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Abstract—With the proliferation of the Internet of Things (IoT),
mobile edge computing (MEC) has great potential to achieve low
latency, high reliability, and low energy consumption. However, in
collaborative MEC environments, user movement and task migra-
tion may cause task transmission and processing delays, resulting
in elevated task response times. Therefore, system performance
and user experience need to be ensured by rational task offloading
and resource management. At the same time, the protection of
user data privacy is becoming increasingly important as a chal-
lenge to be overcome. To address the problems of intense resource
competition and privacy leakage in MEC, the federated learning
for the TD3-based task offloading (FedTO) algorithm is proposed.
The algorithm has a dual objective of energy consumption and
task response time while protecting user privacy. It employs a
cryptographic local model update and aggregation mechanism and
uses deep reinforcement learning (DRL) to obtain an efficient task
offloading decision. Based on the mobile trajectories of real devices,
and the pre-deployment of base station locations, experimental
results show that the FedTO algorithm ensures task data security.
It also effectively reduces the total energy consumption and average
task response time of the system, which further improves the system
utility.

Index Terms—Federated deep reinforcement learning, mobile
edge computing, multiple base stations collaboration, task
offloading, user mobility.

I. INTRODUCTION

A T PRESENT, with the rapid development and conver-
gence of the Internet of Things (IoT), 5G and artificial

intelligence technologies, the number of mobile devices and the
demand for applications are growing [1]. According to the IoT
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analytics report, the number of connected IoT devices worldwide
will grow by 18% to reach 14.4 billion in 2022 and is expected
to reach 27 billion in 2025 [2]. The excessive number of mobile
device connections will lead to network congestion, affecting
data transmission speed and quality. Additionally, this approach
increases the energy demands on the network infrastructure
[3]. In addition, the dramatic increase in mobile devices will
lead to increased security issues, such as devices leaking user
information or devices being hacked [4]. Mobile edge com-
puting (MEC) is a promising technology that provides high-
quality services to mobile users [5], [6], [7]. In MEC systems,
compute-intensive tasks can be offloaded from mobile devices
to nearby edge servers, leading to improved service quality for
users and reduced energy consumption of mobile devices. A
key challenge for MEC systems is task offloading, the process
of deciding which tasks should be offloaded to edge servers
and which tasks should be processed locally on mobile devices.
In addition, multiple base stations (BSs) can work together to
provide computing and storage resources to users. This allows
users to access the required computing and storage resources
more quickly, while also reducing communication latency and
energy consumption [8]. However, task offloading in multiple
BSs collaboration is a more complex optimization problem
involving trade-offs between energy consumption, processing
time and privacy for mobile users. One of the key issues for
IoT and MEC systems is to provide high-quality services to
end-users while minimizing energy consumption and reducing
response times. With the widespread adoption of IoT devices
and the increase in real-time demand, energy consumption and
latency are growing exponentially. Therefore, effective task
offloading strategies are necessary to optimize the performance
of IoT and MEC systems. Another major issue is user privacy.
On the one hand, data generated by IoT devices may contain
sensitive personal information that needs to be protected from
unauthorized access. On the other hand, MEC systems need
to share data among different parties for efficient computation
and communication, while also ensuring privacy protection.
Therefore, it is crucial to design privacy protection mechanisms
in IoT and MEC.

Traditional task offloading algorithms may not be able to
fully handle these problems, while the federated learning (FL)
combined with deep reinforcement learning (DRL) can optimize
the system utility by minimizing both energy consumption and
task response time, without sacrificing user privacy [9], [10].
Specifically, FL protects user privacy by training the model
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locally on the device and spreading user data and model param-
eters across multiple devices. The model aggregation process in
the FL algorithm involves only the model parameters and not
the raw data. Therefore, the user’s task data is retained on the
local device and is not directly exposed to the central server
or other devices. In addition, FL further enhances user privacy
protection using encryption techniques [11]. Homomorphic en-
cryption allows computations to be performed in an encrypted
state without decrypting the data. Differential privacy uses the
method of adding random noise to the data. DRL can generate
efficient and adaptive task offloading decisions. First, DRL is
able to learn and optimize complex nonlinear functions, making
it widely used in multiple BSs collaborative MEC systems to
help solve complex optimization problems. Second, due to the
uncertainty of mobile users’ trajectories and task requirements,
traditional optimization algorithms are difficult to find optimal
solutions. In contrast, DRL can adaptively adjust its strategy to
adapt to the changing environmental state. This makes DRL a
well-suited algorithm for solving task offloading problems in dy-
namic environments. Finally, DRL can handle high-dimensional
data with a large number of state spaces [12].

In this paper, the FL framework and twin delayed deep deter-
ministic policy gradient (TD3) algorithm in DRL are combined
to optimize the system utility, reduce energy consumption and
response time based on safeguarding user privacy. Solve the
problem of collaborative task offloading based on mobile users
with multiple BSs in the MEC environment and optimize it based
on the real-time location information of mobile devices. There-
fore, the federated learning for the TD3-based task offloading
(FedTO) algorithm is proposed. The following are the main
contributions of this paper.

1) We propose a multiple BSs collaborative MEC scenario
with heterogeneous computing power. In this scenario,
a Markov decision process (MDP) considering user mo-
bility and task migration cost is established. Bi-objective
optimization is achieved for multiple types of tasks, in-
cluding energy consumption and task response time.

2) We combine the FL framework and TD3 algorithm to
protect user data privacy using encrypted local model
update and aggregation mechanisms. Based on the dynam-
ically changing network state and service requirements,
an efficient FedTO algorithm is proposed to provide users
with a high-quality service experience.

3) We compare four different DRL algorithms based on a
real mobile device trajectory dataset in FL framework.
BSs are pre-deployed based on the k-means algorithm be-
fore making decisions. For task density, size, distribution,
and bandwidth scaling, the FedTO algorithm is able to
optimize the system utility, reduce energy consumption
and task response time under different conditions.

This paper is structured as follows. Section II presents the
related work. In Section III, the system model and problem
formulation are introduced. The FedTO algorithm is detailed in
Section IV. The proposed algorithm’s performance is analyzed
through experimental evaluation in Section V. Finally, the paper
concludes in Section VI.

II. RELATED WORK

A. Task Offloading in Mobile Edge Computing

To improve computational performance and reduce the la-
tency of data processing, task offloading is widely applied in
MEC [13], [14], [15]. Wu et al. [16] presented an high-efficiency
offloading algorithm that combines MEC and mobile cloud
computingin a blockchain scenario, which can reduce system
delay and energy while ensuring data integrity. Tan et al. [6] con-
sidered the problem of resource allocation in multi-user MEC
network and proposes a two-level framework based on heuristic
algorithm and DRL method. The proposed solutions show high
energy efficiency in different parameter environments. Sun et al.
[5] introduced an offloading method predicated on predicting
resource occupancy for a resource-poor offloading scenario. The
method uses a controlled recursive unit (GRU) to predict the
resource utilization of the server and uses the RL algorithm to
develop an optimal policy for task offloading. However, most of
the models considered in the above works are single base station,
and the multiple base stations collaborative environments are
more complex and reasonable task offloading decisions are more
important. Moreover, these studies assume that mobile devices
are stationary and do not consider the mobility of mobile users,
which may affect the performance of task offloading. In addition,
most models do not consider the delay of task result return and
the migration cost.

B. Artificial Intelligence in Mobile Edge Computing

Artificial intelligence technologies enable the optimization
of task offloading decisions in an intelligent way, making the
system achieve optimal performance and resource utilization
efficiency, thus satisfying users’ needs in terms of latency, band-
width, etc [17], [18], [19]. To overcome the challenges of limited
sample types and high exploration expenses in MEC, Yao et al.
[20] introduced a distributed DRL-based offloading algorithm
for function-as-a-service (FaaS). The proposed method acceler-
ates the convergence of the DRL model, as demonstrated by the
experimental results. Zhou et al. [21] optimized for deep neural
network (DNN) model by transforming a DNN layer into several
smaller layers. Moreover, a tradeoff between the efficiency of
task offloading and the overhead of model parallelism is made to
optimize the model fusion and offloading strategies. A particle
swarm optimization algorithm with reduced latency is proposed.
Tang et al. [10] modeled the binary task offloading problem for
latency-sensitive tasks by optimizing the system cost based on
the dynamic load of edge servers, and proposed a DRL-based
algorithm. The algorithm effectively reduces task discard rate
and task latency and improves the quality of user experience
compared with the remaining three benchmarks. However, it
is important to protect user privacy in the MEC environment.
This is because inadequately protected mission data information
can be accessed, leaked or misused maliciously, leading to
undesirable consequences. None of the above studies addressed
this issue.
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TABLE I
COMPARISON OF REFERENCES ABOUT TASK OFFLOADING

C. Privacy Protection in Mobile Edge Computing

The tasks being processed contain private information of
the company or individual users, such as location, health and
behavior. Therefore, how to adopt various privacy protection
techniques to safeguard users’ privacy in the MEC environment
is now widely studied [22], [23], [24]. Wang et al. [25] intro-
duced a local differential privacy algorithm to secure the vehicle
user when offloading tasks. In addition, a k-neighbor algorithm is
used to generate task offloading decisions to reduce the latency of
executing tasks. Zhang et al. [26] considered the unreliability of
edge servers and weighed the offloading cost against the privacy
level to formulate it as a joint optimization problem. The best
offloading solution is obtained using deep Q-network (DQN) for
the purpose of improving task privacy level and reducing system
energy consumption and latency. Xu et al. [27] proposed a
two-stage offloading algorithm with the goal of reducing privacy
leakage of edge computing units while optimizing resource
utilization and time. In the first phase, with the goal of optimizing
the utilization of user resources and minimizing time delays,
the algorithm is based on a utility-aware design. In the second
phase, a joint optimization approach is proposed to trade-off
privacy protection and performance. Moreover, the feasibility
of the algorithm is demonstrated by simulation experiments.
However, the above studies use traditional privacy policies still
require centralizing data to servers for processing, and there is a
risk of data leakage and privacy exposure during transmission. In
addition, in many scenarios, data are distributed among multiple
devices and cannot be stored and processed centrally.

In this paper, the task execution migration cost of mobile
users is additionally considered based on a heterogeneous MEC
environment with multi-user and multi-base station collabora-
tion. The k-means method is applied for pre-deployment of all
base stations before the task offloading decision is generated. In
addition, a mobile trajectory-aware task offloading algorithm is
proposed. The algorithm is based on the FL framework with
distributed training of DRL models for all local agents and
central aggregation. Transferring models rather than task data
reduces the threat of privacy breaches. In addition, it improves
system utility, reduces energy consumption and latency, and

Fig. 1. Task offloading model in a collaborative multi-base station MEC
environment.

ensures user service experience. The reference comparisons are
summarized in Table I.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, An MEC model for collaborative heteroge-
neous computing capabilities of multi-BSs with two layers is
proposed and formulate the problems to be solved in the model.

In this study, a two-tier MEC architecture is considered,
consisting mainly of end-user and edge layers, as shown in
Fig. 1. The end-user layer comprises K = {1, 2, . . . ,K}mobile
devices that receive services. At time slot t, it is assumed that
device k generates a task. The types of tasks generated show
differences due to the diversity of performance levels and appli-
cation requirements of individual devices. This model primarily
considers four types of tasks, namely text, image, audio, and
video. The frequency of local computation varies for each mobile
device, while the speed of movement and the trajectory of
movement also show diversity. The local computing frequency
of a device determines the time it takes to perform a task locally,
while the mobility speed and trajectory determine the frequency
and cost of switching the device between different base stations
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TABLE II
KEY SYMBOLS IN THE MODEL

or edge nodes. The offloading strategy needs to fully consider the
unique characteristics of each device to ensure the maximization
of system efficiency and user experience. The edge layer consists
of B BSs that are equipped with servers that provide computing,
storage, and network resources. Wireless transmission is used
for communication between the mobile device and the BS,
and wired transmission is used for communication between the
BSs. Where wireless transmission exists in two access modes,
denoted usingAk ∈ {0, 1}, where 0 denotes cellular data access,
and 1 denotes Wi-Fi data access. The radio frequency radius
and transmission network bandwidth of BSs are different for
different access modes. After a task is generated from a device
at the end-user layer, the corresponding environment, and the
task information are transmitted to the decision network. The
coverage areas of multiple BSs in the model overlap, requiring
consideration of factors such as the user’s current location, task
status, and server status to obtain the most suitable computing
node for offloading. If the mobile device is located within the
radio coverage of multiple BSs, then all the BSs can serve the
device, and the device can choose one of the computing nodes for
offloading. After the task is completed, the migration process of
the task results is additionally considered in the model due to the
mobility of the device. Due to the performance variation of dif-
ferent processors for heterogeneous tasks, the server integrates
three types of processor chip resources, namely CPU, GPU, and
FPGA [28]. In this model, it is assumed that the MEC BS server
can simultaneously receive data, perform task computation, and
offload tasks. To facilitate comprehension, Table II presents the
key symbols of this model.

A. User Mobility Model

The MEC model location is modeled as a planar Cartesian
coordinate system. B BSs are distributed in the plane as speci-
fied, and the coordinate of BS b are mapped to ob = (xb, yb).
At time t, the mobile device’s coordinates are denoted by
ok(t) = (xk(t), yk(t)). In the two-dimensional plane, the size
of the mobile device distance from the BS is given as dk,b(t) =
‖ok(t)− ob‖, where ‖·‖ denotes the Euclidean parametrization,
that is,

dk,b(t) =

√
(xk(t)− xb)

2 + (yk(t)− yb)
2. (1)

After the task is calculated, the mobile device coordinate are
represented by ok

′ = ok(t+ T ttl
k,b), where T ttl

k,b denotes the total
response time of the task.

B. Task Model

In the MEC model, a task generated by device k in time
t is denoted as Mk(t) = {∂ty

k (t), ∂u
k (t), ∂

r
k(t), ∂

su
k (t), ∂de

k (t)},
where ∂ty

k (t) represents the type of task, ∂ty
k (t) = 0 for picture

task, ∂ty
k (t) = 1 for audio task, ∂ty

k (t) = 2 for video task, and
∂ty
k (t) = 3 for text task. Different types of tasks have different

sizes, and heterogeneous processor chips have different process-
ing speeds for various tasks. ∂u

k (t) means the upload task size.
∂r
k(t) is the size of the task’s computed result. ∂su

k (t) denotes
the task submission time, and ∂de

k (t) indicates the deadline
of the task. The model uses a binary offload approach where
tasks cannot be split. The task can be processed locally or
sent to the edge, which can be represented as ξbk(t) ∈ {0, 1}. If
ξbk(t) = 0, the task is computed locally; otherwise, it is offloaded
to the edge. Each task is only offloaded to one computing node,
denoted as

∑B
i=0 ξ

i
k(t) = 1.

C. Task Offloading Model

The model consists of two parts, i.e., the computation model
and the communication model. Among them, the computation
model includes local computation and edge-side computation. If
the task is offloaded for edge-side computation, communication
is necessary. The communication model involves two processes,
namely task uplink and task downlink.

1) Computation Model: Tasks are generated locally. It can
be executed locally or at edge computing nodes.

a) Local Computing: When ξbk(t) = 0, use local arith-
metic to process the task, and the delay of the task is determined
by the local computation delay. The local computation frequency
is denoted by fk, and clk denotes the number of CPU cycles
required by the mobile device k to compute 1-bit task locally.
Therefore, the delay T l

k(t) for the task to compute locally can
be expressed as

T l
k(t) =

∂u
k (t)c

l
k

fk
. (2)

The device performs 1 CPU cycle and consumes energy
as κ(fk)

2, where κ denotes the effective power switch in the
chip [29]. Therefore, the energy consumed by the task Mk for
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computation at device k is denoted as

El
k(t) = κ(fk)

2∂u
k (t)c

l
k. (3)

b) Offloading to the edge: When mobile device k enters
the coverage area of BS b, it can request to offload its task to the
edge server on the BS. After uploading the task to the BS, the
computation can be started by waiting for the server to be idle.
The computing delay of the task T e

k,b(t) can be expressed as

T e
k,b(t) =

∂u
k (t)c

ty
b

f ty
b (Cb(t))

, (4)

where f ty
b (Cb(t)) denotes the frequency of different chip pro-

cessors corresponding to different tasks, and 1 bit of the task
requires ctyb processor cycles for computation. One task can
only be placed on one processor for execution and cannot be
split, therefore, Cb(t) ∈ {Cc, Cg, Cf}, where Cc, Cg , and Cf

denote the processor CPU, GPU, and FPGA, respectively. The
waiting time of the task Tw

k,b(t) is the sum of the computation
time of the currently non-executed tasks of the server, which can
be expressed as

Tw
k,b(t) =

∑
i∈U

T e
i,b, (5)

whereU is the set of tasks waiting to be computed by this server.
The computation energy consumed by the task offloading to

the edge can be expressed as

Ee
k,b(t) = ∂u

k (t)ε, (6)

where ε is the energy consumed to compute 1 bit of data.
Therefore, the total computation delay of the task T comp

k,b (t)
can be expressed as

T comp
k,b (t) =

{
T l
k(t), ξk(t) = 0

Tw
k,b(t) + T e

k,b(t), ξk(t) = 1.
(7)

The total computation energy consumption of the taskEcomp
k,b (t)

can be expressed as

Ecomp
k,b (t) =

{
El

k(t), ξk(t) = 0
Ee

k,b(t), ξk(t) = 1.
(8)

2) Communication Model: The model assumes that mobile
devices can access BS servers via orthogonal frequency-division
multiple access (OFDMA) [29]. OFDMA is a modulation tech-
nique. There is orthogonality between subcarriers. It does not
interfere with each other by dividing the high-speed data stream
into multiple lower-speed subcarriers and transmitting different
data on different subcarriers at the same time. This results in
more efficient utilization of the channel and better immunity to
interference. In addition, interference between devices is ignored
when communicating with a single base station. Assuming that
there are no obstacles between the devices and BSs, the wireless
channel is a line-of-sight (LOS) channel, so the path loss depends
on the distance between them. The channel gain between mobile
device k and BS b can be expressed as

hk,b(t) = ς0d
−α
k,b(t), (9)

where ς0 represents the power gain at 1 m distance.

a) Task Uplink Model: During task offloading, the BS
uplink bandwidth Bu is equally allocated to mobile devices
with transmission tasks in the communicable area of the BS.
The transmission rate between device k and server b is

ruk,b(t) =
Bu

K(t)
log2

(
1 +

Pu
k hk,b(t)

σ2
u + I

)
, (10)

where K(t) is the number of mobile devices within the signal
coverage of BS b at time t, Pu

k denotes the task transmit power
of mobile device k, σ2

u denotes the Gaussian white noise power
of each mobile device and I indicates external environmental
interference.

Therefore, the transmission time of the mobile device k
upload task to BS b can be expressed as

Tu
k,b(t) =

∂u
k (t)

ruk,b(t)
, (11)

and the transmission energy consumption can be expressed as

Eu
k,b(t) = PkT

u
k,b(t) =

Pu
k ∂

u
k (t)

ruk,b(t)
. (12)

b) Task Downlink Model: If, after the task is computed,
the mobile device remains within the signal coverage of the
BS where the task was computed, i.e., d′k,b(t) ≤ Rb, where
d′k,b(t) represents the distance between the mobile device and
the computing BS, and Rb denotes the coverage radius of BS b.
The task result is transmitted directly to the mobile device via
the wireless network. Therefore, the downlink transmission rate
is

rrk,b(t) =
Br

K(t)
log2

(
1 +

P r
khk,b(t)

σ2
r + I

)
, (13)

where Br denotes the downlink bandwidth. In this case, the task
downlink transmission time is expressed as

T r
k,b(t) =

∂r
k(t)

rrk,b(t)
, (14)

and the downlink transmission energy consumption is denoted
as

Er
k,b(t) = P r

kT
r
k,b(t) =

P r
k∂

r
k(t)

rrk,b(t)
. (15)

If the mobile device leaves the coverage area of the offloading
BS after the task computation is completed, i.e., d′k,b(t) > Rb,
the task computation result needs to be transmitted through a
wired network to a reachable BS to complete the downlink
transmission of the task. Wired network transmission signals
are stable, less susceptible to interference, and have stronger
security performance. However, this also incurs additional task
migration costs.

A graph is considered for all BSs, where each point represents
a BS and the weight of an edge represents the transmission cost
between the two connected BSs. It includes the weighted sum
of communication delay and transmission energy consumption.
The selection of migration paths is implemented by Dijkstra’s
algorithm. The task migration cost is primarily composed of two
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elements: delay and energy consumption. The migration cost of
transmitting the task result from BS b to w is

Tm
b,w(t) =

∑
l∈Lb,w

∂r
k(t)

dl
, (16)

where Ls,w denotes the set of wired links through which BS s
migrates to w, dl denotes the bandwidth of wired link l, which
is related to the distance between BSs.

Therefore, the total transmission delay of the task T trans
k,b (t)

is expressed as

T trans
k,b (t) =

{
Tu
k,b(t) + T r

k,b(t), d
′
k,b(t) ≤ Rb,

Tu
k,b(t) + Tm

b,w(t) + T r
k,b(t), d

′
k,b(t) > Rb,

(17)
and the total energy consumption of the taskEtrans

k,b (t) is denoted
as

Etrans
k,b (t) =

{
Eu

k,b(t) + Er
k,b(t), d

′
k,b(t) ≤ Rb,

Eu
k,b(t) + Em

b,w(t) + Er
k,b(t), d

′
k,b(t) > Rb.

(18)

D. Problem Formulation

The above analysis models task offloading for collaboration
among multiple BSs, mainly considering the diversity of task
attributes, the heterogeneity of mobile devices and server re-
sources. To minimize the overall system cost, it is crucial to
select an effective task offloading strategy and allocate com-
putational resources of the edge servers appropriately. In this
model, the task response time is denoted as

T ttl
k,b(t) = ξbk(t)T

comp
k,b (t)

+
(
1− ξbk(t)

) (
T trans
k,b (t) + T comp

k,b (t)
)
, (19)

and the total task energy consumption is expressed as

Ettl
k,b(t) = ξbk(t)E

comp
k,b (t)

+
(
1− ξbk(t)

) (
Etrans

k,b (t) + Ecomp
k,b (t)

)
, (20)

for the task generated by device k in time slot t. The ξbk(t) is
the identifier of the location where the task is processed at time
t, which is computed locally by the task when ξbk(t) is 1, and
is offloaded when 0. The system aims to maximize the system
utility, which is representable as

Uk(t) = β1(t)
T l
k(t)− T ttl

k,b(t)

T l
k(t)

+ β2(t)
El

k(t)− Ettl
k,b(t)

El
k(t)

, β1(t), β2(t) ∈ (0, 1),

(21)

where the weight factorβ1(t) andβ2(t) are dynamically adjusted
using the entropy weighting method [30]. Additionally, the
calculation normalizes T l

k(t), T
ttl
k,b(t), E

l
k(t), and Ettl

k,b(t). Thus,
the optimization problem is expressed as

max
ξbk(t)

T∑
t=1

K∑
k=1

Uk(t) (22)

s.t. ξbk(t) ∈ {0, 1} , ∀k, b, t (22a)

B∑
i=0

ξik(t) = 1 (22b)

Cb(t) ∈ {Cc, Cg, Cf} (22c)

∂su
k (t) + T ttl

k,b(t) ≤ ∂de
k (t), ∀k ∈ K, ∀t ∈ T

(22d)

Ak ∈ {0, 1} , ∀k ∈ K (22e)

0 < Pu
k ≤ Pu

max

0 < P r
k ≤ P r

max
(22f)

0 ≤ yCb(t) ≤ Ymax, Cb(t) ∈ {Cc, Cg, Cf} . (22g)

Constraint (22a) indicates that a binary offload is used in the
system and tasks are not divisible. Constraint (22b) means that a
task can be offloaded to only one server. Constraint (22c) denotes
that a single task can only select one processor for computation.
Constraint (22d) indicates that the task needs to be completed
within the deadline. Constraint (22e) indicates that there are
two ways for the task to access the BS, including cellular data
and WiFi. Constraint (22f) indicates that the task is limited in
the transmit power of the end device and the server. Constraint
(22g) ensures that the number of computational nodes already
processing the taskyCb

(t) is less than or equal to the total number
Ymax.

IV. FEDTO ALGORITHM DETAILS

In this section, first, the overall training framework based on
FL in FedTO is introduced. Second, the DRL-based training for
each agent is explained. Finally, the algorithm is solved for the
pre-deployment of BSs.

A. FL-Based Training Framework

Mobile devices are used for various activities involving in-
creasing amounts of personal information, and the need for
privacy protection is becoming stronger. Traditional machine
learning training requires data to be collected centrally and
trained on a central server. This approach involves a large
amount of data transfer and centralized storage, which can easily
lead to privacy leakage of users. However, FL decentralizes
machine learning algorithms onto local devices. It then uploads
training results to a central server via local computation and
communication, all without revealing the original data [31]. This
approach can effectively protect the privacy of users, while also
enabling the use of distributed computing and communication
technologies to improve training efficiency and data utilization.

Based on the concept of distributed computing, FL divides
the model training process into two phases: local model training
and global model aggregation. In the local model training stage,
the server sends the current global model to K participants
and collects the participants’ local model updates Pl(t). Local
model updates allow participants to use their own local data
to update the model without uploading the data to the server,
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thus maximizing data privacy. After the participant finishes the
model update, it sends the updated model back to the server. In
the model aggregation phase, the server side updates the model
according to the participants’ models. A certain aggregation is
used to update the global model Pg(t) to better fit the local data
of all participants. FedAvg algorithm in FL is used for model
aggregation in this model [32], which is represented as

Pg (t+ 1) =
1
K

K∑
k=1

Pk(t). (23)

B. DRL-Based Offloading Decision

In the first phase described above, the generation process of
the offload decision becomes complex because each device has
two options to compute a task (i.e., local and edge servers) and
the computing power in the system is heterogeneous. As the
number of devices and servers increases, the complexity grows
exponentially. To address this question, the TD3 algorithm in
DRL is applied. The problem is modeled as an MDP, which is
described in detail below.

1) MDP Detail Modeling:
The MDP uses a mathematical form to represent the RL prob-

lem when the environment is uncertain and stochastic. Define
the state space, action space, and reward function to model the
environment. Represent this as the transfer probabilities between
states and states. The value function is also used to evaluate the
merits of state-action pairs.

State Space: At time slot t, when the device sends a request for
computing task Mk, the agent collects various information such
as the location information of the device, task type, bandwidth
resources, and the state and information of all computing nodes
in the communicable BSs in the system. The state space of the
model is the collection of this information. Thus, the state space
S of time slot t is expressed as

S = N × L×H × P, (24)

where × denotes the cartesian product.

N =
{
N0,

(
N c

1 , N
g
1 , N

f
1

)
, . . . ,

(
N c

i , N
g
i , N

f
i

)
, . . . ,

× (
N c

s , N
g
s , N

f
s

)}
is the cost of task available for offloading computing nodes in the
system. L = {L1, L2, . . . , Li, . . . , LB} and H = {H1, H2, . . . ,
Hi, . . . , HB} are both B-dimensional sets, which denote the
location information of the device and the available bandwidth
resource information of the BSs, respectively.P denotes the type
of task waiting to be processed. To be specific, Ni is calculated
according to

Ni = β1(t)T
ttl
k,s(t) + β2(t)E

ttl
k,s(t),

where N0 denotes the cost of the task to be calculated locally,
N c

i , Ng
i , Nf

i denote the cost of the CPU, GPU, and FPGA in
the BS server i to process the task, respectively. Li ∈ {0, 1},
Li = 1 means that the device generating the task is within the
signal coverage of the i-th BS and can perform the task; Li = 0
means that it is not within the range and cannot perform the

task. Hi denotes the available bandwidth resource of the edge
BS, which depends on the type of wireless network it deploys
and the number of mobile devices within the range of the BS at
time t.

Action Space: The agent in the mobile device decides which
computing node of which BS to offload the task to based on the
state of the environment. The set of actions A represents all the
selectable actions and can be represented as

A =
(
a0, a

c
1, a

g
1 , a

f
1 , . . . , a

c
i , a

g
i , a

f
i , . . . , a

c
s, a

g
s , a

f
s

)
. (25)

A is a set of one-hot vector, wherea0, a
c
i , a

g
i , a

f
i ∈ {0, 1}.a0 = 1

means that the task is executed locally. If the task is offloaded
to the CPU processor of the 1st BS for execution, then A =
(0, 1, 0, 0, . . . , 0, 0, 0).

Reward Function: The reward function is denoted by R(t),
which describes the reward an agent receives after performing
an action a in state s. It is used to guide the agent to learn the
appropriate policy. The aim of this model is to minimize the
response time of the task and energy consumption to maximize
the system utility. TheR(t) is determined as a negative weighted
sum of the response time and energy consumption when all
constraints in (21) are satisfied, which can be expressed as
Costk,s(t) = −(β1(t)T

ttl
k,s(t) + β2(t)E

ttl
k,s(t)). Otherwise, the

value of the reward function is the corresponding penalty of
−1. which can be expressed as

R(t) =

{
Costk,s(t), if satisfying constraints,
−1, otherwise.

(26)

Therefore, R(t) ∈ [−1, 0). The equation demonstrates that a
better task offloading strategy results in a smaller system cost
and a higher value for the reward function.

2) Classical Q-Learning Algorithm: The Q-learning algo-
rithm is a well-known RL algorithm that is based on the value
function. Its main objective is to learn the optimal policy by
iteratively updating the Q-values [33]. The update formula of
Q-learning is:

Q(s, a)← Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
.

(27)

The learning rate is denoted by α, and the immediate payoff
obtained by the agent performing an action a in state s is
represented by r. γ is the discount factor, and maxa′ Q(s′, a′) is
the maximum Q-value obtained by taking the optimal strategy in
state s′. The Q-Learning algorithm is illustrated in Algorithm 1,
with an algorithmic complexity of O(ET ), where E denotes the
number of episodes andT denotes the size of the total timestamp.

First, the initial action-value function Q(s, a) is randomly
set and the action a is selected using the ε-greedy strategy
based on the current state s and the Q-function. ε-greedy is a
common explore-exploit strategy used in RL. At each time step,
the agent takes a random action with ε probability (explore) and
chooses the action with the highest estimated reward with 1− ε
probability (exploit). Then, the selected action a is executed
and feedback from the environment is obtained, including the
reward r and the next state s′. The Q-function is updated and
the next state s′ is assigned to the current state s. Finally, the

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on March 15,2024 at 02:04:34 UTC from IEEE Xplore.  Restrictions apply. 



TONG et al.: FedTO: MOBILE-AWARE TASK OFFLOADING IN MULTI-BASE STATION COLLABORATIVE MEC 4359

Algorithm 1: The Q-Learning Algorithm.

above steps are repeated until the Q-function converges and the
optimal action policy is output.

However, Q-learning has the following weaknesses. 1) It is
not suitable for continuous states and action spaces, but only
for discrete cases. 2) It is only applicable to the case of a single
objective. In the specific realization, it is often necessary to con-
sider multiple objectives at the same time, such as response time
and energy consumption. 3) When the state space is too large,
the Q-learning algorithm needs to save all the Q-value functions,
resulting in a large computational and storage overhead, which
makes it difficult to apply to issues with massive state spaces.
The main algorithm to address the above problem is DQN [34].
However, since the Q-value is used as an estimate of action
value in the DQN algorithm, the problem of overestimation may
arise if the training data of the neural network is insufficient or
unevenly sampled. In addition, it also cannot handle continuous
action space and tends to suffer from training instability. There-
fore, we combine FL and implement the TD3 algorithm into the
multiple BSs collaborative task offloading.

3) TD3 Algorithm: The model training and optimization in
the TD3 algorithm is mainly performed through the actor and
critic networks [35]. Both the training of actor and critic rely on
the reward signals received from the environment, but they have
different optimization goals: the actor’s goal is to maximize the
value function, i.e., to maximize the long-term expected reward,
while the critic’s goal is to minimize the gap between the value
function and the true reward.

In the TD3 algorithm, the main role of the actor network is
to map the current state s to an optimal action a. It consists
of several fully connected layers, where each input module
receives different information about the current state, i.e., the
trajectory data of the mobile device, the channel state, the MEC
system state and the task state. The fully connected layers in the
input modules transform this information into a set of features.
Next, these features go through the connection layer for feature
fusion to generate the optimal action. Finally, the actor network

Algorithm 2: TD3-Based Task Offloading Algorithm.

outputs the action probabilities through its output layer. The
TD3 algorithm contains two actor networks, v(s|θv) is used to
represent the actor network and v′(s|θv′) is used to represent the
target actor network. The main function of the critic network
is to estimate the value function (i.e., the expected cumulative
reward) of the current policy for a given state, and its inputs
include the current system state and actions. The state includes
the trajectory data of the mobile device and the cost of the system,
while the actions are the task offloading vectors output by the
actor network. Similar to the actor network, the critic network
also consists of multiple fully connected layers and connects
their outputs together to be sent to the feature fusion module.
Finally, the critic network outputs an estimate of the current
state and the Q-value of the action, which is used to update the
policy of the actor network. There are four critic networks in
TD3, and two critic networks are denoted by Q1(s, a|θQ1) and
Q2(s, a|θQ2), respectively, andQ′1(s, a|θQ′1) andQ′2(s, a|θQ′2)
to denote two target critic networks, respectively.

The policy network in the Q-based RL algorithm performs an
update of the parameters by maximizing the target valuey, which
can be expressed as y = r + γmaxa′Q(s′, a′). However, this
target is likely to be affected by sample error, resulting in a maxi-
mum value of the action value estimate that is usually larger than
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Algorithm 3: K-Means-Based Algorithm for Pre-
Deployment of BSs Locations.

the true value, i.e., Eς [maxa′(Q(s′, a′) + ς)] ≥ maxa′Q(s′, a′).
This error propagates through the Bellman equation and for
this problem, a double Q-learning strategy is used in TD3. The
number of critic networks used to estimate Q-values is twice the
number of deep deterministic policy gradients (DDPG) [36].
The target Q-value is taken as the smaller value ofQ′1(s, a|θQ′1)
and Q′2(s, a|θQ′2). Target Q-value is calculated by

â = v′
(
s (t+ 1) |θv′

)
+ ς, (28)

Q = r(t) + γ min
i=1,2

Q′i
(
s (t+ 1) , â|θQ′i

)
, (29)

where ς is the noise introduced, following a Gaussian
distribution. In the training phase, a batch of data
〈s(t), a(t), r(t), s(t+ 1)〉 are sampled from the experience
pool. For the critic networks, the error loss between the estimate
and target value is minimized using the gradient descent
algorithm, which leads to the update of Q1(s, a|θQ1) and
Q2(s, a|θQ2), denoted as

LossQ1 =
1
Z

Z∑
i=1

(
Q̂−Q1

(
s, a|θQ1

))2
, (30)

LossQ2 =
1
Z

Z∑
i=1

(
Q̂−Q2

(
s, a|θQ2

))2
, (31)

where Z is the size of a batch sample. After the critic networks
are updated d steps, the update of the actor network is activated.
For the actor network, the gradient ascent method is used,

denoted as

∇θoJ ≈ 1
M

∑
i

∇aQ
(
s, a|θQ) |s=si,a=o(si)∇θoo (s|θo) |si .

(32)
All target networks use soft updating to ensure the stability of
the algorithm, denoted as

θv
′
= τθv + (1− τ) θv

′
, (33)

θQ
′
i = τθQi + (1− τ) θQ

′
i (i = 1, 2) , (34)

where τ denotes the soft update rate, τ ∈ [0, 1]. The pseudo-code
of TD3 algorithm is shown in Algorithm 2 with a time
complexity of O(T (m+ n)).

C. K-Means-Based Pre-Deployment for BSs

When initializing the system, the location of the edge BSs
needs to be initialized. In this model, a k-means based data-
driven mobile BSs pre-deployment algorithm is shown in
Algorithm 3, with a time complexity of O(Bmn), where B is
the number of base stations, i.e., the number of clusters.m and n
are the number of iterations and the number of training samples,
respectively. Specifically, the algorithm takes the trajectory data
of mobile devices for a known period of time as input and clusters
the trajectory data into B clusters using the k-means algorithm.
For each cluster, the average of all its trajectory data points is
calculated as the center of mass of that cluster. Each center of
mass is initialized as the location of an edge BS. Provide services
to subsequent unknown users in the region to reduce the cost of
performing the task.

Based on the above analysis for the FL training framework,
TD3 offloading decision algorithm and BS pre-deployment al-
gorithm, the FedTO algorithm is summarized in Algorithm 4.
The algorithm complexity is O(T 2K(m+ n)).

V. EXPERIMENT RESULTS

In this section, first, a mobile device trajectory dataset in a
real environment is presented. Then, the proposed algorithm
FedTO is compared with other RL algorithms, DDPG, DDQN
(double deep Q-Network), and DQN (deep Q-Network), in the
framework of FL.

A. Trajectory Dataset

In previous task offloading models, theoretical assumptions or
artificially generated trajectory data are usually used to conduct
simulation experiments. Although this approach can explore the
performance of task offloading strategies to a certain extent,
it may lead to biased evaluation of system performance due
to the discrepancy between generated and real data. To more
accurately simulate users’ movement patterns and behaviors,
and thus better design task unloading strategies, this model uses
real user data instead of virtual trajectory data. This dataset
is part of the GPS track dataset used by the Microsoft Asia
Research Institute GeoLife project, which collected trajectory
data from 182 users from April 2007 to August 2012 [37]. It
represents a chronological collection of sites, each containing
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Algorithm 4: The FedTO Algorithm.

information about the latitude, longitude, altitude, speed, and
current direction. These trajectory data are collected by different
GPS devices with a frequency of one point every 2–5 seconds or
every 5–10 meters. In the following experiments, the pedestrian
trajectories are filtered out, and the WGS84 coordinates in the
dataset are transformed into a transcendental Gaussian coor-
dinate representation. The trajectories of three different users
over 10000 seconds are shown in Fig. 2, which illustrates the
movement features of the users. Fig. 3 shows the aggregation of
all users at 0 seconds, 5000 seconds, and 10000 seconds, which
illustrates a significant aggregation in the location distribution of
the devices. In the entire process, each user uniformly generates
tasks at a specific time, bounded by the task density. The size of
the tasks is exponentially distributed around a specified value.
The types of tasks are randomly distributed across devices at
different scales.

B. Experimental Settings

The FedTO algorithm is implemented using the Python and
the TensorFlow framework. In addition, the Cloudsim platform
was used to simulate the entire process of task generation and

Fig. 2. Movement trajectory of different users.

TABLE III
EXPERIMENTAL SIMULATION PARAMETERS

offloading in the system. Based on a custom network topol-
ogy, computation and communication resources are scaled and
task offloading strategy is customized. In the experiments, pre-
deployment edge BSs are located, the tasks of mobile devices
are generated uniformly according to a certain density, and the
task size is exponentially distributed over a range. The main
parameters are listed in the Table III [38] [39]. The other RL
algorithms in the experiment are described as follows:

1) DQN (Deep Q-Network): DQN is an RL algorithm that
approximates the Q-value function using deep neural net-
works. It improves training stability through empirical
playback and fixed target networks.

2) DDQN (Double Deep Q-Network): DDQN is an im-
provement of traditional DQN. DDQN introduces two
Q networks, one for selecting actions and the other for
evaluating the value of actions, thus improving training
stability and mitigating the overestimation problem.

3) DDPG (Deep Deterministic Policy Gradient): DDPG is
used to solve continuous action space problems. It com-
bines the policy gradient method and deep Q-network
ideas to optimize the policy for continuous actions by
approximating the Q-value and the policy function. It
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Fig. 3. Distribution density of user devices at different moments. (a) At 0 seconds, (b) At 5000 seconds, (c) At 10000 seconds.

Fig. 4. Performance comparison at various task densities. (a) System utility. (b) Total energy consumption. (c) Average response time.

performs well in exploring continuous action space and
stable training.

Similar to the TD3 algorithm applied in FedTO, all of the
above belong to the field of DRL, which uses deep neural
networks to approximate the value function or policy function.
However, there are differences in objectives, scope of applica-
tion, network structure and strategies.

C. Task Density

In this part of the experiment, two system cost metrics and
utilities are compared for four RL algorithms with different task
generation densities. The task densities are 50, 60, 70, 80, and
90 tasks generated by a single user in 100 seconds. The 3 mobile
users in the system are considered. The experimental results are
shown in Fig. 4.

The experimental results show that the system utility is opti-
mized by an average of 2.25%. At different task densities, the
performance of different RL algorithms in the FL framework
differs. With increased task density, the system utility, energy
consumption, and average response time all increase. This is
because at high task densities, the number of tasks increases and
the computational and communication resources in the system
are fixed, requiring more energy and time to execute the tasks.
The increase in energy consumption, latency of individual tasks
and the total number of tasks directly leads to the increase in
the total energy consumption and average response time of
the system. All RL algorithms perform relatively well under
low-density tasks, but the performance of DQN and DDQN
algorithms decreases rapidly with increasing task density. The

TABLE IV
TASK SIZE IN DIFFERENT SCENARIOS (MB)

TD3 algorithm has higher system utility with lower energy
consumption and response time compared to other algorithms.

D. Task Size

In this section of the experiments, three performance metrics
are compared in the case of different task generation sizes.
There are 3 mobile users in the system. The task density is 100s
generating 70 tasks, and the combinations of upload task sizes
are shown in Table IV. The experimental results are shown in
Fig. 5.

The experimental results show that the system utility is opti-
mized by an average of 1.5% compared to other RL algorithms.
Moreover, the performance of the RL algorithm varies greatly
depending on the task sizes. With an increasing size of the task,
the system utility shows a stable trend, but the total system
energy consumption and the average response time of the tasks
increase sharply. This is because the larger the task is, the
more energy is required to transfer the task to the edge BS
and the longer the execution time will be. When the resources
in the system are fixed, there will be more tasks waiting to
be computed at the same moment. As the task size increases,
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Fig. 5. Performance comparison at various task sizes. (a) System utility. (b) Total energy consumption. (c) Average response time.

Fig. 6. Performance comparison at various task distributions. (a) System utility. (b) Total energy consumption. (c) Average response time.

TABLE V
TASK DISTRIBUTION IN EACH DEVICE

the performance of the DDPG, DDQN, and DQN algorithms
deteriorates faster relative to TD3, resulting in algorithms that
exhibit unstable and suboptimal performance. Specifically, the
DQN algorithm performs the worst at all densities, while the
TD3 algorithm performs the best at all densities. The DDQN
algorithm performs better at low densities, but its performance
decreases significantly at high densities. This is because the TD3
and DDPG algorithms use continuous action space and neural
network function approximation methods. This allows for better
handling complex states and action spaces, and better adaptation
to multitasking scenarios. The DQN algorithm suffers from
overestimation of the Q-value in exploration.

E. Task Distribution

In this part of the experiment, different performance met-
rics of four RL algorithms are compared under different task
assignment rules. The task density is 70 per 100 seconds for a
single user. The distribution of tasks in the experiment is shown
in Table V. The results are displayed in Fig. 6.

Compared with other algorithms, the TD3 algorithm improves
the system utility by 1.14% on average, but the performance
varies under different task distribution rules. The system utility

is highest when the task type and size distribution are consistent,
and lowest when both task distribution and task size distribution
are inconsistent, with the DQN algorithm showing a significant
decrease in performance. Therefore, the variation of task dis-
tribution and task size distribution affects the variation of task
response time and energy consumption.

F. Bandwidth

In this section, the performance of four different RL algo-
rithms is considered to be evaluated at different channel band-
width sizes, i.e., 15 MHz, 25 MHz, 35 MHz, and 45 MHz.
The task density is 70 by a single user in 100 seconds. The
experimental results are shown in Fig. 7.

The experimental results demonstrate that the system utility
is optimized by 2.4% on average compared to other RL algo-
rithms, and the performance of the RL algorithm varies with the
channel bandwidth size. As the bandwidth gradually increases,
the system utility gradually increases, and the task response
time and total energy consumption both decrease accordingly.
When the bandwidth is small, the communication speed between
nodes is limited, so it takes longer to complete the task trans-
mission. This leads to a longer task response time and increases
energy consumption. In addition, the slower task transmission
speed increases the communication overhead and the system
utility decreases. When the maximum channel bandwidth size
is 45 MHz, the differences in performance metrics are low for all
four RL algorithms. However, when the channel bandwidth size
is reduced to 15 MHz, TD3 and DDPG algorithms significantly
outperform DDQN and DQN. When the channel bandwidth size
is further increased to 25 MHz and 35 MHz, TD3 and DDPG still
achieve better performance than DDQN and DQN in all three
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Fig. 7. Performance comparison at various bandwidths. (a) System utility. (b) Total energy consumption. (c) Average response time.

aspects. This is due to the use of dual-Q networks and delayed
updates in TD3, which better solve the action value estimation
bias problem and make TD3 have better learning performance.

VI. CONCLUSION

In this study, a mobile user task offloading problem in a
multiple BSs collaborative MEC system is considered. The main
goal of the system is to safeguard user privacy while trade-off
optimizing energy consumption and task response time, which
is modeled as an MDP. A task offloading algorithm FedTO
based on DRL in FL framework is proposed. The algorithm
dynamically selects the appropriate compute node to perform
the task based on the real-time network state and the location
information of the mobile device. Experiments are conducted
with the real mobile device trajectories, and it is shown that the
algorithm optimizes the system utility and achieves the purpose
of reducing energy consumption and task response time while
ensuring task safety, making the task offloading process safer and
more efficient. In future work, we will study more optimization
objectives of MEC and consider optimization problems for FL
aggregation in large-scale systems and apply dynamic band-
width to the model.
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