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a b s t r a c t

Mobile edge computing (MEC) has emerged as a computing model that provides services near data
generation sources. However, although MEC servers have more computing capability and resources
than local, they cannot support the processing of too many user equipment (UE). In contrast, cloud
servers have at least several times the computing capability and resources of MEC servers, so they
can perform more tasks in parallel and with faster processing speeds. Therefore, the cloud–edge
collaborative computing model combines respective advantages of MEC and cloud, and it is thus
highly suitable for processing various types of tasks. How to offload tasks to the computing nodes
efficiently and allocate resources optimally is an important research question. In this paper, we propose
a task offloading and resource allocation algorithm with resource and reliability constraints in the
cloud–edge collaborative computing environment. Three computing nodes can be used to process
the task data, including UE, the MEC server and the cloud server, and the computing nodes are
constrained by their computing capability, resources, and reliability. An online learning algorithm based
on deep reinforcement learning (DRL) is designed for the objective optimization problem. Through the
evaluation and verification of simulation experiments, the proposed algorithm is shown to be capable
of effectively improving the quality of the user experience and reducing the energy consumption of
the system.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the high-speed progress development of the cyber–
hysical systems (CPS) and wireless communication networks,
ser smart terminal equipment is generating a great quantity
f task data. According to the statistics, global smart devices
ill produce 50ZB of data in 2020, an increase of about 25%
ompared with 2019. And such data production will continue to
ncrease in the future. Such a large amount of data poses a huge
hallenge to the traditional cloud computing model. To reduce
esponse delays, reduce network loads, improve user service
xperiences (USE), etc. Inline with the development of the times,
dge computing is used to specifically process data at the edge of
network [1–4]. Mobile edge computing (MEC) [5,6] is a specific

mplementation mode in edge computing, and the advent of 5th-
eneration (5G) mobile networks has mostly benefited from the
roposal of MEC [7]. The MEC model has a better effect than the
loud computing model in processing real-time, high-response
asks. However, due to the limitation of the edge intelligent
quipment ability. The computing process and storage capacity of
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E-mail address: tongzhao@hunnu.edu.cn (Z. Tong).
ttps://doi.org/10.1016/j.future.2021.11.014
167-739X/© 2021 Elsevier B.V. All rights reserved.
MEC servers are relatively weak. The MEC server has insufficient
capability and resources when processing computation-intensive
tasks, and such tasks are more suitable for processing with the
cloud computing model. In order to better serve users, different
computational paradigms are needed to deal with them. MEC
is suitable for processing real-time and small data tasks; cloud
computing is suitable for processing non-real-time and long-cycle
computation-intensive tasks.

Average response time and total energy consumption are two
very important metrics. Shorter average response times can make
the user experience better. The user wants the response time to
be as short as possible. Lower energy consumption can lead to
more cost savings for service providers. Service providers want
to minimize overall energy consumption as much as possible.
Obviously, these two metrics are opposites. To efficiently process
multiple types of task data, the use of the mobile cloud–edge
collaborative computing model to process tasks is considered. The
mobile cloud–edge collaborative computing model is the com-
plement and optimization of MEC and cloud computing, mainly
including the coordination of computations, resources, data, and
management. It combines centralized and distributed process-
ing methods to maximize the overall computing advantages. At
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resent, the research directions with respect to the MEC or cloud–
dge collaborative computing environments mainly include task
ffloading and resource allocation, big data analysis, intelligent
pplications, privacy, and security [8–10]. Among them, task of-
loading and resource allocation are essential hot research topics
hat play a crucial role in improving service quality [11,12].

In this paper, we propose a self-learning task offloading and
esource allocation algorithm (SLTRA) in the mobile cloud–edge
ollaborative computing environment. This algorithm uses the
RL method to choose an appropriate computing node for the
iven task and attempts to reduce the task response time and en-
rgy consumption under the constraints of system resources and
eliability; it is verified through experiments that the proposed
lgorithm has further improvement than existing methods. The
ain contributions of this paper are as follows.

• We model the task offloading and resource allocation prob-
lem as a Markov decision process (MDP) and propose a so-
lution based on the DRL method; this approach can improve
the optimization performance of the algorithm through con-
tinuous adaptive learning.

• In order to achieve user’s quality of experience (QoE) fur-
ther needs and reduce task execution costs, the objective
problem is defined to minimize the average task response
time and the system energy consumption, considering both
interests of the user aspect and the service providers aspect.

• When thinking about the DRL method’s state and reward
designing, we consider the optimization objective through
a weighting method to combine the task response time and
entire system energy consumption.

• The experiment was performed in a computing environment
built on the Python platform, while considering the mobility
of user equipment (UE), resource constraints, and the relia-
bility of the computing nodes. Experimental results show an
excellent performance.

. Related work

.1. Research background

At present, researchers have done a lot of works on task
ffloading and resource allocation in the cloud or MEC envi-
onment, such as [13–15]. Because the cloud–edge collaborative
omputing architecture is still in the early stage of development,
here has been relatively little research done in this computing
nvironment.
Chen [16] proposed a solution based on the semi-definite

elaxation and random mapping methods, which can make op-
imal offloading decisions for users. Liu [17] put forward the task
ffloading and a resource collaboration algorithm based on queu-
ng theory and defined the multi-objective optimization problem
o minimize energy consumption and task delays. Kofler [18]
roposed a novel approach that automatically optimizes task par-
itioning for different problem sizes and different heterogeneous
ulti-core architectures. Du [19] recommended a sub-optimal
ethod with reducing calculation pressure for computing nodes

n the collaborative environment that can save costs of delays and
nergy consumption and ensure fairness among users. Mukher-
ee [20] advanced a data offloading strategy to solve task de-
ay sensitive problems, and this strategy mainly considers the
rade-off between local execution delays and transmission delays
uring task offloading. Grewe [21] proposed a portable partition-
ng scheme for OpenCL programs on heterogeneous CPU–GPU
ystems, and developed a purely static approach based on pre-
ictive modeling and program features. Hao et al. [22] raised
n algorithm that can provide personalized task offloading for
65
the cloud–edge collaborative system. The algorithm uses coarse-
grained and fine-grained calculation methods, which can meet
the service requirements of tasks. Tong [23] came up with a
dynamic task scheduling algorithm to maintain machine load bal-
ance and reduce task rejection rate, under the premise of meeting
the SLA factor. Hu [24] proposed a game-based offloading algo-
rithm, which had a good performance on reducing system energy.
Ouyang [25] proposed a cluster-based task offloading method and
a backtrack-based trust evaluation mechanism to assist offloading
by examining trust scores and energy consumption. Wu [26]
considered computing the security performance to ensure task
safety with rigorous mathematical way. Yan [27] brought up a
deep reinforcement learning framework, quickly choosing supe-
rior offloading to minimize its efficiency. Lee [28] presented a VFC
resource allocation algorithm, which combined with reinforce-
ment learning. The algorithm performed better than traditional
algorithm in real-time data responding in the car networking task
scenario. Huang [29] designed a protocol to achieve less conflict
for wake-up radio enabled WSNs in data transmission, showing
better performance in saving energy and shortening delay.

However, above mentioned algorithms have not considered
task offloading strategy in the MEC environment. Most of the task
offloading and resource allocation algorithms are based on tradi-
tional mathematical theory, and the performances of such algo-
rithms were verified in a numerical solution-based experimental
environment, which lacks some realism. In this paper, we use
the intelligent learning capability of deep reinforcement learning
(DRL) [30,31] to effectively improve algorithmic performance.

2.2. New material

This article is a further study based on our previous work [15].
Compared with the previous article, this article has several new
innovations, listed as follows.

• In this paper, we use a three-tier framework model. Com-
pared to the previous one, we add a cloud processing layer
for tasks with high computational demand to improve user
experience. At the same time, with the complexity of our
model, the design of task communication between layers
becomes more complicated.

• Because of model changes, in this paper the offloading
scheme has been changed, so the optimization algorithm we
propose to solve the problem is different. In addition, we
also added the probability of processor failure to improve
the authenticity of the model. The figure on the left below
is the algorithm of the previous article, on the right is the
algorithm we proposed in this article.

• The data set we use is also different. In this paper, in order
to be closer to reality, we add real data in the experiment
section. The data is come from the google dataset https:
//commondatastorage.googleapis.com/clusterdata-2011-1/.

• In order to be more in line with real life, the possibility
of machine failure is considered in this paper. The index
‘‘isFail’’ is to represent the state of every computing node.
‘‘isFail=0’’ means that the computing node is working nor-
mally, and can process the allocated task. Otherwise, the
computing node is in a failure period, we should reassigned
a suitable computing node for the task.

• For different model and algorithm, the trained neural net-
work is also different, and the parameters set to make the
neural network converge are different. The hyperparameter
setting are as follows, the left is the previous, and the right
is in this paper.

• This paper add new experiment at Section 5 to test the
performance of the algorithm more comprehensively.

https://commondatastorage.googleapis.com/clusterdata-2011-1/
https://commondatastorage.googleapis.com/clusterdata-2011-1/
https://commondatastorage.googleapis.com/clusterdata-2011-1/
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Fig. 1. Mobile cloud–edge collaborative computing model.

The rest of the paper is organized as follows. Section 3 de-
cribes the system model and defines the objective problem. Sec-
ion 4 introduces the algorithm proposed in this paper. Section 5
resents and analyzes the experimental results. Finally, conclude
his paper and mention future possible research perspectives.

. System model and problem formulation

In this section, we first introduce the cloud–edge collaborative
omputing model. Second, we analyze the response time model
nd the energy consumption model. Finally, we formulate the
efinition of the objective problem.

.1. Cloud–edge collaborative computing model

The three-layer cloud–edge collaborative computing model
s shown in Fig. 1. It mainly includes a mobile UE layer, an
dge computing layer, and a cloud computing layer. Compared
ith the two-layer framework on the edge and local sides, the
hree-layer framework has one more cloud processing layer. The
ddition of the cloud computing layer makes it more suitable
o handle higher computationally intensive tasks. The edge layer
ould handle tasks not far distributed, and the computational is
ot exceptionally high. The mobile UE layer only needs to process
hose tasks with small computational requirements. Each layer
as its advantages. The model is composed of N pieces of UE, K
EC servers and 1 cloud server center. The mobile UE generates

asks that are independent of each other, and the time interval for
enerating the tasks obeys a Poisson distribution [32]. Each task
an be run locally, in the cloud, or on the edge. The task offloaded
o the edge computing layer should via wireless network trans-
ission. After the MEC server completes the task, it transmits the
btained result back to the UE through the base station (BS). Since
he distances between the cloud computing center and UE devices
re relatively far, a task sent directly from the UE layer to the
loud computing layer requires a lots of transmission energy. If
he task is offloaded to the cloud computing layer for processing,
he UE first sends the task data to the base station in the edge
omputing layer, and then the base station sends the task to the
loud computing layer through the core network. Similarly, after
he task is processed completely, the obtained result is returned
o the UE through the original path. In this situation, the edge
omputing layer is used as the transfer station for tasks to be sent
rom UE devices to the cloud computing center.
66
3.2. Response time model

The task response time is the time interval from when the
task is submitted to moment when the task result is returned,
and it consists of the task waiting time, transmission time, and
processing time. If the task is processed on a local UE, we treat
the communication time as 0. In the sub-section, we calculate
the response times of the task on different computing layers and
obtain the average response time for tasks.

3.2.1. Local computing
The local computing mode refers to a task being processed on

the local UE that generates the task data. The response time is
consisted of the task in the waiting queue and the processing
time. If the UE is idle, the waiting time for the task is 0; otherwise,
the task needs to wait until the previous task is completed. The
calculation of the response time resi for task i processed on UE u
is defined as follows:

tsi;u =

�
subi; UE u is idle;
availu; otherwise;

(1)

t ri;u = tsi;u +
dici
fu
; (2)

resi = t ri;u − subi; (3)

where tsi;u is the time when the execution of task i on UE u starts,
and tsi;u has two situation. When UE is idle, tsi;u is the submission
time; otherwise, tsi;u is the available time for the UE u. t ri;u is the
time required for a result to be returned, di is the data size, ci is
the number of CPU cycles needed to compute one bit of data, and
fu is the CPU frequency of UE u.

3.2.2. Edge computing
The edge computing mode refers to offloading a task to the

edge computing layer for processing. The response time is the
sum of the waiting time, transmission time, and processing time.
If the MEC server allocated to the task has sufficient computing
resources, the task does not need to wait for resources to be
released, the waiting time is 0. Otherwise, the execution of the
task must wait for the server to acquire sufficient resources. Since
the data size of the task result is small compared to that of the
task itself, the transmission time here refers to the time cost of
offloading task data from the UE to the base station in the edge
computing layer, and the time cost of returning from the base
station to the UE is negligible. The transmission rate [33,34] of
UE u to base station m is defined as:

ru;m = W log2

�
1 +

pugu;m
N0W

�
; gu;m =

�
Du;m

�−�
; (4)

where W , gu;m and Du;m are the communication bandwidth, chan-
nel gain and distance between UE u and base station m, respec-
tively. pu is the transmission power of UE u, N0 is the noise power
spectral density of the base station m, and � is the path-loss
exponent.

The calculation of the response time resi for task i processed
on MEC server j of base station m is defined as follows:

tsi;mj
=

8><>:
subi +

di
ru;m
; resources are sufficient;

subi +
di

ru;m
; waiti < transi;

availmj ; otherwise;
(5)

t ri;mj
= tsi;mj

+
dici
fmj

; (6)

res = t r − sub ; (7)
i i;mj i
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here tsi;mj
is the time when the execution of task i on MEC

erver j starts, and tsi;mj
has three situation. If the server has

ufficient resources, tsi;mj
is the sum of the submission time and

ransmission time; if the server resources are insufficient but the
aiting time waiti for the resources to be released is less than the
ransmission time transi, tsi;mj

is the sum of the submission time
nd transmission time; otherwise, tsi;mj

is the available time after
erver j has sufficient resources, and this is defined as availmj . t

r
i;mj

s the time required to return the result of task i, and fmj is the
PU frequency of MEC server j of base station m.

.2.3. Cloud computing
The cloud computing mode refers to offloading a task to the

loud computing layer for processing. Because the cloud server
as sufficient resources, there is no need to wait other tasks’
xecution. The response time is consist of the transmission time
nd the processing time. The transmission time includes the task
ata delivered from the local equipment to the base station, the
ime from the base station to the cloud center, and the time
equired to transmit the result data from the cloud center to the
ase station. Because of the local equipment is far from the cloud,
he result transmission time between the base station and the
loud center is considered. The calculation of the response time
esi for task i processed on the cloud server is defined as follows:

s
i;c = subi +

di
ru;m

+
di
rm;c

; (8)

t ri;c = tsi;c +
dici
fc

+
dri
rm;c

; (9)

resi = t ri;c − subi; (10)

here tsi;c is the time when the execution of task i on the cloud
erver starts, and rm;c is the transmission rate between the base
tation and the cloud computing center. t ri;c is the time required
o return the result of task i, fc is the CPU frequency of the cloud
erver, and dri is the result data’s size.
The response time of the task is obtained according to Eqs. (1)–

10), but the response time of a single task can only reflect
he specific processing situation. Therefore, we use the average
esponse time to reflect the overall performance situation, as
oing so can reflect the user’s QoE level. The average response
ime for processing n tasks in the system is defined as follows:

resavg =

nX
i=1

resi
n
: (11)

.3. Energy consumption model

Energy consumption is the primary indicator of energy con-
ervation and consumption reduction. Corresponding to the task
esponse time model, the energy consumption considered in this
aper mainly includes transmission energy and the energy con-
umed for calculation purposes, and the energy consumed while
task is waiting for execution is neglected. In the sub-section,
e calculate the energy consumption of the task at different
omputing layers and the entire system.

.3.1. Local computing
The local computing model only considers the energy con-

umed when computing tasks, and the energy consumption of
ask i processed on UE u is defined as follows:

Pi;u = � .fu/3 ; (12)

i = Pi;u
dici

; (13)

fu

67
where Pi;u is the power consumption of task i on UE u, and � is
the effective switching capacitance in the chip.

3.3.2. Edge computing
The energy consumption for offloading a task to the MEC

server for processing includes the energy consumption for the
transmission of task data from the UE to the base station and the
energy consumption incurred by calculations on the server. The
energy consumption of task i processed on server j of base station
m is defined as follows:

Ei = pu
di
ru;m

+ diqmj ; (14)

where qmj is the energy consumption of server j on base station
m when calculating one bit of task data.

3.3.3. Cloud computing
According to the path of task uploading and returning the

result, the energy consumption of a task that is offloaded to the
cloud server for execution includes the energy consumption of
transmission from the UE to the cloud computing center, the
energy consumption incurred by calculations, and the energy
consumption of returning the results from the cloud center. The
energy consumption of offloading a task i generated by UE u to
the cloud server is defined as:

Ei = pu
di
ru;m

+ pm
di
rm;c

+ diqc + pm
di;r
rm;c

; (15)

here pm is the transmission power of the base station m and
the cloud computing center, and qc is the energy consumption
required for the cloud server to calculate one bit of data.

In this paper, we use the total energy consumption of all tasks
as the evaluation indicator of energy consumption for the system,
and this indicator is defined as follows:

Etotal =

nX
i=1

Ei: (16)

.4. Problem formulation

The purpose of this paper is to optimize task offloading and
esource allocation problem in a mobile cloud–edge collabora-
ive computing environment while considering the resource con-
traints and reliability of computing nodes. These limitations
ake the computing environment close to realistic application
nvironments. The computing nodes include UE devices, MEC
ervers, and cloud servers center. The computing capabilities
nd resources of the three types of computing nodes are listed
n increasing order. The optimization objective of this paper is
o minimize the average response time and total energy con-
umption under the resource and reliability constraints of the
omputing nodes. Since UE devices are the generators of task
ata, the reliability constraints only consider to the MEC servers
nd the cloud server. First, a computing node that minimizes
he objective function is selected for the task. Second, whether
he selected computing node meets the resource and reliability
equirements is determined. If one of these requirements are not
et, the computing node is re-allocated for the task, until the

ask is allocated to the appropriate computing node. The objective
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in
{y}

resavg and Etotal;

s.t. y ⩽ �;
yX

i=1

memi ⩽ M;

yX
i=1

cpui ⩽ C;

isFail = 0;

(17)

where y and � are the number of tasks waiting to be executed in
parallel, and the maximumwaiting task queue value in parallel on
the computing node, respectively. memi and cpui are the memory
and CPU resources required for computing task i, respectively. M
and C are the memory and CPU resource capacities of the com-
puting node, respectively. The value of isFail represents whether
the MEC server or cloud server assigned to the task is in a failure
state, and if the task is executed on the UE, the constraint of this
condition is not considered. isFail = 0 means that the computing
node is not in a failure period, and can process the allocated
task. Otherwise, isFail ̸= 0 means that the computing node is
in a failure period, it cannot processed any task, so a suitable
computing node needs to be re-assigned for the task.

4. Online learning algorithm design

4.1. Algorithm design

The objective in this paper is essentially a decision-making
problem: making decisions with respect to task offloading and
resource allocation. The Q-learning (QL) algorithm in the field of
reinforcement learning has a good effect on solving the decision-
making problem, and it is an unsupervised learning algorithm
that does not require external guidance, thereby achieving the
purpose of repeated learning according to its ‘‘trial and error’’
interactions with the environment [35,36]. The basic elements
of QL include an agent, a state, an action, and a reward. The
agent continuously shifts from one state to another through the
corresponding action for exploration, and the environment feeds
back the reward value responding the follow-up impact after
taking this action. During this process, the agent obtains a profit
value (Q-value) under each state–action pair, thus learning au-
tonomously and making decisions in the correct direction. The
update process for the Q-value is defined as follows:

Qt+1 .s; a/ = Qt .s; a/+ �

�
r + max

a′
Qt
�
s′; a′

�
− Qt .s; a/

�
; (18)

here s and s′ are the current environment and the next environ-
ent after taking a specific action, respectively. a and a′ are the
ctions made in the current state and the new state, respectively.
is the learning rate, and  is the discount factor.
In the QL algorithm, a two-dimensional matrix (Q-table) is

sed to store Q-values. When the scale of the problem increases,
he state space and action space are large, the Q-table cannot
tore a large number of Q-values. The increase of dimensions
akes the solution very difficult. Therefore, Deepmind considered
ombining QL with deep learning in [37] and proposed the con-
ept of deep Q-network (DQN). In DQN, a convolutional neural
etwork (CNN) [38] is used to fit the update of the Q-table, and
his can automatically extract complex features and achieve a
ood learning effect. This paper intends to use DQN to make
ptimal decisions for scheduling. The state, action, and reward
re set as follows:
68
1. The method of setting the state is defined in Eq. (19), which
is the weighted sum of the normalized response time and
normalized energy consumption for the task on the com-
puting node, and the states of all computing nodes consti-
tute the state space. To reduce the influence of subjective
factors on the algorithm, the entropy weight method [39]
is used in the weighting process.

si = wi;1resi′ + wi;2Ei′; (19)

where wi;1 and wi;2 are the weights of response time and
energy consumption respectively.

2. An action is defined as selecting the computing node for the
allocated task, and the number of actions is the number of
computing nodes. When the computing node is selected,
the corresponding action value is setting for 1, and the
other unselected action values are setting for 0. Assume
that the order of the computing nodes in the action space
is as follows: UE, MEC servers, and cloud server. If tasks
are offloaded to the cloud, the action space is setting as
(0; 0; : : : ; 1).

3. The reward value of environmental feedback is beneficial
for guiding the learning of the agent, and the setting of the
reward function has an important influence on the learning
effect. A value setting that is too large may lead to overfit-
ting, and a value setting that is too small may lead to too
slow convergence. Since the goal of this model is to jointly
optimize task response time and energy consumption, we
consider the degree of objective minimization as the basis
for setting the reward value, which is defined as follows:

r = −
�
wi;1resi′ + wi;2Ei′

�
: (20)

Lots of generating tasks are queued to allocate computing
resources according to the generation time. This means that
tasks cannot be preempted. The algorithm proposed in this paper
makes decisions on whether to offload each task and which
computing node to offload the task to. With the increase of
processing task numbers, the accuracy of the computing node
selection process based on intelligent algorithms also increases,
and this can reduce the task response time and energy con-
sumption of the system. First, the algorithm is used to make the
decision of selecting a computing node. The computing node is
a UE, MEC server or cloud server. Next, consider whether the
computing node assigned to the task has sufficient resources and
can work properly. If the existing resources of the computing
node cannot fully meet the resource requirements of the task, the
task needs to wait for a release of resources. Considering whether
the computing node can work normally, if the MEC server or
cloud server selected to process the task is broken down, an
MEC server with sufficient computing resources that can work
normally is reallocated, and the reassigned server is now located
on the base station to which the task belongs.

We consider reassigning computing nodes for a given task be-
cause the recovery time required for a machine failure is usually
longer than the transmission and computation time of the task.
The pseudocode of the SLTRA algorithm is as follows:

4.2. Hyperparameter tuning

The value of the hyperparameter has an important influence
on the result. These two parameters directly affect whether the
algorithm can attain convergence or not and the speed of con-
vergence. Therefore, in this section, we conduct comparative ex-
periments on the two hyperparameters of learning rate � and
discount factor  to obtain appropriate value making the al-
gorithm perform better. The experimental result are shown in
Figs. 2 and 3.
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Algorithm 1: The SLTRA Algorithm
Input: Mobile user equipment
Output: Average response time, total energy consumption

1 Initialize the computing environment and parameters;
2 for each task generated by UE u do
3 Use the DQN method to select a computing node;
4 if the selected computing node is UE u then
5 The task is processed locally;
6 else if the selected computing node is an MEC server

then
7 if the MEC server is broken down then
8 Offload the task to the MEC server with the

most resources and no failures;
9 else

10 Offload the task to the selected server;
11 else
12 if the cloud server is broken down then
13 Offload the task to the MEC server with the

most resources and no failures;
14 else
15 Offload the task to the cloud server;
16 Calculate the response time and energy consumption;
17 Update the optimal strategy;
18 end

Fig. 2. Convergence of different learning rates.

In Fig. 2, we can apparently see all of these four learning rates
can eventually converge successfully, while from the partially
enlarged picture, it is obvious that the convergence speed is the
fastest when the learning rate is 1e−2 and 1e−3, the third is
e−4, and the slowest is 1e−5. From the perspective of curve
scillation, the most stable is 1e−3, and the worst is 1e−5.
onsidering these two aspects, we choose 1e−3 as the value of
earning rate �. That is because too large a learning rate may
ause the algorithm to fail to converge, while a too small learning
ate will cause the learning speed to be too slow and affect the
onvergence speed.
The discount factor reflects the preference for immediate re-

urns. The discount factor reflects the degree of emphasis on
uture returns. The larger the value, the more critical the future
eturns. It can be seen from Fig. 3 that when the discount factor
s 0.6, the algorithm converges best, and the second is 0.8.
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Fig. 3. Convergence of different discount factors.

5. Experiments and analysis

In this section, we compare and analyze the optimization per-
formance of the proposed algorithm under different experimental
environment settings. We build the experimental simulation en-
vironment on the Python 3.6 platform with the Windows 10
operating system. The simulation parameters is shown in Table 1.

We use the following algorithms to conduct the performance
comparison with the algorithm proposed in this paper. Each of
these algorithms has the following characteristics: QL is a classic
reinforcement learning algorithm with good self-learning ability.
The round robin (RR) algorithm considers assigning tasks to
computing nodes in turn for processing. On the basis of the RR
algorithm, the weighted round robin (WRR) algorithm allocates
using different weights according to the power of every comput-
ing node, and this is done to balance the computing capabilities
of the various computing nodes. The random algorithm randomly
assigns task requests to computing nodes for processing.

5.1. Proportion of tasks

In the three-layer mobile cloud–edge system, there are three
types of computing nodes: a mobile UE, an MEC server and a
cloud server. A tasks can be assigned to any of them as a com-
puting platform. Therefore, these three types of computing nodes
have a competitive relationship with regard to task processing.
In different experimental environments, each computing layer
may have different competitive advantages, resulting in changes
in the proportion of the number of tasks executed on different
computing layers. For example, the UE layer has relatively weak
computing power, but no communication delay. Cloud server has
strong computing capacity, but it is difficult to meet the real-time
demand for tasks.

To reflect the collaborative competition between the comput-
ing layers when processing tasks, we consider a statistical experi-
ment regarding the proportions of executed tasks under different
data sizes. The data sizes are 100–500 KB, 500–1000 KB, 1000–
3000 KB, 3000–5000 KB, 5000–8000 KB and 8000–10000 KB. The
experimental results are shown in Fig. 4. According to the results,
with the task size increasing, the number of tasks executed on the
UE fluctuates little and is stable. The number of tasks executed on
the MEC server is constantly decreasing, and correspondingly, the
number of tasks executed on cloud servers shows an increasing
trend. Therefore, when the calculation pressure of the three-layer
computing platform increases, the ability of the MEC server to
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Table 1
Experimental simulation parameters.
Notation Description Value

Du;m the distance between UE u and base station m randint (50; 200) m
N0 the noise power −174 dBm/Hz
W the communication bandwidth 2.0 MHz
ci the number of CPU cycles needed to compute one bit of data 500 cycles/bit
fc the CPU frequency of the cloud server 20 GHz
fmj the CPU frequency of MEC server j of base station m Unif (5:0; 10:0) GHz
fu the CPU frequency of UE u Unif (0:5; 1:0) GHz
pu the transmission power of UE u 100 mW
pm the transmission power of the base station m and the cloud computing center 200 mW
rm;c the transmission rate between the base station and the cloud computing center 25 mbps
� the effective switching capacitance in the chip 10−28
Fig. 4. Proportion of tasks executed on different computing layers.
eceive the computational load decreases, while the cloud server
as a stronger load capacity. This is because the computing capa-
ilities and resources of different computing layers are different,
nd the computing capabilities and resources of the UE, MEC
erver, and cloud server are increased by multiples. When the
alculation pressure in the environment increases, more tasks will
e offloaded to the cloud because the computing capabilities and
esources of the UE devices and edge layer are insufficient for
upporting an excessive computational load. However, when the
alculation pressure is small, the edge computing layer’s unique
dvantage of providing services close to the user can best satisfy
he user’s QoE. This experiment shows that the cooperation be-
ween the edge computing layer and cloud computing layer can
ffectively complete the processing of user requests.

.2. Task data size

Another experiment in this paper simulate the task genera-
ion and processing procedures for 5 h, and the experimental
esults are recorded at time points of 0.5, 1.0, 3.0, and 5.0 h.
his experiment compares the average response times and total
70
energy consumption results of various algorithms under differ-
ent task data sizes and summarizes the tasks into small tasks
(100–500 KB), large tasks (1000–3000 KB) and mixed tasks (100–
3000 KB) according to the data size. The experimental results are
shown in Figs. 5 and 6.

Figs. 5(a) to 5(c) show the average response time results of the
small task, mixed task, and large task, respectively. As the task
data size increases, the task response time also increases. Since
the mixed task includes small tasks and large tasks, the values
of its experimental results are between the experimental results
of small tasks and large tasks. The experimental results of the
SLTRA algorithm are optimal, and those of the QL algorithm are
second. This is because SLTRA and QL are intelligent algorithms
based on self-learning methods, and through interaction with the
experimental environment, they can learn better task offloading
and resource allocation strategies than other approaches. As the
learning time increases, an algorithm’s decision accuracy can
be improved, so the objective optimization performance is also
improved. However, because the SLTRA algorithm is based on
the DRL method and has better learning ability and stability
than the QL algorithm, the optimization performance of the QL
algorithm is weaker than that of the SLTRA algorithm. Next, the
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Fig. 5. Average response times for different task data sizes.
Fig. 6. Total energy consumption for different task data sizes.
ptimization performances of the WRR, RR, and random algo-
ithms decline in the listed order. These three basic algorithms
o not have the ability to learn strategies, so their performance
dvantages are limited.
Figs. 6(a) to 6(c) show the total energy consumption of the

mall task, mixed task, and large task, respectively. Similar to the
xperimental results with respect to the task response time, the
otal energy consumption increases with the task size increasing.
ith the increasing task size, the number of tasks generated by
E devices increases, and the energy consumption required for
rocessing tasks also increases. According to the experimental
esults, under the small task size, the total energy consumption
f the SLTRA algorithm is slightly higher than that of the QL
lgorithm. However, for large and mixed tasks, the performance
f the SLTRA algorithm is better than those of the other com-
arison algorithms. Among the remaining three algorithms, the
xperimental results of the WRR algorithm are relatively good,
ut the improvement of the optimization effect is not obvious,
nd all of these basic algorithms are worse than SLTRA and QL
lgorithms.
According to the experimental results regarding the average

esponse times and total energy consumption for the three types
f tasks, it can be seen that the task offloading and resource
llocation algorithm proposed in this paper has the best ef-
ects, which reflects the good optimization performance and the
lgorithm robustness. This is because the SLTRA algorithm con-
iders both the average task response time and the total energy
onsumption.
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5.3. Number of UE devices

The number of mobile UE devices directly affects the number
of user requests. The greater the number of UE devices is, the
greater the pressure on the computing environment. In this ex-
periment, we optimize the objectives of minimizing the average
response times and total energy consumption of tasks under
different numbers of UE devices, including 5, 10, 15, and 20

Figs. 7(a) to 7(d) are the results regarding the average task
response times under different numbers of UE devices. First,
with the increase in the number of UE devices, the time cost
required to process all tasks increases correspondingly. However,
the number of tasks generated by the UE devices also increases,
so the average task response time does not change significantly.
Second, with the increase in UE activity time, the number of tasks
generated by the UE devices increases. This has no obvious impact
on the experimental results of the SLTRA and QL algorithms, and
the performances of the algorithms improve as the training time
increases due to the adaptive learning ability of these approaches.
However, the average task response times of the WRR, RR, and
random algorithms increase as the activity time increases, espe-
cially for the RR and random algorithms. This is because the RR
and random algorithms do not consider the computing capability
differences between nodes and do not balance the computing
pressure among the computing nodes, resulting in too many tasks
accumulating on computing nodes with weak capability, and the
average response time increases as a result. According to the
comparison results of different algorithms, the SLTRA algorithm
has the best optimization results, and the QL algorithm is second
only to the SLTRA algorithm due to its learning ability.

Figs. 8(a) to 8(d) show the results of the total energy consump-
tion for task processing under different numbers of UE devices.
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