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Abstract—In the Internet of Everything era, various Internet
of Things (IoT) devices have become popular, and the number
of computing-intensive applications has increased substantially.
As an emerging technology, mobile-edge computing (MEC) gives
network edge nodes stronger computing and storage capabil-
ities, bringing users a good Quality of Experience (QoE). By
offloading some computing tasks to the edge for processing,
the burden on IoT devices can be effectively reduced. However,
this approach exacerbates the computing and storage resource
depletion of the MEC server and the bandwidth and trans-
mission cost of the wireless link used to offload computing
tasks. Additionally, making an offloading decision online with-
out future system status information is a considerable challenge.
Therefore, we should study and design a reasonable offloading
strategy to reduce the additional overhead, which is of sig-
nificance. We establish a virtual queue model to describe the
workload offloading problem of IoT devices in a two-layer MEC
network. This is a stochastic optimization problem. Based on
Lyapunov optimization, we transform the research problem into
a deterministic optimization problem. A Lyapunov online energy
consumption optimization algorithm (LOECOA) is proposed to
effectively balance the system’s queue backlog and energy con-
sumption. Based on theoretical analysis and a large number of
experimental and numerical results, our algorithm performs bet-
ter on energy consumption while satisfying the system constraints
under a dynamic task arrival rate.

Index Terms—Energy consumption, Lyapunov optimization,
mobile-edge computing (MEC), online calculation offloading.

I. INTRODUCTION

W ITH the maturity of fifth-generation (5G) mobile
communication network technology and the continu-

ous enhancement of social communication infrastructure, the
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network connection speed and the mutual perception ability
of objects have greatly improved [1]. This setting has cre-
ated convenient conditions for humanity to create data actively,
accelerated the development of the Internet of Things (IoT),
and triggered significant changes in mobile applications. With
the rapid development of embedded sensors [2], wearable
devices, and cameras, many new application requirements have
emerged, such as face recognition (FR), autonomous driving,
virtual reality (VR) games, and smart agriculture [3]. A com-
mon characteristic of these application scenarios is that they
generate a large quantity of data to process [4], [5]. Currently,
the contradictory relationship between IoT devices with lim-
ited computing power and computing-intensive applications
has become an urgent problem. According to the annual
Internet report released by Cisco in 2020, it is estimated that
by 2023, there will be more than 29.3 billion IoT devices on
the Internet. The large number of mobile devices will generate
countless application data [6], [7]. IoT devices need powerful
computing power to handle complex and diverse computing-
intensive applications, and they also consume considerable
energy. To provide a satisfactory Quality of Experience (QoE),
people urgently need new technology.

Mobile-edge computing (MEC) has frequently been men-
tioned as a new technology to solve this issue. MEC refers
to the deployment of servers on the edge side to provide
content storage computing and distribution services, so that
applications, services, and content can be deployed in a highly
distributed environment that better meets IoT device terminals’
expectations for low latency and high bandwidth [8]. In con-
trast to traditional cloud computing, which is far from user
equipment, MEC is usually deployed near radio access points,
such as base stations (BSs). It acts as a mobile cloud service
platform that operates on the edge of the network, synchro-
nizing services and functions that used to reside in cloud data
centers to the edge of the network. By making reasonable
offloading decisions to improve the user service experience,
some tasks are processed on the edge side, which effectively
reduces service delivery delays. Additionally, the substantial
increase in network data has caused considerable load pressure
on the network transmission link and the mobile core network.
MEC can respond to users at the edge, reducing the bandwidth
requirements of the backhaul network and core network [9].

A. Motivation

Computation offloading can reduce the processing and stor-
age burden of IoT devices and improve the experience of
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mobile users. However, when computing-intensive tasks are
transferred to the edge side for processing, a large amount of
transmission energy will be generated in the process, which
is one of the components of the system’s total energy con-
sumption. In the real world, the transmission energy of the
equipment is determined by a combination of many factors,
the most important of which is the channel quality: the bet-
ter the channel status is, the faster the transmission rate will
be. Moreover, the reduction in the time required to transmit
data will reduce the amount of energy used for transmission. In
contrast, when the channel conditions deteriorate, the transmis-
sion of the same amount of data will consume more energy.
Therefore, offloading more computing tasks can effectively
bring down the total energy consumption of the system when
the channel status is good. However, such behavior may cause
a surge in the queue backlog and make the system congested
and unstable [10].

In some IoT application scenarios, devices are deployed
in remote areas and do not have the conditions for frequent
charging. Therefore, providing users with good services is
important to optimize energy consumption when designing a
simple and efficient task offloading strategy [11]. There are
also some other challenges. First, the system is in a com-
plex and changeable network environment. Its various status
information changes dynamically with time and is affected
by many factors, making it difficult to predict accurately in
practice [12]. Second, we need to make the energy consumed
by the system tend to the optimal solution while retaining the
stability of the virtual queue. This requires an offloading strat-
egy to make a tradeoff between the two indicators. Finally, the
arrival flow of computing tasks for IoT devices is also difficult
to predict. With the rapid growth in IoT devices, the scale of
task offloading problems is becoming more substantial [13].
As a result, it is a huge struggle to adjust offloading decisions
in the face of a complex environment.

B. Contributions

In this work, we investigate computational task offload-
ing strategies in the context of a two-layer MEC network
model. This article aims to make the long-term total energy
consumed by the system tend to the optimal solution while
ensuring the stability of the virtual queue of each IoT device.
We model the problem and formulate it to form a stochastic
optimization problem [14]. Using Lyapunov optimization tech-
nology, a dynamic offloading algorithm that can effectively
reduce energy consumption is designed. The Lyapunov online
energy consumption optimization algorithm (LOECOA) does
not require any prior system state information. It dynamically
makes offloading decisions and adjusts the parameter V to
weigh the importance of energy consumption and queue back-
log. Both the theoretical derivation and experimental results
show the significance of the algorithm. The main contributions
and originality of this article are summarized as follows.

1) We construct a two-layer MEC network model and
establish the problem as a mathematical model of a
multiuser computing offloading. The total energy con-
sumption under the long-term stable system operation is

taken as the optimization goal, and an online offload-
ing algorithm called LOECOA is proposed. Under the
premise that no prior system information is needed,
the algorithm achieves good performance in the face of
dynamic traffic arrival scenarios.

2) Specifically, we design that IoT devices have certain
computing power in our model, and the generated tasks
can be executed on both the MEC side and the local side.
Energy consumption comes from task computation and
transmission. The strategy could simultaneously main-
tain overall system stability, balance system energy, and
queue backlog.

3) Through the Lyapunov optimization technology, we
decouple the primal problem on the time slice and trans-
form it into a deterministic upper bound problem. Under
the condition that the long-term constraints of the system
are satisfied, the numerical solution is obtained with
the help of a heuristic algorithm. And through rigor-
ous mathematical derivation, the difference between the
numerical solution obtained and the analytical solution
of the original problem is derived.

4) We set extensive experiments to prove the progres-
sive optimality of LOECOA and verify our theoretical
analysis results of the system energy consumed and
queue backlog. In addition, the superiority of the algo-
rithm is proven by comparison with several benchmark
strategies. The results demonstrate that the LOECOA
achieves a great improvement in reducing energy and
can effectively preserve the system’s stability.

The remainder of this article is structured as follows.
Section II summarizes some recent developments in edge com-
puting offloading. Section III introduces the system model used
in this work and then gives a strictly defined form of the offload-
ing problem. Section IV details how Lyapunov optimization
can be applied to solve the problem presented in this article and
proposes an algorithm called LOECOA. Sections V and VI
present the theoretical analysis and simulation experiments,
respectively. The superiority of LOECOA is verified from two
aspects. In Section VII, we summarize the article.

II. RELATED WORK

Computation offloading is a key MEC technology, and there
are many related research results, including the formulation of
offloading decisions and the allocation of available resources.
The core of the research on offloading decisions is how to
make a suitable offloading decision for users, including the
question of whether to offload and how much to offload.
The results of the offloading decision are divided into three
situations: 1) binary offloading; 2) partial offloading; and
3) local calculation. Mao et al. [15] studied a green energy
MEC system with an energy collecting device. Additionally,
they developed an efficient computational offloading strat-
egy. Based on this model, a dynamic offloading algorithm
(LODCO) is proposed to solve the question. The LODCO
algorithm makes an offloading decision in every time slot.
If the calculation task is executed locally, the mobile user is
allocated CPU cycles; otherwise, the mobile user is allocated
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transmission power. The calculation task is migrated to the
MEC server. According to the results of simulation experi-
ments, the running time of this algorithm can be shortened by
64%. In addition, the algorithm can effectively reduce the loss
of data packets during calculation offloading. After complet-
ing the offloading decision, the next step is to consider the
issue of reasonable resource allocation. The common research
methods and models differ for different types of tasks. This
part of the research is described in detail in [16] and [17].

The optimization objectives of offloading decisions can
be split into three main types: 1) diminishing time delay;
2) diminishing consumed energy; and 3) weighing time delay
and energy. Delays occur when the local side sends the
calculation tasks to the MEC server, and its size directly
affects the user’s service experience [18]. To ensure QoE,
many research papers aiming to reduce delay and energy have
appeared, which involve many different optimization algo-
rithms and application scenarios. Lv et al. [19] noted the
problem of battery life in unmanned aerial vehicle (UAV)
application scenarios. Based on traditional charging methods,
the possibility of using green energy is considered. Combined
with Lyapunov optimization technology, an online energy
management solution was proposed, which can obviously
save power resources, thereby raising the service provider’s
income. The optimal offloading scheme proposed in [20] to
reduce time delay considers how to make offloading deci-
sions when MEC has limited computing resources. To make
better-offloading decisions in combination with other advanced
methods, Bi et al. [21] creatively proposed a new comput-
ing offloading framework called LyDROO. This work unites
the merits of both Lyapunov and DRL methods, and it has
good performance in reducing delay overhead. Tong et al. [22]
used the powerful adaptive capabilities of DRL [23], [24]
to extend the application scenario to the cloud environ-
ment [25], [26]. A new offloading algorithm DDQNTS based
on a dual-Q network was proposed in this article. By com-
paring several classic algorithms on the Google test set, it
is found that DDQNTS can effectively improve the user’s
QoE on the premise of ensuring a high task completion
rate. Anajemba et al. [27] presented a Lagrangian subopti-
mal convergent computation offloading algorithm, which has
an excellent performance in energy efficiency and energy
consumption reduction. Zhang et al. [28] developed a novel
strategy on the basis of an intelligent optimization algorithm
to optimize energy costs. In this scheme, the link states of
a feedforward network and backhaul network are consid-
ered simultaneously. In the experiments conducted to verify
the offloading scheme, the author compared random offload-
ing and local offloading with other schemes. The offloading
scheme based on AFSA has an excellent performance in terms
of energy consumed. However, the disadvantage of this scheme
is that the algorithm complexity is too high.

Considering complex computing tasks, such as FR systems
and the Internet of Vehicles, both energy consumption and
delay impact QoE, so energy consumption and delay are com-
prehensively considered when performing offloading tasks,
which is an essential consideration for offloading decisions.
Lyapunov optimization technology has excellent performance

Fig. 1. MEC task offloading system model.

when optimizing multiple targets simultaneously. It was
proposed by Neely and applied to network optimization the-
ory [29]. Mao et al. [30] gave a solution based on Lyapunov
theory to better balance the system energy consumed and task
delay. An algorithm that can dynamically manage radio and
computing resources is proposed to address changing comput-
ing requirements and wireless fading channels. The algorithm
can automatically adapt to the changes of the system network
state in each time slice and does not need to manually change
some of the control quantities in it. It has the advantage of
automatic learning and does not require many prior param-
eter inputs like most algorithms. It has good adaptability to
real-time control of dynamically changing systems and, at the
same time, ensures relatively low algorithm complexity.

III. SYSTEM MODEL AND FORMAL DESCRIPTION

In this section, we construct a two-layer MEC network
model and propose a stochastic optimization problem for task
offloading in this model.

A. System and Workload Arrival Model

We consider an application scenario, which has some sim-
ilar IoT devices, and a BS with an MEC server connected
through the same local area network (LAN) to form a network
system [31]. IoT devices are powered by batteries, and we
regard the energy as sufficient. An MEC server provides
services to nearby IoT devices, as depicted in Fig. 1. The edge
server is connected to the BS over wired transmission, and the
BS is given limited edge computing capabilities. Therefore,
IoT devices can submit requests through wireless communica-
tion and offloading their computing tasks to the corresponding
serving BS for processing. When tasks are offloaded for pro-
cessing, the user equipment can obtain better QoE and reduce
energy costs.

Let N = {1, 2, . . . , n} represent the index set of n IoT
devices, and let time be a discrete-time model. We divide the
runtime of the system into a series of time slots. It is divided
into T parts of equal length, each of which has a slot length
of τ , and each slot is indexed by t ∈ {0, 1, . . . , T − 1}.

Before the start of each period, the size of the computing
task generated by device i ∈ N is represented by ai(t) (in bits).
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ai(t) is the Poisson distribution expected to be λi and satisfies
an independent and identical distribution. The basis for our
setting is that the Poisson distribution can approximate the
probability distribution of the frequency of a discrete event in
continuous time. Moreover, many scenes in the real world are
related to the Poisson distribution. These settings make our
model more practical and widely applicable.

B. Computation Task Model and Offloading Transport Model

To provide better service, tasks arriving in a time slot can
be divided and processed, respectively. The CPU of the IoT
device can compute the task, or it can also submit the task
offloading request to a nearby MEC server for processing.

In time slot t, we define the computing task to be pro-
cessed as bi(t). It consists of two parts: some are generated
by local calculations, and the size is bU,i(t); and others sub-
mit computing offloading requests to the MEC server over
wireless channels, and the size of this part is represented
by bM,i(t). That is, it is clear that bi(t) = bU,i(t) + bM,i(t).
Similarly, before the start of each period, the mobile device
can obtain the environmental information of the current time
slot, such as channel conditions, to make offloading decisions
more intelligently.

In this model, the channel condition remains static in the
current time slot while it changes from time slot to time
slot. When the task is offloaded for processing, the data are
sent from the IoT device to the BS through the wireless
channel and then sent to the edge node through wired transmis-
sion. Usually, the energy consumption of wireless transmission
accounts for a large proportion, so we solely consider the over-
head of the wireless part. In wireless transmission, the data are
uploaded through the uplink channel and processed, and then
the result is returned through the downlink channel. Since the
returned result size is trivial, the downlink energy consump-
tion is also negligible. To simplify the model, this article does
not consider the interference between communication chan-
nels and the restriction of the amount of subchannels. This
assumption can be fulfilled through the use of new technolo-
gies. For example, 5G can provide sufficient communication
resources. The impact of this simplification on the complexity
of the offloading strategy is minimal.

For every IoT device i, its transmit power is defined
as Pi(t), and the channel gain of this time slot is repre-
sented by hi(t). Then, the achievable task transmission rate
of data on orthogonal channels ri(t) is given by the Shannon
capacity [14]–[16]

ri(t) = ω log2

(
1+ hi(t)Pi(t)

σ 2

)
(1)

where ω denotes the channel bandwidth allocated and σ 2 is
the white Gaussian noise power. Therefore, the time taken on
offloading cannot exceed the length of a time slot τ . Thus, the
constraint condition that the size of bM,i(t) should follow is:

bM,i(t) ≤ ri(t)τ ∀i ∈ N. (2)

TABLE I
SYMBOLS AND MEANING

The transmission energy consumed by offloading tasks for
IoT device i is given as follows:

WT,i(t) = Pi(t)
bM,i(t)

ri(t)
. (3)

Each IoT device has a virtual queue to store tasks that have
arrived waiting to be assigned. The task queue backlog size
of IoT device i is Qi(t). To be realistic, each device cannot
offloading more than the number of tasks it has at present, so

bM,i(t) ≤ Qi(t)− bU,i(t) ∀i ∈ N. (4)

Recall that at time slot t, the arrival number of tasks for
each queue is ai(t), and the processing amount is bi(t). Then,
the evolution process of the queue backlog can be given as
follows:

Qi(t + 1) = max{Qi(t)− bi(t)+ ai(t), 0}. (5)

During the period of time when the user submits the task,
the average number of tasks arriving in each time slot should
not exceed the average number of tasks processed, which is
as follows:

lim
T→∞

1

T

T−1∑
t=0

E[ai(t)− bi(t)] ≤ 0, i ∈ N. (6)

In this way, the queue will not grow indefinitely, the system
will remain relatively stable, and the following discussion will
be valuable. The definitions of the main symbols appearing in
this article are listed in Table I.

C. Energy Consumption Model

In this work, the total energy consumption of the system
consists of three components: 1) local side; 2) transmission
consumption; and 3) MEC side.
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1) Local Side: The energy consumption is generated by
computing tasks. Let the IoT device CPU computing rate in
time slot t be fi(t), and let L be the number of cycles required
for the CPU to calculate a bit task. Then, the computing task
size bU,i(t) of device i in time slot t [30] can be given as
follows:

bU,i(t) = fi(t)τ

L
. (7)

The energy consumption calculation is as follows:

WU,i(t) = κf 3
i (t) (8)

where κ represents the expected energy consumption of
CPU cycles required to perform a computational task. The
energy consumed by the device for performing local calcula-
tions in time slot t is given by WUC(t) =∑n

i=1 WU,i(t).
2) Transmission Consumption: The achievable transmis-

sion speed is given above, so the communication energy
consumption of device i is as follows:

WT,i(t) = Pi(t)
bM,i(t)

ri(t)
. (9)

At time slot t, the total communication energy consump-
tion of all IoT devices to offload tasks to the MEC server is
WUT(t) =∑n

i=1 WT,i(t).
3) MEC Side: The MEC server has relatively sufficient

computing resources and can process tasks offloaded from dif-
ferent devices in parallel. Then, the energy consumption of the
MEC server at time slot t is as follows:

WM(t) = γ + β

n∑
i=1

bM,i(t) (10)

where the amount of energy consumed by the MEC server in
standby is γ , independent of the workload. β is the power
factor required for the MEC server to calculate the 1 bit task.
C represents the maximum computing resources owned by the
MEC server, then

n∑
i=1

bM,i(t) ≤ C. (11)

Therefore, based on the above calculation, the total energy
consumed by the system in time slot t is as follows:

W(t) = WUC(t)+WUT(t)+WM(t). (12)

D. Energy Consumption Optimization Problem

In accordance with the definition of the above parameters,
we discuss the issue of minimizing energy consumption in
the context of long-term system stability in this section. The
problem is formalized as follows:

P1: min
fi(t),bM,i(t)

lim
T→∞

1

T

T−1∑
t=0

E{W(t)} (13)

s.t.
_
Q
�= lim

T→∞sup
1

T

T−1∑
t=0

n∑
i=1

E{Qi(t)} <∞ (14)

fi(t) ≤ fmax ∀i ∈ N (15)
Pi(t) ≤ Pmax ∀i ∈ N
(2), (4), and (11). (16)

Constraint (14) is a stability constraint, which means that
the total length of the IoT device queue cannot grow infinitely
for a long time, with a bounded time-averaged backlog. In
this way, the system is in a long-term stable state. In addition,
constraint (15) indicates that the upper limit of the IoT device’s
CPU calculation rate in each time slot is fmax. Constraint (16)
indicates that Pmax is the peak value that the transmit power
of the IoT device can reach.

Problem P1 is a typical optimization problem with random-
ness. The generation of computing tasks and the state of the
wireless channel in the system change over time. Since it is
difficult to obtain information about the system’s future, in
reality, solving problem P1 offline is a complex problem.

In the next section, we use the Lyapunov optimization
framework to figure out a solution without knowing future
information.

IV. LYAPUNOV ONLINE ENERGY CONSUMPTION

OPTIMIZATION ALGORITHM

This section designs a new online offloading algorithm
called LOECOA using the Lyapunov optimization framework.
LOECOA makes the optimal offloading decision based on the
current system status information without relying on future
information. It fully considers the tradeoff between system
energy consumed and queue backlog, and it achieves infinitely
close to optimal energy consumption under the premise of
system stability.

Lyapunov optimization refers to the establishment of a
queue model for the constraints of stochastic optimization
problems. We decompose the operations that should be taken
to meet these long-term constraints into each time slice,
thus decoupling the problem from the time perspective.
Additionally, the size of the queue is considered when solving
the objective function. This allows the system to maintain a
relatively stable state to achieve our optimization goals.

A. Lyapunov Optimization Framework

To indicate the current state of the system and the degree
of congestion, we define a queue backlog vector Θ(t), i.e.,
Θ(t) = (Q1(t), Q2(t), . . . , Qn(t)). For vector Θ(t), we define
the quadratic Lyapunov function as follows:

L(Θ(t)) = 1

2

n∑
i=1

ωiQ
2
i (t) (17)

where {ωi}ni=1 is the weight of each queue, and in this article,
the value set to 1. Clearly, the Lyapunov function is nonneg-
ative, and L(Θ(t)) is zero only if the backlog of all queues
Qi(t) is zero. The size of L(Θ(t)) denotes the relative size of
the backlog of IoT device queues, and we define L(Θ(0)) = 0.
Then, we define the Lyapunov drift function as follows:


(Θ(t))
�= E{L(Θ(t + 1))− L(Θ(t))|Θ(t) }. (18)

This means that the mathematical expectation of the
Lyapunov function changes when the current state of slot t
is Θ(t), which is the key index of system stability.

Lemma 1: For the Lyapunov function L(Θ(t)),
when E{L(Θ(t))} < ∞, there is a constant
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B = (1/2)
∑n

i=1 (a2
max + b2

max). ε can be regarded as a
positive number slightly greater than zero. The upper bound
of Lyapunov drift can be expressed as follows:


(Θ(t))
�= E{L(Θ(t + 1))− L(Θ(t))|Θ(t) }
≤ B− ε

n∑
i=1

Qi(t). (19)

Proof: According to (5):
1) if Qi(t)−bi(t)+ai(t) ≥ 0, it can obtain Qi(t+1) = Qi(t)−

bi(t)+ ai(t), thus Qi(t + 1)2 = (Qi(t)− ai(t)+ bi(t))2, i ∈ N;
2) if Qi(t)− bi(t)+ ai(t) < 0, it can obtain Qi(t+ 1) = 0 >

Qi(t) − bi(t) + ai(t), thus Qi(t + 1)2 = 0 < (Qi(t) − ai(t) +
bi(t))2, i ∈ N.

In summary

Qi(t + 1)2 ≤ (Qi(t)− bi(t)+ ai(t))
2, i ∈ N. (20)

Expanding inequality (20) and accumulating all n queues
based on it, we obtain

1

2

n∑
i=1

Qi(t + 1)2 ≤ 1

2

n∑
i=1

Qi(t)
2 + 1

2

n∑
i=1

(ai(t)− bi(t))
2

+
n∑

i=1

Qi(t)(ai(t)− bi(t)).

Shifting the term of the above inequality and performing the
expectation operation on both sides simultaneously, we obtain


(Θ(t)) = 1

2

n∑
i=1

E
{

Qi(t + 1)2|Θ(t)
}
− 1

2

n∑
i=1

E
{

Qi(t)
2|Θ(t)

}

≤ 1

2

n∑
i=1

E
{
(ai(t)− bi(t))

2|Θ(t)
}

+
n∑

i=1

E{Qi(t)(ai(t)− bi(t))|Θ(t) }

≤ B+
n∑

i=1

E{Qi(t)(ai(t)− bi(t))|Θ(t) } (21)

where B is a constant and B = (1/2)
∑n

i=1 (a2
max + b2

max).
Since for any i ∈ N, ai(t) ≤ amax and bi(t) ≤ bmax, where
amax and bmax are used to represent the maximum value of
ai(t) and bi(t). After a simple inequality calculation

1

2

n∑
i=1

E
{
(ai(t)− bi(t))

2|Θ(t)
}
≤ 1

2

n∑
i=1

(
a2

max + b2
max

)
.

Recalling the premise (6) mentioned above and substituting
it into (21), we obtain the formula.

According to Lemma 1, taking the telescoping sum on time
slice t ∈ {0, 1, . . . , T − 1}, we have

E{L(Θ(T))} − E{L(Θ(0))} ≤ BT − ε

T−1∑
t=0

n∑
i=1

E{Qi(t)}.

Bringing L(Θ(0)) = 0 into it, and through simple inequality
operations, we can obtain

1

T

T−1∑
t=0

n∑
i=1

E{Qi(t)} < B

ε
. (22)

This shows that the backlog of all IoT device task queues
has an upper limit and cannot grow indefinitely. Therefore, the
stability of the system is guaranteed.

Thus, optimization problem P1 is equivalently transformed
into P2

P2: min
fi(t),bM,i(t)

lim
T→∞

1

T

T−1∑
t=0

E{W(t)}

s.t. (2), (4), (6), (11), (15), and (16). (23)

In the Lyapunov optimization framework, we have intro-
duced the concept of penalty terms to achieve the equilibrium
of dual-objective optimization on the basis of system stabil-
ity. Therefore, problem P2 is further transformed into the
following form:

P3: min
fi(t),bM,i(t)


(Θ(t))+ VE{W(t)|Θ(t) }
s.t. (2), (4), (6), (11), (15), and (16). (24)

The first item reduces the queue backlog and keeps the
system stable, and the second item is our optimization goal.
The Lyapunov control parameter V is a weight coefficient used
to weigh the importance of these two goals. The theoretical
basis for this is given in the strict proof as follows.

Additionally, P3 is still a difficult issue. It needs information
at the present and the future, so we decompose the
optimization into each time slot to achieve the purpose of
optimization by solving the minimum value of 
(Θ(t)) +
VE{W(t)|Θ(t)}.

Next, we simplify problem P3 by minimizing the upper
bound of Lyapunov drift plus a penalty. Based on (21), we
have


(Θ(t))+ VE{W(t)|Θ(t) }
= E{L(Θ(t + 1))− L(Θ(t))|Θ(t) } + VE{W(t)|Θ(t) }
≤ B+ VE{W(t)|Θ(t) } +

n∑
i=1

E{Qi(t)(ai(t)− bi(t))|Θ(t) }.

(25)

By means of the iterated expectation theorem, we can
equivalently transform problem P3 into P4. Since B is a
constant

P4: min
fi(t),bM,i(t)

[
VW(t)+

n∑
i=1

Qi(t)(ai(t)− bi(t))

]

bM,i(t) ≤ ri(t)τ ∀i ∈ N

bM,i(t) ≤ Qi(t)− bU,i(t) ∀i ∈ N
n∑

i=1

bM,i(t) ≤ C

fi(t) ≤ fmax ∀i ∈ N

Pi(t) ≤ Pmax ∀i ∈ N. (26)

Now, we need to use only the current information of the
system. Solving for the minimum value of (26) in each time
slot, we obtain the desired offloading decision.
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Algorithm 1 Online Calculation Offloading Algorithm
1: for t = 1 to T do
2: for all i ∈ N do
3: Calculate fi(t), bM,i(t) by solving P4;
4: Update Qi(t) according to

Qi(t + 1) = max{Qi(t)− bi(t)+ ai(t), 0};
5: end for
6: end for

B. Optimal Offloading Policy

We need to further solve problem P4 from Algorithm 1.
Thus, we design an optimization algorithm, LOECOA. The
upper limit of the Lyapunov drift plus penalty term in each slot
is minimized to determine the optimal task offloading strategy.
Experiments indicate that LOECOA can effectively decrease
system energy consumption and maintain a low IoT device
queue backlog.

To better solve problem P4, we expand (26) to obtain

VW(t)+
n∑

i=1

Qi(t)(ai(t)− bi(t))

= V(WUC(t)+WUT(t)+WM(t))

+
n∑

i=1

Qi(t)
(
ai(t)− bU,i(t)− bM,i(t)

)

= V

(
κ

n∑
i=1

f 3
i (t)+

n∑
i=1

Pi(t)
bM,i(t)

ri(t)
+ γ + β

n∑
i=1

bM,i(t)

)

+
n∑

i=1

Qi(t)
(
ai(t)− bU,i(t)− bM,i(t)

)

=
∑
i∈N

[
κf 3

i (t)V − Qi(t)
fi(t)τ

L

+
(

VPi(t)

ri(t)
+ βV − Qi(t)

)
bM,i(t)

]
. (27)

Through (27), we find that the optimization problem can
be divided into two different smaller problems and solved, as
follows.

1) Local Calculation: By separating the variables, the part
related to the local computation can be expressed as follows:

min
fi(t)

(
κf 3

i (t)V − Qi(t)
fi(t)τ

L

)
. (28)

It is not difficult to find that the objective function is a
convex function, so the optimal value should be obtained at
the extreme points or boundaries, i.e.

f ∗i (t) = min

{√
Qi(t)τ

3κVL
, fmax

}
. (29)

After we solve the optimal local CPU calculation rate f ∗i (t),
by substituting it into (7), we can calculate the local calculation
amount bU,i(t) of each IoT device.

2) Offloading Calculation: After decoupling bM,i(t)
from (27), the optimal value of bM,i(t) can be obtained by

solving

min
bM,i(t)

(
VPi(t)

ri(t)
+ βV − Qi(t)

)
bM,i(t). (30)

To make it easier to solve, we can transform the problem
into maximizing the opposite number

max
bM,i(t)

Hi(t)bM,i(t) (31)

where

Hi(t) = Qi(t)− VPi(t)

ri(t)
− βV. (32)

Equation (31) can be considered in terms of a knapsack
problem. The maximum computing resources owned by the
MEC server C represents the backpack capacity, and weight
coefficient Hi(t) can be regarded as the item’s unit value. The
optimal solution is to sequentially pick the highest value non-
negative items into the backpack until the backpack is full or
the nonnegative items are all put out.

The specific steps are as follows.
1) Initialize the computing task size bM,i(t) of each IoT

device offloading to the edge side, and the size D(t)
of all available computing resources of the MEC
server is C.

2) Collect information, such as the current task offloading
queue backlog Qi(t), wireless channel transmit power
Pi(t), and rate ri(t) of each IoT device.

3) Sort all IoT devices according to the principle of
weighting coefficient Hi(t) from high to low.

4) Determine the size of the offloading tasks assigned to the
MEC server calculation for each device in turn, starting
from the first in the sorted order

b∗M,i(t) =
{

min{ηi(t), D(t)}, if Hi(t) ≥ 0
0. if Hi(t) < 0.

(33)

According to the constraints (2) and (4), Hi(t) is denoted
by ηi(t) = min{ri(t)τ, Qi(t)− bU,i(t)}.

5) Update the size of the remaining available computing
resources based on D(t) = D(t)− bM,i(t).

At this point, we obtain the approximate solution of problem
P4. The algorithm pseudocode is shown as Algorithm 2.

V. ALGORITHM PERFORMANCE THEORETICAL ANALYSIS

In this section, we conduct a rigorous theoretical analysis
to verify the performance of LOECOA. After mathematical
derivation, we find that the algorithm can ensure the stability of
the IoT device virtual queue while making the system energy
consumption approach the optimal solution.

We adopt the difference between the Lyapunov optimization
and thalytical solution of the problem P1 by analyzing it from
the solution of the objective function and the stability of the
task offloading queue, respectively.

Theorem 1: By adopting the LOECOA, the average system
energy consumption satisfies

lim
T→∞

1

T

T−1∑
t=0

E{W(t)|Θ(t) } ≤ W∗ + B

V
(34)
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Algorithm 2 LOECOA
Input: device and channel parameters such as ai(t), Pi(t),

hi(t); queue state such as Qi(0)← 0;
Output: optimal solution fi(t), bM,i(t);

1: for all i ∈ N do
2: Calculate the value of

√
Qi(t)τ
3κVL ;

3: Set the fi(t) according to (7);
4: Calculate the bU,i(t);
5: end for
6: Initialize ∀i ∈ N bM,i = 0, D(t) = C;
7: for all i ∈ N do
8: Obtain the Pi(t), ri(t);
9: Calculate the Hi(t);

10: end for
11: Sort all the devices according to the principle of weighting

coefficient Hi(t) from high to low;
12: for all i ∈ N do
13: Solve the offloading decision bM,i(t) in sorted order

according to (33);
14: Update D(t) according to D(t) = D(t)− bM,i(t);
15: end for

and the average queue backlog satisfies

lim
T→∞

1

T

T−1∑
t=0

n∑
i=1

E{Qi(t)|Θ(t) } ≤ B+ V(Wmax −W∗)
ε

(35)

where W∗ and Wmax are the optimal system energy con-
sumption and the maximum system energy consumption,
respectively. B and ε are the same as defined in (19), and
V is the Lyapunov control parameter.

Proof: For problem P1, it defines all random information,
such as ai(t) and hi(t) as ω(t), and all decision factors are
defined as α(t) [29], [32]. For any random information set
ω(t), there is a stable decision set α∗(t), which enables the
mobile device to make a reasonable offloading decision in
every time slot. The energy consumed under the optimal
decision is W∗, which is

W
(
α∗(t)|ω(t)

) = W∗.

According to the above theory, (25) can be rewritten as
follows:


(Θ(t))+ VW(t)

≤ B+ VW(ω(t), α(t))

+
n∑

i=1

Qi(t)(ai(ω(t), α(t))− bi(ω(t), α(t)))

≤ B+ VW
(
ω(t), α∗(t)

)

+
n∑

i=1

Qi(t)
(
ai

(
ω(t), α∗(t)

)− bi
(
ω(t), α∗(t)

))
.

If we take the expectation of both sides of this inequality,
we obtain

E{
(Θ(t))+ VW(t)|Θ(t) }

≤ E

{
B+ VW

(
ω(t), α∗(t)

)

+
n∑

i=1

Qi(t)
(
ai

(
ω(t), α∗(t)

)− bi
(
ω(t), α∗(t)

))|Θ(t)

}

= B+ VE
{
W

(
ω(t), α∗(t)

)}+
n∑

i=1

E{Qi(t)|Θ(t) }

×
n∑

i=1

E
{
ai

(
ω(t), α∗(t)

)− bi
(
ω(t), α∗(t)

)}

≤ B+ VW∗.

We take the telescoping sum on time slice t ∈
{0, 1, . . . , T − 1}. Thus, we have

L(Θ(T))− L(Θ(0))+ V
T−1∑
t=0

E{W(t)|Θ(t) } ≤ BT + VTW∗

where L(Θ(T)) is greater than zero. If we divide both sides
of this inequality by VT , we obtain

1

T

T−1∑
t=0

E{W(t)|Θ(t) } ≤ W∗ + B

V
.

There is always a set of decision sets α′(t) and a constant
ε, such that the following holds:

n∑
i=1

E
{
ai

(
ω(t), α′(t)

)− bi
(
ω(t), α′(t)

)} ≤ −ε.

Substituting the above formula into (25), it can be obtained
that


(Θ(t))+ VW(t) ≤ B+ VW
(
ω(t), α′(t)

)

+
n∑

i=1

Qi(t)
(
ai

(
ω(t), α′(t)

)− bi
(
ω(t), α′(t)

))
.

We scale the W(t) on both sides of the formula, taking W(t)
to the left side as W∗ and taking W(t) to the right side as Wmax.
Therefore


(Θ(t))+ VW∗

≤ B+ VWmax +
n∑

i=1

Qi(t)
(
ai

(
ω(t), α′(t)

)− bi
(
ω(t), α′(t)

))
.

At this point, we take the mathematical expectation on both
sides of the formula and scale them to obtain

E{
(Θ(t))} + VW∗ ≤ B+ VWmax − ε

n∑
i=1

E{Qi(t)|Θ(t) }.

After performing simple operations on both sides of the
inequality

E{
(Θ(t))} ≤ B+ V
(
Wmax −W∗

)− ε

n∑
i=1

E{Qi(t)|Θ(t) }.

Similar to the above proof, we take the telescoping sum on
time slice t ∈ {0, 1, . . . , T − 1} and obtain

E{L(Θ(T))} − E{L(Θ(0))}
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≤ BT + V
(
Wmax −W∗

)
T − ε

T−1∑
t=0

n∑
i=1

E{Qi(t)|Θ(t) }.

If we divide both sides of the inequality by εT , we have

1

T

T−1∑
t=0

n∑
i=1

E{Qi(t)|Θ(t) }

≤ B+ V(Wmax −W∗)
ε

− E{L(Θ(T))}
εT

where L(Θ(T)) is a nonnegative number. Thus, scaling the
inequality again, we obtain

1

T

T−1∑
t=0

n∑
i=1

E{Qi(t)|Θ(t) } ≤ B+ V(Wmax −W∗)
ε

.

The proof of the theorem is thus complete.
The theorem demonstrates that the upper limit of the aver-

age system energy consumed is inversely proportional to the
weight coefficient V; in contrast, the upper limit of the average
queue backlog is directly proportional to V . Thus, to main-
tain the queue load’s stability, a smaller V should be selected.
However, when parameter V is reduced, the system energy
consumed increases. Therefore, the system energy consumed
and stability have a tradeoff relationship of [O(1/V), O(V)].
When conducting simulation experiments, we can choose an
appropriate V to preserve the system’s stability under the given
energy budget; the reverse is also the same.

Finally, we analyze the performance of LOECOA in terms
of time complexity and cost efficiency. On the one hand,
according to Algorithm 1, LOECOA must ensure that each
IoT device’s requests are processed within a unit time slot.
The time complexity of the outer loop is O(n). In Algorithm
2, the offloading priority of all devices must be sorted before
assignment. The algorithm we use is quicksort, and the time
complexity is O(log n). Thus, the total time complexity of the
LOECOA is O(n log n). On the other hand, the space com-
plexity of our proposed algorithm is relatively low. When the
program runs on the computer, the memory changes of the
system are very small. This is because the operation of the
algorithm does not require a large amount of storage space
and only processes the collected data, which is simple and
efficient. When running the algorithm, the CPU calculation
speed changes from 3.21 to 4.06 GHz. The change is also
acceptable.

VI. SIMULATION RESULTS AND ANALYSIS

We evaluate the proposed LOECOA in terms of the aver-
age queue backlog and total system energy consumed. The
theoretical analysis is verified by the results of a MATLAB
simulation experiment.

First, we verify the theoretical results of the task offloading
queue stability. Then, we analyze the influence of parame-
ters, such as the Lyapunov weight coefficient V , computing
task arrival rate ai(t), and the number of IoT devices n on
the algorithm. Finally, it can be concluded that LOECOA has
superiority in terms of energy consumption under the premise
of ensuring system stability.

In the experiment, we first simulated a scenario with 30 IoT
devices and one MEC server to perform offloading task cal-
culations. We simulated 1500 time slots, where the length of
each time slot was τ = 1 ms. We use some specific statistical
distributions to simulate events in the real environment, such as
the arrival rate of offloading tasks, channel status, and device
transmission power. The data size of the offloading task arrival
is set to the expected Poisson distribution of 1000 bits, i.e.,
ai(t) ∼ P(1000). For the wireless channel, we simplify it as a
Rayleigh fading model, and hi(t) can be regarded as a random
variable with a mathematical expectation of 1 that obeys an
exponential distribution, i.e., hi(t) ∼ E(1). We set the trans-
mission power of each IoT device as Pi(t) ∼ U[0.01, 1] W.
In addition, we set κ = 1 × 10−27, σ 2 = 1 × 10−12 W,
Pmax = 1 W, fmax = 1.5 GHz, L = 737.5 cycles/byte [33].
Although some parameters are set according to a fixed statisti-
cal distribution in the experiment, LOECOA actually does not
require prestatistical information.

A. System Stability Evaluation

We randomly select four of the 30 IoT devices to verify if
their queue backlog changes are stable. Fig. 2(a) shows the
change in the backlog of task offloading queues for four ran-
domly selected IoT devices as the simulation time increases.
The analysis shows that the backlog of IoT device queues
increases rapidly over time and eventually stabilizes. At the
beginning of the simulation, the number of calculation tasks
is small, and most tasks are calculated locally; as the num-
ber of calculation tasks increases, the queue backlog increases
rapidly. The system begins to offload tasks to the edge side for
processing. Due to the significant improvement of edge proces-
sor performance, tasks are processed quickly, which gradually
stabilizes the backlog of queues. The time required for the
backlog of the IoT device queue to stabilize is relatively short,
reflecting LOECOA’s good performance.

Fig. 2(b) reveals the growth of the average queue backlog of
all IoT devices, which shows a gradual rise and then plateaus.
This is because in this system the change trend of the queue
backlog of a single device is roughly the same and the stability
is good, which shows that the offloading system is stable for
a long time.

Next, we investigated whether the system queue backlog
can remain stable when the task arrival rate changes dynami-
cally. We randomly select four IoT devices and observe their
queue backlog changes when the arrival rate of computing
tasks changes.

In Fig. 3, the arrival rate obeys a Poisson distribution with
a mean value of 1500 at the beginning. At the 200th step,
we reduced the task arrival rate by 100, i.e., the arrival rate
obeyed a Poisson distribution with a mean value of 1400. As
shown in Fig. 3, the queue backlog dropped significantly. At
the 400th step, the arrival rate was increased by 100. The
queue backlog quickly returned to its original level. On the
basis of this experiment, we can conclude that LOECOA has
a strong adaptive ability to handle real application scenarios
with sudden changes in network traffic.
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Fig. 2. Queue backlog stability experiment. (a) Queue backlog. (b) Average
queue backlog.

Fig. 3. Queue backlog with dynamic arrival rates.

B. Effects of System Parameters

Next, to verify the robustness of LOECOA, we select several
sets of key parameters for ablation experiments. In each set of
experiments, the effects of changes in a single parameter on

Fig. 4. Effect of V on the system energy consumption and queue backlog.

two performance indicators are observed, and the adaptability
of LOECOA to changes in different parameters is explored.

1) Effect of Parameter V: We pick several different sets of
V values. The average queue backlog and energy consump-
tion for the corresponding systems at different values of V
are calculated, and the results are plotted in the same figure.
The changes in system energy consumed and queue back-
log when selecting different V values are shown in Fig. 4.
When the value of V increases, the system energy consumed
is significantly reduced. This is consistent with the law embod-
ied in (34). However, the queue backlog grows substantially
when V increases. This phenomenon conforms to the theoret-
ical derivation in (35). It adversely affects the stability of the
system and considerably reduces the QoE of users. Therefore,
we demonstrate again through experiments that there is an
[O(1/V), O(V)] tradeoff between the system energy consump-
tion and the queue backlog. By regulating the Lyapunov
weight coefficient V , the importance of both is changed.

2) Impact of Parameter a(t): Fig. 5 depicts the changes in
the system energy consumed and queue backlog under differ-
ent task arrival rates. These experiments set three different a(t)
values, 800, 1000, and 1200. In Fig. 5(a), the system energy
consumed increases as the task arrival rate increases. There are
more tasks to calculate, so more energy is consumed for task
processing. Similarly, Fig. 5(b) shows that the queue backlog
increases as the task arrival rate increases. The reason for this
phenomenon is that when the number of tasks increases, the
system’s transmission capacity does not increase, so the task
queue backlog of IoT devices increases. In addition, the system
consumed energy and the queue backlog of the algorithm
converge quickly under different task arrival rates. Therefore,
LOECOA can adjust the offloading decision online to adapt to
changes in the arrival rate so that the system quickly reaches
stability.

Next, we explore the effect of the parameter a(t) on the
performance of LOECOA from two aspects: 1) the proportion
of offloaded computing tasks and 2) the CPU computing rates
of IoT devices. By analyzing the data in Table II, we can con-
clude that the more tasks there are to be processed, the lower
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(a)

(b)

Fig. 5. Queue backlog and system energy consumption with different task
arrival rates. (a) Queue backlog. (b) System energy consumption.

TABLE II
AVERAGE OFFLOADING PORTION AND AVERAGE CPU CALCULATION

RATE OF IOT DEVICES

the proportion of data offloaded to the MEC server for cal-
culation. Since the computing resources of the MEC server
are limited, when the task arrival rate increases, a large num-
ber of computing requests occurring at the edge node at the
same time will cause excessive queuing delay. This can lead to
system instability, so offloading decisions choose to put more
workload on the local side. Similarly, when the amount of data
arriving increases, the transmission capacity of the system does
not increase. As the data to be processed increase, the back-
log of equipment queues increases and the requirements for
local computing power increase. To maintain stable system
operation, the calculation rate of IoT devices also increases
accordingly.

3) Impact of Parameter n: To explore the stability of the
system and the robustness of the algorithm in the scenario

(a)

(b)

Fig. 6. Queue backlog and system energy consumption with different
numbers of IoT devices. (a) Queue backlog. (b) System energy consumption.

where the number of devices increases, we increase the num-
ber of devices from 30 to 120 in sequence, with an increase
of 10 each time. Fig. 6 plots the system consumed energy and
queue backlog under different quantities of equipment.

Fig. 6(a) shows that the queue backlog also slowly increases.
The reason is similar to the phenomenon in Fig. 5 above.
As the amount of equipment increases, so does the number
of computing tasks to be processed. The computing power
of the edge side and the transmission capacity of the system
are limited. To keep the system stable, the computing rate of
IoT devices increases. This process can effectively relieve the
pressure and realize the slow growth of the queue backlog,
reflecting the excellent performance of LOECOA. Fig. 6(b)
reveals that as the number of IoT devices grows, the energy
consumed by the system also increases.

C. Comparison Experiment

To further evaluate the performance of LOECOA, we
compare LOECOA with two baseline algorithms.

1) Local Only: In slot t, computing tasks are executed on
IoT devices at the maximum CPU rate.
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(a)

(b)

Fig. 7. Queue backlog and system energy consumption with three different
strategies. (a) Queue backlog. (b) System energy consumption.

2) MEC Only: In slot t, the generated computing tasks are
transmitted to the MEC server with the maximum trans-
mission power and then executed in the MEC server
with the maximum computing power.

In Fig. 7, we have drawn the change curve of the system
energy consumption and queue backlog for different strategies.
The LOECOA proposed in this article can effectively reduce
the queue backlog and maintain the stability of the system at
roughly the same level of energy consumption. This is because
LOECOA can dynamically make offloading decisions to adapt
to changes in system status. In addition, the energy consump-
tion of our algorithm is similar to that of only local computing.
However, what is different from the previous work is that our
system energy consumption includes the noncomputing part
of the MEC server. Only local calculations do not involve this
part, so the system energy is higher than local calculations
only. From the comparison of the two figures, only part of
the calculation tasks is processed due to the limited transmis-
sion capacity of the MEC server calculation. Therefore, the
energy consumption is relatively low, and the price of a large
queue backlog is paid. It can be concluded from the compar-
ative experiment that LOECOA has advantages in effectively
reducing system energy consumption and queue backlog.

VII. CONCLUSION

In this article, we investigate minimizing energy costs
in MEC systems in cooperation scenarios. By solving the
problem with Lyapunov optimization technology, we propose
an online dynamic computing offloading algorithm that can
reasonably formulate an offloading strategy and determine the
number of calculation tasks for the local and MEC servers.
This algorithm rarely requires prior statistical knowledge of
the environment, and it can achieve the purpose of balancing
the dual optimization goals. The experimental results show that
LOECOA can obtain near-optimal system energy consumed
while maintaining a stable queue backlog of IoT devices.
Moreover, the algorithm shows good robustness in the face
of dynamic changes.
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