to be encrypted locally
first. The encryption process is carried out on the net-
work adapter, and the time consumed is

encri = tsi
nice

, (5)

where nice is the rate of the local network adapter. After
encryption, the size of the data may change, denoted
as tsencri . Until the task reaches the assigned process-
ing device, it will be decrypted at the processor. The
decryption time is

decri = tsencri

nic j
, (6)

where nic j is the rate of the network adapter at the edge
or the cloud.

If task is offloaded to the edge, the total communica-
tion time includes wireless transmission time, encryp-
tion and decryption time, defined as

comme,b
i = encri + tsencri

re,b
+ decri , (7)

= tsi
nice

+ tsencri

(
re,b + nic j

)

re,b × nic j
, (8)

where
tsencri
re,b

represents the transmission time between
the base station (BS) and EDs. The total response time
consists of two parts, the transmission part and the cal-
culation part. Thus, the response time of the task when
it is processed by the edge server is

T o
i = comme,b

i + tsi
mach j

, (9)

wheremach j is the processing rate of the assigned edge
device, and tsi

mach j
is the calculation time.

However, if task is offloaded to the cloud, there is one
more wire transmission process compared to offloading
it to the edge. The channel from the BS to the cloud is a
wired channel with time division multiplexed. Queuing
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may be required when tasks are intensive. The queuing
time is

tqueu =
{
slotleisf iber − slotnow i f slotleisf iber ≥ slotnow,

0 other,
(10)

where slotleisf iber is the idle time of the channel, that is, the
completion time of the last transmission task. slotnow
is the current time. The wired communication time is

commb,c
i = tsencri

rb,c
+ tqueu, (11)

where rb,c is the rate of the wired channel. The total
communication time for offloading to the cloud is

comme,c
i = encri +comme,b

i +commb,c
i +decri . (12)

Therefore, the response time is

T o
i = comme,c

i + tsi
mach j

. (13)

3.3 EDs Energy

In this paper, we only consider the energy consump-
tion of the user side, mainly including local process-
ing energy consumption and transmission energy con-
sumption, and the energy consumption of the remote is
not included in the calculation.

When the task is processed locally without offload-
ing, only the local computing energy consumption is
considered. The local power consumption is

Pu = κ ( fu)
3 , (14)

where κ is the effective switched capacitors in the chip.
The energy consumption is

Eu
i = Pu

tsi × ci
fu

. (15)

When the task is offloaded to the edge or cloud, only
the encryption energy of the original data and the trans-
mission energy of sending the task to the base station
are calculated, defined as

Eo
i = Pu × commu,b

i . (16)

If tasks are offloaded to the cloud, the transmission
from the BS to the cloud is done by the BS, so it does
not count in this place.

3.4 Problem Description

We consider a scheduling scheme that simultaneously
optimizes task response time and EDs energy in the TCM
architecture. Task can be processed at local, the edge,
or the cloud. In most cases, due to the limitation of the
EDs hardware, tasks need to be offloaded to remote to
process. However, when the remote provides sufficient
computing power, it also bears the risk of communica-
tion costs and data security. Besides, the environment
is changing dynamically. It is meaningful to synthesize
the real-time status of all devices and task attributes to
make strategies, so as to save the energy consumption
of the client and shorten the response time as possible.
In this process, some constraints are exist. The objec-
tive function and constraints can be expressed as

Min
∑

i∈N

(
T u
i + T o

i

)
,

∑

i∈N

(
Eu
i + Eo

i

)
, (17)

s.t.
∑

i∈N
cpui ≤ C, (18)

∑

i∈N
memi ≤ M, (19)

y ≤ Y. (20)

N is the collection of all tasks. cpui is the required
CPU capacity, and C is the CPU capacity of the remote
server itself. Thememi is memory, and M is the server’s
inherent memory. y is the number of tasks to be pro-
cessed in parallel, and Y is the maximum number of
tasks allowed to be processed in parallel.

4 Proposed DRLSO Algorithm

In this section, the DRLSO algorithm is designed to
solve the problem of task assignment for the purpose
of reducing system delay and EDs energy to the great-
est extent possible. First, the decision-making among
edge layer is elaborated. Second, the whole workflow
of DRLSO is spread out in detail.
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4.1 Cooperation among Edge Areas

When the task is assigned to the edge layer for process-
ing, it is still necessary to further determine the specific
edge server region and specific computing node. The
main steps are as follows.

- Obtain the current ED coordinates and the range of
each edge service area, and determine which ser-
vice areas the current ED is located in. According
to Eq. (1), if there are multiple, then we regard it
as a cooperative task; otherwise, we regard it as a
non-cooperative task.

- For cooperative tasks, compute the load situation
among each edge area to select a certain edge area
to be offloaded to balance the load among regions,
which can be expressed as

ESk = arg min
∑

j∈ESk

∑

i∈N

tsi
mach j

, (21)

where ESk represents number of selected region.
- For non-cooperative tasks, directly select the edge

area in which it is located.

The pseudocode of edge cooperation can be expressed
as Algorithm 1.

Algorithm 1: The Edge Cooperative Algorithm
Input: Environment status
Output: Selected edge regions k
for Each taski do

Get the locut of the ED which generated taski ;
for Each region j do

Judge the position relationship between locut
and Aes

j ;

end
Judge the type of taski according to Eq. (1);
if taski is cooperative then

Choose the area ESk according to Eq. (21);
else

Ensure the area k of the task;

end

4.2 DRLSO Algorithm

To better adapt to the requirements of reducing the
response time and saving local energy consumption
simultaneously, the DRLSO algorithm is developed in

this paper. In the TCM environment, tasks can be pro-
cessed locally, or offloaded to the edge or the cloud.
Through the DRLSO algorithm, a sub-optimal strat-
egy in the current environment can be quickly obtained
to ensure that both objectives can achieve better results.

DRLSO is an algorithm based on DRL extension that
adaptivelylearnsand updates strategiesbyinteractingwith
the environment. Reinforcement learning is a machine
learning paradigm that learns through trial and error by
constructing labels based on feedback from the envi-
ronment. With each action taken, the environment is
updated from the current state s to the next state s′, as

Qt+1 (s, a) = Qt (s, a) + α
(
Qtar

t (s, a) − Qt (s, a)
)
, (22)

Qtar
t (s, a) = R + γ max

a′ Qt
(
s′, a′) , (23)

a = argmax
a′ Qt

(
s′, a′) . (24)

Qt (s, a) is a value that represents the state of the
environment at time t after taking action a in state
s. Qtar

t (s, a) is the target state value of the environ-
ment. In this paper, the state is a value of the con-
sidered system response time and ED energy. a is
a one-hot encoded one-dimensional array, like a =
[0, · · · , 1, · · · , 0]. The length of the array is the num-
ber of optional computing nodes. a[x] = 1 indicates
that the computing node with subscript x is selected.
The environment evaluates the impact of the policy and
gives the reward as

R = w1 × Ti + w2 × Ei , (25)

used as a feedback to the system, to better guide the
decision making. w1 and w2 are the weight factor
of each objective. However, large-scale task data can
cause dimensional disasters for Q-table, which cannot
be stored efficiently. Therefore, deep learning is intro-
duced to replace Q-table with value function approxi-
mation. With the goal of maximizing R, the algorithm
is able to continuously learn during the interaction to
guide better decisions.

In the proposed algorithm, the secure transmission
is considered using AES due to its features of secu-
rity, high efficiency, easy implementation and flexibil-
ity [12,20]. A simple schematic diagram is shown in
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Fig. 2. AES is a common symmetric encryption algo-
rithm that is widely used in information protection, e-
commerce, biometrics and other fields. At the sender,
the plain text is encrypted according to the given key
and the encryption function to obtain the cipher text.
The key is the password used to encrypt the plain text,
which is the same as the decryption key and cannot
be easily leaked. Even if the encrypted cipher text is
intercepted by an attacker, it cannot be cracked with-
out the key. At the receiver, the cipher text is inversely
transformed according to the key and the decryption
function to obtain the original text.

The entire algorithm workflow is as follows. At the
beginning, the ED side generates task requests. There
may be multiple devices generating tasks at the same
time, but the same device only generates one task at
the same time. the real-time status of the system is
obtained, and the evaluation tasks are processed locally,
at the edge or in the cloud.

If the local computing resources are sufficient, the
task is processed locally, and there is no need to encrypt
the data for remote transmission. If the task is offloaded
to the remote, it is necessary to obtain the wireless trans-
mission rate according to the current system status, and
the EDs encrypt the data before transmitting it to the
BS. If task is offloaded to the cloud, compared to the
edge, there will be a longer transmission distance from
the BS to the cloud for wired transmission. If task is
offloaded to the edge, comprehensively consider the
location of the ED and the load of each edge server to
choose the candidate edge region.

Based on the above information, the broker will out-
put the assigned computing node a through Eq. (22).

When the task is processed, the result is returned
to the ED. The change of environment state is per-
ceived, and the feedback value is calculated by Eq. (25)
to guide decision-making. Among them, w1 and w2

are the weight coefficients, calculated by the Entropy

method [17] in real-time, which mainly divided into
the following 4 steps.

– First, use min-max normalization to process the
sample matrix, to remove the effect of dimensional
differences on the results. All subsequent steps are
based on the normalized value, defined as

rki =
rki − Min

i∈(1,n)

(
rki

)

Max
i∈(1,n)

(
rki

) − Min
i∈(1,n)

(
rki

) , (26)

where n is the number of samples, and k represents
the evaluation indicators.

– Second, for each indicator, calculate the weight of
each sample corresponding to the indicator value,
defined as

qki = rki∑n
i=1 r

k
i

. (27)

– Third, calculate the information entropy of each
indicator, which represents the amount of informa-
tion. The larger the entropy value is, the more valu-
able information it contains., defined as

enk = −h
n∑

i=1

qki ln qki , (28)

where h is (ln q)−1.
– Fourth, obtain the weight of the indicator according

to the entropy value, defined as

wk = 1 − enk

nk − ∑ j=nk
j=1 en j

, (29)

where nk is the number of indicators, and nk = 2
in this paper.

Fig. 2 The data encryption and decryption workflow of AES

123



Journal of Grid Computing            (2023) 21:41 Page 9 of 15    41 

Repeat the process above until the end. The pseu-
docode of the process is given in Algorithm 2.

Algorithm 2: The DRLSO Algorithm
Input:EDs
Output:Policy decisions
Initial the whole system environments;
Initialize the network structure;
for taski generated by EDs do

Perceive the state of the environment s;
Get candidate edge regions ESk through Algorithm 1;
Get the selected computing node mach j through the
DQN method ;
if mach j is in the edge or the cloud then

taski is offloaded to the remote;
The ED side u encrypts taski ;
Calculate re,b according to Eq. (3, 4) ;
Calculate T o

i , Eo
i through Eq. (9, 13, 16);

else
taski is processed on the device u;
Calculate T u

i , Eu
i through Eq. (2, 15);

Calculate the feedback R by environment according
to Eq. (25);
Update the network for optimization;

end

5 Experimental Verification and Performance
Analysis

In this section, several experiments are conducted to
prove the performance of the proposed DRLSO algo-
rithm in the TCM environment. The configuration
parameters of the computer are as follows: the operat-
ing system is Microsoft’s win10 64-bit. The processor,

CPU frequency, and running memory of the device are
i5-8400 with six cores, 2.80 GHz, and 8 GB, respec-
tively. First, the parameters related to the experiment
are listed in Table 1. Second, the methods used in the
algorithm are carefully selected through experiments.
Third, we carefully observe and analyze the trend of
the system under scene changes, and verify the perfor-
mance of the proposed algorithm.

5.1 Activation Function

Neural networks are adopted to solve the problem of
dimensional explosion when the amount of data is too
large. However, the activation function plays a signifi-
cant role in neural networks, which processes the sig-
nal output from the previous layer and transfers it to
the next layer as the input. The signal processed in this
way shows the non-linearity of the function, and the
network can approximate any function. Due to the lim-
itation of the linear function itself, only through this
method can the neural network process more complex
data. A good activation function can help the network
fit better. To choose a suitable activation function, we
design experiments to select from several common acti-
vation functions by observing the convergence of the
network, including ReLu, Sigmoid, Leaky ReLu and
Swish.

As shown in Fig. 3, the error value of the four meth-
ods has been reduced to a small value when the train-
ing iteration reaches hundreds of generations, reaching
convergence. However, the error value oscillates in a
small range after reaching convergence. The stability
of the network is also a critical measure for the system.
As seen from the partially enlarged image, when the

Table 1 Experimental settings

Symbol Definition Value

B the bandwidth between ED and BS 10MHz[37]

N the noise power of ED -174dBm/Hz[16]

Pe the transition power of ED 100mW[37]

ci the number of CPU cycles required to calculate a unit of data 500cycles/bit[37]

rb,c the up-link rate between BS and cloud 15Mbps

α the learning rate 1e-4[35]

γ the discount factor 0.7[35]

δ the path loss factor 4[16]

κ the effective switched capacitors in the chip 1e-28
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Fig. 3 Convergence of
different activation
functions

training process reaches a later stage, the fluctuation
of ReLu is the smallest, followed by Leaky ReLu and
Swish, and the worst stability is the Sigmoid function.
This is due to the characteristics of the Sigmoid func-
tion itself, which is prone to the problem of gradient
disappearance.

5.2 Weighting Method

In this paper, the weighted sum of the two objectives as
the reward value is designed to measure the pros and
cons of the current choice on the future impact. The
weight coefficient indicates the degree of emphasis on
the objectives, and plays a guiding role in the training of
the system. Thus, it is crucial to dynamically adjust the
two weight coefficients according to the real-time situ-
ation of the system. Considering this scenario, multiple
objective weight determination methods are considered
to guarantee the reasonableness of the weight value.

From Eq. (25), the reward value ranges from -1 to 0.
The larger the reward value is, the more beneficial the
broker thinks the current decision will be in the future.
Figure 4 shows the guiding influence of six weight
determination methods of entropy, variation coeffi-
cient, principal component analysis, critic weight, inde-
pendence weight, and factor analysis on the future deci-
sion of the system. According to the feedback perfor-
mance of the system, the experimental results of these
six methods are ranked according to their performance.

It can be seen that the reward value returned by the bro-
ker increases as the training progresses. When training
to the 5000th round, the performance of each weight
algorithm tends to be stable. Among them, the system
responds best to the entropy method in Fig. 4(a). The
entropy has the least jitters and remains at a high reward
value, higher than -0.05. The worst is the performance
of the factor method in Fig. 4(f), which has the highest
frequency of oscillation. This is determined by the core
idea of each weighting method. Therefore, the entropy
method is adopted in this paper.

5.3 Edge Collaboration

The TCM model raised in this paper contains two parts
of collaboration. One part is the collaboration of EDs,
edge servers, and cloud servers. The other part is the
collaboration of different edge servers due to the over-
lapping of multiple edge service areas. To balance the
amount of calculation among regions as much as pos-
sible, the load balancing is considered when designing
the DRLSO algorithm. The load calculation method for
each region is

regloadk =
∑

i∈T

tsi

mach j
k

, (30)

where T is the set of all tasks assigned to all machines in
the kth region. The performance of the proposed algo-
rithm is verified through experiments in this section.

123



Journal of Grid Computing            (2023) 21:41 Page 11 of 15    41 

(a) (b)

(c) (d)

(e) (f)

Fig. 4 The impact of different weight methods on the system. (a) Entropy. (b) Variation coefficient. (c) Principal components analysis.
(d) Critic weight. (e) Independence weight. (f) Factor analysis

In Fig. 5, the experiment tests two different load sit-
uations with the expansion of the user scale. The exper-
iment takes three edge regions as an example, and these
three regions have overlapping parts and independent
parts. The major premise is that these two conditions
are all three-terminal synergy, and the only difference
is whether the edge layer is synergistic or not. As the
population of EDs increases, the load in each region
also increases steadily, because the volume of tasks also
expands. However, it is evident that in the condition of
edge coordination, the situation of regional load imbal-
ance becomes increasingly severe with the expansion
of EDs. In contrast, the regional load considering edge
coordination is much more balanced, and even when
the task scale is enlarged, it also shows better stability.

5.4 Task Distribution

In the TCM environment, tasks can be processed
locally, at the edge or in the cloud. This structure is
designed to give full play to the computing resources
of each layer, and avoid waste of resources or tension
in only a certain part. Thus, in this section, we want to
observe that when the task becomes increasingly inten-
sive, the task is more inclined to be assigned to which
side to the process.

The horizontal axis is the task generation rate, which
is proportional to the number of tasks generated in
the same time period, for the fixed number of devices
in this experiment. From Fig. 6, it can be seen that
more tasks are inclined to be offloaded to the edge,
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Fig. 5 Change with EDs number and service load under the
influence of edge coordination

while the processing volume of the local and cloud has
not changed much. This is because this paper aims to
optimize the local-side experience, response time and
local-side energy consumption. As the volume of tasks
enlarges, the ED side can not afford additional tasks
because of its limited capacity. Tasks are reluctant to
move the cloud because the distance between EDs and
the cloud is much farther than that from EDs to the edge
side, prolonging task delay.

Fig. 6 Task distribution of three processing sides under the
change of task density

5.5 Local Capability Variation

In fact, the CPU, hard disk, memory, and other hard-
ware on the market are dazzling, as well as the network
environment and other factors, resulting in different
computing capabilities of terminal devices. In such a
background, the purpose of this section is to observe
what the impact is on a variety of EDs.

Figure 7 shows the impact of EDs capability changes
on two objectives, the system response time and the
energy consumption of EDs. From the graph above,
it can be seen that the trends of energy and response
time are opposite to each other. As the capacity of EDs
increases, the response time decreases sharply in the
early stages, and the growth in energy does not increase
much. However, when the computing power of the ED
exceeds a certain value in (0.2, 0.6), this phenomenon
has changed. As can be seen from the slope of the
image, the energy consumption increases faster than the
slope decreases, which means a surplus of resources.
Therefore, the larger capacity of ED is not the better,
and an appropriate value can maximize the benefit.

5.6 Computing Node Expansion

In order to more comprehensively verify the perfor-
mance of the proposed algorithm, in addition to the
expansion of the scale of ED, the expansion of service
nodes is also a situation that needs to be considered.

Fig. 7 Changes in response time and energy under miscella-
neous local capacities
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(a) (b)

Fig. 8 Optimization effects of different algorithms on response time and energy under the change of number of computing nodes. (a)
Optimization effect on energy. (b) Optimization effect on response time

Besides, in the experiment, three additional algorithms
are selected to compare with the DRLSO algorithm in
the same experimental environment.

Figure 8 shows the optimization effects of the four
algorithms on local energy consumption and response
time in the case of computing node expansion. Since
the computing power of the cloud is sufficient in the
setting of this paper, the computing power expansion
of the edge layer is mainly considered in this experi-
ment. The DRLSO algorithm achieves the best results
in both local energy saving and latency reduction, with
efficient reductions as the number of serving nodes
increases. However, the weighted round robin (WRR)
has the worst performance in saving user energy con-
sumption and reducing latency, because it ignores real-
time changing environmental conditions when assign-
ing tasks. The effect of the Q-learning is basically
similar to that of the Sarsa, and this is because both
of them belong to reinforcement learning methods,
lacking good adaptability when the task volume is
large. Thus, the proposed DRLSO algorithm shows bet-
ter performance for objective optimization and better
robustness when scaled up.

6 Conslusion

In this paper, we construct a three-tier scheduling model
in the MEC environment, and propose the DRLSO

algorithm, which simultaneously saves terminal energy
consumption and reduces system delay in allocating
tasks in real-time. The TCM model combines three
types of resources to process tasks collaboratively, giv-
ing full play to their respective advantages. For tasks
that require cross-platform transmission for process-
ing, the AES encryption method is performed on the
data to ensure data security. As tasks are processed, the
task offloading strategy is continuously learned from
experience and adjusted in real-time. The weights of
the two objectives are obtained in real-time through
the objective weighting method, and the appropriate
weighting method is selected through experimental ver-
ification to accelerate the convergence of the network
and obtain higher reward values. Through simulations,
the proposed DRLSO algorithm performs better than
the comparison algorithm.

In many cases, there will be resource preemption
between tasks due to the characteristics of different
tasks. Therefore, in the future, we will focus on more
complex and realistic task scenarios and study suitable
scheduling schemes.
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