
Future Generation Computer Systems 145 (2023) 536–549

a

b

c

d

(
e
h
c
t
a
o
m
n
d
t
t
s
q
a
i
p

l
r

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Multi-type task offloading for wireless Internet of Things by federated
deep reinforcement learning
Zhao Tong a,∗, Jiake Wang a, Jing Mei a, Kenli Li b, Wenbin Li c, Keqin Li d
College of Information Science and Engineering, Hunan Normal University, Changsha, 410012, China
College of Information Science and Engineering, Hunan University, Changsha, 410082, China
College of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o

Article history:
Received 4 November 2022
Received in revised form 27 March 2023
Accepted 1 April 2023
Available online 3 April 2023

Keywords:
Deep reinforcement learning
Federated learning
Internet of Things (IoT)
Mobile edge computing (MEC)
Multi-type task offloading
Service experience guarantee

a b s t r a c t

With the popularity of Internet of Things (IoT) smart devices, the amount of data generated by
these devices has grown rapidly. In these mobile edge computing (MEC) environments, it is not only
important to save time and energy in offloading tasks, but also to protect user data. In this paper, due to
the dynamics and complexity of the system, a multi-type task offloading based on a multi-capability
federated deep Q-network (M2FD) algorithm is proposed to optimize the bi-objective performance.
The algorithm consists of two parts, federated learning protects user privacy by transmitting model
for training instead of data, and deep reinforcement learning trains model accuracy and identifies
suitable offloading nodes with heterogeneous capabilities for multi-type tasks. In addition, under the
constraints of the service experience guarantee (SEG) model, the tasks are offloaded with the goal
of improving system utility while reducing system cost. Experiments show that the M2FD increases
system utility, guarantees privacy, and reduces task response time and energy consumption.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

At present, due to the rapid development of Internet of Things
IoT) and wireless communication technologies in the 5th gen-
ration (5G) era, the number of various mobile smart devices
as exploded [1]. Examples include virtual reality devices, smart
ameras, healthcare devices, etc. The Cisco white paper indicates
hat by 2023, the global IoT devices will reach 14.7 billion devices,
ccounting for 50 percent of all connected devices [2]. Hundreds
f millions of device connections can lead to congested com-
unication channels and excessive bandwidth pressure. As the
umber of devices grows, the amount of task data will increase
ramatically, and the content will be more complex [3]. Based on
he above factors, robust computing power is needed to support
he operation of the devices. Real-time feedback, low energy con-
umption and fast connection are also essential to ensure the user
uality of experience (QoE). In addition, people are increasingly
ware of privacy protection. For IoT devices, the privacy of data
s critical [4]. Whether it is medical, industrial, political data or
ersonal information should be protected.
To solve the above difficulties, it is necessary to divide the

arge amount of data into several tasks and use other computing
esources to complete the tasks. Traditional cloud computing

∗ Corresponding author.
E-mail address: tongzhao@hunnu.edu.cn (Z. Tong).
ttps://doi.org/10.1016/j.future.2023.04.004
167-739X/© 2023 Elsevier B.V. All rights reserved.
schedules all tasks to the cloud for completion, providing efficient
processing for computational tasks. However, cloud computing
is often unable to complete computing tasks in a specified time
due to the high latency of task transmission. Therefore, mobile
edge computing instead of cloud computing has been widely
studied [5–7]. In contrast to the cloud, the edge is located close to
the side of the data source, which makes the transmission latency
and energy consumption well controlled. In addition, mobile edge
computing (MEC) puts some tasks in local computing. Fewer data
are transmitted, which secures the data to some extent. Hence,
MEC not only meets the computation and communication needs
of most tasks but also increases the efficiency and security of
the system. However, there are many issues that need to be
addressed in MEC.

(1) The dynamically changing environment. There are multiple
types of tasks in a heterogeneous environment, and they
are generated at uncertain times. In addition, the distribu-
tion of resources within the system is constantly changing.
Therefore, in a dynamically changing environment, it is a
challenge to make offloading decisions that will benefit
the utility of the global system based only on the current
network, device states, and task scenarios.

(2) The complex optimization problem. It is important to make
the system fully utilize the computational resources to sat-
isfy as many tasks as possible for execution. However, such

https://doi.org/10.1016/j.future.2023.04.004
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.04.004&domain=pdf
mailto:tongzhao@hunnu.edu.cn
https://doi.org/10.1016/j.future.2023.04.004

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

(
r
e
R
v
G
s
c
b
C
c
1
a
T
d
i
t
L
a
I
t
t
m
t
r
m
i

m
B
p
t
F
s

p

offloading optimization is usually considered as an NP-hard
problem. The optimal solution cannot be obtained in poly-
nomial time [8]. Therefore, traditional offloading strategies
have difficulty fully adapting to various environments in
MEC, resulting in a sharp decrease in QoE for users.

(3) The data privacy problem. Due to large amounts of data are
transmitted, there is a great risk of leakage. Traditional pri-
vacy protection technologies, such as physical layer secu-
rity technologies [9], blockchain privacy technologies [10]
and trusted assessment frameworks [11], are not effective
in avoiding the problem. In addition, the general data pro-
tection regulation (GDPR) enacted by the European Union
makes it illegal to trade in leaked data. This makes it urgent
to address the problem of user privacy.

To solve the first two problems, deep reinforcement learning
DRL) is an effective approach. In the field of machine learning,
einforcement learning (RL) can learn from experiences. It has
xcellent decision-making ability. However, algorithms based on
L cannot solve the problem of high-dimensional data caused by
ariable environmental states. Such as, Q-learning, Sarsa, Policy
radients. Deep learning (DL) driven by big data has an out-
tanding perception of dynamic environments [12]. This approach
ompensates for the shortcomings of RL. In addition, DL uses a
ack-propagation of errors algorithm to optimize the objectives.
ombining DL and RL, DRL is widely applied in MEC to solve
hanging environments and complex optimization problems [13,
4]. Deep Q-network (DQN) is a classical DRL algorithm that uses
neural network instead of a table in the Q-learning algorithm.
he high-dimensional state problem of agent interaction with a
ynamic environment is well solved. A better offloading decision
s also obtained to complete the task with low energy consump-
ion within the deadline. For the third privacy problem, Federated
earning (FL) is an emerging solution. FL is proposed in [15] as
decentralized learning approach to protect user data privacy.

t allows each device to use local data for model training. After
his, the edge server will collect and aggregate all the models
o obtain a global model. Therefore, the device transmits small
odels to the edge to avoid a large amount of private data

ransmission. While reducing the risk of privacy leakage, it also
elieves the bandwidth pressure. In addition, distribution after
odel aggregation is beneficial to solve the problem of data

slands.
In this paper, we integrate the DRL and FL into MEC by opti-

izing the latency and energy consumption of task offloading.
y utilizing edge servers, the computation and communication
ressure of end devices are relieved within the constraints of
he service experience guarantee (SEG) model. In addition, the
L training method further improves the system efficiency and
ecurity. The bi-objective optimization of multi-type task offload-
ing based on multi-capability federated DQN (M2FD) algorithm is
roposed. The main contributions of this paper are as follows.

(1) We propose a two-layer offloading scenario that handles
four types of tasks in different applications. In addition,
heterogeneous processor computing powers are consid-
ered. In this IoT environment, the task model is introduced.
We construct communication, computational models and
SEG model, based on multi-type tasks and heterogeneous
computing capabilities.

(2) We investigate a distributed model based on FL. FedAvg is
used to aggregate the models of agents in the edge. The
training approach not only enables the agents to accelerate
the convergence of the model but also optimizes the task
processing latency and energy consumption. In addition,
the security and privacy of the user data are preserved.
537
(3) We develop a bi-objective optimization strategy for latency
and energy consumption with the entropy method. More-
over, we consider the task failure rate to ensure the user
QoE. Due to the large number of tasks and the dynamic
network, it is difficult to obtain an optimal policy by tra-
ditional machine learning methods. M2FD is proposed to
solve this problem.

(4) We compare the FL model in an edge environment with a
centralized learning model in a distributed framework. The
performance experiments include task size, task scenarios
and task density. Under different conditions, the average
system utility of the M2FD algorithm is improved by 15%,
15%, and 13%, respectively.

The remainder of this paper is organized as follows. Section 2
describes the related work. Section 3 presents the overview and
models of the system. Section 4 formulates the model problem.
Section 5 proposes the M2FD algorithm in detail. Section 6 evalu-
ates and analyzes the proposed algorithm by experiments. Finally,
Section 7 concludes this work.

2. Related work

2.1. Task offloading in mobile edge computing

To relieve the computation and energy consumption pressure
on end devices, offloading task to edge computing is widely
considered an effective solution [16–18]. However, in hetero-
geneous MEC environments, the overall efficiency of offloading
decisions is influenced by many factors. Due to the limited com-
puting power of a single MEC server, Zhou et al. [19] studied the
task offloading problem based on collaborative MEC servers. The
task offloading algorithm based on artificial bee colony, particle
swarm optimization and genetic algorithm (ABC-PSO-GA) is pro-
posed to solve the problem. The goal is to minimize the ratio
of actual latency to maximum allowed latency. Heterogeneous
server resources and fairness among all tasks are also consid-
ered. Tan et al. [20] investigated the problems of task offloading,
computation, and communication resource allocation in a collab-
orative mobile edge computing network. A two-layer alternate
approach combining the heuristic algorithm and the DRL algo-
rithm is proposed. The optimization objective is to minimize the
total user energy consumption under the latency constraint. Dong
et al. [21] considered the competition for cache resources and
proposed a joint optimization problem for content caching and
computational offloading. It is transformed into two subproblems.
By solving them and performing simulations, the results show
that this approach reduces the average response time of a task by
20.52% compared to the baseline. In the above studies, the ratio of
actual latency to maximum allowed latency, task latency, or user
energy consumption was used as an independent optimization
objective. However, task latency and energy consumption are not
optimized as a bi-objective. In addition, they do not take into
account the type of server resources and tasks in a heterogeneous
environment. The QoE of users should also be guaranteed.

2.2. Deep reinforcement learning-based mobile edge computing

Artificial intelligence (AI) is flourishing, especially DRL, driven
by algorithms, computing power and big data. An increasing
number of studies are applying it to IoT and MEC fields [22–
25]. Mohammed et al. [26] proposed an RL-based active sensor
selection mechanism to solve the target localization problem
in IoT, and a state–space reduction technique to optimize the
placement and selection of computational nodes in the system.
Chen et al. [27] studied a DRL-based algorithm to solve collabo-
rative mobile computing offloading under a three-layer network

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

m
m
t
f
T
t
o
m
r
i
c
t
o
i

2

t
M
J
(
I
s
p
v
a
e
s
s
I
o
a
D
D

w
m
o
w
t

3

s

Fig. 1. The two-layer MEC system architecture and workflow.
d
e
d
d
t
m
t
c
r
o
l
o
k
o
c
e
a
t
t
c
c
m
o
p
a
t
i

F
e
D
t
t
t
t
s
t
s
F
l
i

3

3

a

odel. The priority of the experience pool is set to select the
ost effective experience samples to complete the learning and

raining. Zhu et al. [28] proposed a DRL-based multi-agent of-
loading scheme considering the uncertainty in the environment.
he objective is to determine the optimal offloading decision and
o minimize the total task processing latency. In [29], the issue
f multiple connections and task offloading in an MEC environ-
ent is considered. To solve this problem, a multi-agent deep

einforcement learning (MADRL) algorithm is proposed. It aims to
mprove the collaboration rate of edge devices and minimize the
omputational latency. Unfortunately, these works paid attention
o minimizing the system cost. During model training, the risk
f data leakage from end devices is high. As a result, there is an
ncreased probability of threats to information security.

.3. Federated learning-based mobile edge computing

FL proposes a solution to the user privacy issues by sharing
he model rather than transmitting the data. Many studies in
EC are using FL extensively to avoid data leakage [30–32].

i et al. [33] investigated the edge assisted federated learning
EAFL) to reduce the computing pressure on lagging end devices.
n addition, the task offloading rate is optimized to obtain the
mallest learning latency of the system. Shinde et al. [34] pro-
osed an FL-based distributed learning framework to solve the
ehicle user computation offloading problem. In this framework,
genetic algorithm is used to minimize the overall latency and
nergy consumption. Wang et al. [35] considered the task data
ize variation with time and adjusted the dynamic resources. A
upport vector machine (SVM) based FL algorithm was proposed.
ts objective is to minimize the delay and energy consumption
f the offloading tasks. Although many studies of FL frameworks
lready exist, there are currently few works combining it with
RL. To address the challenge of high-dimensional data in MEC,
RL is an effective means.
In this paper, we present a multi-type task offloading model

ith limited heterogeneous computing resources. Based on this
odel for a MEC environment, an FL-based DRL bi-objective
ptimization algorithm is proposed. The user’s QoE is guaranteed
hile minimizing overall system latency and energy consump-
ion. In addition, user data privacy is also protected.

. System overview and model

In this section, we describe an overview of the two-layer MEC
ystem. In addition, we introduce all the models in this system.
538
3.1. System overview

An MEC network model is considered, consisting of the end-
device layer and edge-server layer. On the one hand, K smart
evices are located at the end-device layer, such as cars, cam-
ras, and smartphones. Multi-type of tasks are generated by the
evices due to the different application requirements on the
evices. Such as text, image, audio, and video. Based on the FL
raining framework, each device trains and updates the local
odel using the privacy task data produced by the device. On

he other hand, the edge-server layer contains a base station
onsisting of N servers. The servers take two main roles: (1) To
educe system cost, provide computing power support for ends’
ffloading tasks. (2) To protect data privacy, collect and aggregate
ocal models of end devices. Due to the respective characteristics
f above chips and adaptation to real MEC environment, three
inds of processing capabilities are integrated on the edge servers
f the system. Due to the various characteristics of the individual
hips on the market and their adaptability to the actual MEC
nvironment, different processors, namely CPU, GPU, and FPGA,
re integrated on the system’s edge servers, which are designed
o fit the reality and improve the efficiency of the system. CPU as
he current general purpose processor is able to handle complex
onditions and branches, and it has better capability for text pro-
essing. Chips such as the GPU and FPGA are also coming into the
ainstream. GPU highlights the maximization of computational
utput in the chip design. It has obvious advantages in floating
oint matrix operations. Different functions and data types are
ccommodated by customizing the FPGA instructions. In addition,
he wireless channel between the end devices and edge servers
s responsible for transmitting tasks and model parameters.

The system architecture and workflow is illustrated in Fig. 1.
irst, the real-time task information and resource status of the
dge servers are input to the local DRL model. Second, the local
RL model selects an offloading scheme for the task. Meanwhile,
he system cost and utility of the scheme are calculated. Third,
he system determines whether the scheme is executed over
he deadline. Fourth, if the latency is higher than the deadline,
he task fails and is discarded. Otherwise, an offloading scheme
uitable for the task is obtained. Fifth, in a fixed training round,
he edge server collects the local DRL models of the devices
elected for training. They are aggregated into a global DRL model.
inally, all end devices receive the global model and update the
ocal model. The main notions in the MEC model are summarized
n Table 1.

.2. System model

.2.1. Task model
In the MEC environment, each device generates only one task

t the current time slot. The end device k generates independent

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

{
t
3
α

r
O
e
g
i

g
i
i
t
d

r

w
n

3

d

l
a
c

T

Table 1
Summary of notions in the model.
Notion Definition

hn
k The channel gain between device k and server n

rnk The transmission rate between device k and server n
E loc
k The energy consumption of local computing in device k

Eoff
k,n The energy consumption of offloading to server n

En
k The total energy consumption of the task generated by device k

Etot The total energy consumption of all tasks
Mk The task generated by device k
Rfai The task failure rate
T loc
k The offloading latency of local computing in device k

T off
k,n The offloading latency of offloading to server n

Twait
n The waiting time for the task to be calculated on server n

T trt
k,n The response time of the task

T trt
avg The average response time for all tasks

Uk The system utility of the task
αddl
k The deadline of the task Mk

αsi
k The size of the task Mk

αsub
k The submission time of the task Mk

α
tp
k The type of the task Mk

γk The computing frequency of device k
γ

pro
n The computing frequency of different processors on server n

tasks. At time slot t, the task attributes are defined as Mk (t) =

α
tp
k (t) , αsi

k (t) , αsub
k (t) , αddl

k (t)
}
. α

tp
k (t) represents the type of

ask, where 0 denotes text, 1 denotes image, 2 denotes audio, and
denotes video. αsi

k (t) represents the size of task. αsub
k (t) and

ddl
k (t) represent the submission time and deadline of the task,
espectively. In addition, independent tasks follow 0–1 offloading.
ptionally, it can be computed locally, or be offloaded to an
dge server for computation. The offloading decision of device k
enerating a task at time slot t is denoted by ∂k(t). If ∂k(t) = 0, it
ndicates that the task is computed locally. If ∂k(t) > 0, it means
that the task is offloaded to the edge server for computation.

3.2.2. Communication model
When ∂k(t) > 0, the end device communicates with the edge

server via wireless channels. The device needs to consume energy
to send tasks. The model considers devices and servers commu-
nicating with each other via frequency division multiple access
(FDMA) technology, with each device being allocated bandwidth
B. Assume that hn

k (t) denotes the channel gain between device k
to server n, which represents the fading and fading characteristics
of the channel, defined as hn

k (t) = ϕn
k (t) gn

k (t), where ϕn
k (t)

represents the small-scale channel fading power gain in time t.
n
k (t) denotes the large-scale channel fading power gain, which
s determined by the distance between device k and server n and
s negatively related to the distance [36,37]. Thus, according to
he Shannon–Hartley formula, the channel transmission rate is
enoted as

n
k (t) = Blog2

(
1 +

Pkhn
k (t)

N0B

)
, (1)

here Pk indicates the transmit power of device k and N0 is the
oise density [38].

.2.3. Computation model
There are two different computational sub-models for the two

ifferent computational locations of the task Mk by devise k.
Task computing locally.When ∂k(t) = 0, the taskMk is executed

ocally. γk is used to denote the CPU frequency of local device k,
nd c0 is the number of CPU cycles to calculate 1 bit of data. The
omputation latency of the task locally can be defined as

loc
k (t) =

αsi
k (t) c0

. (2)

γk

539
ηk(γk)
2 represents the energy consumption for each compute

node by device k, where ηk is the effective switched capaci-
tance [16]. Therefore, the local computing energy consumption
of a task is defined as

E loc
k (t) = ηk(γk)

2αsi
k (t) c0. (3)

Task computing at the edge servers. After the task Mk is of-
floaded to one of the edge servers, it will be allocated a certain
amount of computing resources. Since the task size is greatly
larger than the computation result size, only the latency of the
task transmission up-link is considered, without considering the
computation result return. For different types of tasks, different
processing speeds exist for heterogeneous processors. The sum of
transmission latency and computation latency is defined as

T off
k,n (t) =

αsi
k (t) cpron

γ
pro
n

(
α
tp
k (t)

) +
αsi
k (t)

rnk (t)
, (4)

where cpron represents the number of different processor cycles
on server n to compute 1 bit of data, and γ

pro
n

(
α
tp
k (t)

)
denotes

the frequency of different processors for processing various types
of tasks in the server n. In addition, the task has a waiting time
Twait
n (t) for computation when is offloaded to the edge server,

which depends on the task queue of the computing server. If the
queue is empty, Twait

n (t) = 0, otherwise, Twait
n (t) is the sum of

the computation times of all tasks in the queue. Then, the energy
consumption in the transmission and computation process are
considered mainly [39]. The total energy consumption is defined
as

Eoff
k,n (t) = Pk

αsi
k (t)

rnk (t)
+ αsi

k (t) qn, (5)

where qn is the energy consumption for computing 1 bit of data.
Therefore, for the task Mk, the task response time (TRT) and

energy consumption are defined as

T trt
k,n (t) =Γ (∂k(t))T loc

k (t)

+ (1 − Γ (∂k(t)))
(
T off
k,n (t) + Twait

n (t)
)

, (6)

and

En
k (t) = Γ (∂k(t))E loc

k (t) + (1 − Γ (∂k(t))) E
off
k,n (t) , (7)

respectively, where Γ (∂k(t)) is an indicator function. If ∂k(t) = 0,
Γ (∂k(t)) equals 1, otherwise, it equals 0.

3.2.4. SEG model
To guarantee user QoE, the task is completed on the edge

server needs to satisfy

αsub
k (t) + T trt

k,n (t) ≤ αddl
k (t) . (8)

When the TRT is within the deadline, i.e., Eq. (8) is valid, the task
decision is executed. Otherwise, the task fails and is discarded.

4. Problem formulation

In this section, first, we introduce the four optimization in-
dicators of the model. Next, we describe the specific optimiza-
tion problem. Finally, the method of setting the weights in the
optimization problem is analyzed.

4.1. Optimization indicators

With the two-layer MEC model, it is usually necessary to
offload tasks to the edge server for computation owing to the
limitation of end device resources. Therefore, the scheme of task
offloading and resource allocation is formulated via the M2FD

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

a
r
E
c

T

a

U

r
t
t
f
β

c
n

4

t
a
o
t
r

m

C
p
(
p
s

4

M
t
s
r
w
d
b
[
b
s
t

s
m

y

lgorithm. To measure the algorithm performance, the average
esponse time of the tasks T trt

avg , the total energy consumption
tot , the task failure rate Rfai, and the utility of the system Uk are
onsidered, which can be described as

trt
avg =

1
V

T∑
t=1

K∑
k=1

T trt
k,n (t), (9)

Etot =

T∑
t=1

K∑
k=1

En
k (t), (10)

Rfai =
Vfai

V
, (11)

nd

k (t) =β1 (t)
T loc
k (t) − T trt

k,n (t)

T loc
k (t)

+ β2 (t)
E loc
k (t) − En

k (t)
E loc
k (t)

, (12)

espectively. In Eq. (9), V = TK denotes the total number of
asks during the total system runtime T. In Eq. (11), Vfai represents
he number of failed tasks. The β1 (t) and β2 (t) are two weight
actors in Eq. (12). The relationship between the weight factors is
1 (t) + β2 (t) = 1 and β1 (t) , β2 (t) ∈ [0, 1]. In the subsequent
alculations, the T loc

k (t) and T trt
k,n (t) with the E loc

k (t) and En
k (t), are

ormalized into the calculation.

.2. Optimization problem

The system aim to maximize the system average utility for
asks that do not expire in the MEC environment. With this
pproach, the average TRT and the total energy consumption
f the tasks are minimized. The QoE is also guaranteed under
he constraints of the SEG model. The optimization problem is
epresented as

ax
1
V

T∑
t=1

K∑
k=1

Uk (t) (13)

s.t. y ≤ Y (13a)

β1 (t) , β2 (t) ∈ [0, 1] (13b)

∂k(t) ∈ {0, 1, . . . , K } (13c)

αsub
k (t) + T trt

k,n (t) ≤ αddl
k (t) . (13d)

onstraint (13a) states that the currently allocated server com-
uting node y is within the total number of nodes Y . Constraint
13b) denotes the dynamically changing weight factors with up-
er and lower bounds. Constraint (13c) means that the tasks
elect only one offloading location.

.3. Analysis of optimization objective weights

To weigh the importance of optimization objectives in real
EC scenarios, it is important to set appropriate weight fac-

ors. Currently, some researchers use a subjective approach to
et the weights of multiple optimization objectives. However,
esearchers cannot easily balance the importance of different
eighting factors in a real-time changing environment. In ad-
ition, there are some limitations of fixed weights. Entropy has
een widely used in engineering, sociology and economic fields
40]. The entropy weighting method determines objective weights
ased on the magnitude of the variability of the indicators. As-
uming that there are d samples and p optimization objectives in
he system, the calculation steps are as follows:
540
Step 1: Since the size of the optimization objectives is incon-
istent, there is a necessity to normalize the objectives. In this
odel, normalize the data of each optimization objective by

i,j =
xi,j − min

{
x1,j · · · , xd,j

}
max

{
x1,j · · · , xd,j

}
− min

{
x1,j · · · , xd,j

} . (14)

Step 2: For one optimization objective, the proportion of each
sample to the total value is calculated, and the equation is ex-
pressed as

pi,j =
yi,j∑d
i=1 yi,j

(i = 1, 2, . . . , d; j = 1, 2, . . . , p) . (15)

Step 3: The information entropy of the data is obtained accord-
ing to

ej = − ln (d)−1
d∑

i=1

pij ln pij. (16)

Step 4: The weight of each optimization objective is obtained
by calculating the information redundancy from

βj =
Dj

p −
∑p

j=1 Dj

(
Dj = 1 − ej

)
. (17)

In the model, the number of samples d is the number of
computing nodes that can be selected. The number of optimiza-
tion objectives p is 2, which are TRT and energy consumption,
respectively. First, the system calculates the TRT and energy con-
sumption values of the computing nodes that are available for
offloading. One optimization objective corresponds to a set of{
x1,j · · · , xd,j

}
. Then, two weight values are obtained by calculat-

ing according to the above steps.

5. M2FD algorithm design

In this section, the M2FD algorithm is presented, and we intro-
duce its theoretical background. In addition, the specific details of
the M2FD are described.

5.1. Theoretical background of M2FD algorithm

5.1.1. The DQN algorithm
Currently, many issues arise in the study of traditional algo-

rithms. These include the coupling relationships between com-
putational and communication resources, and the problem of
high-dimensional state data. These issues lead to the failure of
traditional methods to obtain a better solution in effective time.
RL belongs to the field of machine learning, which focuses on
maximizing the cumulative reward and training the agent to take
the most favorable action in different environments. The main
components of RL are the agent, environment, state s, action a,
and reward r. The agent selects an action to execute, causing
the environment to change its state. The environment determines
the strengths or weaknesses of the new state, and thus obtains
a reward value, either positive or negative. During the inter-
action with the environment, the agent generates the optimal
behavioral policy by continuously trial-and-error and maximizing
the cumulative reward. However, it is difficult for RL to obtain
the states corresponding to the current and next actions in the
environment. Because RL is weak in perceiving the environment,
it takes a lot of time to read a lot of environmental information.
To solve the above problems and adapt to the large-scale network
environment, it is a very effective decision to embed DL into RL.
DL is a machine learning algorithm that relies on experience. It
achieves optimization of the model by learning the deep nonlin-

ear network structure and the essential features of the data set.

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

I
w

p
a

n combination with DL, DRL makes the system solve faster and
ith better performance.
DQN is an algorithm that belongs to DRL. The maximum ex-

ected gain that the algorithm can achieve by taking action a
fter observing a sequence of state spaces s under the strat-

egy π is called the optimal action-value function, denoted as
Q ∗ (s, a). According to the Bellman equation, the formula for
updating the action value function can be expressed as Q ∗ (s, a) =

r + γ maxa′ Q ∗
(
s′, a′

)
, where γ represents the degree of weak-

ening of the future gain, namely the discount factor. In the DQN
algorithm, a neural network is used to estimate the action-value
function, which can be expressed as Q (s, a; θ) ≈ Q ∗ (s, a).
Therefore, the formula for calculating the Q-target network in
DQN can be expressed as

Q target (s, a; θ) = r + γ max
a′

Q target (s′, a′
; θ ′

)
. (18)

On the basis of Q-learning, DQN makes many improvements that
enable the performance to be improved.

First, the problem of the high-dimensional state and action
space is solved. The Q-learning uses a table to store the state and
action space. However, with continuous high-dimensional states,
the modifying and finding expenses of tables are extremely high.
Therefore, DQN uses deep neural networks to fit this process.
After the states are input into the neural network, a series of
action values are computed. The action with the best result is
selected using a greedy strategy. In addition, the model learns
data features continuously and receives feedback for adjustment
until the convergence.

Second, the target network is added to avoid the fluctuation
problem during the training step. Two networks with identical
structure but different parameters exist in the DQN. They are
the Q-evaluation network, which updates parameters in real-time,
and the Q-target network, which updates parameters in fixed
iterations, respectively. In iteration i, the Q-network is trained by
minimizing the loss function. The mean square error loss can be
expressed as

L (θ) = E

[(
r + γ max

a′
Q

(
s′, a′

; θi−1
)
− Q (s, a; θi)

)2
]

, (19)

where the parameter θi−1 of the previous iteration is fixed. After
several iterations, the parameters of the Q-evaluation network
are all copied to the Q-target network. This method makes the
algorithm update stably and the error is reduced.

Third, an experience pool is used to improve training perfor-
mance. The experiences are stored in the experience pool after
they are obtained from explorations or actions. An experience
can be represented by

(
s, a, r, s′

)
. The experiences are randomly

selected to update the network, which makes the correlation
between experiences decrease. Meanwhile, each experience can
be learned repeatedly, increasing the experience utilization. In
addition, the diversity of experiences within a batch is increased
and more environmental features are learned.

Finally, an ε-greedy strategy is used to improve the explo-
ration rate. This strategy allows the system to have a certain
probability of randomly selecting an action, denoted as

a =

{
argmax

a
Q (s, a; θ) , ε ≤ e ≤ 1

random, 0 ≤ e < ε
, (20)

where e (0 ≤ e ≤ 1) is a random value. The ε value decreases
with the increasing iterations, which ensures the accuracy of the
model after convergence.

Based on the above DQN algorithm properties, the optimiza-
tion problem is modeled as a Markov decision process (MDP).
This is used to solve the task offloading and resource allocation
problems under the two-layer MEC model. The pseudocode of the
DQN algorithm is shown in Algorithm 1.
541
Algorithm 1: The DQN algorithm
Input: Environment state s
Output: Offloading action a

1 Initialize experience pool capacity Cep;
2 Initialize Q-evaluation and Q-target network parameters;
3 for episode = 1, E do
4 Initialize s1 from environment;
5 for t = 1, T do
6 With probability ε, choose a random action at ;

otherwise, choose at = argmax
a

Q (s, a; θ);

7 Execute action at and obtain reward rt from
Q-evaluation;

8 Transfer the environment state to st+1;
9 Add experience quadruple (st , at , rt , st+1) to

experience pool;
10 Sample random mini-batch of transitions

(sj, aj, rj, sj+1) from experience pool;
11 Calculate the value of the Q-target using

yj =

{
rj, for terminal at step j + 1
rj + γ max

a′
Q

(
sj+1, a′

; θ ′
)
, otherwise ;

12

13 Perform a gradient descent step on(
yj − Q

(
sj, aj, θ

))2;
14 Every υ steps, clone Q-evaluation parameters to

Q-target;
15 end
16 end
17 return

5.1.2. Federated learning framework
Classical machine learning algorithms are trained with many

samples to obtain a model with good performance. Meanwhile,
task information from different devices is stored centrally. An ex-
ample is the traditional DRL-based centralized framework. How-
ever, the security of the exposed data suffers from a huge threat.
In addition, in some special environments, such as finance, health-
care and government, data are not allowed to be shared with
the outside world. This results in data that cannot be stored
centrally and a centralized approach to DRL model training is
not achievable. To fit a variety of environments and protect
device data privacy, FL is deployed. In the MEC system, the
goal of FL is to achieve joint modeling of many devices and
enhance the effectiveness of the model based on ensuring data
privacy and security. First, FL applies techniques such as differ-
ential privacy, homomorphic encryption, and multiparty secure
computing. Through these encryption mechanisms for parameter
exchange, the risk of data leakage is greatly reduced. Second,
for unreliable mobile devices, FL cancels some training rounds of
the device to avoid reducing the overall model efficiency. Finally,
the devices upload model parameters to the server, effectively
reducing the bandwidth burden and communication costs.

In summary, we propose an M2FD algorithm. The algorithm
employs an FL-based model training approach to secure the data.
Meanwhile, the problem of multi-type tasks and heterogeneous
processor resources is transformed into an MDP. The objective
is to increase the system utility while reducing the task failure
rate. In addition, M2FD uses the DQN algorithm in DRL. The
DQN algorithm is used locally to generate offloading decisions.
Each end device submits a task request and trains the model
locally. The global model is aggregated and distributed in fixed
rounds until the model converges. The better offloading scheme
is obtained.

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

5

5

e
s
i
a

S
a
t
s
n
t

Fig. 2. The process of local training.

.2. Training process of DQN model based on the FL

.2.1. Process of local training
The DRL agent based on the DQN algorithm is set at each

nd device. For each device, the details of the DQN algorithm are
hown in Fig. 2. The system optimization problem is translated
nto an MDP presented as follows, which includes the state space,
ction space and reward function.

tate space. At the beginning of each time slot t, the device sends
request for a computational task to the local model. Meanwhile,
he status information of all available computing nodes on the
erver and locally is collected. The system cost of all available
odes and the type of task are defined as the state space. Thus,
he state space located in time slot t can be described as

s (t) =
(
s0 (t) , . . . , si (t) , . . . , sn (t), αtp

k (t)
)
,

si (t) =

{
β1 (t) T loc

k (t) + β2 (t) E loc
k (t) , i = 0

β1 (t) T trt
i,k (t) + β2 (t) E i

k (t) , i ̸= 0 .
(21)

Action space. At time t, the system decides the task offloading
location based on the task information and resource allocation.
Local and the edge of the computing nodes can be selected loca-
tion of offloading action. The action space is all optional nodes.
Therefore, the action space can be represented as

a (t) = (a0 (t) , . . . , ai (t) , . . . an (t)) ,

ai (t) ∈

{
{0, 1} , i = 0
{0, 1, 2, 3} , i ̸= 0 ,

(22)

where a0 represents whether the task is computed locally, and
a1 to an represent the task is offloaded to the computing node
of the edge server. When i ̸= 0, ai (t) = 1 means that the task
is computed at the ith server integrated CPU node, ai (t) = 2
represents that it is computed at the GPU node, and ai (t) = 3
indicates that it is computed at the FPGA node. Assuming that the
nth server CPU computing node is selected and the action space
is denoted as a (t) = (0, 0, . . . , 0, 1).

Reward function. After performing the action a(t) in the current
state s(t), the reward function r(t) is used to calculate the reward
r(t + 1) for the next time. The function defines the reward
obtained by leaving the state s(t), namely s(t) corresponds to
r(t + 1). To reduce the system cost and increase the system
utility, the negative of the weighted sum of the TRT and energy
consumption is used as the reward, which is denoted as

r t = −
(
β t T trt t + β t En t

)
, r t ∈ [−1, 0] . (23)
() 1 () k,n () 2 () k () ()

542
5.2.2. Process of model aggregation and distribution
After the K devices are trained for φ rounds, the local models

W1 (t) ,W2 (t) , . . . ,WK (t) are sent to the node responsible for
aggregation at the edge at time t. Next, the aggregation node
receives and updates the models. In this model, the heteroge-
neous computing nodes in the MEC are considered, mainly the
differences in the node computation rates in the devices. The state
information in the input space of the DQN model is affected by
the heterogeneity of the devices, i.e., s (t) of Eq. (21). In practice,
the weighted sum of the response time and energy consumption
required by the computing nodes differs significantly due to the
large difference in computing power between local and edge-
side servers. Therefore, the impact of local differences in node
computing power during model aggregation is small. The new
global model Wg (t + 1) is constructed by using the federated
averaging, which can be represented as

Wg (t + 1) =
1
K

K∑
k=1

Wk (t). (24)

Finally, the global model parameters are distributed to the all
devices, which can be expressed as

Wk (t + 1) = Wg (t + 1) . (25)

The above three steps are one aggregation process, and the model
is trained iteratively according to this process until it converges.
The M2FD algorithm for the FL training process is summarized in
Algorithm 2.

6. Performance evaluation

In this section, we first introduce the platform and environ-
ment for the experiments. Then, we make a suitable choice of
hyperparameters for the experiments. Finally, we compare and
analyze the performance in different environments for FL-based
training and traditional distributed-based training.

6.1. Experimental settings

The Python and TensorFlow are employed in the implemen-
tation of the M2FD algorithm. In addition, we use a Cloudsim
to simulate the process of task offloading and resource allo-
cation. The Cloudsim platform supports a customized network
topology, computing node resources, and task offloading policy.
In the experiment, the arrival time of the tasks is based on a
Poisson distribution within a certain range; the sizes of the tasks
are distributed normally within a certain range [41]. The main
experimental parameters are described in Table 2, where the γ

pro
n

array represents the computation frequencies of the four task
types corresponding to the processor in the order of text, image,
audio, and video [38].

6.2. Hyperparametric experiment

In the M2FD algorithm, there are many important hyperpa-
rameters that determine the final performance of the algorithm.
These include the activation function, batch size and discount
factor.

The activation function mainly performs a non-linear trans-
formation of the data, which solves the problem of the lack of
classification ability of linear models. When complex data are
input, it can better represent the non-linear and complex func-
tion mapping between input and output. This makes the neural
network more powerful. The most frequently used activation
functions are softplus, sigmoid, tanh, and relu, which can be
denoted as (x)
softplus (x) = log 1 + e , (26)

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

t

a

r

r
p

Algorithm 2: The M2FD algorithm
Input: Task set and device states
Output: Task average response time, total energy

consumption and failure rate
1 Edge server side: Initialize the global model with

random parameter values Wg (0) at time t = 0;
2 End device side: Download Wg (0) from the edge server

and let Wk (0) = Wg (0), (k = 1, 2, · · · , K);
3 for t = 1, T do
4 End device side:
5 for each end device k ∈ K in parallel do
6 Download W (t) from edge;
7 Let Wk (t) = Wg (t);
8 for each task generated by device k do
9 Select a suitable computing node for the task

based on Wk(t) with Algorithm 1;
10 if αsub

k (t) + T trt
k,n (t) ≤ αddl

k (t) is satisfied at the
selected computing node then

11 Execute or offloading the task;
12 Calculate the task response time and energy

consumption;
13 else
14 The task failure;
15 end
16 Train the local model Wk(t);
17 end
18 Upload the trained model parameters Wk(t + 1) to

the edge;
19 end
20 Edge server side:
21 Receive local models of all devices;
22 Use the federated averaging to construct global model

Wg (t + 1) according to Wg (t + 1) =
1
K

K∑
k=1

Wk (t);

23 Distribute the global model;
24 end
25 return

Table 2
Experimental simulation parameters.
Parameters Value

B (MHz) 2.0
N0 (dBm/Hz) −174
Pk (W) 0.5
T (s) 104

γk (GHz) Unif(4,5)
γ

cpu
n (GHz) [Unif(9,10), Unif(7,9), Unif(6,8), Unif(6,7)]

γ
fpga
n (GHz) [Unif(8,10), Unif(8,10), Unif(8,10), Unif(7,8)]

γ
gpu
n (GHz) [Unif(8,9), Unif(9,10), Unif(7,9), Unif(7,8)]

ηk 10−28

sigmoid (x) =
1

1 + e−x , (27)

anh (x) =
ex − e−x

ex + e−x , (28)

nd

elu (x) =

{
x, x ≥ 0
0, x < 0 , (29)

espectively. The softplus, sigmoid, and tanh functions contain ex-
onential operations, and the derivation involves division when
543
Fig. 3. Convergence of different activation functions. (a) Trend of the average
loss. (b) Trend of total loss.

performing backward error propagation. This causes the values in
the input layer to become increasingly smaller as they approach
the output layer, causing the gradient to vanish. In contrast, the
relu is better suited for backward propagation, eliminating the
problem. We compare four convergences, as shown in Fig. 3.
Fig. 3(a) is the loss value for each episode. Softplus, sigmoid
and tanh oscillations are larger than relu during the iterations.
Starting from the 1750th episode, the model converges, and the
loss value tends to 0. Fig. 3(b) is the total loss value until the
current episode. In general, the total loss of relu is smaller than
the other three activation functions from the 750th episode, and
the subsequent convergence is at the 125th episode. Therefore,
setting the activation function to relu is the most appropriate in
this experiment.

The batch size is an important parameter that indicates the
number of data in each batch. Each episode is fed with batch
size samples for training. Moreover, the average loss value of
them is calculated to update the model parameters. The batch
size determines the direction of gradient descent. In addition, as
the batch size increases, the direction of descent is determined
more accurately, and the training oscillations caused are lower.
The batch size is set to 16, 32, 64 and 128 in the M2FD algorithm,
respectively, as shown in Fig. 4. Fig. 4(a) indicates the trend
of loss for each episode, and the oscillation of batch size from
16 to 128 gradually decreases. This is because within a certain
range, the smaller the batch size is, the larger the error in the
gradient valuation, resulting in a larger oscillation. Fig. 4(b) shows
the trend of the total loss value until the current episode. In

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

e
r
i
m
i
e
t
a
f
f
t
f
t
r
0
0
t
d
A
s
a

i

Fig. 4. Convergence of different batch sizes. (a) Trend of the average loss. (b)
Trend of total loss.

episode 375, the total loss of batch size 128 is smaller than that
of the other three batch sizes, and the gap subsequently remains
larger. Therefore, batch size 128 is used as the experimental
hyperparameter in the performance experiments.

The main effect of the discount factor γ is to reduce the influ-
nce of future rewards on current decision-making. Since future
ewards contain uncertainty, rewards are expected to be received
n the present rather than the future. In the extreme case, γ = 0
eans that the system only focuses on the current state; γ = 1

mplies that the system considers the present and the future
qually important. Choosing the right discount factor can avoid
he reward value from tending to infinity. In the experiments,
common range of discount factors from 0.5 to 0.8 is observed

or convergence trends, as shown in Fig. 5. The loss calculated
or each episode is presented in Fig. 5(a). The oscillations of
he model are obviously reduced after the choice of activation
unction and batch size. However, different discount factors affect
he final convergence value of the model. The convergence value
eaches approximately 0.005 for a discount factor of 0.8, while
.5, 0.6, and 0.7 converge to approximately 0.009, 0.008, and
.007, respectively. Fig. 5(b) demonstrates the total loss as of
he current episode. At the beginning of the model training, the
iscount factors 0.7 and 0.8 are better than the other two values.
t the 1500th episode, the total loss of the discount factor 0.8
tarts to be smaller than the total loss of 0.7. Therefore, the
ppropriate value of the discount factor is 0.8 in the experiment.
The main hyperparameters in the experiment are summarized

n Table 3.
544
Fig. 5. Convergence of different discount factors. (a) Trend of the average loss.
(b) Trend of total loss.

Table 3
Main hyperparameters.
Hyperparameters Value

The activation function Relu
The batch size 128
The discount factor γ 0.8
The experience pool capacity Cep 100
The greedy probability ε 0.5
The layers of neural network 4
The learning rate α 1e−3
The loss function Mean-square error

6.3. Performance experiments

The performance experiments first compare the performance
of the DQN, Q-leaning, Sarsa and weight round robin (WRR) algo-
rithms under a centralized model. DQN is the RL algorithm used
in M2FD. Q-learning and Sarsa are also RL algorithms, but the
main difference between them and DQN is that they use a Q-table
to calculate Q values instead of a neural network. WRR is a classic
task offloading algorithm. Then, to evaluate the performance of
the proposed M2FD algorithm, the centralized model training-
based algorithm is used for comparison. The model differs from
M2FD mainly in the training method. It is trained by using a
DRL agent that collects data from all devices at each time slot
for training. The centralized algorithm is based on the DQN al-
gorithm in DRL to find an appropriate system policy. A suitable
offloading node is obtained after inputting information about the
task. However, the centralized algorithm has a high amount of

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

e
a

d
d
t
c
d
f

6

f
i
i

t
c
b
t
b
l
s
D
M
d

6

p
c
u
t
a

Fig. 6. Comparison of performance indicators for different algorithms. (a) Av-
rage system utility and task failure rate. (b) Total energy consumption and
verage response time.

ata transmission and high cost of communication between the
evices and the edge. In addition, the data are exposed to the
ransmission process, which may lead to privacy disclosures. In
ontrast, the FL-based training approach uses the data from the
evice to train the model locally and sends the model to the edge
or aggregation.

.3.1. Validation of the DQN model
In this experiment, four algorithms are compared for each per-

ormance indicator. The task size of the device in the experiment
s scenario 2 in Table 4, and the task density is 30 tasks generated
n 100 s. The results of the experiments are presented in Fig. 6.

Figs. 6(a)–(b) demonstrate that the WRR algorithm is weaker
han the other three algorithms for all types of performance indi-
ators. This is because the algorithm only ranks the task queues
y weighting them, making the offloading decision highly uncer-
ain. Q-learning and Sarsa showed better performance than WRR
ut weaker performance than DQN, because DQN pre-processes a
arger number of tasks and uses network model training methods
uch as experience replay and target networks. Moreover, the
QN algorithm is able to combine neural networks to analyze the
EC environment and the task states to obtain a good offloading
ecision.

.3.2. Task size
In this experiment, the two models are compared for each

erformance indicator as the task size increases under the SEG
onstraint, including the average system utility, average task fail-
re rate, total energy consumption, and average task response
ime. The sizes of the various types of tasks in the experiment

re shown in Table 4, with a task density of 30 tasks generated

545
Table 4
Different scenarios for each type of task size (kb).
Scenario Text Image Audio Video

I 256 512 768 1024
II 512 1024 1536 2048
III 768 1536 2304 3072
IV 1024 2048 3072 4096

in 100 s. There are 3 devices in the system. The ratios of task
types and task sizes generated by each device were consistent.
The experimental results are displayed in Fig. 7.

Figs. 7(a)–(d) represent the trends of the four indicators when
the task sizes of the four types are from small to large. At different
task sizes, the system utility, energy consumption, task response
time, and task failure rate are optimized by 15%, 33%, 5%, and 8%
on average, respectively. In Fig. 7(a), the average system utility
is in a fluctuating state with no significant upward or downward
trend when the task size increases. This indicates that the task
size has no obvious effect on the system utility value. However,
the total energy consumption and average response time increase
with increasing task size in Figs. 7(b)–(c). This is because the
larger the task size is, the longer the processing time at the com-
puting node and the transmission time in the channel. The slower
the tasks in the queue of each computing node are computed,
the longer the waiting time for new arrivals. Similarly, the larger
the size is, the higher the energy consumption of the task being
processed for transmission and computation. In Fig. 7(d), the av-
erage failure rate of tasks rises. The reason is that the resources of
edge computing nodes are fixed, and the computational resources
consumed by a single task increase. This leads to more tasks being
discarded due to not having enough resources to process them
before the deadline. With the same task types and sizes scaled
for each device, the M2FD model is slightly better trained than
the centralized training model. This is because during the training
process of the M2FD model, the state of the computing nodes and
the task waiting queue information at the edge are synchronized
to the locals, and the local training agent dynamically adjusts
the weights between the two objectives in real time using the
entropy weighting method. This makes the system more efficient.

6.3.3. Task density
In this experiment, as the task density increases, the two

algorithms are compared through four performance indicators.
The density of tasks in the experiment is 20, 25, 30, 35, 40, and
45 tasks generated in 100 s. There are 3 devices in the system.
The task size is scenario II in Table 4. The ratio of task types and
task sizes generated for each device is consistent. The results are
shown in Fig. 8.

An increase in task density is an increase in the number of
tasks generated by the device in 100 s, which results in more total
tasks and a greater number of model trainings. The system utility,
energy consumption, task response time, and task failure rate are
optimized by 15%, 25%, 2%, and 6% on average, respectively, at
different task densities. In Fig. 8(a), the different model charac-
teristics of each device are learned in the M2FD algorithm. The
centralized model is not better able to allocate computing nodes
and resources based on environmental information. This results
in a minor upward trend in its task average system utility and is
slightly better than that of the centralized model. In addition, as
the task density increases, the total energy consumption for task
transfer and computation increases accordingly. Thus, the total
energy consumption shows an increasing trend in Fig. 8(b). As
more energy is consumed, the entropy weighting method adjusts
the weight of the model optimization objective according to the
environment. In addition, due to the consistent size range of the

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

Fig. 7. Comparison of performance indicators for different task sizes. (a) Average system utility. (b) Total energy consumption. (c) Average response time. (d) Task
failure rate.

Fig. 8. Comparison of performance indicators for different task densities. (a) Average system utility. (b) Total energy consumption. (c) Average response time. (d)
Task failure rate.

546

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

n
t
s
r
i
r

t
s
b
t
u
t
n

Fig. 9. Comparison of performance indicators for different task distributions. (a) Average system utility. (b) Total energy consumption. (c) Average response time.
(d) Task failure rate.
Table 5
Distribution of the sizes and types of tasks in each device.
Scenario Sizes proportion Types proportion

A Same Same
B Different Same
C Same Different
D Different Different

generated tasks, a minor downward trend in the average TRT is
indicated in Fig. 8(c), with a time difference of less than 1 s. In
Fig. 8(d), the task failure rate gradually increases. This is because
the increase in task density leads to an increase in the number of
tasks that the system needs to process at the same time. However,
the overall resources of the system are fixed. This leads to a
decrease in the resources available for each task and an increase
in the task failure rate.

6.3.4. Task scenario
In this experiment, we simulated a data environment with a

on-independent identical distribution in FL. The four cases of
ask data distribution are shown in Table 5. Trends in average
ystem utility, total energy consumption, task failure rate, and
esponse time are shown. The task density is 30 tasks generated
n 100 s. The task size is scenario II in Table 4. The experimental
esults are shown in Fig. 9.

The variation in task scenarios illustrates the difference in task
ype and size for each scenario. The system utility, energy con-
umption, task response time, and task failure rate are optimized
y 17%, 19%, 8%, and 62% on average, respectively, under different
ask scenarios. Fig. 9(a) represents the average system utility
nder different task data distribution scenarios. Compared to A,
he average utility of both algorithms decreases under the sce-
arios B, C, and D. This indicates that under non-independently
547
and identically distributed task scenarios B, C, and D, aggregating
the model using only the federated average algorithm results
in a partial loss of model properties. This leads to a decrease
in system utility. Figs. 9(b) and 9(c) show the values of energy
consumption and response time for different data distribution
scenarios. Under the scenario B, the total energy consumption of
the system is the lowest, but the average response time of the
tasks is the highest. This is followed by an increase in energy
consumption and a decrease in response time in scenarios C and
D. The response time varies in the range of 1 s. The reason is that
the sum of the weights of response time and energy consumption
in the model optimization objective is 1. The task size and type
are changing in different task scenarios, and the optimization
of both are mutually exclusive. Fig. 9(d) shows the different
distribution scenarios of the task failure rate. The difference in
task failure rates between the two models is small when both
the task size and type proportion are consistent. However, there
is an overall increasing trend. This indicates that when the task
size is constant, the larger the task, the higher the task failure
rate. And the models are less efficient for non-independently and
identically distributed data than for independently and identically
distributed data.

In all experiments, the FL-based M2FD algorithm only slightly
outperformed the algorithm in the other framework. The ex-
periments show that the FL-based M2FD algorithm slightly out-
performs the algorithms of other frameworks. The result per-
forms better in the MEC environment where the number of user
terminals is small. And the optimization effect of independent
and identically distributed task data is better than that of non-
independent and identically distributed data. In summary, the
M2FD algorithm optimizes the system utility, response time, en-
ergy consumption, and statistics of the task failure rate in MEC
environments considering different types of task and edge-side
integrated processors by combining the DQN algorithm and en-

tropy weight method. In addition, FL does not transfer the task

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

d
t
p
c

7

l
o
u
t
o
m
F
t
p
t
t
b
b
i

C

W
d

ata but chooses to transfer the model during the training of
he model. Therefore, the M2FD algorithm is able to protect user
rivacy and create a data security environment. It provides a good
hoice for industries with special security requirements.

. Conclusion

In this paper, a multi-type task offloading and resource al-
ocation problem is considered in the two-layer MEC model. To
btain the higher system utility and lower cost while preserving
ser data privacy, the M2FD algorithm is proposed. In addition,
o avoid the influence of subjectivity, the weight values of the
ptimization objectives are calculated using the entropy weight
ethod. The optimization problem is modeled as an MDP. In the
L training framework, the intelligent DRL method is employed
o assign the appropriate computing node for the task. The ex-
erimental results show that the M2FD algorithm can improve
he system utility and reduce the system cost while safeguarding
he user data privacy. In the future, it is promising to investigate
lockchain-enabled edge computing architectures. Combining FL,
lockchain, and more efficient DRL methods to address user needs
n a more complex MEC environment.

RediT authorship contribution statement

Zhao Tong: Idea, Survey, Optimization, Reviewing. Jiake
ang: Survey, Implement, Experiments, Writing – original
raft. Jing Mei: Optimization, Reviewing. Kenli Li: Optimiza-

tion, Reviewing. Wenbin Li: Suggestions, Reviewing. Keqin Li:
Suggestions, Reviewing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

The authors thank the editors and reviewers for their insight-
ful comment and valuable suggestions. This work was supported
by the Program of National Natural Science Foundation of China
(Grant No. 62072174, 61502165), Distinguished Youth Science
Foundation of Hunan Province, China (Grant No. 2023JJ10030),
National Natural Science Foundation of Hunan Province, China
(Grant No. 2022JJ40278, 2020JJ5370), Scientific Research Fund
of Hunan Provincial Education Department, China (Grant No.
22A0026). All authors approved the version of the manuscript to
be published.

References

[1] R. Lohiya, A. Thakkar, Application domains, evaluation data sets, and
research challenges of IoT: A Systematic Review, IEEE Internet Things J.
8 (11) (2020) 8774–8798.

[2] Cisco Annual Internet Report (2018–2023) White Paper, Cisco, San Jose,
CA, USA, 2020.

[3] B.B. Sinha, R. Dhanalakshmi, Recent advancements and challenges of
Internet of Things in smart agriculture: A survey, Future Gener. Comput.
Syst. 126 (2022) 169–184.

[4] A. Uprety, D.B. Rawat, Reinforcement learning for IoT security: A
comprehensive survey, IEEE Internet Things J. 8 (11) (2020) 8693–8706.

[5] Q. Li, S. Wang, A. Zhou, X. Ma, F. Yang, A.X. Liu, QoS driven task offloading
with statistical guarantee in mobile edge computing, IEEE Trans. Mob.

Comput. 21 (1) (2020) 278–290.

548
[6] Z. Ma, S. Zhang, Z. Chen, T. Han, Z. Qian, M. Xiao, N. Chen, J. Wu,
S. Lu, Towards revenue-driven multi-user online task offloading in edge
computing, IEEE Trans. Parallel Distrib. Syst. 33 (5) (2021) 1185–1198.

[7] Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, M.S. Hossain, Intelligent
task prediction and computation offloading based on mobile-edge cloud
computing, Future Gener. Comput. Syst. 102 (2020) 925–931.

[8] T. Zhu, T. Shi, J. Li, Z. Cai, X. Zhou, Task scheduling in deadline-aware
mobile edge computing systems, IEEE Internet Things J. 6 (3) (2018)
4854–4866.

[9] J.-B. Wang, H. Yang, M. Cheng, J.-Y. Wang, M. Lin, J. Wang, Joint op-
timization of offloading and resources allocation in secure mobile edge
computing systems, IEEE Trans. Veh. Technol. 69 (8) (2020) 8843–8854.

[10] H. Xu, W. Huang, Y. Zhou, D. Yang, M. Li, Z. Han, Edge computing
resource allocation for unmanned aerial vehicle assisted mobile network
with blockchain applications, IEEE Trans. Wirel. Commun. 20 (5) (2021)
3107–3121.

[11] X. Deng, J. Liu, L. Wang, Z. Zhao, A trust evaluation system based on
reputation data in mobile edge computing network, Peer-To-Peer. Netw.
Appl. 13 (5) (2020) 1744–1755.

[12] R.A. Khalil, N. Saeed, M. Masood, Y.M. Fard, M.-S. Alouini, T.Y. Al-
Naffouri, Deep learning in the industrial internet of things: Potentials,
challenges, and emerging applications, IEEE Internet Things J. 8 (14) (2021)
11016–11040.

[13] X. Qiu, W. Zhang, W. Chen, Z. Zheng, Distributed and collective deep
reinforcement learning for computation offloading: A practical perspective,
IEEE Trans. Parallel Distrib. Syst. 32 (5) (2020) 1085–1101.

[14] F. Jiang, K. Wang, L. Dong, C. Pan, K. Yang, Stacked autoencoder-based deep
reinforcement learning for online resource scheduling in large-scale MEC
networks, IEEE Internet Things J. 7 (10) (2020) 9278–9290.

[15] J. Konečnỳ, H.B. McMahan, F.X. Yu, P. Richtárik, A.T. Suresh, D. Bacon,
Federated learning: Strategies for improving communication efficiency,
2016, arXiv preprint arXiv:1610.05492.

[16] Z. Tong, X. Deng, F. Ye, S. Basodi, Y. Pan, Adaptive computation offloading
and resource allocation strategy in a mobile edge computing environment,
Inform. Sci. 537 (2020) 116–131.

[17] Y. Guo, R. Zhao, S. Lai, L. Fan, X. Lei, G.K. Karagiannidis, Distributed machine
learning for multiuser mobile edge computing systems, IEEE J. Sel. Top.
Signal Process. (2022) http://dx.doi.org/10.1109/JSTSP.2022.3140660.

[18] Z. Tong, J. Cai, J. Mei, K. Li, K. Li, Dynamic energy-saving offloading strategy
guided by Lyapunov optimization for IoT devices, IEEE Internet Things J.
(2022) http://dx.doi.org/10.1109/JIOT.2022.3168968.

[19] J. Zhou, X. Zhang, Fairness-aware task offloading and resource allocation
in cooperative mobile edge computing, IEEE Internet Things J. 9 (5) (2022)
3812–3824.

[20] L. Tan, Z. Kuang, L. Zhao, A. Liu, Energy-efficient joint task offloading and
resource allocation in OFDMA-based collaborative edge computing, IEEE
Trans. Wirel. Commun. 21 (3) (2021) 1960–1972.

[21] Y. Dong, S. Guo, Q. Wang, S. Yu, Y. Yang, Content caching-enhanced
computation offloading in mobile edge service networks, IEEE Trans. Veh.
Technol. 71 (1) (2021) 872–886.

[22] G. Yang, L. Hou, X. He, D. He, S. Chan, M. Guizani, Offloading time
optimization via Markov decision process in mobile-edge computing, IEEE
Internet Things J. 8 (4) (2020) 2483–2493.

[23] A. Asheralieva, D. Niyato, Bayesian reinforcement learning and bayesian
deep learning for blockchains with mobile edge computing, IEEE Trans.
Cognit. Commun. Netw. 7 (1) (2020) 319–335.

[24] L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, X. Shen, Deep reinforcement
learning for autonomous internet of things: Model, applications and
challenges, IEEE Commun. Surv. Tutor. 22 (3) (2020) 1722–1760.

[25] W. Chen, X. Qiu, T. Cai, H.-N. Dai, Z. Zheng, Y. Zhang, Deep reinforcement
learning for Internet of Things: A comprehensive survey, IEEE Commun.
Surv. Tutor. 23 (3) (2021) 1659–1692.

[26] M. Shurrab, S. Singh, R. Mizouni, H. Otrok, IoT sensor selection for target
localization: A reinforcement learning based approach, Ad Hoc Netw. 134
(2022) 102927.

[27] S. Chen, J. Chen, Y. Miao, Q. Wang, C. Zhao, Deep reinforcement learning-
based cloud-edge collaborative mobile computation offloading in industrial
networks, IEEE Trans. Signal Inf. Process. Netw. 8 (2022) 364–375.

[28] X. Zhu, Y. Luo, A. Liu, M.Z.A. Bhuiyan, S. Zhang, Multiagent deep reinforce-
ment learning for vehicular computation offloading in IoT, IEEE Internet
Things J. 8 (12) (2020) 9763–9773.

[29] Z. Cao, P. Zhou, R. Li, S. Huang, D. Wu, Multiagent deep reinforcement
learning for joint multichannel access and task offloading of mobile-edge
computing in industry 4.0, IEEE Internet Things J. 7 (7) (2020) 6201–6213.

[30] R. Yu, P. Li, Toward resource-efficient federated learning in mobile edge
computing, IEEE Netw. 35 (1) (2021) 148–155.

[31] Y. Lu, X. Huang, Y. Dai, S. Maharjan, Y. Zhang, Differentially private
asynchronous federated learning for mobile edge computing in urban
informatics, IEEE Trans. Ind. Inform. 16 (3) (2020) 2134–2143.

http://refhub.elsevier.com/S0167-739X(23)00138-3/sb1
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb1
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb1
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb1
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb1
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb2
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb3
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb4
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb4
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb4
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb5
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb6
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb7
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb8
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb9
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb9
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb9
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb9
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb9
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb10
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb11
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb12
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb13
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb14
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb14
http://arxiv.org/abs/1610.05492
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb16
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb16
http://dx.doi.org/10.1109/JSTSP.2022.3140660
http://dx.doi.org/10.1109/JIOT.2022.3168968
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb19
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb20
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb20
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb20
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb20
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb20
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb21
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb21
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb21
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb21
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb21
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb22
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb23
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb23
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb23
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb23
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb23
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb24
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb25
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb25
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb25
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb25
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb25
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb26
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb27
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb27
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb27
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb27
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb27
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb28
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb28
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb28
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb28
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb28
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb29
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb30
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb31
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb31

Z. Tong, J. Wang, J. Mei et al. Future Generation Computer Systems 145 (2023) 536–549

a
P
a

[32] C. Feng, Z. Zhao, Y. Wang, T. Quek, M. Peng, On the design of federated
learning in the mobile edge computing systems, IEEE Trans. Commun. 69
(9) (2021) 5902–5916.

[33] Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, F.R. Yu, Computation offloading for
edge-assisted federated learning, IEEE Trans. Veh. Technol. 70 (9) (2021)
9330–9344.

[34] S.S. Shinde, A. Bozorgchenani, D. Tarchi, Q. Ni, On the design of federated
learning in latency and energy constrained computation offloading oper-
ations in vehicular edge computing systems, IEEE Trans. Veh. Technol. 71
(2) (2021) 2041–2057.

[35] S. Wang, M. Chen, C. Yin, W. Saad, C.S. Hong, S. Cui, H.V. Poor, Federated
learning for task and resource allocation in wireless high-altitude balloon
networks, IEEE Internet Things J. 8 (24) (2021) 17460–17475.

[36] C. Guo, L. Liang, G.Y. Li, Resource allocation for vehicular communications
with low latency and high reliability, IEEE Trans. Wirel. Commun. 18 (8)
(2019) 3887–3902.

[37] J. Huang, S. Li, Y. Chen, Revenue-optimal task scheduling and resource
management for IoT batch jobs in mobile edge computing, Peer-To-Peer
Netw. Appl. 13 (5) (2020) 1776–1787.

[38] Y. Mao, J. Zhang, S. Song, K.B. Letaief, Stochastic joint radio and com-
putational resource management for multi-user mobile-edge computing
systems, IEEE Trans. Wirel. Commun. 16 (9) (2017) 5994–6009.

[39] W. Hu, G. Cao, Quality-aware traffic offloading in wireless networks, IEEE
Trans. Mob. Comput. 16 (11) (2017) 3182–3195.

[40] Q. Ding, Y.-M. Wang, Intuitionistic fuzzy TOPSIS multi-attribute decision
making method based on revised scoring function and entropy weight
method, J. Intell. Fuzzy Systems 36 (1) (2019) 625–635.

[41] J. de Lope, D. Maravall, Y. Quinonez, Self-organizing techniques to im-
prove the decentralized multi-task distribution in multi-robot systems,
Neurocomputing 163 (2015) 47–55.

Zhao Tong received the Ph.D. degree in computer
science from Hunan University, Changsha, China in
2014. He was a visiting scholar at the Georgia State
University from 2017 to 2018. He is currently an
associate professor at the College of Information Sci-
ence and Engineering of Hunan Normal University, the
young backbone teacher of Hunan Province, China. His
research interests include parallel and distributed com-
puting systems, resource management, big data and
machine learning algorithm. He has published more
than 25 research papers in international conferences

nd journals, such as IEEE-TPDS, Information Sciences, FGCS, NCA, and JPDC,
DCAT, etc. He is a senior member of the China Computer Federation (CCF) and
Member of the IEEE.

Jiake Wang received the B.E. degree from Hunan
Institute of Science and Technology, Yueyang, China
in 2021. She is currently pursuing a M.S. degree in
the College of Information Science and Engineering
of Hunan Normal University, Changsha, China. Her
research interests include mobile edge computing,
deep reinforcement learning algorithms and federated
learning.
549
Jing Mei received the Ph.D. in computer science from
Hunan University, China, in 2015. She is currently
an assistant professor in the College of Information
Science and Engineering at Hunan Normal University.
Her research interests include parallel and distributed
computing, cloud computing, etc. She has published
12 research articles in international conference and
journals, such as IEEE Transactions on Computers, IEEE
Transactions on Service Computing, Cluster Computing,
Journal of Grid Computing, Journal of Supercomputing.

Kenli Li received the Ph.D. degree in computer science
from Huazhong University of Science and Technology,
in 2003. He was a visiting scholar at University of
Illinois at Urbana-Champaign from 2004 to 2005. He
is currently a full professor of computer science and
technology at Hunan University and deputy director
of National Supercomputing Center in Changsha. His
major research includes parallel computing, cloud com-
puting, and Big Data computing. He has published
more than 300 papers in international conferences
and journals. He serves on the editorial boards of

IEEE Transactions on Computers, IEEE Transactions on Industrial Informatics, IEEE
Transactions on Sustainable Computing, International Journal of Pattern Recognition,
Artificial Intelligence. He is a senior member of IEEE and an outstanding member
of CCF.

Wenbin Li received the B.S. degree in computer
science and technology from Hunan Normal Univer-
sity, Changsha, China, in 2003, the M.S. degree in
computer applications technology from Changsha Uni-
versity of Science and Technology, Changsha, China
in 2006, and the Ph.D. degree in control engineering
from Central South University, Changsha, China, in
2020. His research interests include industrial process
control, evolutionary computation, and multi-objective
optimization.

Keqin Li is a SUNY Distinguished Professor of com-
puter science. His current research interests include
parallel computing and high-performance comput-
ing, distributed computing, energy-efficient computing
and communication, heterogeneous computing sys-
tems, cloud computing, big data computing, CPU–GPU
hybrid and cooperative computing, multicore comput-
ing, storage and file systems, wireless communication
networks, sensor networks, peer-to-peer file sharing
systems, mobile computing, service computing, Inter-
net of things and cyber–physical systems. He has

published over 510 journal articles, book chapters, and refereed conference
papers, and has received several best paper awards. He is currently or has served
on the editorial boards of IEEE Transactions on Parallel and Distributed Systems,
IEEE Transactions on Computers, IEEE Transactions on Cloud Computing, IEEE
Transactions on Services Computing, IEEE Transactions on Sustainable Computing.
He is an IEEE Fellow.

http://refhub.elsevier.com/S0167-739X(23)00138-3/sb32
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb32
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb32
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb32
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb32
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb33
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb33
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb33
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb33
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb33
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb34
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb35
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb36
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb37
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb37
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb37
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb37
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb37
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb38
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb38
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb38
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb38
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb38
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb39
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb39
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb39
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb40
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb40
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb40
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb40
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb40
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb41
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb41
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb41
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb41
http://refhub.elsevier.com/S0167-739X(23)00138-3/sb41

	Multi-type task offloading for wireless Internet of Things by federated deep reinforcement learning
	Introduction
	Related Work
	Task Offloading in Mobile Edge Computing
	Deep Reinforcement Learning-Based Mobile Edge Computing
	Federated Learning-Based Mobile Edge Computing

	System Overview and Model
	System Overview
	System Model
	Task Model
	Communication Model
	Computation Model
	SEG Model

	Problem Formulation
	Optimization indicators
	Optimization problem
	Analysis of optimization objective weights

	M2FD Algorithm design
	Theoretical Background of M2FD Algorithm
	The DQN Algorithm
	Federated Learning Framework

	Training Process of DQN Model Based on the FL
	Process of Local Training
	Process of Model Aggregation and Distribution

	Performance Evaluation
	Experimental Settings
	Hyperparametric Experiment
	Performance Experiments
	Validation of the DQN Model
	Task Size
	Task Density
	Task Scenario

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

