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ARTICLE INFO ABSTRACT

Keywords: The integration and development of unmanned aerial vehicles (UAVs) and mobile edge computing (MEC) tech-
Mobile edge computing nology provide users with more flexible, reliable, and high-quality computing services. However, most UAV-
ODEGD

assisted MEC model designs mainly focus on static environments, which do not apply to the practical scenarios
considered in this work. In this paper, we consider a UAV-assisted MEC platform, which can provide continuous
services for multiple mobile ground users with random movements and task arrivals. Moreover, we investigate
the long-term system utility maximization problem in UAV-assisted MEC systems, considering continuous task
offloading, users’ mobility, UAV’s 3D trajectory control, and resource allocation. To address the challenges of
limited system information, high-dimensional continuous actions, and state space approximation, we propose
an Online decision-making algorithm for Dynamic environments based on Exploration-enhanced Greedy DDPG
(ODEGD). Additionally, to more accurately evaluate the algorithm’s performance, we introduced real-world roads
into the experiment. Experimental results show that the proposed algorithm reduces response delay by 26.98%
and energy consumption by 22.61% compared to other algorithms, while achieving the highest system utility.
These results validate the applicability of the ODEGD algorithm under dynamic conditions, demonstrating its
good robustness and scalability.

Resource allocation
Trajectory planning
Unmanned aerial vehicle
User mobility.

1. Introduction

With the rapid development of Internet-of-Things (IoT) technology,
the number of mobile devices continues to surge, driving the rapid
growth of new types of mobile applications (i.e., automatic naviga-
tion, AR/VR virtual technology, online interactive games, etc.) [1,2].
These applications are often computationally intensive and sensitive to
response time. Due to limited computing power and battery capacity,
user equipment (UE) cannot provide high-performance computing for
these tasks. Mobile edge computing (MEC) [3] offers a cost-effective so-
lution, that transmits computing requests to the edge of MEC systems
equipped with servers (i.e., cellular base stations or WiFi access points).
Edge servers provide computing resources to meet the computationally
intensive tasks of UE, reducing task response time, extending device bat-
tery life, and improving user experience quality.

Nevertheless, there may be scenarios where a large number of UEs
require computing services concurrently, in which case MEC system re-
sources are insufficient to provide services, especially in hotspot areas
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[4]. Additionally, in areas with inadequate communication infrastruc-
ture or limited coverage like suburbs, it’s unknown whether UE can ac-
cess the MEC system to receive services [5]. Consequently, ensuring the
provision of reliable offloading services remains a challenging issue. Un-
manned aerial vehicles (UAVs), due to their flexibility and maneuver-
ability, have been regarded as playing a critical role in enhancing future
wireless communication systems. UAVs equipped with small servers can
serve as aerial computing platforms, providing flexible and elastic com-
puting services for UEs, with the advantages of efficient and convenient
deployment, wide coverage, and high cost-effectiveness. For instance,
[6,7] applies a UAV platform to improve MEC coverage and energy ef-
ficiency of a large number of IoT devices in disaster areas or remote re-
gions. Another scenario is in the field of wireless sensors, where drones
are used to collect data from sensor nodes or offload computing tasks on
sensors [8,9]. Therefore, the UAV-assisted MEC technology has become
one of the key technologies of the 5G network.

This paper integrates mobile UEs, the 3D flight-capable UAV, and
DRL into a dynamic MEC environment by optimizing the response delay
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and energy consumption of task offloading. By utilizing the computing
resources of edge servers, the computing pressure on UEs can be allevi-
ated within the constraints of ensuring continuous service quality. The
bi-objective optimization of Online decision-making in Dynamic envi-
ronments based on Exploring enhancing Greedy DDPG (ODEGD) algo-
rithm is designed. The major contributions of our work are summarized
as follows:

¢ We formulate an online offloading decision model that accounts for
both the mobility of UEs and their continuous offloading needs. This
model jointly optimizes the UAV’s 3D trajectory and computational
resource allocation to maximize system utility. It is difficult to find
the optimal strategy in a dynamic environment where the future state
of the system is unclear.

e We propose an effective algorithmic framework based on the par-
tially observable Markov decision process (POMDP), a robust math-
ematical model for sequential decision-making. By using deep neural
networks, we standardize and approximate the limited agent’s obser-
vations to a complete state space, and we integrate the DDPG algo-
rithm to handle the continuous action space. In this highly complex
optimization problem with a large solution space, we also introduce
greedy strategies to enhance the framework’s exploration capability.

e We introduce real-world roads into the experiments to evaluate the
algorithm’s practical performance. The numerical results demon-
strate that our framework outperforms the baseline optimization al-
gorithms, particularly in terms of UE perception capability, robust-
ness to environmental changes, and adaptability to simulation du-
rations and UE count growth. Furthermore, the combination of the
UAV’s 3D mobility and our framework further enhances the overall
system utility.

The remainder of this paper is organized as follows: Section 2 is devoted
to related work. Section 3 presents the system model and the problem
formulation. In Section 4, the ODEGD algorithm is introduced. Section 5
analyzes the performance of the proposed algorithm through experimen-
tal results. Lastly, Section 6 concludes this paper.

2. Related work

Current research on UAV-assisted MEC systems focuses on com-
putation offloading [10-12], resource allocation [13-15], and trajec-
tory planning [16-18]. Masuduzzaman et al. proposed a UAV-based
MEC-assisted automated traffic management framework that integrates
blockchain for secure data sharing and deep learning for vehicle detec-
tion, achieving decentralized and intelligent traffic control [19]. Zhang
et al. developed a power cognition framework for solar-powered UAVs
that leverages reinforcement learning to optimize energy harvesting,
trajectory control, and resource allocation for long-endurance and high-
throughput communications [20]. Most studies consider the situation
where the position or flight altitude of the UAV is fixed [21,22]. Due
to the close relationship between communication quality and the move-
ment trajectory of UAVs, different movement patterns of UAVs may af-
fect the comprehensive distance with UEs, resulting in different commu-
nication delays and energy consumption. Moreover, some studies adopt
a binary offloading approach, which may result in the waste of total
system computing resources [23,24]. How to consider the needs of UEs
and the status of system resources, and reasonably divide and transmit
computing tasks to UAVs, which will have a significant impact on com-
puting latency and energy consumption. In addition, almost all existing
research focuses on offline algorithm design for UAV-assisted MEC sys-
tems in static environments [25,26]. These algorithms assume that the
UEs’ location is fixed, UEs’ computation needs remain unchanged, or are
known in advance, and optimize the offloading strategy and movement
trajectory based on this assumption. However, in many MEC scenarios,
the UE will move and the computing tasks will change. This situation
requires the design of an online decision-making algorithm for UAV-
assisted MEC systems, which can make real-time decisions when facing
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unknown future system states. Therefore, it is necessary to consider the
trajectory of UAVs, the allocation of computing tasks, and dynamic envi-
ronmental changes together to achieve the smallest response delay and
energy consumption.

In recent years, researchers have proposed many algorithms to solve
different optimization problems in UAV-assisted MEC systems. Chai et
al. formulated the path planning of the UAV in the sensor nodes (SNs)
data collection problem as the traveling salesman problem (TSP) and
solved it using the simulated annealing (SA) algorithm [26]. Yang et al.
designed an online algorithm based on Lyapunov optimization to solve
queue stability problems in UAV-assisted MEC systems [27]. Nguyen et
al. proposed using deep reinforcement learning (DRL) to optimize data
collection in UAV-assisted MEC systems, achieving significant overall
rate improvement and maximum resource utilization with UAV’s limited
battery capacity [28]. Zhao et al. integrated the extended kalman filter
(EKF) with the proximal policy optimization (PPO) algorithm to jointly
optimize vehicle trajectory prediction and task offloading decisions in
Internet of Vehicles systems, effectively reducing delay and energy con-
sumption [29]. Hu et al. proposed a framework based on dynamic pro-
gramming (DP) and ant colony (AC) heuristic algorithms to minimize
the average age of information (Aol) [30]. Wang et al. combined the
successive-convex-approximation (SCA) with block coordinate descent
(BCD) technology to solve the problems of data collection and energy
consumption in the system [31]. These methods have achieved certain
results in solving non-convex optimization problems. However, as the
problem becomes more complex and the solution space expands, these
methods may be difficult to solve. Meanwhile, facing non-convex prob-
lems and non-stationary environments, it can be challenging to achieve
a globally optimal strategy without precise and comprehensive knowl-
edge of the environment.

3. System model and problem formulation

In this section, we first propose an MEC model considering dynamic
environments. Then, the models of mobile, computing, and communica-
tion were introduced in the following subsections. Finally, the problems
that need to be addressed within this model are formulated.

As shown in Fig. 1, this model consists of two layers of MEC architec-
ture in a 3D environment, including M mobile UEs and a UAV equip a
small server. The UAV contains communication and computing services,
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providing UEs with continuous offloading services. The total simulation
time in this model is N, which is partitioned into discrete time slots, that
is, N = T x At, where T denotes the number of time slots and Az denotes
the intervals of time slot. The UE generates a small task W,,(r) consist-
ing of the size of the task D,,(r) and the number of CPU cycles C, (1) in
each time slot ¢, i.e. W,,(t) = [D,,(*), C,,(t)]. These tasks can be computed
locally or partially or completely offloaded to the UAV. Therefore, the
UAV needs to make online offloading decisions to enhance service qual-
ity. Moreover, the UAV moves around the UEs to make sure all UEs in
the signal coverage can be serviced by the UAV.

3.1. Mobility model

3.1.1. UE Mobility model

In this UAV-assisted MEC scenario, the position model is modeled as
a stereoscopic Cartesian coordinate system and the coordinates of UEs
are updated in each time slot. c,, (1) = [xm(t), YD), 0] was used to repre-
sent the coordinates of UE m in time slot ¢. At next time slot ¢ + 1, UE m
will move to new location with coordinates c,, (7 + 1), and the movement
distance of UE m is represented as Ad,,(t) = ||c,,(t + 1) — ¢,,(1)||. UEs move
once in each time slot, following the selected road. After completing its
path, they choose a new road to move on, simulating the movement
pattern on real-world roads.

Assuming that at the start of each time slot 7, the UAV obtains each
UE’s position coordinates {cm(t)}mM= , through communication. How-
ever, the UAV doesn’t know the future trajectory coordinates and
task parameters of the UE, which represented as {c,, (i), Wm(i)}::[:l,Vi €
{t+1,...,T}. Therefore, the environment of the entire model is dy-
namic. To optimize resource utilization, the UAV needs to sense the
motion pattern of UEs and predict the location where UEs may need
computing resources in the future.

3.1.2. UAV Mobility model

The coordinates of the UAV at time slot 7 are represented as ¢, () =
[x,®). 5,0, z,(1)], where x,() and y,(1) represent the UAV’s horizontal
position, and z,(r) denotes the UAV’s flight altitude.

Assuming that in time slot 7, the UAV moves a distance of Ad,(¢) in
the horizontal direction at an angle of w(¢) € [0,27) and flies the dis-
tance Az, (7) in vertical direction. Its 3D coordinates at time slot 7 + 1
are updated as follows:

x,(#) = x,(t = 1)+ Ad,(t) cos (w(2)), 1)
V(1) = y,(t = 1) + Ad, (1) sin (w(?)), @
z,(t) = z,(t = 1) + Az, (1). 3)

This 3D mobility enables the UAV to efficiently adjust its position by
sensing the location of UEs, providing high-quality computing and com-
munication services for each UE. In addition, the flight process is much
shorter than the service process, allowing the UAV to promptly perform
subsequent position adjustments. This real-time adaptability enables the
UAV to effectively handle various UEs’ tasks. Denote v, (1) = [x,(1), ()]
as the UAV’s 2D coordinates. Then, the movement distance of the UAV
in each time slot ¢ is limited by

Ady (1) = ||v, (1) = 0,(t = D|| £ ADpas 4)
|Az, ()] = |2,() — 2, = D] £ AZp (5)
where AD,, and AZ,_ . respectively represent the maximum move-
ment distance of the UAV in the horizontal and vertical directions.

Furthermore, we have designated a rectangular service area to en-

sure that the signal range of the UAV can cover all UEs. The movement
of the UAV cannot exceed the boundaries of the service area, that is,

0 < x, (1) £ Xiax ®)
0 < y(1) < Yy Q)
where X, and Y, respectively represent the length and width of the

rectangle-shaped service area.
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Similarly, the flight altitude of the UAV must be restricted. This is to
prevent the limited coverage capability of the UAV from being adversely
affected by flying too high, which could lead to poor service quality. It
also avoids the situation in which the UAV may collide with buildings
when flying too low. The UAV’s flight altitude must not exceed the spec-
ified minimum heights Z,;, and maximum heights Z_, . Then, we have
the following constraint

Zmin < zu(t) < ZmaX' (8)

3.2. Task computation model

This model adopts partial offloading, which means that a portion
or the entirety of a task will be offloaded and processed on the UAV,
using the & (7) to represent the offloading ratio. If a task requires com-
putation, the portion &4 (¢) is executed by a computing node on the UAV,
while the remaining (1 — &% (1)) part is processed locally on the UE. When
tasks are computed locally or on the edge, the corresponding cost will
be generated, including response delay and energy consumption. In ad-
dition, a task can only be offloaded to one computing node on the UAV,
indicating that during the offloading process, a task can’t be simultane-
ously assigned to multiple computing nodes. In each time slot, the UAV
will intelligently select suitable offloading strategies based on the loca-
tion information of all UEs, optimizing task allocation and utilization of
computing resources. Therefore, by continuously monitoring the UEs’
location information in real-time, the UAV can provide more efficient
continuous computing services.

3.2.1. Local computing at UE

The UE contains some computing power and is capable of handling
some of the tasks. The computational delay consumed by the UE to pro-
cess the task in the time slot 7 is expressible as

1=£.(0)Cr()D,, (1)
E’zcal(t) = ( ; ’

m

©)

where F,, represents the UE’s computational resources.
Then, according to the above computational delay, the energy ex-
pended by UE m during the above calculation process can be given as

El’:l)cal(t) = KFSIE’(:’L‘H/ (t) (10)
= kFp (1= &0(0) () Dy (1),

where « denotes the effective capacitor switch.

3.2.2. Edge computing at UAV

After receiving task data from the UEs, the UAV begins to perform
calculations. Since the UEs in our scenario are assumed to be of the
same type, the tasks they generate in different time slots have similar
characteristics, such as task size and the number of required CPU cycles,
which fluctuate within a relatively stable range. Therefore, to simplify
the model, we assumed that the computational resources of UAV’s server
F, are evenly distributed to all UE [17,26,32]. This assumption facili-
tates analytical tractability without significantly affecting the evaluation
of the proposed algorithm’s effectiveness. At the current time slot, the
computational delay for processing UE m’s task is expressible as

4 ()C,,()D
™ (1) = EnDC, (D, (1)

uav Fm
u

s an

where F)" represents the computational resources assigned by the UAV
to UE m, that is, F" = F,/M.

Similarly, the energy expended by the server configured on the UAV
during the above calculation process can given as:

Epn 0=k (E]) 7,0
2 12)
=K (F") 84(C,, (D, (1).
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3.3. Task transmission model

Offloading tasks to the edge involves not only computational costs
but also communication costs. When part of the task is selected to trans-
fer to the UAV for computation, the communication between UAV and
UEs uses the orthogonal frequency division multiplexing access. There-
fore, communication interference between each UE is ignored in this
model.

In this model, the UAV remains within a certain high altitude range,
so we assumed that all channels belong to the line-of-sight channel, i.e.,
there is no occlusion between UEs and the UAV. Therefore, we use the
free-space path loss model to obtain the channel gain between UE m and
UAV in time slot 7, that is,

) = go[14 (0] 2, (13)

where g, denotes the channel gain at a distance of 1m, and / (t) repre-
sents the current Euclidean distance between UE m and UAV:

(@0 = ||e (0 = ¢, (®]|- (14)

The scenario of this model involves UAV-assisted task offloading in a
real urban environment, which includes a lot of noise, both natural and
artificial. Therefore, the transmission loss caused by these noises on the
uplink has been considered. Additionally, like the UAV’s computational
resources F,, we assumed that the bandwidth in the upload link B, is
evenly allocated among all UEs. Therefore, the uplink transmission rate
of the task data is denoted as
P, hgn(z)]

(15)

R @) = Dhiog, |1+
" M 6246

where P, represents the UE’s transmission power of the uplink, o2 rep-
resents the noise power, and 6 represents the transmit loss [33].

The transmission delay between the UAV and UE m during time slot
t can be expressed as the time spent on uploading the selected task to
the UAV, that is,

En(DD,, (D)

Ry (1) (16)

T, (0 =
Similarly, the energy consumed by the transmission process between
the UAV and UE m is given as

El ()= (P,+P)T" (O, an

trans

where P, denotes the UAV’s receiving power.

In the UAV-assisted MEC system, the size of task results returned sent
back by the UAV is minimal, thus the impact of downlink transmission
delay and energy consumption can be neglected.

3.4. Problem formulation

To achieve the optimal offloading strategy and UAV’s trajectory plan-
ning, an optimization model is built that takes energy consumption and
response delay as the objective function. In each time slot 7, the response
delay for one UE’s task depends on the longer task delay in the local
and edge computations, and the energy consumption is the sum of the
computations and transmissions. When all UEs’ tasks in time slot 7 are
completed, the total response delay for that time slot, denoted as T'(¢),
can be expressed as

M
T = Y, max {Tj 0. T, (0 + i, (0} as

m=1
and the total energy consumption, denoted as E(¢), is given as

M

W) = X [Eheui®+ Effy @+ Bl 0], (19)
m=1

To facilitate a more effective comparison of algorithms’ optimization

levels, we introduce baselines for response delay and energy consump-

tion separately. T),,01ine @a0d Ejq0iine T€Present the response delay and
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energy consumption when the model only performs local computation
without offloading, i.e.,

T M
C,®D,,(1)
Thasetine = Z Z mF—m’ (20)
=1 m=1 m
T M
Ebaseline = 2 2 KF,iCm(t)Dm(t), (21)
t=1 m=1

With study [34,35] similarly, the response delay reduction value ob-
tained by consuming energy/unit is taken as the system utility. There-
fore, the system utility in this model is denoted as

T
Tbaseline - Z: T®)

Zl E® - Ebaseline
1=

Consequently, the objective of this model is to achieve maximum
system utility by optimizing the UAV’s location ¢, (r) and task offloading
ratios £ (t) in each time slot. The formulated optimization problem is
denoted as follows:

max Utility, (23)

e, (1).& (1)
st 0<E @) < 1,Vm, (23a)
4 -3, (23b)

where constraint (23a) denotes the range of task allocation ratio, (23b)
includes the maximum mobility constraint and service area boundary
constraint of the UAV.

Generally, the key challenge of non-convex optimization problems
is the possibility of multiple local optimal solutions, complicating the
search for the global optimal solution. In the above practical scenario,
the UAV itself needs to make online decisions on 3D movement and
offloading service, while the dynamic environment for the UEs’ mobility
and the tasks’ randomness. These challenges result in the optimization
problem (23) having a large solution space, making it difficult to solve
through traditional optimization solutions. To tackle these challenges,
a DRL method that obtains the optimal offloading strategy with less
information in a dynamic environment was proposed in this paper.

4. ODEGD for task offloading optimization problem

In this section, the partially observable Markov decision process is
used to rephrase the bi-objective optimization problem, and its essential
elements are defined. Then, the ODEGD framework was introduced and
applied to solve optimization problems.

4.1. POMDP formulation

The UAV’s trajectory planning and UEs’ task offloading are essen-
tially a decision-making problem, which can be formulated as a Markov
decision process (MDP) problem and then solved using reinforcement
learning methods. This model refers to a real urban scenario, where
the UAV needs to make real-time decisions in a dynamic environ-
ment. That means the UAV cannot get the position information of
UEs at all time slots. Therefore, the bi-objective optimization problem
can be represented as a partially observable Markov decision process
(S,A,T,R,Q,0,y). Here, S denotes the state space of the environment,
A denotes the action space of the agent, T represents the probability
of state transition, R denotes the reward function, Q denotes the ob-
servation space of the agent, O represents the probability of observe
transition, and y € [0, 1] represents the discount factor.

4.1.1. State space
In time slot 7, the system environment contains various information
such as the UAV’s 3D coordinates ¢, (1), UEs’ position c,,(¢), and UEs’ task
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information W,,(t). Therefore, the state space S of the system environ-
ment is denoted as

s(1) = {, (), € (1), Wy, (1), Y }. 24)

We can observe that coordinate elements have three dimensions,
while task information has two dimensions. When multiplied by the
number of UEs M, this leads to a high degree of dimensionality in the
state space. Moreover, the elements within the state s(f) do not share
the same value range.

4.1.2. Observation space
In time slot 7, the agent’s observation of the complete environment
state space s(7) is expressed as

Q1) = {c, (1), ¢, (1), W,,, (1), Ym}. (25)

When the environment is in state s € S and action a € A is taken, the
agent considers the system environment to have changed to §'. However,
since the UEs’ movement is unknown, the § obtained by the agent does
not match the real environmental state, i.e., § # s’,s’ € S. To address
this issue, the partially observable Markov decision process uses the ob-
servation o’ to represent ¥, that is, o’ = ¥, 0 € Q. Therefore, the state
space s(7) and the observation space Q(t) contain the same elements but
different transition probability functions. The probability of the agent
taking action a causing the environment to transition from state s to
state s’ is represented as T(s,a,s’) = P(s|s,a). Meanwhile, the obser-
vation o of the agent depends on the new state s’ of the environment,
and the probability is expressed as O(s’,a,0) = P(o|a, s’ ).

4.1.3. Action space

After observing the current state s(z), the agent is required to make
decisions including horizontal movement distance Ad,(¢), horizontal
movement angle (), vertical movement distance Az, (t), and offloading
rate ¢! (1) for each UE. The action space A at time slot ¢ can be repre-
sented as

a(t) = {Ad,(1). Bz, (1), (1), £ (1), Ym}. (26)

The range of values for each element in action a(f) can be ob-
tained based on the maximum optimization problem (23), i.e, Ad, (1) €
[0.AD, )5 Az,(1) € [~AZ s AZ o] @) € [0,27), and &(1) € [0, 1]
Meanwhile, we can observe that as the number of UEs increases, the
dimensions of the state space and action space rapidly increase.

4.1.4. Reward function

When action a(?) is performed in state s(¢), the agent receives a re-
ward from the environment, which represents the quality of action a(r).
Therefore, the reward function R(¢) guides the agent in learning the
appropriate policy. This model aims to reduce the cost consisting of re-
sponse delay and energy consumption of tasks in each time slot 7, which
can be represented as Cost(t) = T (1) + w, E(t), to maximize the overall
system utility. Similar to [32,36], we use w; and , to unify the dimen-
sions of the two variables. Therefore, the reward function R(¢) is defined
as the negative value of the system’s cost at time slot ¢, that is,

R(t) = —Cost(2). 27)
4.2. ODEGD framework

In practice, the partially observable Markov decision process prob-
lems are generally difficult to solve computationally. Some researchers
define a probability distribution in the state space called Belief State,
which infers the probability of currently being in state s based on his-
torical information. Then simplify the problem into a similar Markov de-
cision process problem through the belief state and solve it. However,
this method requires a certain or even a large amount of storage re-
sources to record historical information. Therefore, we use deep neural
networks to obtain an approximate space S that approximates the state
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Algorithm 1: The Normalization Algorithm.

Input: Un-normalized observe variables: ¢, (1), ¢,(1), ¢;(?), ...,
cpr (), Wi(t), W(t), ..., Wi (t). Scaling factor: &y, &y, &5,
éDJ 5C'

Output: Normalized observe variables: ¢/ (1), ¢} (), ¢,(®), ...,

O, WD), W), ..., Wy, ).

x, (1) = x,(0)/Ex;

Y@ =y, (0)/&y;

Zu’(t) = Zu(f)/fz;

form=1to M do
X, (1) = X%, (D /Exs ¥ () = v/ Eys
D, () = D,(t)/&p, C,/ (1) = C,,(10)/&cs

end

return c(0), ¢|(1) ..., ¢}, (6), W/ (@), ..., W}, @.

® N o o A W N =

space S by observing space Q. Then the above issue can be simplified
to an Markov decision process problem and addressed using solutions
based on reinforcement learning. During the training process of neural
networks, significant disparities in the units of measurement and value
ranges of training samples may lead to vanishing or exploding gradients,
which can adversely affect the learning efficiency of the model. In this
model, the variables c, (1), ¢;(?), ¢y (1), ..., cp (D), Wi (@), Wi(1), ..., Wy, (1) in
the observe space Q lie in different ranges, which may make the train-
ing process more difficult. To mitigate this issue, this study employs a
normalization algorithm as shown in Algorithm 1. This technique not
only enhances the model’s convergence performance but also bolsters
the model’s adaptability and robustness. The model incorporated five
scaling factors, corresponding to the range spanned by the maximum
and minimum values for each variable. Each factor can be explained as
follows. Given that the UAV and UEs share the same range for their x
and y coordinates, we employ £y and &, to normalize their x and y posi-
tions. The scaling factor ¢, normalizes the UAV’s z coordinate. And &),
and & are used to normalize UEs’ task size and CPU cycles respectively.

After transforming the partially observable Markov decision process
problem through neural networks, reinforcement learning algorithms
can be used to solve it. Q-Learning is a fundamental and classic algo-
rithm in reinforcement learning, with the core idea of constructing and
maintaining a Q-table. When solving continuous or even complex dis-
crete problems, Q- Learning consumes a significant amount of resources
to store all Q-values, making it impractical. Combining deep learning
with reinforcement learning, the deep Q-network (DQN) algorithm in-
troduces neural networks to replace the Q-table, thus solving the issue
mentioned above.

Nevertheless, DON suffers from overestimation of Q-values and un-
stable training, making it unsuitable for problems with continuous ac-
tion spaces. Deep deterministic policy gradient (DDPG) [37] is an off-
policy DRL algorithm that is built upon the Actor-Critic framework. It
integrates Value-based learning with Policy-based learning by drawing
on the ideas of DQN and deterministic policy gradient. At the same time,
it introduces target networks to ensure stable training of the networks.
Therefore, DDPG consists of four networks: the actor network =(s|6#),
the target actor network z’ (3‘9"/ ), the critic network QO(s, a|99 ), and the

target critic network Q’(s, a‘HQ/ ). Therefore, we integrate the DDPG al-
gorithm into the ODEGD framework to solve the online offloading prob-
lem in a dynamic environment. A two-stage method is used to approx-
imate the state space .S using neural networks, followed by solving the
problem using the DQN algorithm [38]. This method requires training
two sets of neural networks and adjusting their respective hyperparame-
ters. In contrast, we let the ODEGD algorithm undertake these two tasks
simultaneously, that is, using the same set of neural networks for state
space approximation and optimal solution search. Therefore, we only
need to train a set of neural networks and adjust their hyperparameters.
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Algorithm 2: ODEGD-Based Task Offloading Algorithm.
Input: Trajectory Dataset of UEs.
Output: System total utility.
1 Initialize the actor network z([o, §]|0# ) and critic network
0O([0.51,a|6%);
2 Initialize the each target networks z’([o, §] 0", 0'([o, 51, a|HQ ):
o — or, 92 — 92;
3 Initialize the replay buffer B;
4 for each episode do

5 Set t = 1 and initialize observe o(?);
6 fort=1t T do
7 Normalize o(7) to o’(¢) according to alg. 1;
8 if rand(-) < € then
9 ‘ Randomly select action a(?);
10 else
11 | a() = clip(z([o'(1).3(1)] 16#) + 71,1, 1);
12 end
13 Obtained reward r(¢) and next observe o(f + 1);
14 Normalize o(t + 1) to o' (¢ + 1);
15 Store (o' (1), a(?), r(t),0'(t + 1)) in B;
16 Sample a random mini-batch B, from B;
17 Calculate the target Q-value and TD-error using (29)
and (30);
18 Update critic network parameters 6# using (31);
19 Update actor network parameters #¢ using(32);
20 Soft update target network parameters 0*', 62" using
(33) and (34);
21 end
22 end
23 return

In addition, balancing exploration and exploitation is an important
issue in reinforcement learning. DDPG algorithm lets the agent explore
by adding noise to actions, i.e. a = z(s'|0# ) + /i, where /i ~ N (0,8?) is
the action noise with mean = 0 and standard deviation 6. However, the
model in this paper not only requires the agent to search for the op-
timal strategy in the multidimensional action space but also demands
the approximation of the state space. This situation greatly increases
the difficulty of exploring the solution space for optimization prob-
lems, and noise methods may not be able to find the optimal solution.
Therefore, we introduce the & — greedy strategy into the ODEGD algo-
rithm, allowing the agent to choose random actions with a ¢ probabil-
ity, or take actions given by the network with a 1 — £ probability. While
ODEGD is built upon the standard DDPG framework, it incorporates an
exploration-enhancing greedy strategy and an observation-state approx-
imation process to improve decision stability, robustness, and conver-
gence performance in dynamic UAV-assisted MEC environments.

Algorithm 2 summarized the ODEGD framework for addressing the
bi-objective optimization problem in a dynamic environment. First,
four networks’ parameters and the replay buffer B are initialized. Each
episode begins with the reset of observations and time slots. Then, in
each time slot, we normalize the observe of the UAV. Based on the
e — greedy strategy, the UAV selects a random action or action composed
of the output given by the actor network x( [o’ @), §(t)] |6#) plus Gaussian
noise 7. As delineated in the action space definition, the UAV will move
horizontally in distance Ad, () at an angle «(t), move vertically in dis-
tance Az, (7), and partially offload each UE’s task in proportion & (7).
If the UAV’s movement exceeds the prescribed flight range, which does
not meet Constraint (6) to (8), it will keep flying at the boundary. Before
storing the transition in the replay pool, we also normalize the observa-
tions of the UAV at 7 + 1 to ensure stable training. To ensure the stability
of the training process, we also normalized the UAV’s next observations
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o' (t + 1). Then we save the transition tuple (o’ (¢), a(r), (), o’ + 1)) in the
replay buffer B for improve sample learning efficiency.

The ODEGD algorithm requires optimizing Actor networks to max-
imize the value of the policy evaluation and Critic networks to min-
imize the error of the value evaluation. The role of the actor network
7([o, §]|6# ) is to provide a policy that can determine what action a should
be taken in the observe o. The better the actor network’s policy, the bet-
ter the actions it can provide. The actor network is optimized through
policy gradient, as the formula below:

VouJ (0") ~

1 28)

BS
= > v,0(o. s],ajeg o a = 7(0;) Vour(l0, 3116")|0;,

s i=1

where B, denotes the batch size. From the formula, it can be seen that
the policy gradient depends on the critic network Q([o, 5], a|eQ ), whose
role is to score the action a given by the actor network in observe o. The
more accurate the critic network scoring, the more correct the direction
of optimization for the actor network’s update.

The critic network is optimized through the value function. Us-
ing the target actor network z’([o, §J}6“' ) and the target critic network

0'([o, 5], a filed ), the target Q-value Olarger CaN be given by
Qtarget =r+

, , (29)
Y@ ([o(t + 1), 3¢ + D], 7' ([o(z + 1), 3¢ + 1)]‘9” )|9Q ),

where y is the discount factor, indicating the importance of future re-
wards. Then, the temporal difference error (TD-error) of the critic net-
work is expressed as

L(09) = B% i |urger = 010,51, a]0° )]2 (30)
S i=1

Finally, gradient ascent and gradient descent methods are used to opti-
mize the actor and critic networks, respectively, i.e.,

0 — 0¥ + Y gu d (0M), (31)
02 < 02 — a ;. Voo L(69), (32
where a,.,,,, @..;;ic Tepresent the learning rate, which controls the weight

between the old and new network parameters.
In addition, we use the soft update method to update all target net-
works, ensuring the stability of the algorithms, denoted as

0" — 76" + (1 —7)0¥ (33)
092 « 762 + (1 — )02, (34)

where 7 denotes the soft update rate, = € [0, 1]. This soft update step,
commonly used in machine learning, is similar to an under-relaxation
process in classical numerical optimization. Introducing the & — greedy
strategy to enhance exploration may lead to a long-term trial process,
resulting in low training efficiency. Therefore, we have adopted a single
step update approach for all networks, while setting a reasonable greedy
initial value that decreases with training.

5. Experiment results and analysis

In this section, the UEs’ trajectory dataset based on the map of real-
world roads and settings of the experiment is first introduced. Then, we
select an appropriate set of hyperparameters for conducting the subse-
quent experiments. Finally, the ODEGD algorithm was compared with
DRL baseline algorithms.

5.1. Trajectory dataset of the UEs
In the existing UAV-assisted MEC systems, UE’s data for simulation

experiments is usually generated using theoretical assumptions or man-
ually generated methods. These methods can, to a certain extent, test
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Fig. 2. The map used by the ONE simulator and movement trajectory of differ-
ent UEs.

Table 1

Experimental simulation parameters.
Parameter Value
Total simulation time N 60s
Time interval Ar 3s
Number of UE M 5
Size of input data D,, [1,5] Mbits

[100,200]

Number of CPU cycles C,, cycles/bit
Lengths of area X ., Y., 500m
Flight altitude of UAV [Z,;,Z, .] [50,100] m
Movement distance of UE Ad,, (1) [13,171 m
Maximum horizontal distance AD, . 49m

Maximum vertical distance AZ,,, 12m

Channel gain g, -50dB
Uplink channel bandwidth B, 10 MHz
Transmit and receiving power P, ,P, 0.1W
Computation resource of UEs F,, 0.2GHz
Computation resource of UAV F, 3GHz
Effective switched capacitance 10-%8
Noise power o2 -100dBm
Transmit loss & 20dB
Location scaling factor &y, &y, &, 500, 500, 50
Task scaling factor &, &¢ 4x10°, 100
Table 2
Main hyperparameters.
Hyperparameters Value
Total episodes 1000
Learning rate ,., @itic 0.001, 0.002
Discount factor y 0.001
Size of replay buffer B 100,000
Batch size B, 128
Standard deviation of noise 6  0.05
Soft update rate ¢ 0.005
Activation function ReLU
Loss function Mean-square error
Optimizer AdamOptimizer

the performance of algorithms. Nevertheless, there is always a discrep-
ancy between generated data and actual data, which may lead to bias
in algorithm performance evaluation. To more accurately reproduce the
mobility patterns of UEs and overcome the sim-to-real gap, this paper
adopts a trajectory and task of the UEs dataset based on real-world roads.
As shown in Fig. 2(a). The opportunistic network environment (ONE)
simulator [39] is an open-source software developed by the University
of Helsinki in Finland, which is extensively utilized for generating UEs’
movement trajectories employing diverse mobility models. The real map
was imported into the ONE simulator in this paper to generate a dataset
of motion trajectories for UEs, including a training set of 1 trajectory file
and a testing set of 2500 trajectory files. Fig. 2(b) presents the movement
trajectories of five UEs over 100 time slots, highlighting their mobility
patterns.
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5.2. Experimental settings

In the UAV-assisted MEC system, the simulated scene is an area
of X x Y x Z =500 x 500 x 100 m®> square with M = 5 mobile UEs. The
UAV used for task offloading can only move between altitude Z,;, = 50
m and altitude Z,, = 100 m. The size of input data D,, and the number
of CPU cycles C,, are randomly sampled within [1, 5] Mbits and [100,
200] cycles/bit, respectively. Similar to [40], transmit loss due to the
buildings is set to § = 20 dB. The scaling factors used in Algorithm 1 are
defined as &y = 500, & = 500, £, = 50, &p = 4 x 10, & = 100. In both
the training and testing phases of the algorithm, the UAV’s starting po-
sition is randomly determined, unless specifically noted otherwise. The
detailed parameters of our system are listed in the Table 1.

Apart from the introduced ODEGD approach, we also utilized five
additional optimization methods to compare performance:

1) Deep Q-Network (DQN): A classical reinforcement learning al-
gorithm employs deep neural networks to approximate the Q-
value function and is commonly used for discrete action space
problems. In this algorithm, the movement and offloading of
the UAV are discretized. The horizontal fly angle is expressed
as w(t)=1{0,n/4,...,7x/4}, the horizontal and vertical move-
ment distance are set as Ad,(r) = {Om,3m,...,12m} and Az,(t) =
{Om, 12m, 24m, 36m, 49m}, and the offloading ratio can be defined as
&0 =10,1/2,1}.

Double Deep Q-Network (DDQN): An improved algorithm designed
to address the issue of overestimation that may occur in DQN. It
has two structurally identical networks: Evaluate-network for select-
ing actions and Target-network for calculating the target Q-value.
This improvement can reduce network overestimation and provide
a more stable learning process. The discretization of action space in
this algorithm is consistent with DQN.

3) Actor-Critic Network (AC): AC combines the policy gradient method
and value function, consisting of two networks: Actor-network and
Critic-network. The Actor network selects actions based on the cur-
rent policy, while the Critic network is responsible for evaluating
the actions chosen by the actor-network. Compared with DQN and
DDQN algorithms, the AC algorithm can solve continuous action
space problems and improve sample utilization efficiency.

Twin Delayed Deep Deterministic Policy Gradient (TD3): TD3 is a
further improvement based on DDPG, using two sets of Critic net-
works. The smaller of the two is taken when calculating the target Q
value. Both action choice and strategy gradients incorporate noise to
enhance exploration. In addition, Critic networks update more fre-
quently than Actor networks to maintain stability. However, such
improvements increase the complexity of the structure and do not
suit all problem environments.

Ant Colony Optimization (ACO): ACO is a heuristic optimization al-
gorithm inspired by the foraging behavior of ants, where agents co-
operatively construct solutions through pheromone-guided searches.
It has shown strong performance in solving discrete optimization
problems by balancing exploration and exploitation through heuris-
tic updates. However, ACO is difficult to address continuous action
space problems; therefore, its action space discretization setting is
consistent with DQN.

2

—
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—

5
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The above five algorithms have differences in network structure, us-
age scenarios, and function types. To ensure a fair comparison with
ODEGD, all algorithms were implemented using the same network ar-
chitecture and normalization scheme, and each was carefully tuned to
its optimal hyperparameters. Note that the baseline DDPG algorithm
employs the standard Ornstein-Uhlenbeck (OU) noise for exploration.
Therefore, the performance comparison between ODEGD and DDPG also
reflects the contribution of the proposed exploration mechanism, which
enhances robustness and stability in dynamic UAV-assisted MEC envi-
ronments. In addition, the simulation experiment was conducted on a
computer with a 3.80GHz AMD Ryzen 7 5800X 8-Core Processor and
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Fig. 4. Average system utility of the ODEGD-based algorithm with different
hyperparameters.

32GB RAM, based on Python 3.10 and TensorFlow framework. The av-
erage of 5 experimental results is taken as the final result for the simu-
lation experiment.

5.3. Training efficiency

In the ODEGD-based algorithm, hyperparameters including the
learning rate a, discount factor y, batch size B, and the choice of ac-
tivation function play crucial roles in determining the efficiency of the
training process. Therefore, before comparing the performance of differ-
ent algorithms, we first conduct several experiments to determine the
hyperparameters required by the algorithms.

The training curves of the proposed algorithm across various learn-
ing rates are depicted in Fig. 3(a). In the ODEGD algorithm, the learn-
ing rates applied to the actor and critic networks vary, yet they are
of the same order of magnitude. Firstly, we can see no sign of con-
vergence in a,., = 0.01, a.;;. =0.02 because a higher learning rate
will result in a larger update step for the network, leading to skipping
the optimal solution. Secondly, when using a lower learning rate like
Aaeror = 0.0001, @i = 0.0002, the convergence speed of the algorithm
significantly slows down. When the learning rate is set to a,.,, = 0.001,
Aeritic = 0.002, it can be seen that the algorithm converges around 600
episodes. From another perspective, the system utility of a,.,, = 0.001,
deriie = 0.002 is significantly higher than other learning rates, as shown
in Fig. 4(a), where the error bars (as well as those in the subsequent
experimental figures) represent the standard deviations of the experi-
mental data. The mean utilities of the three configurations were 8.75
+ 0.59, 7.01 + 0.32, and 0.49 * 0.24, respectively. A two-sample
t-test indicated that a,.,, =0.001, a; = 0.002 significantly outper-
formed a,,,,, = 0.0001, ;. = 0.0002 (t(8)=5.55, p<0.001, 95% confi-
dence interval (CI) [1.02, 2.46], Cohen’s d =3.63). Therefore, we adopt
Aaeror = 0.001, ot = 0.002 as the optimal learning rate for the actor and
critic network.

Activation functions are a key component of neural networks that
introduce nonlinear factors to the network to capture complex patterns
and relationships. Some commonly used activation functions are ReLU,
Sigmoid, and Tanh. As shown in Figs. 3(b), 4(b), we compare the train-
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ing efficiency and average utility with the abovementioned activation
functions. It can be observed that only the training curve of ReLU con-
verges, while Sigmoid and Tanh diverge more in the later stages of train-
ing. That is because ReLU is simple and efficient, which can relieve the
problem of gradient vanishing. Sigmoid and Tanh involve exponential
operations, so when the absolute value of the input is large, the gradi-
ent approaches 0, which can easily lead to the gradient vanishing during
backpropagation. As can be seen from the system utility, ReLU’s 8.75 +
0.59 is significantly better than Sigmoid’s 2.30 = 1.83 and Tanh’s 2.25
+ 1.79. Therefore, we chose ReLU as the algorithm’s activation func-
tion.

In addition, we also compared experiments with different batch sizes
and discount factors. The experimental results indicate that these two
hyperparameters have almost no difference in convergence effect and
system utility, so we did not display these two sets of graphs. Finally,
the main experimental hyperparameters are compiled in Table 2.

Fig. 5 shows the frequency of occurrence of UEs’ positions in the
training set at three specific time points (60 seconds, 300 seconds, and
1500 seconds), indicating significant clustering in UE location distribu-
tion. At 60 seconds, the UEs’ movement trajectory is concentrated at
x=350m, y=250m to 350m; At 300 seconds, we can see that the UE’s
trajectory appears in a relatively remote area, but the frequency is low.
At 1500 seconds, the distribution characteristics of UEs’ positions are
more obvious, such as point (350,250) and its surrounding areas are
hot spots for UEs. These UEs’ trajectory thermal maps provide the basis
for subsequent analysis and inspection of the UAV movement path.

After training the agent through the ODEGD method, for the train-
ing set file, the agent can perform optimal movement and offloading
operations in each time slot . Starting from point (250, 250, 75), the
hotspots of the UAV’s location at each specific time point are shown in
Fig. 6. We can observe that the hotspot area of the UAV trajectory is
concentrated near the point (270,240), which almost overlaps with the
high-frequency gathering centers of UEs, indicating that our algorithm
can perceive the gathering areas of UEs through their movement trajec-
tories. However, it is also worth noting that the UAV hotspots exhibit
a slight leftward bias relative to the UE’s centers, about 70 m, suggest-
ing that the agent’s service strategy has also been optimized for UEs on
more remote roads. From the y-axis direction, the flight trajectory area
of the UAV gradually expands, because the UAV will move according to
the distribution of the Y-axis of the UEs in different time slots, rather
than staying in place.

We have set four different departures to simulate the flexible de-
ployment of UAV: start point A (500, 500, 100), start point B (500, 0,
100), start point C (0, 500, 100), and start point D (0, 0, 100). Fig. 7
presents the UAV’s trajectory from these various starting points. It can
be observed that after departing from deployment points, the algorithm
plans the UAV’s path based on the UAV’s current position and the ob-
tained UEs’ orientation and movement pattern, ultimately reaching the
optimal service area. Furthermore, by examining the commonalities and
characteristics of the four trajectories, we can see that the UAV can
quickly descend in altitude during the initial simulation period to re-
duce communication distance with UEs, while also adjusting behavior
details appropriately according to its location and environment. These
demonstrate that the ODEGD algorithm has good robustness in random
environments.

5.4. Performance comparison

To verify the advantages of our proposed ODEGD algorithm, we com-
pared its performance with four DRL baseline algorithms. Fig. 8(a) plots
the training curves of different DRL algorithms. From this figure, we can
observe that DQN and DDQN fail to converge as the number of episodes
increases. This is likely because these two algorithms are not well-suited
for optimization problems with complex action spaces. The ACO algo-
rithm does not exhibit an optimization trend. Hence, in the following
comparisons, the episode achieving the highest reward is regarded as
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Fig. 7. UAV’s 3D trajectory from different start point.

the optimal action produced by ACO. Although the training curve of
the AC algorithm shows a convergence trend, the fluctuation amplitude
of the confidence interval is large, which may be attributed to the in-
stability caused by its use of real-time updates and hard updates. The
ODEGD, DDPG, and TD3 algorithms have all converged, yet TD3’s con-
vergence is not optimal and exhibits a large fluctuation amplitude. The
TD3 algorithm’s complexity may make it less effective in solving this
problem. DDPG converges within 200 episodes, which is faster than
ODEGD at 600 episodes; however, its convergence results are not as
robust as those of ODEGD. Fig. 8(b) presents the average system util-
ity obtained by the aforementioned algorithm on the training set. It can
be observed that ODEGD consistently yields the highest average system
utility among all compared benchmark algorithms. Statistical analysis
shows that ODEGD’s 8.31 * 0.62 significantly outperforms DDPG’s 6.96

+ 0.72 (t(8)=3.23, p=0.012, 95% CI [0.38, 2.32], Cohen’s d=2.01)
and ACO’s 6.90 + 0.97 (t(8)=2.78, p=0.023, 95% CI [0.24, 2.58], Co-
hen’s d=1.71). This is because our algorithm can provide the optimal
movement path and optimal offloading rate during the online decision-
making process, reducing the delay and energy consumption caused by
task transmission and computation, thereby achieving the optimal sys-
tem utility.

Fig. 9 presents the optimal trajectory provided by different algo-
rithms for the UAV in the training set, with all algorithms set to depart
from the same start point (500, 500, 100). From the perspective of the
UAV’s movement, DQN has been moving along the boundary, and there
has been no height reduction in the early stage of simulation; DDQN
continued to hover around the starting point and only lowered its al-
titude at the last moment; Although AC can reduce altitude, it makes
almost no movement along the X-axis; ACO tends to decrease altitude
and approach the central region, but it struggles to effectively search for
the best flight trajectory. TD3 quickly lowers the UAV’s altitude but, like
AC, fails to further optimize along the Y-axis. The DDPG and ODEGD al-
gorithms can make reasonable movements based on the UAV’s 3D flight
capability. From another perspective of the optimal offloading areas, AC
and TD3 can allow agents to enter their respective optimal offloading
areas, but these areas are too far away from the UEs’ hotspot concentra-
tion area. Although the optimal area of DDPG is closer to the aggregation
center of UE than ODEGD, it ignores UEs on remote roads.

Fig. 10 shows the strategy of optimal task offloading rate given by
different DRL algorithms. We evaluate the performance of the algo-
rithms in resource decision-making from the perspectives of each time
slot and each UE. The average offloading rate across each time slot
t, as plotted in Fig. 10(a), shows ODEGD’s offloading rate is not the
highest in the first two time slots. This is attributed to the distance
between the UAV and the UE being too far in the early stage, which
leads to higher transmission costs when attempting higher offloading
rates. However, from the 3rd time slot onwards, ODEGD consistently
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maintains the highest offloading rate, thereby accelerating task process-
ing speed. ACO shows the highest variability in offloading rate, mak-
ing it difficult to achieve stable performance. Additionally, TD3, DDPG,
and AC also maintain relatively high offloading rates, while DQN and
DDQN are quite low. The average offloading rate across each UE m is
shown in Fig. 10(b). It can be seen that there is a certain gap in the of-
floading amount for different UEs among the comparative algorithms,
with even cases where specific user tasks are not uninstalled at all, i.e.,
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DDOQN does not offloading tasks for UE 4. In contrast, ODEGD’s offload-
ing rate for different UEs is more balanced and stable, due to its strategy,
which can efficiently support remote UEs while serving UEs in hotspot
areas. The ODEGD algorithm maintains an average offloading volume
of 79.6% across all simulation episodes, outperforming DDPG’s 76.9%,
ACO’s 56%, TD3’s 74.2%, AC’s 74.6%, DDQN’s 41%, and DQN’s 28%.
Therefore, ODEGD optimizes the resource allocation problem, signifi-
cantly reducing the response delay and energy consumption for UEs’
tasks from a computational models perspective.

It is noteworthy that, in terms of average offloading rate, TD3
achieves 74.2%, which is comparable to AC’s 74.6%, while DDQN'’s
41% exceeds DQN’s 28%. Nevertheless, the average system utility re-
sults plots in Fig. 8(b) show that TD3’s 4.05 is higher than AC’s 2.57,
and DQN’s 1.92 exceeds DDQN’s 0.89. This is because TD3 performs al-
titude descent earlier than AC in UAV’s path planning, while DQN does
not maintain hovering like DDQN. This indicates that the path planning
of the UAV has a significant impact on system utility outcomes. There-
fore, the algorithm needs to optimize both the UAV’s path and resource
allocation simultaneously to achieve higher system utility.

To further isolate and evaluate the effect of the proposed explo-
ration strategy, we conducted an ablation study comparing ODEGD with
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Table 3

Ablation study on the effect of the proposed exploration strategy.
Performance ODEGD DDPG+0U DDPG + Gauss DDPG + Greedy
Average response delay (s) 115.65 * 2.63 117.97 + 3.77 121.85 + 3.11 119.22 + 3.82
Average energy consumption (J) 12.51 + 0.55 13.62 + 0.76 14.18 = 0.87 13.53 + 0.67
Average system utility 8.75 = 0.59 7.86 = 0.73 7.27 + 0.67 7.82 = 0.66

several DDPG variants employing different exploration mechanisms, in-
cluding DDPG + OU, DDPG + Gaussian, and DDPG + Greedy. The results
are summarized in Table 3. As shown in the table, ODEGD consistently
outperforms all methods across all performance metrics. Compared with
DDPG +OU, ODEGD achieves a 1.97% reduction in Delay (t(8)=1.29,
p=0.23, 95% CI [-1.57, 6.51], d=0.77), a 8.14% reduction in Energy
(t(8)=2.73, p=0.026, 95% CI [0.13, 2.08], d=1.63), and an 11.36%
improvement in Utility (t(8)=2.24, p=0.054, 95% CI [-0.03, 1.81],
d=1.31). The improvements are even more pronounced when com-
pared to DDPG+ Gaussian and DDPG + Greedy, with Utility gains of
20.38% and 11.88%, respectively. These results indicate that the pro-
posed exploration strategy enables the agent to find an optimal policy
more efficiently.

Fig. 11 indicates the performance of different algorithms in the test-
ing set. To better compare the performance of algorithms, we have
added a new method named offload all tasks to the edge (All_edge): Dur-
ing each test file, the UAV is deployed in a random place that is available
and holds fixing. All UE’s tasks are offloaded to the edge server on the
UAV throughout the process. From the Fig. 11, we can observe that the
ODEGD algorithm achieves the lowest latency (115.65 *+ 2.63 s) and en-
ergy consumption (12.51 = 0.55J) overhead, thus obtaining the highest
system utility (8.75 + 0.59). DDPG can also optimize the dual objectives
of response delay and energy consumption, but its system utility (7.86 *
0.73) is not as good as ODEGD. ACO shows a considerable performance
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drop on the test set compared to the training set. The reason is that its
optimal solutions depend excessively on stochastic factors. Although it
performs well in the training phase, large-scale testing exposes its in-
sufficient ability to handle dynamic environments. TD3 and AC focus
on reducing latency, leading to higher energy expenditure. Conversely,
DDQN and DOQN tend to reduce energy consumption, which results in
longer task completion times. The All_edge method has the highest en-
ergy consumption, while there is no significant reduction in latency.
Compared with other algorithms, ODEGD achieves a 26.98% reduction
in average response delay and a 22.61% reduction in average energy
consumption. Furthermore, it improves the average system utility by
an average of 177.65%, with an increase of 78.57% compared to TD3
(t(8)=5.71, p<0.001, 95% CI [2.29, 5.41], Cohen’s d=3.70), 166.77%
compared to ACO (t(8)=20.26, p<10~° , 95% CI [4.85, 6.09], Cohen’s
d=11.10), and 321.53% compared to All_edge (t(8)=13.23, p<107°,
95% CI [5.50, 7.84], Cohen’s d=9.05).

Moreover, we extended the total simulation time and increased the
UE counts to evaluate the scalability of each algorithm under increas-
ing problem complexity. As shown in Fig. 12, the number of tasks in-
creases with the extension of simulation time, so the total response
delay and total energy consumption of the system will also increase.
Throughout this process, the ODEGD algorithm consistently maintains
the minimum latency and energy consumption. From the slope of
curves plotted in Figs. 12(a), 12(b), it can be seen that ODEGD has the
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lowest growth rate in total response delay and total energy consump-
tion. Fig. 12(c) shows the changes in the average system utility of dif-
ferent algorithms over time. It is noticeable that our proposed ODEGD
algorithm achieved the highest system utility and remains stable, which
is because after the UAV reaches the optimal offloading area, its path
planning has a relatively small impact on the UAV’s cost, and the sys-
tem mainly focuses on resource allocation. The average system util-
ity of DDPG shows an increasing trend because resource allocation is-
sues become more important in the later stages of simulation, which
DDPG can effectively address. However, the average system utility of
other algorithms is very low and even shows a declining trend. This in-
dicates that our proposed ODEGD algorithm can optimize both paths
and resources, thereby maintaining the maximum utility in long-term
simulations.

As shown in Fig. 13, when the number of UEs increases, the aver-
age response delay and average energy consumption of all algorithms
show an overall upward trend due to the increased computation and
communication load. From Figs. 13(a) and 13(b), it can be observed
that ODEGD maintains the minimum delay and energy consumption
with the slowest growth rate, reflecting its strong scalability in multi-
user environments. Fig. 13(c) presents the variation of average system
utility under different numbers of UEs. The ODEGD algorithm main-
tains the highest utility and strong stability even as the system load
rises. The DDPG algorithm achieves relatively high utility but declines
slightly when the UE number becomes large, suggesting reduced robust-
ness under heavy loads. Other algorithms, such as DQN, DDQN, and
ACO, show significantly lower system utility and poor adaptability as
the number of users increases. These results demonstrate that ODEGD
can effectively balance delay, energy consumption, and overall system
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performance, maintaining optimal utility even in complex multi-user
environments.

To further evaluate the performance improvement of the ODEGD al-
gorithm in solving the 3D trajectory optimization problem of the UAV,
we evaluate the performance of different movement modes, as shown in
Fig. 14. We assume that the UAV has two modes of movement: variable
height flight mode and fixed height flight mode. From Fig. 14, we can
observe that the average system utility of ACO, DDQN, and DQN de-
creased because these algorithms did not descend in altitude to reduce
the distance between the UAV and UEs; instead, they ascended in alti-
tude, leading to increased latency and energy consumption. The ODEGD,
DDPG, TD3, and AC can all optimize the system’s average latency and
energy consumption by controlling the UAV’s flight altitude, indicating
that the UAV’s 3D movement can further improve the offloading effi-
ciency of the MEC system compared to the UAV’s 2D movement. How-
ever, it can be seen from the figure that algorithms other than ODEGD
have little effect on improving system utility, suggesting that these algo-
rithms are not sufficient to solve the optimization problem with UAV’s
3D continuous motion. The combination of ODEGD with variable height
flight mode achieved the highest average system utility, improving by
7.47% compared to the fixed height flight mode (t(8)=1.96, p=0.078,
95% CI [-0.12, 1.46], Cohen’s d=1.19). This demonstrates the feasibil-
ity of our proposed ODEGD algorithm in solving large solution space
problems.

6. Conclusion

To effectively address the partially observable and dynamic
environment, we reformulated the optimization as a POMDP
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and developed ODEGD, an enhanced DRL-based online decision-
making algorithm. ODEGD integrates a greedy exploration mecha-
nism and observation-state approximation, enabling stable and robust
learning in complex non-convex optimization problems. Incorporating
real-world road data into our simulation experiments, we demonstrated
the algorithm’s effectiveness in practical scenarios. The simulation
results show that our proposed method improves system utility by
accurately perceiving task arrival patterns and UEs’ movement trends.
Our algorithm demonstrates superior performance over other optimiza-
tion methods with respect to delay, energy consumption, and system
utility. This study contributes a scalable and adaptive framework for
continuous task offloading in realistic environments. For subsequent
research, we plan to apply this framework to multi-UAV cooperative
offloading and explore multi-objective optimization under practical
network constraints.
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