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 a b s t r a c t

The integration and development of unmanned aerial vehicles (UAVs) and mobile edge computing (MEC) tech-
nology provide users with more flexible, reliable, and high-quality computing services. However, most UAV-
assisted MEC model designs mainly focus on static environments, which do not apply to the practical scenarios 
considered in this work. In this paper, we consider a UAV-assisted MEC platform, which can provide continuous 
services for multiple mobile ground users with random movements and task arrivals. Moreover, we investigate 
the long-term system utility maximization problem in UAV-assisted MEC systems, considering continuous task 
offloading, users’ mobility, UAV’s 3D trajectory control, and resource allocation. To address the challenges of 
limited system information, high-dimensional continuous actions, and state space approximation, we propose 
an Online decision-making algorithm for Dynamic environments based on Exploration-enhanced Greedy DDPG 
(ODEGD). Additionally, to more accurately evaluate the algorithm’s performance, we introduced real-world roads 
into the experiment. Experimental results show that the proposed algorithm reduces response delay by 26.98% 
and energy consumption by 22.61% compared to other algorithms, while achieving the highest system utility. 
These results validate the applicability of the ODEGD algorithm under dynamic conditions, demonstrating its 
good robustness and scalability.

1.  Introduction

With the rapid development of Internet-of-Things (IoT) technology, 
the number of mobile devices continues to surge, driving the rapid 
growth of new types of mobile applications (i.e., automatic naviga-
tion, AR/VR virtual technology, online interactive games, etc.) [1,2]. 
These applications are often computationally intensive and sensitive to 
response time. Due to limited computing power and battery capacity, 
user equipment (UE) cannot provide high-performance computing for 
these tasks. Mobile edge computing (MEC) [3] offers a cost-effective so-
lution, that transmits computing requests to the edge of MEC systems 
equipped with servers (i.e., cellular base stations or WiFi access points). 
Edge servers provide computing resources to meet the computationally 
intensive tasks of UE, reducing task response time, extending device bat-
tery life, and improving user experience quality.

Nevertheless, there may be scenarios where a large number of UEs 
require computing services concurrently, in which case MEC system re-
sources are insufficient to provide services, especially in hotspot areas 
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[4]. Additionally, in areas with inadequate communication infrastruc-
ture or limited coverage like suburbs, it’s unknown whether UE can ac-
cess the MEC system to receive services [5]. Consequently, ensuring the 
provision of reliable offloading services remains a challenging issue. Un-
manned aerial vehicles (UAVs), due to their flexibility and maneuver-
ability, have been regarded as playing a critical role in enhancing future 
wireless communication systems. UAVs equipped with small servers can 
serve as aerial computing platforms, providing flexible and elastic com-
puting services for UEs, with the advantages of efficient and convenient 
deployment, wide coverage, and high cost-effectiveness. For instance, 
[6,7] applies a UAV platform to improve MEC coverage and energy ef-
ficiency of a large number of IoT devices in disaster areas or remote re-
gions. Another scenario is in the field of wireless sensors, where drones 
are used to collect data from sensor nodes or offload computing tasks on 
sensors [8,9]. Therefore, the UAV-assisted MEC technology has become 
one of the key technologies of the 5G network.

This paper integrates mobile UEs, the 3D flight-capable UAV, and 
DRL into a dynamic MEC environment by optimizing the response delay 
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and energy consumption of task offloading. By utilizing the computing 
resources of edge servers, the computing pressure on UEs can be allevi-
ated within the constraints of ensuring continuous service quality. The 
bi-objective optimization of Online decision-making in Dynamic envi-
ronments based on Exploring enhancing Greedy DDPG (ODEGD) algo-
rithm is designed. The major contributions of our work are summarized 
as follows:

• We formulate an online offloading decision model that accounts for 
both the mobility of UEs and their continuous offloading needs. This 
model jointly optimizes the UAV’s 3D trajectory and computational 
resource allocation to maximize system utility. It is difficult to find 
the optimal strategy in a dynamic environment where the future state 
of the system is unclear.

• We propose an effective algorithmic framework based on the par-
tially observable Markov decision process (POMDP), a robust math-
ematical model for sequential decision-making. By using deep neural 
networks, we standardize and approximate the limited agent’s obser-
vations to a complete state space, and we integrate the DDPG algo-
rithm to handle the continuous action space. In this highly complex 
optimization problem with a large solution space, we also introduce 
greedy strategies to enhance the framework’s exploration capability.

• We introduce real-world roads into the experiments to evaluate the 
algorithm’s practical performance. The numerical results demon-
strate that our framework outperforms the baseline optimization al-
gorithms, particularly in terms of UE perception capability, robust-
ness to environmental changes, and adaptability to simulation du-
rations and UE count growth. Furthermore, the combination of the 
UAV’s 3D mobility and our framework further enhances the overall 
system utility.

The remainder of this paper is organized as follows: Section 2 is devoted 
to related work. Section 3 presents the system model and the problem 
formulation. In Section 4, the ODEGD algorithm is introduced. Section 5 
analyzes the performance of the proposed algorithm through experimen-
tal results. Lastly, Section 6 concludes this paper.

2.  Related work

Current research on UAV-assisted MEC systems focuses on com-
putation offloading [10–12], resource allocation [13–15], and trajec-
tory planning [16–18]. Masuduzzaman et al. proposed a UAV-based 
MEC-assisted automated traffic management framework that integrates 
blockchain for secure data sharing and deep learning for vehicle detec-
tion, achieving decentralized and intelligent traffic control [19]. Zhang 
et al. developed a power cognition framework for solar-powered UAVs 
that leverages reinforcement learning to optimize energy harvesting, 
trajectory control, and resource allocation for long-endurance and high-
throughput communications [20]. Most studies consider the situation 
where the position or flight altitude of the UAV is fixed [21,22]. Due 
to the close relationship between communication quality and the move-
ment trajectory of UAVs, different movement patterns of UAVs may af-
fect the comprehensive distance with UEs, resulting in different commu-
nication delays and energy consumption. Moreover, some studies adopt 
a binary offloading approach, which may result in the waste of total 
system computing resources [23,24]. How to consider the needs of UEs 
and the status of system resources, and reasonably divide and transmit 
computing tasks to UAVs, which will have a significant impact on com-
puting latency and energy consumption. In addition, almost all existing 
research focuses on offline algorithm design for UAV-assisted MEC sys-
tems in static environments [25,26]. These algorithms assume that the 
UEs’ location is fixed, UEs’ computation needs remain unchanged, or are 
known in advance, and optimize the offloading strategy and movement 
trajectory based on this assumption. However, in many MEC scenarios, 
the UE will move and the computing tasks will change. This situation 
requires the design of an online decision-making algorithm for UAV-
assisted MEC systems, which can make real-time decisions when facing 

Fig. 1. UAV-assisted MEC system model.

unknown future system states. Therefore, it is necessary to consider the 
trajectory of UAVs, the allocation of computing tasks, and dynamic envi-
ronmental changes together to achieve the smallest response delay and 
energy consumption.

In recent years, researchers have proposed many algorithms to solve 
different optimization problems in UAV-assisted MEC systems. Chai et 
al. formulated the path planning of the UAV in the sensor nodes (SNs) 
data collection problem as the traveling salesman problem (TSP) and 
solved it using the simulated annealing (SA) algorithm [26]. Yang et al. 
designed an online algorithm based on Lyapunov optimization to solve 
queue stability problems in UAV-assisted MEC systems [27]. Nguyen et 
al. proposed using deep reinforcement learning (DRL) to optimize data 
collection in UAV-assisted MEC systems, achieving significant overall 
rate improvement and maximum resource utilization with UAV’s limited 
battery capacity [28]. Zhao et al. integrated the extended kalman filter 
(EKF) with the proximal policy optimization (PPO) algorithm to jointly 
optimize vehicle trajectory prediction and task offloading decisions in 
Internet of Vehicles systems, effectively reducing delay and energy con-
sumption [29]. Hu et al. proposed a framework based on dynamic pro-
gramming (DP) and ant colony (AC) heuristic algorithms to minimize 
the average age of information (AoI) [30]. Wang et al. combined the 
successive-convex-approximation (SCA) with block coordinate descent 
(BCD) technology to solve the problems of data collection and energy 
consumption in the system [31]. These methods have achieved certain 
results in solving non-convex optimization problems. However, as the 
problem becomes more complex and the solution space expands, these 
methods may be difficult to solve. Meanwhile, facing non-convex prob-
lems and non-stationary environments, it can be challenging to achieve 
a globally optimal strategy without precise and comprehensive knowl-
edge of the environment.

3.  System model and problem formulation

In this section, we first propose an MEC model considering dynamic 
environments. Then, the models of mobile, computing, and communica-
tion were introduced in the following subsections. Finally, the problems 
that need to be addressed within this model are formulated.

As shown in Fig. 1, this model consists of two layers of MEC architec-
ture in a 3D environment, including 𝑀 mobile UEs and a UAV equip a 
small server. The UAV contains communication and computing services, 
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providing UEs with continuous offloading services. The total simulation 
time in this model is 𝑁 , which is partitioned into discrete time slots, that 
is, 𝑁 = 𝑇 × Δ𝑡, where 𝑇  denotes the number of time slots and Δ𝑡 denotes 
the intervals of time slot. The UE generates a small task 𝑊𝑚(𝑡) consist-
ing of the size of the task 𝐷𝑚(𝑡) and the number of CPU cycles 𝐶𝑚(𝑡) in 
each time slot 𝑡, i.e. 𝑊𝑚(𝑡) =

[

𝐷𝑚(𝑡), 𝐶𝑚(𝑡)
]

. These tasks can be computed 
locally or partially or completely offloaded to the UAV. Therefore, the 
UAV needs to make online offloading decisions to enhance service qual-
ity. Moreover, the UAV moves around the UEs to make sure all UEs in 
the signal coverage can be serviced by the UAV.

3.1.  Mobility model

3.1.1.  UE Mobility model
In this UAV-assisted MEC scenario, the position model is modeled as 

a stereoscopic Cartesian coordinate system and the coordinates of UEs 
are updated in each time slot. 𝑐𝑚(𝑡) =

[

𝑥𝑚(𝑡), 𝑦𝑚(𝑡), 0
] was used to repre-

sent the coordinates of UE 𝑚 in time slot 𝑡. At next time slot 𝑡 + 1, UE 𝑚
will move to new location with coordinates 𝑐𝑚(𝑡 + 1), and the movement 
distance of UE 𝑚 is represented as Δ𝑑𝑚(𝑡) = ‖

‖

𝑐𝑚(𝑡 + 1) − 𝑐𝑚(𝑡)‖‖. UEs move 
once in each time slot, following the selected road. After completing its 
path, they choose a new road to move on, simulating the movement 
pattern on real-world roads.

Assuming that at the start of each time slot 𝑡, the UAV obtains each 
UE’s position coordinates {𝑐𝑚(𝑡)

}𝑀
𝑚=1 through communication. How-

ever, the UAV doesn’t know the future trajectory coordinates and 
task parameters of the UE, which represented as {𝑐𝑚(𝑖),𝑊𝑚(𝑖)

}𝑀
𝑚=1,∀𝑖 ∈

{𝑡 + 1,… , 𝑇 }. Therefore, the environment of the entire model is dy-
namic. To optimize resource utilization, the UAV needs to sense the 
motion pattern of UEs and predict the location where UEs may need 
computing resources in the future.

3.1.2.  UAV Mobility model
The coordinates of the UAV at time slot 𝑡 are represented as 𝑐𝑢(𝑡) =

[

𝑥𝑢(𝑡), 𝑦𝑢(𝑡), 𝑧𝑢(𝑡)
]

, where 𝑥𝑢(𝑡) and 𝑦𝑢(𝑡) represent the UAV’s horizontal 
position, and 𝑧𝑢(𝑡) denotes the UAV’s flight altitude.

Assuming that in time slot 𝑡, the UAV moves a distance of Δ𝑑𝑢(𝑡) in 
the horizontal direction at an angle of 𝜔(𝑡) ∈ [0, 2𝜋) and flies the dis-
tance Δ𝑧𝑢(𝑡) in vertical direction. Its 3D coordinates at time slot 𝑡 + 1
are updated as follows:
𝑥𝑢(𝑡) = 𝑥𝑢(𝑡 − 1) + Δ𝑑𝑢(𝑡) cos (𝜔(𝑡)), (1)

𝑦𝑢(𝑡) = 𝑦𝑢(𝑡 − 1) + Δ𝑑𝑢(𝑡) sin (𝜔(𝑡)), (2)

𝑧𝑢(𝑡) = 𝑧𝑢(𝑡 − 1) + Δ𝑧𝑢(𝑡). (3)

This 3D mobility enables the UAV to efficiently adjust its position by 
sensing the location of UEs, providing high-quality computing and com-
munication services for each UE. In addition, the flight process is much 
shorter than the service process, allowing the UAV to promptly perform 
subsequent position adjustments. This real-time adaptability enables the 
UAV to effectively handle various UEs’ tasks. Denote 𝑣𝑢(𝑡) =

[

𝑥𝑢(𝑡), 𝑦𝑢(𝑡)
]

as the UAV’s 2D coordinates. Then, the movement distance of the UAV 
in each time slot 𝑡 is limited by
Δ𝑑𝑢(𝑡) = ‖

‖

𝑣𝑢(𝑡) − 𝑣𝑢(𝑡 − 1)‖
‖

≤ Δ𝐷max, (4)
|

|

Δ𝑧𝑢(𝑡)|| = |

|

𝑧𝑢(𝑡) − 𝑧𝑢(𝑡 − 1)|
|

≤ Δ𝑍max, (5)

where Δ𝐷max and Δ𝑍max respectively represent the maximum move-
ment distance of the UAV in the horizontal and vertical directions.

Furthermore, we have designated a rectangular service area to en-
sure that the signal range of the UAV can cover all UEs. The movement 
of the UAV cannot exceed the boundaries of the service area, that is,
0 ≤ 𝑥𝑢(𝑡) ≤ 𝑋max, (6)

0 ≤ 𝑦𝑢(𝑡) ≤ 𝑌max, (7)

where 𝑋max and 𝑌max respectively represent the length and width of the 
rectangle-shaped service area.

Similarly, the flight altitude of the UAV must be restricted. This is to 
prevent the limited coverage capability of the UAV from being adversely 
affected by flying too high, which could lead to poor service quality. It 
also avoids the situation in which the UAV may collide with buildings 
when flying too low. The UAV’s flight altitude must not exceed the spec-
ified minimum heights 𝑍min and maximum heights 𝑍max. Then, we have 
the following constraint

𝑍min ≤ 𝑧𝑢(𝑡) ≤ 𝑍max. (8)

3.2.  Task computation model

This model adopts partial offloading, which means that a portion 
or the entirety of a task will be offloaded and processed on the UAV, 
using the 𝜉𝑢𝑚(𝑡) to represent the offloading ratio. If a task requires com-
putation, the portion 𝜉𝑢𝑚(𝑡) is executed by a computing node on the UAV, 
while the remaining (1 − 𝜉𝑢𝑚(𝑡)

) part is processed locally on the UE. When 
tasks are computed locally or on the edge, the corresponding cost will 
be generated, including response delay and energy consumption. In ad-
dition, a task can only be offloaded to one computing node on the UAV, 
indicating that during the offloading process, a task can’t be simultane-
ously assigned to multiple computing nodes. In each time slot, the UAV 
will intelligently select suitable offloading strategies based on the loca-
tion information of all UEs, optimizing task allocation and utilization of 
computing resources. Therefore, by continuously monitoring the UEs’ 
location information in real-time, the UAV can provide more efficient 
continuous computing services.

3.2.1.  Local computing at UE
The UE contains some computing power and is capable of handling 

some of the tasks. The computational delay consumed by the UE to pro-
cess the task in the time slot 𝑡 is expressible as

𝑇 𝑚
𝑙𝑜𝑐𝑎𝑙(𝑡) =

(

1 − 𝜉𝑢𝑚(𝑡)
)

𝐶𝑚(𝑡)𝐷𝑚(𝑡)
𝐹𝑚

, (9)

where 𝐹𝑚 represents the UE’s computational resources.
Then, according to the above computational delay, the energy ex-

pended by UE 𝑚 during the above calculation process can be given as
𝐸𝑚
𝑙𝑜𝑐𝑎𝑙(𝑡) = 𝜅𝐹 3

𝑚𝑇
𝑚
𝑙𝑜𝑐𝑎𝑙(𝑡)

= 𝜅𝐹 2
𝑚
(

1 − 𝜉𝑢𝑚(𝑡)
)

𝐶𝑚(𝑡)𝐷𝑚(𝑡),
(10)

where 𝜅 denotes the effective capacitor switch.

3.2.2.  Edge computing at UAV
After receiving task data from the UEs, the UAV begins to perform 

calculations. Since the UEs in our scenario are assumed to be of the 
same type, the tasks they generate in different time slots have similar 
characteristics, such as task size and the number of required CPU cycles, 
which fluctuate within a relatively stable range. Therefore, to simplify 
the model, we assumed that the computational resources of UAV’s server 
𝐹𝑢 are evenly distributed to all UE [17,26,32]. This assumption facili-
tates analytical tractability without significantly affecting the evaluation 
of the proposed algorithm’s effectiveness. At the current time slot, the 
computational delay for processing UE 𝑚’s task is expressible as

𝑇 𝑚
𝑢𝑎𝑣(𝑡) =

𝜉𝑢𝑚(𝑡)𝐶𝑚(𝑡)𝐷𝑚(𝑡)
𝐹𝑚
𝑢

, (11)

where 𝐹𝑚
𝑢  represents the computational resources assigned by the UAV 

to UE 𝑚, that is, 𝐹𝑚
𝑢 = 𝐹𝑢∕𝑀 .

Similarly, the energy expended by the server configured on the UAV 
during the above calculation process can given as:

𝐸𝑚
𝑢𝑎𝑣(𝑡) = 𝜅

(

𝐹𝑚
𝑢
)3𝑇 𝑚

𝑢𝑎𝑣(𝑡)

= 𝜅
(

𝐹𝑚
𝑢
)2𝜉𝑢𝑚(𝑡)𝐶𝑚(𝑡)𝐷𝑚(𝑡).

(12)
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3.3.  Task transmission model

Offloading tasks to the edge involves not only computational costs 
but also communication costs. When part of the task is selected to trans-
fer to the UAV for computation, the communication between UAV and 
UEs uses the orthogonal frequency division multiplexing access. There-
fore, communication interference between each UE is ignored in this 
model.

In this model, the UAV remains within a certain high altitude range, 
so we assumed that all channels belong to the line-of-sight channel, i.e., 
there is no occlusion between UEs and the UAV. Therefore, we use the 
free-space path loss model to obtain the channel gain between UE 𝑚 and 
UAV in time slot 𝑡, that is,
ℎ𝑢𝑚(𝑡) = 𝑔0

[

𝑙𝑢𝑚(𝑡)
]−2, (13)

where 𝑔0 denotes the channel gain at a distance of 1m, and 𝑙𝑢𝑚(𝑡) repre-
sents the current Euclidean distance between UE 𝑚 and UAV:
𝑙𝑢𝑚(𝑡) = ‖

‖

𝑐𝑢(𝑡) − 𝑐𝑚(𝑡)‖‖. (14)

The scenario of this model involves UAV-assisted task offloading in a 
real urban environment, which includes a lot of noise, both natural and 
artificial. Therefore, the transmission loss caused by these noises on the 
uplink has been considered. Additionally, like the UAV’s computational 
resources 𝐹𝑢, we assumed that the bandwidth in the upload link 𝐵𝑢 is 
evenly allocated among all UEs. Therefore, the uplink transmission rate 
of the task data is denoted as

𝑅𝑢
𝑚(𝑡) =

𝐵𝑢
𝑀

log2

[

1 +
𝑃𝑚ℎ𝑢𝑚(𝑡)
𝜎2 + 𝛿

]

, (15)

where 𝑃𝑚 represents the UE’s transmission power of the uplink, 𝜎2 rep-
resents the noise power, and 𝛿 represents the transmit loss [33].

The transmission delay between the UAV and UE 𝑚 during time slot 
𝑡 can be expressed as the time spent on uploading the selected task to 
the UAV, that is,

𝑇 𝑚
𝑡𝑟𝑎𝑛𝑠(𝑡) =

𝜉𝑢𝑚(𝑡)𝐷𝑚(𝑡)
𝑅𝑢
𝑚(𝑡)

. (16)

Similarly, the energy consumed by the transmission process between 
the UAV and UE 𝑚 is given as
𝐸𝑚
𝑡𝑟𝑎𝑛𝑠(𝑡) =

(

𝑃𝑚 + 𝑃𝑢
)

𝑇 𝑚
𝑡𝑟𝑎𝑛𝑠(𝑡), (17)

where 𝑃𝑢 denotes the UAV’s receiving power.
In the UAV-assisted MEC system, the size of task results returned sent 

back by the UAV is minimal, thus the impact of downlink transmission 
delay and energy consumption can be neglected.

3.4.  Problem formulation

To achieve the optimal offloading strategy and UAV’s trajectory plan-
ning, an optimization model is built that takes energy consumption and 
response delay as the objective function. In each time slot 𝑡, the response 
delay for one UE’s task depends on the longer task delay in the local 
and edge computations, and the energy consumption is the sum of the 
computations and transmissions. When all UEs’ tasks in time slot 𝑡 are 
completed, the total response delay for that time slot, denoted as 𝑇 (𝑡), 
can be expressed as

𝑇 (𝑡) =
𝑀
∑

𝑚=1
max

{

𝑇 𝑚
𝑙𝑜𝑐𝑎𝑙(𝑡), 𝑇

𝑚
𝑡𝑟𝑎𝑛𝑠(𝑡) + 𝑇 𝑚

𝑢𝑎𝑣(𝑡)
}

, (18)

and the total energy consumption, denoted as 𝐸(𝑡), is given as

𝐸(𝑡) =
𝑀
∑

𝑚=1

[

𝐸𝑚
𝑙𝑜𝑐𝑎𝑙(𝑡) + 𝐸𝑚

𝑡𝑟𝑎𝑛𝑠(𝑡) + 𝐸𝑚
𝑢𝑎𝑣(𝑡)

]

. (19)

To facilitate a more effective comparison of algorithms’ optimization 
levels, we introduce baselines for response delay and energy consump-
tion separately. 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represent the response delay and 

energy consumption when the model only performs local computation 
without offloading, i.e.,

𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =
𝑇
∑

𝑡=1

𝑀
∑

𝑚=1

𝐶𝑚(𝑡)𝐷𝑚(𝑡)
𝐹𝑚

, (20)

𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =
𝑇
∑

𝑡=1

𝑀
∑

𝑚=1
𝜅𝐹 2

𝑚𝐶𝑚(𝑡)𝐷𝑚(𝑡), (21)

With study [34,35] similarly, the response delay reduction value ob-
tained by consuming energy/unit is taken as the system utility. There-
fore, the system utility in this model is denoted as

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 =
𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 −

𝑇
∑

𝑡=1
𝑇 (𝑡)

𝑇
∑

𝑡=1
𝐸(𝑡) − 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

. (22)

Consequently, the objective of this model is to achieve maximum 
system utility by optimizing the UAV’s location 𝑐𝑢(𝑡) and task offloading 
ratios 𝜉𝑢𝑚(𝑡) in each time slot. The formulated optimization problem is 
denoted as follows:
max

𝑐𝑢(𝑡),𝜉𝑢𝑚(𝑡)
𝑈𝑡𝑖𝑙𝑖𝑡𝑦, (23)

𝑠.𝑡. 0 ≤ 𝜉𝑢𝑚(𝑡) ≤ 1,∀𝑚, (23a)

(4) − (8), (23b)

where constraint (23a) denotes the range of task allocation ratio, (23b) 
includes the maximum mobility constraint and service area boundary 
constraint of the UAV.

Generally, the key challenge of non-convex optimization problems 
is the possibility of multiple local optimal solutions, complicating the 
search for the global optimal solution. In the above practical scenario, 
the UAV itself needs to make online decisions on 3D movement and 
offloading service, while the dynamic environment for the UEs’ mobility 
and the tasks’ randomness. These challenges result in the optimization 
problem (23) having a large solution space, making it difficult to solve 
through traditional optimization solutions. To tackle these challenges, 
a DRL method that obtains the optimal offloading strategy with less 
information in a dynamic environment was proposed in this paper.

4.  ODEGD for task offloading optimization problem

In this section, the partially observable Markov decision process is 
used to rephrase the bi-objective optimization problem, and its essential 
elements are defined. Then, the ODEGD framework was introduced and 
applied to solve optimization problems.

4.1.  POMDP formulation

The UAV’s trajectory planning and UEs’ task offloading are essen-
tially a decision-making problem, which can be formulated as a Markov 
decision process (MDP) problem and then solved using reinforcement 
learning methods. This model refers to a real urban scenario, where 
the UAV needs to make real-time decisions in a dynamic environ-
ment. That means the UAV cannot get the position information of 
UEs at all time slots. Therefore, the bi-objective optimization problem 
can be represented as a partially observable Markov decision process 
⟨𝑆,𝐴, 𝑇 , 𝑅,Ω, 𝑂, 𝛾⟩. Here, 𝑆 denotes the state space of the environment, 
𝐴 denotes the action space of the agent, 𝑇  represents the probability 
of state transition, 𝑅 denotes the reward function, Ω denotes the ob-
servation space of the agent, 𝑂 represents the probability of observe 
transition, and 𝛾 ∈ [0, 1] represents the discount factor.

4.1.1.  State space
In time slot 𝑡, the system environment contains various information 

such as the UAV’s 3D coordinates 𝑐𝑢(𝑡), UEs’ position 𝑐𝑚(𝑡), and UEs’ task 
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information 𝑊𝑚(𝑡). Therefore, the state space 𝑆 of the system environ-
ment is denoted as
𝑠(𝑡) =

{

𝑐𝑢(𝑡), 𝑐𝑚(𝑡),𝑊𝑚(𝑡),∀𝑚
}

. (24)

We can observe that coordinate elements have three dimensions, 
while task information has two dimensions. When multiplied by the 
number of UEs 𝑀 , this leads to a high degree of dimensionality in the 
state space. Moreover, the elements within the state 𝑠(𝑡) do not share 
the same value range.

4.1.2.  Observation space
In time slot 𝑡, the agent’s observation of the complete environment 

state space 𝑠(𝑡) is expressed as
Ω(𝑡) =

{

𝑐𝑢(𝑡), 𝑐𝑚(𝑡),𝑊𝑚(𝑡),∀𝑚
}

. (25)

When the environment is in state 𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐴 is taken, the 
agent considers the system environment to have changed to ̃𝑠′. However, 
since the UEs’ movement is unknown, the 𝑠̃′ obtained by the agent does 
not match the real environmental state, i.e., 𝑠̃′ ≠ 𝑠′, 𝑠′ ∈ 𝑆. To address 
this issue, the partially observable Markov decision process uses the ob-
servation 𝑜′ to represent 𝑠̃′, that is, 𝑜′ = 𝑠̃′, 𝑜 ∈ Ω. Therefore, the state 
space 𝑠(𝑡) and the observation space Ω(𝑡) contain the same elements but 
different transition probability functions. The probability of the agent 
taking action 𝑎 causing the environment to transition from state 𝑠 to 
state 𝑠′ is represented as 𝑇 (𝑠, 𝑎, 𝑠′) = 𝑃

(

𝑠′|𝑠, 𝑎
)

. Meanwhile, the obser-
vation 𝑜 of the agent depends on the new state 𝑠′ of the environment, 
and the probability is expressed as 𝑂(

𝑠′, 𝑎, 𝑜
)

= 𝑃
(

𝑜|
|

𝑎, 𝑠′
)

.

4.1.3.  Action space
After observing the current state 𝑠(𝑡), the agent is required to make 

decisions including horizontal movement distance Δ𝑑𝑢(𝑡), horizontal 
movement angle 𝜔(𝑡), vertical movement distance Δ𝑧𝑢(𝑡), and offloading 
rate 𝜉𝑢𝑚(𝑡) for each UE. The action space 𝐴 at time slot 𝑡 can be repre-
sented as
𝑎(𝑡) =

{

Δ𝑑𝑢(𝑡),Δ𝑧𝑢(𝑡), 𝜔(𝑡), 𝜉𝑢𝑚(𝑡),∀𝑚
}

. (26)

The range of values for each element in action 𝑎(𝑡) can be ob-
tained based on the maximum optimization problem (23), i.e, Δ𝑑𝑢(𝑡) ∈
[

0,Δ𝐷max
]

, Δ𝑧𝑢(𝑡) ∈
[

−Δ𝑍max,Δ𝑍max
]

, 𝜔(𝑡) ∈ [0, 2𝜋), and 𝜉𝑢𝑚(𝑡) ∈ [0, 1]. 
Meanwhile, we can observe that as the number of UEs increases, the 
dimensions of the state space and action space rapidly increase.

4.1.4.  Reward function
When action 𝑎(𝑡) is performed in state 𝑠(𝑡), the agent receives a re-

ward from the environment, which represents the quality of action 𝑎(𝑡). 
Therefore, the reward function 𝑅(𝑡) guides the agent in learning the 
appropriate policy. This model aims to reduce the cost consisting of re-
sponse delay and energy consumption of tasks in each time slot 𝑡, which 
can be represented as 𝐶𝑜𝑠𝑡(𝑡) = 𝜔1𝑇 (𝑡) + 𝜔2𝐸(𝑡), to maximize the overall 
system utility. Similar to [32,36], we use 𝜔1 and 𝜔2 to unify the dimen-
sions of the two variables. Therefore, the reward function 𝑅(𝑡) is defined 
as the negative value of the system’s cost at time slot 𝑡, that is,
𝑅(𝑡) = −𝐶𝑜𝑠𝑡(𝑡). (27)

4.2.  ODEGD framework

In practice, the partially observable Markov decision process prob-
lems are generally difficult to solve computationally. Some researchers 
define a probability distribution in the state space called Belief State, 
which infers the probability of currently being in state 𝑠 based on his-
torical information. Then simplify the problem into a similar Markov de-
cision process problem through the belief state and solve it. However, 
this method requires a certain or even a large amount of storage re-
sources to record historical information. Therefore, we use deep neural 
networks to obtain an approximate space 𝑆̂ that approximates the state 

Algorithm 1: The Normalization Algorithm.
Input: Un-normalized observe variables: 𝑐𝑢(𝑡), 𝑐1(𝑡), 𝑐2(𝑡), …, 

𝑐𝑀 (𝑡), 𝑊1(𝑡), 𝑊2(𝑡), …, 𝑊𝑀 (𝑡). Scaling factor: 𝜉𝑋 , 𝜉𝑌 , 𝜉𝑍 , 
𝜉𝐷, 𝜉𝐶 .

Output: Normalized observe variables: 𝑐′𝑢(𝑡), 𝑐′1(𝑡), 𝑐′2(𝑡), …, 
𝑐′𝑀 (𝑡), 𝑊 ′

1 (𝑡), 𝑊 ′
2 (𝑡), …, 𝑊 ′

𝑀 (𝑡).

1 𝑥𝑢′(𝑡) = 𝑥𝑢(𝑡)∕𝜉𝑋 ;
2 𝑦𝑢′(𝑡) = 𝑦𝑢(𝑡)∕𝜉𝑌 ;
3 𝑧𝑢′(𝑡) = 𝑧𝑢(𝑡)∕𝜉𝑍 ;
4 for 𝑚 = 1 𝑡𝑜 𝑀 do
5 𝑥𝑚′(𝑡) = 𝑥𝑚(𝑡)∕𝜉𝑋 , 𝑦𝑚′(𝑡) = 𝑦𝑚(𝑡)∕𝜉𝑌 ;
6 𝐷𝑚

′(𝑡) = 𝐷𝑚(𝑡)∕𝜉𝐷, 𝐶𝑚
′(𝑡) = 𝐶𝑚(𝑡)∕𝜉𝐶 ;

7 end 
8 return 𝑐′𝑢(𝑡), 𝑐′1(𝑡) …, 𝑐′𝑀 (𝑡), 𝑊 ′

1 (𝑡), …, 𝑊 ′
𝑀 (𝑡). 

space 𝑆 by observing space Ω. Then the above issue can be simplified 
to an Markov decision process problem and addressed using solutions 
based on reinforcement learning.  During the training process of neural 
networks, significant disparities in the units of measurement and value 
ranges of training samples may lead to vanishing or exploding gradients, 
which can adversely affect the learning efficiency of the model. In this 
model, the variables 𝑐𝑢(𝑡), 𝑐1(𝑡), 𝑐2(𝑡), …, 𝑐𝑀 (𝑡), 𝑊1(𝑡), 𝑊2(𝑡), …, 𝑊𝑀 (𝑡) in 
the observe space Ω lie in different ranges, which may make the train-
ing process more difficult. To mitigate this issue, this study employs a 
normalization algorithm as shown in Algorithm 1. This technique not 
only enhances the model’s convergence performance but also bolsters 
the model’s adaptability and robustness. The model incorporated five 
scaling factors, corresponding to the range spanned by the maximum 
and minimum values for each variable. Each factor can be explained as 
follows. Given that the UAV and UEs share the same range for their 𝑥
and 𝑦 coordinates, we employ 𝜉𝑋 and 𝜉𝑌  to normalize their 𝑥 and 𝑦 posi-
tions. The scaling factor 𝜉𝑍 normalizes the UAV’s 𝑧 coordinate. And 𝜉𝐷
and 𝜉𝐶 are used to normalize UEs’ task size and CPU cycles respectively.

After transforming the partially observable Markov decision process 
problem through neural networks, reinforcement learning algorithms 
can be used to solve it. Q-Learning is a fundamental and classic algo-
rithm in reinforcement learning, with the core idea of constructing and 
maintaining a Q-table. When solving continuous or even complex dis-
crete problems, Q- Learning consumes a significant amount of resources 
to store all Q-values, making it impractical. Combining deep learning 
with reinforcement learning, the deep Q-network (DQN) algorithm in-
troduces neural networks to replace the Q-table, thus solving the issue 
mentioned above.

Nevertheless, DQN suffers from overestimation of Q-values and un-
stable training, making it unsuitable for problems with continuous ac-
tion spaces. Deep deterministic policy gradient (DDPG) [37] is an off-
policy DRL algorithm that is built upon the Actor-Critic framework. It 
integrates Value-based learning with Policy-based learning by drawing 
on the ideas of DQN and deterministic policy gradient. At the same time, 
it introduces target networks to ensure stable training of the networks. 
Therefore, DDPG consists of four networks: the actor network 𝜋(𝑠|𝜃𝜇 ), 
the target actor network 𝜋′(𝑠||

|

𝜃𝜇′ ), the critic network 𝑄(𝑠, 𝑎|
|

𝜃𝑄 ), and the 
target critic network 𝑄′(𝑠, 𝑎||

|

𝜃𝑄′ ). Therefore, we integrate the DDPG al-
gorithm into the ODEGD framework to solve the online offloading prob-
lem in a dynamic environment.  A two-stage method is used to approx-
imate the state space 𝑆 using neural networks, followed by solving the 
problem using the DQN algorithm [38]. This method requires training 
two sets of neural networks and adjusting their respective hyperparame-
ters. In contrast, we let the ODEGD algorithm undertake these two tasks 
simultaneously, that is, using the same set of neural networks for state 
space approximation and optimal solution search. Therefore, we only 
need to train a set of neural networks and adjust their hyperparameters.
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Algorithm 2: ODEGD-Based Task Offloading Algorithm.
Input: Trajectory Dataset of UEs.
Output: System total utility.

1 Initialize the actor network 𝜋([𝑜, 𝑠̂]|𝜃𝜇 ) and critic network 
𝑄([𝑜, 𝑠̂], 𝑎|

|

𝜃𝑄 );
2 Initialize the each target networks 𝜋′([𝑜, 𝑠̂]||

|

𝜃𝜇′ ), 𝑄′([𝑜, 𝑠̂], 𝑎|
|

𝜃𝑄 ): 
𝜃𝜇′ ← 𝜃𝜇 , 𝜃𝑄′

← 𝜃𝑄;
3 Initialize the replay buffer 𝐵;
4 for 𝑒𝑎𝑐ℎ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do
5 Set 𝑡 = 1 and initialize observe 𝑜(𝑡);
6 for 𝑡 = 1 𝑡𝑜 𝑇  do
7 Normalize 𝑜(𝑡) to 𝑜′(𝑡) according to alg. 1;
8 if 𝑟𝑎𝑛𝑑(⋅) < 𝜀 then
9 Randomly select action 𝑎(𝑡);
10 else
11 𝑎(𝑡) = 𝑐𝑙𝑖𝑝(𝜋(

[

𝑜′(𝑡), 𝑠̂(𝑡)
]

|𝜃𝜇 ) + 𝑛̃,−1, 1);
12 end
13 Obtained reward 𝑟(𝑡) and next observe 𝑜(𝑡 + 1);
14 Normalize 𝑜(𝑡 + 1) to 𝑜′(𝑡 + 1);
15 Store ⟨𝑜′(𝑡), 𝑎(𝑡), 𝑟(𝑡), 𝑜′(𝑡 + 1)⟩ in 𝐵;
16 Sample a random mini-batch 𝐵𝑠 from 𝐵;
17 Calculate the target Q-value and TD-error using (29) 

and (30);
18 Update critic network parameters 𝜃𝜇 using (31);
19 Update actor network parameters 𝜃𝑄 using(32);
20 Soft update target network parameters 𝜃𝜇′ , 𝜃𝑄′  using

(33) and (34);
21 end 
22 end 
23 return 

In addition, balancing exploration and exploitation is an important 
issue in reinforcement learning. DDPG algorithm lets the agent explore 
by adding noise to actions, i.e. 𝑎 = 𝜋(𝑠′|𝜃𝜇 ) + 𝑛̃, where 𝑛̃ ∼ 𝑁

(

0, 𝜎̂2
) is 

the action noise with 𝑚𝑒𝑎𝑛 = 0 and standard deviation 𝜎̂. However, the 
model in this paper not only requires the agent to search for the op-
timal strategy in the multidimensional action space but also demands 
the approximation of the state space. This situation greatly increases 
the difficulty of exploring the solution space for optimization prob-
lems, and noise methods may not be able to find the optimal solution. 
Therefore, we introduce the 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy into the ODEGD algo-
rithm, allowing the agent to choose random actions with a 𝜀 probabil-
ity, or take actions given by the network with a 1 − 𝜀 probability. While 
ODEGD is built upon the standard DDPG framework, it incorporates an 
exploration-enhancing greedy strategy and an observation-state approx-
imation process to improve decision stability, robustness, and conver-
gence performance in dynamic UAV-assisted MEC environments.

Algorithm 2 summarized the ODEGD framework for addressing the 
bi-objective optimization problem in a dynamic environment. First, 
four networks’ parameters and the replay buffer 𝐵 are initialized. Each 
episode begins with the reset of observations and time slots. Then, in 
each time slot, we normalize the observe of the UAV. Based on the 
𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy, the UAV selects a random action or action composed 
of the output given by the actor network 𝜋([𝑜′(𝑡), 𝑠̂(𝑡)]|𝜃𝜇 ) plus Gaussian 
noise 𝑛̃. As delineated in the action space definition, the UAV will move 
horizontally in distance Δ𝑑𝑢(𝑡) at an angle 𝜔(𝑡), move vertically in dis-
tance Δ𝑧𝑢(𝑡), and partially offload each UE’s task in proportion 𝜉𝑢𝑚(𝑡). 
If the UAV’s movement exceeds the prescribed flight range, which does 
not meet Constraint (6) to (8), it will keep flying at the boundary. Before 
storing the transition in the replay pool, we also normalize the observa-
tions of the UAV at 𝑡 + 1 to ensure stable training. To ensure the stability 
of the training process, we also normalized the UAV’s next observations 

𝑜′(𝑡 + 1). Then we save the transition tuple ⟨𝑜′(𝑡), 𝑎(𝑡), 𝑟(𝑡), 𝑜′(𝑡 + 1)⟩ in the 
replay buffer 𝐵 for improve sample learning efficiency.

The ODEGD algorithm requires optimizing Actor networks to max-
imize the value of the policy evaluation and Critic networks to min-
imize the error of the value evaluation. The role of the actor network 
𝜋([𝑜, 𝑠̂]|𝜃𝜇 ) is to provide a policy that can determine what action 𝑎 should 
be taken in the observe 𝑜. The better the actor network’s policy, the bet-
ter the actions it can provide. The actor network is optimized through 
policy gradient, as the formula below:
∇𝜃𝜇𝐽 (𝜃𝜇) ≈

1
𝐵𝑠

𝐵𝑠
∑

𝑖=1
∇𝑎𝑄([𝑜, 𝑠̂], 𝑎||

|

𝜃𝑄 )|
|

𝑜𝑖, 𝑎 = 𝜋(𝑜𝑖)∇𝜃𝜇𝜋([𝑜, 𝑠̂]|𝜃𝜇 )||𝑜𝑖,
(28)

where 𝐵𝑠 denotes the batch size. From the formula, it can be seen that 
the policy gradient depends on the critic network 𝑄([𝑜, 𝑠̂], 𝑎|

|

𝜃𝑄 ), whose 
role is to score the action 𝑎 given by the actor network in observe 𝑜. The 
more accurate the critic network scoring, the more correct the direction 
of optimization for the actor network’s update.

The critic network is optimized through the value function. Us-
ing the target actor network 𝜋′([𝑜, 𝑠̂]||

|

𝜃𝜇′ ) and the target critic network 
𝑄′([𝑜, 𝑠̂], 𝑎||

|

𝜃𝑄′ ), the target Q-value 𝑄target can be given by

𝑄target = 𝑟(𝑡)+

𝛾(𝑄′([𝑜(𝑡 + 1), 𝑠̂(𝑡 + 1)], 𝜋′([𝑜(𝑡 + 1), 𝑠̂(𝑡 + 1)]||
|

𝜃𝜇
′
)||
|

𝜃𝑄
′
),

(29)

where 𝛾 is the discount factor, indicating the importance of future re-
wards. Then, the temporal difference error (TD-error) of the critic net-
work is expressed as

𝐿(𝜃𝑄) = 1
𝐵𝑠

𝐵𝑠
∑

𝑖=1

[

𝑄target −𝑄
(

[𝑜, 𝑠̂], 𝑎||
|

𝜃𝑄
)]2

. (30)

Finally, gradient ascent and gradient descent methods are used to opti-
mize the actor and critic networks, respectively, i.e.,
𝜃𝜇 ← 𝜃𝜇 + 𝛼𝑎𝑐𝑡𝑜𝑟∇𝜃𝜇𝐽 (𝜃𝜇), (31)

𝜃𝑄 ← 𝜃𝑄 − 𝛼𝑐𝑟𝑖𝑡𝑖𝑐∇𝜃𝑄𝐿(𝜃
𝑄), (32)

where 𝛼𝑎𝑐𝑡𝑜𝑟, 𝛼𝑐𝑟𝑖𝑡𝑖𝑐 represent the learning rate, which controls the weight 
between the old and new network parameters.

In addition, we use the soft update method to update all target net-
works, ensuring the stability of the algorithms, denoted as
𝜃𝜇

′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇

′
, (33)

𝜃𝑄
′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄

′
, (34)

where 𝜏 denotes the soft update rate, 𝜏 ∈ [0, 1]. This soft update step, 
commonly used in machine learning, is similar to an under-relaxation 
process in classical numerical optimization. Introducing the 𝜀 − 𝑔𝑟𝑒𝑒𝑑𝑦
strategy to enhance exploration may lead to a long-term trial process, 
resulting in low training efficiency. Therefore, we have adopted a single 
step update approach for all networks, while setting a reasonable greedy 
initial value that decreases with training.

5.  Experiment results and analysis

In this section, the UEs’ trajectory dataset based on the map of real-
world roads and settings of the experiment is first introduced. Then, we 
select an appropriate set of hyperparameters for conducting the subse-
quent experiments. Finally, the ODEGD algorithm was compared with 
DRL baseline algorithms.

5.1.  Trajectory dataset of the UEs

In the existing UAV-assisted MEC systems, UE’s data for simulation 
experiments is usually generated using theoretical assumptions or man-
ually generated methods. These methods can, to a certain extent, test 
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Fig. 2. The map used by the ONE simulator and movement trajectory of differ-
ent UEs.

Table 1 
Experimental simulation parameters.
 Parameter  Value
 Total simulation time 𝑁  60 s
 Time interval Δ𝑡  3 s
 Number of UE 𝑀  5
 Size of input data 𝐷𝑚  [1,5] Mbits
 Number of CPU cycles 𝐶𝑚

[100,200]
cycles/bit

 Lengths of area 𝑋max,𝑌max  500m
 Flight altitude of UAV [𝑍min,𝑍max]  [50,100] m
 Movement distance of UE Δ𝑑𝑚(𝑡)  [13,17] m
 Maximum horizontal distance Δ𝐷max  49m
 Maximum vertical distance Δ𝑍max  12m
 Channel gain 𝑔0 -50 dB
 Uplink channel bandwidth 𝐵𝑢  10MHz
 Transmit and receiving power 𝑃𝑚,𝑃𝑢  0.1W
 Computation resource of UEs 𝐹𝑚  0.2GHz
 Computation resource of UAV 𝐹𝑢  3GHz
 Effective switched capacitance 𝜅 10−28

 Noise power 𝜎2 -100 dBm
 Transmit loss 𝛿  20dB
 Location scaling factor 𝜉𝑋 , 𝜉𝑌 , 𝜉𝑍  500, 500, 50
 Task scaling factor 𝜉𝐷 , 𝜉𝐶 4 × 106, 100

Table 2 
Main hyperparameters.
 Hyperparameters  Value
 Total episodes  1000
 Learning rate 𝛼actor , 𝛼critic  0.001, 0.002
 Discount factor 𝛾  0.001
 Size of replay buffer 𝐵  100,000
 Batch size 𝐵𝑠  128
 Standard deviation of noise ̂𝜎  0.05
 Soft update rate 𝜏  0.005
 Activation function  ReLU
 Loss function  Mean-square error
 Optimizer  AdamOptimizer

the performance of algorithms. Nevertheless, there is always a discrep-
ancy between generated data and actual data, which may lead to bias 
in algorithm performance evaluation. To more accurately reproduce the 
mobility patterns of UEs and overcome the sim-to-real gap, this paper 
adopts a trajectory and task of the UEs dataset based on real-world roads. 
As shown in Fig. 2(a). The opportunistic network environment (ONE) 
simulator [39] is an open-source software developed by the University 
of Helsinki in Finland, which is extensively utilized for generating UEs’ 
movement trajectories employing diverse mobility models. The real map 
was imported into the ONE simulator in this paper to generate a dataset 
of motion trajectories for UEs, including a training set of 1 trajectory file 
and a testing set of 2500 trajectory files. Fig. 2(b) presents the movement 
trajectories of five UEs over 100 time slots, highlighting their mobility 
patterns.

5.2.  Experimental settings

In the UAV-assisted MEC system, the simulated scene is an area 
of 𝑋 × 𝑌 ×𝑍 = 500 × 500 × 100 m3 square with 𝑀 = 5 mobile UEs. The 
UAV used for task offloading can only move between altitude 𝑍min = 50
m and altitude 𝑍max = 100 m. The size of input data 𝐷𝑚 and the number 
of CPU cycles 𝐶𝑚 are randomly sampled within [1, 5] Mbits and [100, 
200] cycles/bit, respectively. Similar to [40], transmit loss due to the 
buildings is set to 𝛿 = 20 dB. The scaling factors used in Algorithm 1 are 
defined as 𝜉𝑋 = 500, 𝜉𝑌 = 500, 𝜉𝑍 = 50, 𝜉𝐷 = 4 × 106, 𝜉𝐶 = 100. In both 
the training and testing phases of the algorithm, the UAV’s starting po-
sition is randomly determined, unless specifically noted otherwise. The 
detailed parameters of our system are listed in the Table 1.

Apart from the introduced ODEGD approach, we also utilized five 
additional optimization methods to compare performance:
1) Deep Q-Network (DQN): A classical reinforcement learning al-

gorithm employs deep neural networks to approximate the Q-
value function and is commonly used for discrete action space 
problems. In this algorithm, the movement and offloading of 
the UAV are discretized. The horizontal fly angle is expressed 
as 𝜔(𝑡) = {0, 𝜋∕4,… , 7𝜋∕4}, the horizontal and vertical move-
ment distance are set as Δ𝑑𝑢(𝑡) = {0m, 3m,… , 12m} and Δ𝑧𝑢(𝑡) =
{0m, 12m, 24m, 36m, 49m}, and the offloading ratio can be defined as 
𝜉𝑢𝑚(𝑡) = {0, 1∕2, 1}.

2) Double Deep Q-Network (DDQN): An improved algorithm designed 
to address the issue of overestimation that may occur in DQN. It 
has two structurally identical networks: Evaluate-network for select-
ing actions and Target-network for calculating the target Q-value. 
This improvement can reduce network overestimation and provide 
a more stable learning process. The discretization of action space in 
this algorithm is consistent with DQN.

3) Actor-Critic Network (AC): AC combines the policy gradient method 
and value function, consisting of two networks: Actor-network and 
Critic-network. The Actor network selects actions based on the cur-
rent policy, while the Critic network is responsible for evaluating 
the actions chosen by the actor-network. Compared with DQN and 
DDQN algorithms, the AC algorithm can solve continuous action 
space problems and improve sample utilization efficiency.

4) Twin Delayed Deep Deterministic Policy Gradient (TD3): TD3 is a 
further improvement based on DDPG, using two sets of Critic net-
works. The smaller of the two is taken when calculating the target Q 
value. Both action choice and strategy gradients incorporate noise to 
enhance exploration. In addition, Critic networks update more fre-
quently than Actor networks to maintain stability. However, such 
improvements increase the complexity of the structure and do not 
suit all problem environments.

5) Ant Colony Optimization (ACO): ACO is a heuristic optimization al-
gorithm inspired by the foraging behavior of ants, where agents co-
operatively construct solutions through pheromone-guided searches. 
It has shown strong performance in solving discrete optimization 
problems by balancing exploration and exploitation through heuris-
tic updates. However, ACO is difficult to address continuous action 
space problems; therefore, its action space discretization setting is 
consistent with DQN.
The above five algorithms have differences in network structure, us-

age scenarios, and function types. To ensure a fair comparison with 
ODEGD, all algorithms were implemented using the same network ar-
chitecture and normalization scheme, and each was carefully tuned to 
its optimal hyperparameters. Note that the baseline DDPG algorithm 
employs the standard Ornstein-Uhlenbeck (OU) noise for exploration. 
Therefore, the performance comparison between ODEGD and DDPG also 
reflects the contribution of the proposed exploration mechanism, which 
enhances robustness and stability in dynamic UAV-assisted MEC envi-
ronments. In addition, the simulation experiment was conducted on a 
computer with a 3.80GHz AMD Ryzen 7 5800X 8-Core Processor and 
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Fig. 3. Training curves of the ODEGD-based algorithm with different hyperpa-
rameters.

Fig. 4. Average system utility of the ODEGD-based algorithm with different 
hyperparameters.

32GB RAM, based on Python 3.10 and TensorFlow framework. The av-
erage of 5 experimental results is taken as the final result for the simu-
lation experiment.

5.3.  Training efficiency

In the ODEGD-based algorithm, hyperparameters including the 
learning rate 𝛼, discount factor 𝛾, batch size 𝐵𝑠, and the choice of ac-
tivation function play crucial roles in determining the efficiency of the 
training process. Therefore, before comparing the performance of differ-
ent algorithms, we first conduct several experiments to determine the 
hyperparameters required by the algorithms.

The training curves of the proposed algorithm across various learn-
ing rates are depicted in Fig. 3(a). In the ODEGD algorithm, the learn-
ing rates applied to the actor and critic networks vary, yet they are 
of the same order of magnitude. Firstly, we can see no sign of con-
vergence in 𝛼actor = 0.01, 𝛼critic = 0.02 because a higher learning rate 
will result in a larger update step for the network, leading to skipping 
the optimal solution. Secondly, when using a lower learning rate like 
𝛼actor = 0.0001, 𝛼critic = 0.0002, the convergence speed of the algorithm 
significantly slows down. When the learning rate is set to 𝛼actor = 0.001, 
𝛼critic = 0.002, it can be seen that the algorithm converges around 600 
episodes. From another perspective, the system utility of 𝛼actor = 0.001, 
𝛼critic = 0.002 is significantly higher than other learning rates, as shown 
in Fig. 4(a), where the error bars (as well as those in the subsequent 
experimental figures) represent the standard deviations of the experi-
mental data. The mean utilities of the three configurations were 8.75 
± 0.59, 7.01 ± 0.32, and 0.49 ± 0.24, respectively. A two-sample 
t-test indicated that 𝛼actor = 0.001, 𝛼critic = 0.002 significantly outper-
formed 𝛼actor = 0.0001, 𝛼critic = 0.0002 (t(8)=5.55, p<0.001, 95% confi-
dence interval (CI) [1.02, 2.46], Cohen’s d=3.63). Therefore, we adopt 
𝛼actor = 0.001, 𝛼critic = 0.002 as the optimal learning rate for the actor and 
critic network.

Activation functions are a key component of neural networks that 
introduce nonlinear factors to the network to capture complex patterns 
and relationships. Some commonly used activation functions are ReLU, 
Sigmoid, and Tanh. As shown in Figs. 3(b), 4(b), we compare the train-

ing efficiency and average utility with the abovementioned activation 
functions. It can be observed that only the training curve of ReLU con-
verges, while Sigmoid and Tanh diverge more in the later stages of train-
ing. That is because ReLU is simple and efficient, which can relieve the 
problem of gradient vanishing. Sigmoid and Tanh involve exponential 
operations, so when the absolute value of the input is large, the gradi-
ent approaches 0, which can easily lead to the gradient vanishing during 
backpropagation. As can be seen from the system utility, ReLU’s 8.75 ± 
0.59 is significantly better than Sigmoid’s 2.30 ± 1.83 and Tanh’s 2.25 
± 1.79. Therefore, we chose ReLU as the algorithm’s activation func-
tion.

In addition, we also compared experiments with different batch sizes 
and discount factors. The experimental results indicate that these two 
hyperparameters have almost no difference in convergence effect and 
system utility, so we did not display these two sets of graphs. Finally, 
the main experimental hyperparameters are compiled in Table 2.

Fig. 5 shows the frequency of occurrence of UEs’ positions in the 
training set at three specific time points (60 seconds, 300 seconds, and 
1500 seconds), indicating significant clustering in UE location distribu-
tion. At 60 seconds, the UEs’ movement trajectory is concentrated at 
x=350m, y=250m to 350m; At 300 seconds, we can see that the UE’s 
trajectory appears in a relatively remote area, but the frequency is low. 
At 1500 seconds, the distribution characteristics of UEs’ positions are 
more obvious, such as point (350,250) and its surrounding areas are 
hot spots for UEs. These UEs’ trajectory thermal maps provide the basis 
for subsequent analysis and inspection of the UAV movement path.

After training the agent through the ODEGD method, for the train-
ing set file, the agent can perform optimal movement and offloading 
operations in each time slot 𝑡. Starting from point (250, 250, 75), the 
hotspots of the UAV’s location at each specific time point are shown in 
Fig. 6. We can observe that the hotspot area of the UAV trajectory is 
concentrated near the point (270,240), which almost overlaps with the 
high-frequency gathering centers of UEs, indicating that our algorithm 
can perceive the gathering areas of UEs through their movement trajec-
tories. However, it is also worth noting that the UAV hotspots exhibit 
a slight leftward bias relative to the UE’s centers, about 70m, suggest-
ing that the agent’s service strategy has also been optimized for UEs on 
more remote roads. From the y-axis direction, the flight trajectory area 
of the UAV gradually expands, because the UAV will move according to 
the distribution of the Y-axis of the UEs in different time slots, rather 
than staying in place.

We have set four different departures to simulate the flexible de-
ployment of UAV: start point A (500, 500, 100), start point B (500, 0, 
100), start point C (0, 500, 100), and start point D (0, 0, 100). Fig. 7 
presents the UAV’s trajectory from these various starting points. It can 
be observed that after departing from deployment points, the algorithm 
plans the UAV’s path based on the UAV’s current position and the ob-
tained UEs’ orientation and movement pattern, ultimately reaching the 
optimal service area. Furthermore, by examining the commonalities and 
characteristics of the four trajectories, we can see that the UAV can 
quickly descend in altitude during the initial simulation period to re-
duce communication distance with UEs, while also adjusting behavior 
details appropriately according to its location and environment. These 
demonstrate that the ODEGD algorithm has good robustness in random 
environments.

5.4.  Performance comparison

To verify the advantages of our proposed ODEGD algorithm, we com-
pared its performance with four DRL baseline algorithms. Fig. 8(a) plots 
the training curves of different DRL algorithms. From this figure, we can 
observe that DQN and DDQN fail to converge as the number of episodes 
increases. This is likely because these two algorithms are not well-suited 
for optimization problems with complex action spaces. The ACO algo-
rithm does not exhibit an optimization trend. Hence, in the following 
comparisons, the episode achieving the highest reward is regarded as 
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Fig. 5. UEs’ position frequency heatmap with different simulation times.

Fig. 6. UAV’s 2D position frequency heatmap with different simulation times.

Fig. 7. UAV’s 3D trajectory from different start point.

the optimal action produced by ACO. Although the training curve of 
the AC algorithm shows a convergence trend, the fluctuation amplitude 
of the confidence interval is large, which may be attributed to the in-
stability caused by its use of real-time updates and hard updates. The 
ODEGD, DDPG, and TD3 algorithms have all converged, yet TD3’s con-
vergence is not optimal and exhibits a large fluctuation amplitude. The 
TD3 algorithm’s complexity may make it less effective in solving this 
problem. DDPG converges within 200 episodes, which is faster than 
ODEGD at 600 episodes; however, its convergence results are not as 
robust as those of ODEGD. Fig. 8(b) presents the average system util-
ity obtained by the aforementioned algorithm on the training set. It can 
be observed that ODEGD consistently yields the highest average system 
utility among all compared benchmark algorithms. Statistical analysis 
shows that ODEGD’s 8.31 ± 0.62 significantly outperforms DDPG’s 6.96 

± 0.72 (t(8)=3.23, p=0.012, 95% CI [0.38, 2.32], Cohen’s d=2.01) 
and ACO’s 6.90 ± 0.97 (t(8)=2.78, p=0.023, 95% CI [0.24, 2.58], Co-
hen’s d=1.71). This is because our algorithm can provide the optimal 
movement path and optimal offloading rate during the online decision-
making process, reducing the delay and energy consumption caused by 
task transmission and computation, thereby achieving the optimal sys-
tem utility.

Fig. 9 presents the optimal trajectory provided by different algo-
rithms for the UAV in the training set, with all algorithms set to depart 
from the same start point (500, 500, 100). From the perspective of the 
UAV’s movement, DQN has been moving along the boundary, and there 
has been no height reduction in the early stage of simulation; DDQN 
continued to hover around the starting point and only lowered its al-
titude at the last moment; Although AC can reduce altitude, it makes 
almost no movement along the X-axis; ACO tends to decrease altitude 
and approach the central region, but it struggles to effectively search for 
the best flight trajectory. TD3 quickly lowers the UAV’s altitude but, like 
AC, fails to further optimize along the Y-axis. The DDPG and ODEGD al-
gorithms can make reasonable movements based on the UAV’s 3D flight 
capability. From another perspective of the optimal offloading areas, AC 
and TD3 can allow agents to enter their respective optimal offloading 
areas, but these areas are too far away from the UEs’ hotspot concentra-
tion area. Although the optimal area of DDPG is closer to the aggregation 
center of UE than ODEGD, it ignores UEs on remote roads.

Fig. 10 shows the strategy of optimal task offloading rate given by 
different DRL algorithms. We evaluate the performance of the algo-
rithms in resource decision-making from the perspectives of each time 
slot and each UE. The average offloading rate across each time slot 
𝑡, as plotted in Fig. 10(a), shows ODEGD’s offloading rate is not the 
highest in the first two time slots. This is attributed to the distance 
between the UAV and the UE being too far in the early stage, which 
leads to higher transmission costs when attempting higher offloading 
rates. However, from the 3rd time slot onwards, ODEGD consistently 
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Fig. 8. Training curves and average system utility with different optimization 
algorithms.

Fig. 9. UAV’s 3D trajectory with different optimization algorithms.

maintains the highest offloading rate, thereby accelerating task process-
ing speed. ACO shows the highest variability in offloading rate, mak-
ing it difficult to achieve stable performance. Additionally, TD3, DDPG, 
and AC also maintain relatively high offloading rates, while DQN and 
DDQN are quite low. The average offloading rate across each UE 𝑚 is 
shown in Fig. 10(b). It can be seen that there is a certain gap in the of-
floading amount for different UEs among the comparative algorithms, 
with even cases where specific user tasks are not uninstalled at all, i.e., 

Fig. 10. Average task offloading rate for UEs given by different optimization 
algorithms.

DDQN does not offloading tasks for UE 4. In contrast, ODEGD’s offload-
ing rate for different UEs is more balanced and stable, due to its strategy, 
which can efficiently support remote UEs while serving UEs in hotspot 
areas. The ODEGD algorithm maintains an average offloading volume 
of 79.6% across all simulation episodes, outperforming DDPG’s 76.9%, 
ACO’s 56%, TD3’s 74.2%, AC’s 74.6%, DDQN’s 41%, and DQN’s 28%. 
Therefore, ODEGD optimizes the resource allocation problem, signifi-
cantly reducing the response delay and energy consumption for UEs’ 
tasks from a computational models perspective.

It is noteworthy that, in terms of average offloading rate, TD3 
achieves 74.2%, which is comparable to AC’s 74.6%, while DDQN’s 
41% exceeds DQN’s 28%. Nevertheless, the average system utility re-
sults plots in Fig. 8(b) show that TD3’s 4.05 is higher than AC’s 2.57, 
and DQN’s 1.92 exceeds DDQN’s 0.89. This is because TD3 performs al-
titude descent earlier than AC in UAV’s path planning, while DQN does 
not maintain hovering like DDQN. This indicates that the path planning 
of the UAV has a significant impact on system utility outcomes. There-
fore, the algorithm needs to optimize both the UAV’s path and resource 
allocation simultaneously to achieve higher system utility.

To further isolate and evaluate the effect of the proposed explo-
ration strategy, we conducted an ablation study comparing ODEGD with 
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Fig. 11. Performance comparison with different optimization algorithms.

Fig. 12. Performance comparison with simulation time increase.

Table 3 
Ablation study on the effect of the proposed exploration strategy.
 Performance  ODEGD  DDPG+OU  DDPG+Gauss  DDPG+Greedy
 Average response delay (s)  115.65 ± 2.63  117.97 ± 3.77  121.85 ± 3.11  119.22 ± 3.82
 Average energy consumption (J)  12.51 ± 0.55  13.62 ± 0.76  14.18 ± 0.87  13.53 ± 0.67
 Average system utility  8.75 ± 0.59  7.86 ± 0.73  7.27 ± 0.67  7.82 ± 0.66

several DDPG variants employing different exploration mechanisms, in-
cluding DDPG+OU, DDPG+Gaussian, and DDPG+Greedy. The results 
are summarized in Table 3. As shown in the table, ODEGD consistently 
outperforms all methods across all performance metrics. Compared with 
DDPG+OU, ODEGD achieves a 1.97% reduction in Delay (t(8)=1.29, 
p=0.23, 95% CI [-1.57, 6.51], d=0.77), a 8.14% reduction in Energy 
(t(8)=2.73, p=0.026, 95% CI [0.13, 2.08], d=1.63), and an 11.36% 
improvement in Utility (t(8)=2.24, p=0.054, 95% CI [-0.03, 1.81], 
d=1.31). The improvements are even more pronounced when com-
pared to DDPG+Gaussian and DDPG+Greedy, with Utility gains of 
20.38% and 11.88%, respectively. These results indicate that the pro-
posed exploration strategy enables the agent to find an optimal policy 
more efficiently.

Fig. 11 indicates the performance of different algorithms in the test-
ing set. To better compare the performance of algorithms, we have 
added a new method named offload all tasks to the edge (All_edge): Dur-
ing each test file, the UAV is deployed in a random place that is available 
and holds fixing. All UE’s tasks are offloaded to the edge server on the 
UAV throughout the process. From the Fig. 11, we can observe that the 
ODEGD algorithm achieves the lowest latency (115.65 ± 2.63 s) and en-
ergy consumption (12.51 ± 0.55 J) overhead, thus obtaining the highest 
system utility (8.75 ± 0.59). DDPG can also optimize the dual objectives 
of response delay and energy consumption, but its system utility (7.86 ± 
0.73) is not as good as ODEGD. ACO shows a considerable performance 

drop on the test set compared to the training set. The reason is that its 
optimal solutions depend excessively on stochastic factors. Although it 
performs well in the training phase, large-scale testing exposes its in-
sufficient ability to handle dynamic environments. TD3 and AC focus 
on reducing latency, leading to higher energy expenditure. Conversely, 
DDQN and DQN tend to reduce energy consumption, which results in 
longer task completion times. The All_edge method has the highest en-
ergy consumption, while there is no significant reduction in latency. 
Compared with other algorithms, ODEGD achieves a 26.98% reduction 
in average response delay and a 22.61% reduction in average energy 
consumption. Furthermore, it improves the average system utility by 
an average of 177.65%, with an increase of 78.57% compared to TD3 
(t(8)=5.71, p<0.001, 95% CI [2.29, 5.41], Cohen’s d=3.70), 166.77% 
compared to ACO (t(8)=20.26, p<10−6 , 95% CI [4.85, 6.09], Cohen’s 
d=11.10), and 321.53% compared to All_edge (t(8)=13.23, p<10−6, 
95% CI [5.50, 7.84], Cohen’s d=9.05).

Moreover, we extended the total simulation time and increased the 
UE counts to evaluate the scalability of each algorithm under increas-
ing problem complexity. As shown in Fig. 12, the number of tasks in-
creases with the extension of simulation time, so the total response 
delay and total energy consumption of the system will also increase. 
Throughout this process, the ODEGD algorithm consistently maintains 
the minimum latency and energy consumption. From the slope of 
curves plotted in Figs. 12(a), 12(b), it can be seen that ODEGD has the
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Fig. 13. Performance comparison with UE counts increase.

Fig. 14. Performance comparison with different modes of height.

lowest growth rate in total response delay and total energy consump-
tion. Fig. 12(c) shows the changes in the average system utility of dif-
ferent algorithms over time. It is noticeable that our proposed ODEGD 
algorithm achieved the highest system utility and remains stable, which 
is because after the UAV reaches the optimal offloading area, its path 
planning has a relatively small impact on the UAV’s cost, and the sys-
tem mainly focuses on resource allocation. The average system util-
ity of DDPG shows an increasing trend because resource allocation is-
sues become more important in the later stages of simulation, which 
DDPG can effectively address. However, the average system utility of 
other algorithms is very low and even shows a declining trend. This in-
dicates that our proposed ODEGD algorithm can optimize both paths 
and resources, thereby maintaining the maximum utility in long-term
simulations.

As shown in Fig. 13, when the number of UEs increases, the aver-
age response delay and average energy consumption of all algorithms 
show an overall upward trend due to the increased computation and 
communication load. From Figs. 13(a) and 13(b), it can be observed 
that ODEGD maintains the minimum delay and energy consumption 
with the slowest growth rate, reflecting its strong scalability in multi-
user environments. Fig. 13(c) presents the variation of average system 
utility under different numbers of UEs. The ODEGD algorithm main-
tains the highest utility and strong stability even as the system load 
rises. The DDPG algorithm achieves relatively high utility but declines 
slightly when the UE number becomes large, suggesting reduced robust-
ness under heavy loads. Other algorithms, such as DQN, DDQN, and 
ACO, show significantly lower system utility and poor adaptability as 
the number of users increases. These results demonstrate that ODEGD 
can effectively balance delay, energy consumption, and overall system 

performance, maintaining optimal utility even in complex multi-user
environments.

To further evaluate the performance improvement of the ODEGD al-
gorithm in solving the 3D trajectory optimization problem of the UAV, 
we evaluate the performance of different movement modes, as shown in 
Fig. 14. We assume that the UAV has two modes of movement: variable 
height flight mode and fixed height flight mode. From Fig. 14, we can 
observe that the average system utility of ACO, DDQN, and DQN de-
creased because these algorithms did not descend in altitude to reduce 
the distance between the UAV and UEs; instead, they ascended in alti-
tude, leading to increased latency and energy consumption. The ODEGD, 
DDPG, TD3, and AC can all optimize the system’s average latency and 
energy consumption by controlling the UAV’s flight altitude, indicating 
that the UAV’s 3D movement can further improve the offloading effi-
ciency of the MEC system compared to the UAV’s 2D movement. How-
ever, it can be seen from the figure that algorithms other than ODEGD 
have little effect on improving system utility, suggesting that these algo-
rithms are not sufficient to solve the optimization problem with UAV’s 
3D continuous motion. The combination of ODEGD with variable height 
flight mode achieved the highest average system utility, improving by 
7.47% compared to the fixed height flight mode (t(8)=1.96, p=0.078, 
95% CI [-0.12, 1.46], Cohen’s d=1.19). This demonstrates the feasibil-
ity of our proposed ODEGD algorithm in solving large solution space 
problems.

6.  Conclusion

To effectively address the partially observable and dynamic 
environment, we reformulated the optimization as a POMDP 
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and developed ODEGD, an enhanced DRL-based online decision-
making algorithm. ODEGD integrates a greedy exploration mecha-
nism and observation-state approximation, enabling stable and robust 
learning in complex non-convex optimization problems. Incorporating 
real-world road data into our simulation experiments, we demonstrated 
the algorithm’s effectiveness in practical scenarios. The simulation 
results show that our proposed method improves system utility by 
accurately perceiving task arrival patterns and UEs’ movement trends. 
Our algorithm demonstrates superior performance over other optimiza-
tion methods with respect to delay, energy consumption, and system 
utility. This study contributes a scalable and adaptive framework for 
continuous task offloading in realistic environments. For subsequent 
research, we plan to apply this framework to multi-UAV cooperative 
offloading and explore multi-objective optimization under practical 
network constraints.
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