
Information Sciences 586 (2022) 119–139
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins
Multi-stage complex task assignment in spatial crowdsourcing
https://doi.org/10.1016/j.ins.2021.11.084
0020-0255/� 2021 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: lzhao@hnu.edu.cn (Z. Liu), lkl@hnu.edu.cn (K. Li), zhxu@hnu.edu.cn (X. Zhou), quietwave@hnu.edu.cn (N. Zhu), gaoyj@hn

(Y. Gao), lik@newpaltz.edu (K. Li).
Zhao Liu a, Kenli Li a,⇑, Xu Zhou a, Ningbo Zhu a, Yunjun Gao b, Keqin Li a,c

aCollege of Information Science and Engineering, Hunan University, changsha, China
bCollege of Computer Science and Technology, Zhejiang University, Hangzhou, China
cDepartment of Computer Science, State University of New York, New Paltz, New York, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 August 2021
Received in revised form 27 November 2021
Accepted 28 November 2021
Available online 2 December 2021

Keywords:
Spatial data
Crowdsourcing
Multi-stage
Dependency
Task assignment
With the widespread application of smart devices, spatial crowdsourcing (SC) has been
extensively integrated into daily life. Task assignment is a crucial issue in SC and has
attracted much attention. Most prior studies on task assignment ignore the importance
of dependency among tasks, resulting in some ineffective matching pairs and wasting
workers’ time. To this end, we formulate a new problem in SC, abbreviated as multi-
stage complex task assignment (MSCTA), which aims to assign workers to multi-stage
complex tasks to maximize the total profit. Compared with existing studies, MSCTA can
obtain more effective assignments by considering the dependency constraints among
tasks. We prove that the MSCTA problem is NP-hard and propose a greedy algorithm
and a game algorithm. Specifically, both algorithms iteratively utilize a filtering module
to obtain a set of executable tasks (ET) for assignment. The greedy algorithm can quickly
assign the most profitable workers to the subtasks in each round of ET, and obtain a prov-
able approximate result. The game algorithm is proved to be convergent and can win a
Nash equilibrium when processing the subtasks in each round of ET. Extensive experimen-
tal results demonstrate the efficiency of our algorithm.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

With the development and widespread use of smart devices and 5G, spatial crowdsourcing [1] has been widely used in
various applications, such as Meituan, DidiChuxing, and Taskrabbit [2–4]. In spatial crowdsourcing, crowdsourcing platforms
collect spatial tasks and require workers to move to specific locations to complete the assigned tasks.

In terms of task complexity, researches on spatial crowdsourcing can be divided into two categories. First, tasks such as
delivering food, monitoring traffic conditions, and measuring network quality are simple and easy to complete [5–7]. Second,
tasks are complex, e.g., repairing a house, holding an orienteering race, and preparing for a party. These tasks consist of mul-
tiple stages and require the cooperation of several skilled workers [8–10].

For the complex-task assignment problem in spatial crowdsourcing, existing studies [11] usually consider the constraints
of skills, time, distance, and budget. In [12], Cheng et al. presented a g-D&C algorithm to match each complex task with a
group of workers that meet the specified constraints. However, in many applications, complex tasks are composed of mul-
tiple subtasks (or stages) with dependency constraints, meaning that a subtask cannot be processed until its dependent sub-
tasks have been completed. For example, repairing a house is a multi-stage complex task, including the following steps: first,
u.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2021.11.084&domain=pdf
https://doi.org/10.1016/j.ins.2021.11.084
mailto:lzhao@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:zhxu@hnu.edu.cn
mailto:quietwave@hnu.edu.cn
mailto:gaoyj@hnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.ins.2021.11.084
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
repairing the floor and plumbing system, second, installing electrical circuits and painting the walls, finally, furnishing and
cleaning. Another example is delivering packages to some strictly managed residential areas during the COVID-19 outbreak:
first, transporting packages to the designated locations by some workers with driving skills, second, delivering the packages
to customers by other workers with medical protection capabilities. Last example, holding a ceremony can also be regarded
as a multi-stage task, each stage requires workers with different skills to work together.

For these multi-stage complex tasks aforementioned, if the dependency constraints are not considered when solving the
task assignment problem, they always obtain invalid assignments. In addition, each subtask has a deadline, and the workers
assigned to each subtask must arrive at the location on time. Moreover, each complex multi-skilled subtask requires the
cooperation of workers, making the task assignment problem more complicated. Motivated by these issues, we attempt
to investigate a new spatial crowdsourcing problem, called multi-stage complex task assignment (MSCTA). The purpose
of MSCTA is to assign workers to multi-stage complex tasks and maximize the total profit under the constraints of depen-
dency, maximal working area, skills, budget, and deadline.

Next, we illustrate the MSCTA problem in Example 1.1.

Example 1. (Holding a Wedding.) Fig. 1 shows an application of spatial crowdsourcing, that is, holding a wedding. This
application contains many complex tasks, such as decorating the wedding scene and wedding cars, purchasing, playing
music, taking photos, providing catering services, and offering entertainment. These tasks belong to different stages of a
wedding ceremony.

Therefore, holding a wedding can be regarded as a multi-stage task tj. Without loss of generality, task tj contains three
dependent subtasks (stages), namely tj;1; tj;2, and tj;3. These three subtasks represent before, during, and after the wedding
ceremony, respectively. Furthermore, each subtask requires the cooperation of workers with different skills to complete.

In Fig. 1, there are two multi-stage tasks t1 � t2ð Þ and six multi-skilled workers w1 �w6ð Þ, see Table 1 for details. As
shown in Fig. 1, each dotted line with an arrow starts from a subtask and points to its dependent subtasks. The purpose of the
crowdsourcing platform is to assign workers to multi-stage complex tasks to maximize total profit under the constraints of
dependency, maximal working distance, skills, budget, and deadline.

As shown in Fig. 1(a), workers are assigned to subtasks without considering dependency constraints. Specifically, the
assignments of workers are shown by solid arrows and presented in Table 2. We obtain that for task t1, workers w1 and w2

can provide the skills required by subtasks t1;2 and t1;3, respectively, but w3 cannot provide the skills required by t1;1.
According to the dependency constraint, subtask t1;2 depends on t1;1, and t1;3 depends on t1;2. Therefore,w1 andw2 must wait
until t1;1 is completed; that is to say, the matching pairs t1;2;w1

� �
and t1;3;w2

� �
are invalid. Similarly, for task t2, the

matching pairs t2;2;w4
� �

; t2;3;w5
� �

and t2;3;w6
� �

are also invalid. As a result, no subtasks can be completed due to the neglect
of the dependency constraints. Based on the dependency constraints among the subtasks, we get the assignments shown in
Fig. 1(b). For task t1, since the skills required by t1;1; t1;2 and t1;3 are covered by the assigned workers, the matching pairs
t1;1;w3
� �

; t1;1;w6
� �

; t1;2;w1
� �

, and t1;3;w2
� �

are valid. Similarly, for task t2, the matching pairs t2;1;w4
� �

and t2;1;w5
� �

are also
valid. Based on the assignments presented in Table 2, subtasks t1;1; t1;2; t1;3 and t2;1 can be completed.

To solve the MSCTA problem, we need take into account the following points: 1) subtasks contained in the same multi-
stage task are complex and dependent on each other; and 2) the total profit is affected by two aspects, the profit achieved
from each subtask and the number of completed subtasks.

The MSCTA problem is most related to the dependency-aware spatial crowdsourcing (DA-SC) problem in [13], consider-
ing the dependencies between tasks. However, the tasks in [13] are single-skilled and can be accomplished by one worker,
while many tasks in real life are multi-skilled and require the cooperation of multi-skilled workers. In this paper, our meth-
ods can be used to handle single-skilled tasks as well as multi-skilled tasks. In addition, when solving the DA-SC problem
Fig. 1. An example of holding a wedding.

120

Table 1
Details of tasks and workers.

(a) Task

Task Subtasks Skills Dependency

t1 t1;1 s1; s2 £
t1;2 s2; s3 t1;1
t1;3 s1; s3 t1;1; t1;2

t2 t2;1 s1; s2; s3 £
t2;2 s1 t2;1
t2;3 s2; s3 t2;1; t2;2

(b) Workers

Worker Skills

w1 s2; s3
w2 s1; s3
w3 s1
w4 s1; s2
w5 s1; s3
w6 s2

Table 2
Task Assignment Schemes.

Task Stage (Subtask) Fig. 1(a) Fig. 1(b)

t1 t1;1 w3 w3;w6

t1;2 w1 w1

t1;3 w2 w2

t2 t2;1 £ w4;w5

t2;2 w4 £
t2;3 w5;w6 £

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
[13], Ni et al. first combined multiple tasks with dependencies into an associative task set, and then treated the associative
task set as a complex task and assigned a group of workers to complete. However, if a task in the associative task set does not
find a worker satisfying the constraints, all tasks in the associative set cannot be assigned, thus affecting the completion rate.
Moreover, different from our work, the purpose of DA-SC is to maximize the number of assigned task-and-worker pairs.

In this paper, we first formulate the multi-stage complex task assignment (MSCTA) problem and prove it is NP-hard. Then,
we propose two algorithms, namely the greedy algorithm and the game algorithm, to solve the MSCTA problem effectively.
Generally, the contributions of this paper can be summarized as follows:

� We formulate a multi-stage complex task assignment (MSCTA) problem and demonstrate that it is NP-hard in Section 3.
� We present a greedy algorithm to handle the MSCTA problem in Section 5. We analyze the time complexity of the algo-
rithm, and prove the approximate boundary of the total profit V Ap

� �
obtained by the algorithm.

� We design a game algorithm to solve the MSCTA problem in Section 6. We analyze the algorithm from three aspects: the
stability, the convergence rate, and the quality of the obtained result.
� We conduct multiple experiments on real data sets and synthetic data sets to demonstrate the effectiveness of our pro-
posed algorithms in Section 7.

In addition, we introduce related work in Section 2 and present a framework to address the MSCTA problem in Section 4.
Finally, we summarize this paper in Section 8.
2. Related work

Spatial crowdsourcing is a new framework in crowdsourcing [14–16], requiring workers to physically move from their
original positions to the locations of tasks. With the widespread of smart devices, spatial crowdsourcing has been widely
used in academia and industry, such as Meituan [2], DidiChuxing [3] and TaskRabbit [4]. As the basic challenge in spatial
crowdsourcing [1], task assignment can be divided into the following categories according to the arrival scenarios and the
algorithmic assignment model [17]: static matching [18], static planning [19], dynamic matching [20] and dynamic planning
[21]. In the matching model, task assignment is often formulated as a bipartite graph-based problem: workers and tasks can
be represented by the vertices in the bipartite graph, the utility or cost between a worker and a task can be denoted by the
weight of an edge, and the problem is to obtain an optimal matching in the bipartite graph. In the planning model (a.k.a.
scheduling model), task assignment aims to plan a route for each worker to perform a sequence of tasks. In addition, accord-
121

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
ing to the publishing models mentioned in [22], task assignment can be classified into two other categories: 1) in the worker-
selected tasks (WST) mode, workers can choose tasks according to their preferences [23,24]; and 2) in server-assigned tasks
(SAT) mode, tasks will be assigned by the crowdsourcing platform according to the basic attributes of workers and tasks [25].
In this paper, the MSCTA problem belongs to the category of dynamic matching, we first introduce a batch-based framework,
and then propose a greedy method based on the SAT mode and design a game method based on the WST mode.

In many spatial crowdsourcing applications, tasks are simple and can be accomplished by ordinary workers, such as tak-
ing photos [6] and delivering food [5,26]. Besides these simple tasks, many spatial tasks are complex and require a cooper-
ation effort of a set of skilled workers to complete [8–11], such as holding a party and repairing a house. For the assignment
of complex tasks, existing studies either assign a group of workers to a complex task that meets the skill constraints or treats
a complex task as a combination of multiple simple subtasks and assign a skilled worker to each subtask [13]. Most of these
studies do not consider the dependency constraints among tasks, leading to many invalid assignments.

In addition, various optimization goals have been discussed in previous works. Zhao et al. [27] aimed to accomplish as
many tasks as possible, and in [28], they studied how to reduce the total cost of workers while keeping the number of com-
pleted tasks unchanged. In [29], Xu et al. proposed an insertion operator for dynamic ride-sharing and aimed to minimize the
maximum flow time of requests or reduce the total travel time of workers. In [30], Cheng et al. considered the cooperative
relationship between workers and aimed to maximize the total cooperation quality revenue. In this paper, the MSCTA prob-
lem aims to assign workers to multi-stage complex tasks for gaining the obtained total profit. Even though the problem of
maximizing the total score of the system has been studied [12], the dependency constraints between tasks have not been
considered.

The multi-objective optimization problems in spatial crowdsourcing have also been investigated in prior studies. Wang
et al. [31] investigated a problem of heterogeneous spatial crowdsourcing task allocation, which proposed a solution to max-
imize the assigned task coverage and minimize the incentive cost simultaneously. In [32], Xiao et al. introduced a novel spa-
tial crowdsourcing task assignment problem, called competitive detour tasking, and proposed a light-weight secure reverse
auction mechanism to assign tasks which can protect workers’ private sensitive information perfectly. In [33], Zheng et al.
studied the problem of multi-campaign oriented spatial crowdsourcing, which aimed to maximize the objective function
comprised by the score terms of the throughput, distance, and the worker diversity of the campaigns. Although some exist-
ing multi-objective optimization papers studied the same objective function as ours, they did not consider the constraints of
multi-skills and dependencies of tasks.

3. Problem statement

In this section, we present the problem of multi-stage complex task assignment in spatial crowdsourcing. Table 3 lists the
commonly used notations in this paper.

Definition 1 (Multi-skilled Workers). At timestamp p, the platform collects a set of workers Wp ¼ w1;w2; � � � ;wnf g. A worker
wi 2Wp connects to the crowdsourcing platform at timestamp ai and reports his/her location li ¼ li xð Þ; li yð Þð Þ. Worker wi has
a set of skills ski, and can move in any direction at speed v i with the maximum moving distance di. We denote worker wi as
wi ¼ li; ski; di;v i; aið Þ.

According to Definition 1, worker wi can perform some skilled work based on the skills ski, such as decorating houses and
repairing electrical appliances. Additionally, workers can log in and log out of the platform freely, and they can choose tasks
according to their preferences (e.g., selecting the closest spatial tasks or tasks with high profits) or accept tasks assigned by
Table 3
Notations and Explanations.

Notation Explanation

wi;Wp a skilled worker and a set of workers collected at timestamp p, respectively
di;v i; li the maximum moving distance of worker wi , the moving speed of worker wi and the location of worker wi , respectively
tj; tj;k; Tp a multi-stage complex task and the kth subtask (stage) in task tj , and a set of tasks collected at timestamp p, respectively
ski; skj;k the skill set of worker wi and the skill set required by subtask tt;k , respectively
ai; aj the timestamp of worker wi appearing on the platform and the timestamp of task tj appearing on the platform
wtj;k; lj;k the deadline to start processing subtask tj;k and the location of subtask tj;k , respectively
bj;k;Dj;k the budget provided by subtask tj;k and the dependent task set of tj;k , respectively
VCj;k a set of valid candidate workers for subtask tj;k
ET;Ap a set of executable subtasks and an assignment result, respectively
Ap tj;k
� �

a set of task-worker matching pairs for subtask tj;k
js Ap tj;k

� �� �j the number of required skills provided by the matched workers in Ap tj;k
� �

C Ap tj;k
� �� �

the sum of the travel cost of workers in Ap tj;k
� �

to the location of subtask tj;k
CTp a set of subtasks that meet the completion conditions
ci;j;k the travel expenses of worker wi to the location of subtask tj;k
tj;k;wi
� �

a valid task-worker matching pair

122

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
the platform. In the model of workers accepting tasks assigned by the platform, the preferences of workers are not consid-
ered in the process of task assignment, and the platform assigns tasks to workers based on the principle of maximizing the
global objective function. Each worker can only match one subtask in a batch, after the worker completes the currently
assigned subtask, s/he can be collected by the platform again and participate in the processing of the next batch of tasks.

Definition 2 (Multi-stage Complex Spatial Tasks). Let Tp ¼ t1; t2; � � � ; tmf g be a set of multi-stage complex tasks, collected by
the platform at timestamp p. Task tj (1 6 j 6 m) consists of l subtasks (or l stages), tj ¼ tj;1; tj;2; � � � ; tj;l

� �
, and appears on the

platform at timestamp aj. Each subtask tj;k (1 6 k 6 l) reports its location lj;k ¼ lj;k xð Þ; lj;k yð Þ� �
and must start being processed

within wtj;k. Subtask tj;k can only be accomplished by a set of workers with the required skills skj;k. In addition, subtask tj;k
provides a budget bj;k to motivate workers to complete it. Moreover, the subtasks contained in a task are dependent, and tj;k
depends on a set of subtasks Dj;k. Therefore, subtask tj;k can be denoted as tj;k ¼ lj;k; skj;k;wtj;k; bj;k; aj;Dj;k

� �
.

In spatial crowdsourcing, workers need to physically move from their locations to the locations of subtasks and spend
time processing. Note that, the subtasks in the same complex task are posted at the same time, but need to be started at
different times in order. In addition, the locations of these subtasks can be identical or different. To mobilize the enthusiasm
of workers, each subtask tj;k provides a budget bj;k to compensate for the consumption of workers. In Definition 2, the sub-
tasks contained in a task are dependent. For example, if task tj consists of three subtasks tj ¼ tj;1; tj;2; tj;3

� �
, where tj;2 depends

on tj;1, and tj;3 depends on tj;2, that is, Dj;2 ¼ tj;1
� �

and Dj;3 ¼ tj;1; tj;2
� �

. Therefore, we can obtain that subtask tj;2 can only be
conducted after subtask tj;1 is completed, and subtask tj;3 can only be executed after tj;1 and tj;2 are completed. In other words,
if subtask tj;1 meets the completion conditions, then Dj;2 ¼£. Similarly, if both subtasks tj;1 and tj;2 meet the completion con-
ditions, then Dj;3 ¼£.

Definition 3 (Valid Matching Pair). After the crowdsourcing platform collects a batch of workers Wp and tasks Tp at
timestamp p, it performs valid task-worker matching. Since each task tj (1 6 j 6 m) consists of l subtasks (or l stages), a valid
task-worker matching pair tj;k;wi

� �
means that the matching pair simultaneously satisfies the constraints of dependence,

maximal working area, skills, budget, and deadline.
According to Definition 3, a valid task-and-worker matching pair tj;k;wi

� �
needs to satisfy the following conditions: 1) the

distance between the location li of worker wi and the location lj;k of subtask tj;k must be less than the maximum moving dis-
tance di; 2) worker wi can reach the location lj;k of subtask tj;k before the deadline aj þwtj;k

� �
; 3) worker wi can provide some

skills required by subtask tj;k, that is, ski \ skj;k –£; 4) the budget bj;k provided by subtask tj;k should at least be able to com-
pensate the travel expenses of workers; and 5) the dependency constraint of subtask tj;k must be satisfied, that is, if a subtask
tj;k depends on a subtask tj;k0 , then tj;k can only be conducted after the dependent subtask tj;k0 has been matched enough work-
ers, and these workers can reach the location of tj;k0 on time and provide the required skills.

For all matching pairs containing subtask tj;k, if these matching pairs are valid and the required skills of subtask tj;k can be
fully covered by the assigned workers, then we claim that subtask tj;k meets the completion condition.

Before introducing the MSCTA problem, we would like to discuss the profit obtained from subtask tj;k. Suppose that, sub-
task tj;k has matched a set of valid task-and-worker matching pairs Ap tj;k

� �
.

If subtask tj;k does not meet the completion condition, we define the profit obtained from subtask tj;k as the potential
profit V Ap tj;k

� �� �
. In this case, we get
V Ap tj;k
� �� � ¼ bj;k

js Ap tj;k
� �� �j
jskj;kj � C Ap tj;k

� �� �
; ð1Þ
where js Ap tj;k
� �� �j indicates the number of required skills provided by the matched workers in Ap tj;k

� �
, and we can get

js Ap tj;k
� �� �j ¼ j P tj;k ;wih i2Ap tj;kð Þski

� 	
capskj;kj. In addition, C Ap tj;k

� �� �
is the sum of the travel cost of workers in Ap tj;k

� �
to the loca-

tion lj;k of subtask tj;k, and C Ap tj;k
� �� � ¼P tj;k ;wih i2Ap tj;kð Þci;j;k, where ci;j;k is the travel expenses of worker wi to the location of

subtask tj;k.
Since ci;j;k is related to the distance between workerwi and subtask tj;k, we can obtain ci;j;k ¼ c � dist li; lj;k

� �
. dist li; lj;k

� �
is the

Euclidean distance between worker wi and subtask tj;k. Following the work in [12], we use the Euclidean distance to repre-
sent the distance dist li; lj;k

� �
between worker wi and subtask tj;k. Without loss of generality, it can also be easily adjusted into

the shortest path distance in road networks. Additionally, c is the cost of moving unit distance. For vehicles, c is the gas fee
per mile [12]. For electric cars, c is the electricity consumption per mile. If subtask tj;k meets the completion condition (i.e. the
required skills of tj;k can be fully covered by the skills of the matched workers in Ap tj;k

� �
), we can get js Ap tj;k

� �� �j ¼ jskj;kj and
define the profit obtained from subtask tj;k as V Ap tj;k

� �� � ¼ bj;k � C Ap tj;k
� �� �

.

Definition 4. (Multi-stage Complex Task Assignment Problem). In a timestamp interval 0; p½ �, a batch of workers Wp and
tasks Tp appear on the crowdsourcing platform. The problem of multi-stage complex task assignment in spatial
crowdsourcing is to obtain an assignment Ap, such that:
123

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
� the matching pairs tj;k;wi
� � 2 Ap are valid matching pairs;

� the total profit V Ap
� �

is maximized, where
V Ap
� � ¼

X
tj;k2CTp

V Ap tj;k
� �� �

¼
X

tj;k2CTp
bj;k � C Ap tj;k

� �� �
;

ð2Þ
where CTp is a set of subtasks that meet the completion condition.
It is worth noting that the total profit V Ap

� �
is affected by the number of completed subtasks and the profit obtained from

each subtask. Accordingly, first, workers tend to choose subtasks that meet the completion condition, and second, if the
number of assigned workers exceeds the skill requirements of subtask tj;k, we keep a set of workers who can complete
the subtask and obtain the maximum profit.

Since V Ap
� �

is the total profit after deducting the travel expenses of workers, we can allocate V Ap
� �

based on the service
hours and skills provided by the workers, which will be studied in our future work.

Theorem 1. The problem of Multi-stage Complex Task Assignment is NP-hard.
Proof. We prove this theorem by a reduction from an existing NP-hard problem, namely the K-set packing problem [34],

defined as follows: given a set of elements Q ¼ q1; q2; � � � ; qjej
n o

, a collection of subsets P ¼ P1; P2; � � � ; Pjsj
� �

, and a number

K, where Pj #Q and each Pj is relevant to a weight value w Pj
� �

; the K-set packing problem is to choose a collection of subsets
P�# P to maximize

P
Pj2P�w Pj

� �
, where any two subsets Pj; Pk 2 P� are disjoint and the number of elements in any subset

Pj 2 P� is at most K.
For a given K-set packing problem, we can transform it to an MSCTA instance within polynomial time. We configure that

each task only consists of one stage (i.e., tj ¼ tj;1) and needs at most K skills to meet the completion condition (i.e., jskjj 6 K).
Each worker wi corresponds to an element qi 2 Q , each subset Pj 2 P is associated to a set of workers
Wj ¼ wij tj;wi

� � 2 Ap tj
� �� �

assigned to task tj. We configure that each task tj can be accomplished by its corresponding set
of workers Wj. The profit obtained by the workers in Wj equals to w Pj

� �
(i.e., V Ap tj

� �� � ¼ w Pj
� �

). Since jskjj 6 K , the number
of workers in each set Wj is at most K. For this MSCTA instance, our purpose is to select a set of tasks to complete such that
the total profit V Ap

� �
is maximized, which is the same to maximize

P
Pj2P�w Pið Þ in the K-set packing instance. Under this

polynomial-time mapping method, we can obtain that the K-set packing instance can be solved if and only if the transformed
MSCTA problem can be solved.

Therefore, we reduce the K-set packing problem to the MSCTA problem. Since the K-set packing problem is NP-hard [34],
the MSCTA problem is also NP-hard.
4. Batch-based framework

In this section, we present a framework to address the MSCTA problem.
In Algorithm 1, we design a batch-based framework that iteratively assigns tasks to workers in multiple batches. Com-

pared with the online task assignment mode that needs to assign tasks to workers immediately, the batch-based framework
can obtain a better assignment result and is suitable for dynamic scenarios [1]. Specifically, at each timestamp p 2 P, the
crowdsourcing platform collects a batch of tasks Tp and workers Wp (lines 2–3). Tp includes the tasks that are not assigned
enough skilled workers before timestamp p and the newly arrived tasks before timestamp p. Wp consists of the following
three categories: the workers who are not assigned any tasks before timestamp p, the workers that have completed their
tasks and reconnected to the platform before timestamp p, and the workers who are newly connected to the platform before
timestamp p.

Algorithm 1: Batch-based Framework

Input: A time interval P
Output: Task-and-worker assignment results within P
1: for each timestamp p 2 P
2: Collect a set of tasks Tp

3: Collect a set of workers Wp

4: Apply the greedy algorithm or the game algorithm to obtain a good assignment Ap

5: end for
124

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
Since the MSCTA problem is NP-hard, we propose a greedy algorithm and a game algorithm to obtain a good assignment
Ap (line 4). By applying the greedy algorithm, we can get a local optimal assignment Ap based on the SAT mode [22], suffering
the limitation of workers cannot choose tasks independently. Differently, in the game algorithm, workers can choose tasks
according to their preferences and reach stability.

Before describing the greedy algorithm and the game algorithm, we introduce two operations that are often invoked by
them. The first operation is called valid candidate judgments (VCJ), applied to obtain a set of valid candidate workers for each
subtask. The second operation, called filtering, is applied to extract a set of executable subtasks ET.

For the operation of VCJ mentioned in Algorithm 2, to obtain a set of valid candidate workers for each subtask (lines 3–9),
we set some judgment conditions, including the constraints of the maximal working area, deadline, skills, and budget. For
example, to obtain a set of valid candidate workers wi 2 VCj;k for subtask tj;k, worker wi and subtask tj;k must satisfy the fol-
lowing judgement conditions:
Algorithm 2: Valid Candidate Judgments (VCJ)
125
Input: A batch of tasks Tp and workers Wp
Output: A set of valid candidate workers VC

1: VC £

2: for each subtask tj;k 2 Tp do

3: for each worker wi 2Wp do

4: if wi has not been assigned then� �

5: if tj;k;wi satisfies judgement conditions then

6: VCj;k VCj;k [wif g

7: end if

8: end if

9: end for

10: flagj;k ! 1

11: Update VC

12: end for

13: Return VC
� Maximal working area. The distance between worker wi and subtask tj;k must be less than di,
dist li; lj;k
� � ¼ ffi

lj;k xð Þ � li xð Þ
� �2 þ lj;k yð Þ � li yð Þ

� �2q
6 di:

� Budget constraint. The budget bj;k should be able to compensate workerwi for travel expenses from li to lj;k, and we get
dist li; lj;k

� �� c 6 bj;k.
� Deadline constraint. Each worker wi must reach the location lj;k before the deadline aj þwtj;k

� �
, and we obtain

1
v i
� dist li; lj;k

� �
6 aj þwtj;k � p
� �

.

� Skills constraint. Each worker wi must provide some skills required by subtask tj;k, and we have skicapskj;k – £.

Additionally, we set the flag flagj;k of subtask tj;k to 1, which means that subtask tj;k does not reach the completion condition
(line 10).

Algorithm 3: Filtering

Input: A set of tasks Tp and VC
Output: A set of executable tasks ET
1: Initialize ET
2: for each subtask tj;k 2 Tp do
3: if flagj;k ¼ 1;Dj;k ¼£ and VCj;k –£ then

4: ET ET [tj;k
� �

5: end if
6: end for
7: Return ET

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
The filtering operation in Algorithm 3 is used to obtain a set of executable subtasks (ET). Specifically, if subtask tj;k meets
the following conditions: flagj;k ¼ 1;Dj;k ¼£, and VCj;k –£, then we add subtask tj;k to ET (lines 2–6).

Please note that our batch-based framework is also suitable for such a case, i.e. a whole task may become meaningless
due to some subtasks that cannot be completed. Specifically, for some subtasks that cannot meet the completion conditions
in the current batch, we will add them to the next batch and give priority to them.

5. The greedy approach

In this section, we introduce a greedy algorithm that assigns the most profitable workers to subtasks.

5.1. The definition of profit increase

Before introducing the greedy algorithm, we give a definition of profit increase DV tj;k;wi
� �

by using the case of assigning a
valid candidate worker wi to subtask tj;k. For subtask tj;k;Ap tj;k

� �
is an assignment result including the matching pair tj;k;wi

� �
,

while Ap tj;k
� � n tj;k;wi

� �� �
indicates that worker wi is not assigned to subtask tj;k. Therefore, the profit increase can be calcu-

lated by
DV tj;k;wi
� � ¼ V Ap tj;k

� �� �� V Ap tj;k
� � n tj;k;wi

� �� �
: ð3Þ
5.2. The Greedy Algorithm

Based on the definition of profit increase DV tj;k;wi
� �

, we design a greedy algorithm in Algorithm 4 to solve the MSCTA
problem.

Algorithm 4: The Greedy Algorithm

Input: A batch of tasks Tp and workers Wp

Output: A assignment result Ap

1: Ap £
2: VC Use VCJ designed in Algorithm 2
3: ET Use filtering designed in Algorithm 3
4: While Ap is not stable do
5: I £
6: for each subtask tj;k 2 ET do
7: Select worker wi with assignment strategies
8: I I [tj;k;wi

� �� �
9: end for
10: For each pair tj;k;wi

� � 2 I do
11: if worker wi is assigned to multiple subtasks then
12: Assign wi to the subtask with the largest profit increase and update I
13: end if
14: end for
15: Ap Ap [I
16: VC VC n wij tj;k;wi

� � 2 I
� �

17: for each subtask tj;k 2 ET then
18: if tj;k meets the completion condition then
19: Tp Tp n tj;k

� �
20: Dj;a Dj;a n tj;k

� �
, where k < a 6 lð Þ

21: flagj;k ! 0
22: end if
23: end for
24: Apply the filtering algorithm to update ET
25: end while
26: Return Ap
126

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
We first initialize the result of assignment Ap to an empty set (line 1). Then, according to Definition 3, we apply the VCJ
algorithm to obtain a set of valid candidate workers VCj;k for each subtask tj;k (line 2). In addition, considering the depen-
dency constraints among subtasks, we apply a filtering algorithm to obtain a set of executable subtasks ET (line 3). Finally,
based on VC and ET, we design a WHILE loop to iteratively match the best worker to each executable subtask (lines 4–25).
Specifically, for each iteration in the WHILE loop, we first initialize a temporary set I to an empty set to store the newly
matched task-and-worker pairs (line 5), and then we select the best worker for each subtask in ET according to the assign-
ment strategies (lines 6–9). The WHILE loop terminates when Ap reaches stability (line 4), which means that the current
assignment result Ap has not changed compared with the result of the previous round.

Our goal is to maximize the total profit V Ap
� �

, which is not only affected by the number of completed subtasks, but also by
the profit obtained from each subtask. To achieve this goal, we can choose the best worker for each subtask according to the
following assignment strategies:

� The selected worker wi must guarantee that the profit increase DV tj;k;wi
� �

> 0;
� Workers who can make subtask tj;k meet the completion conditions mentioned in Section 3 will be given priority. For
example, subtask tj;k has two valid candidate workers wi and wj that can be selected and can obtain two assignment
results Ap tj;k

� � [tj;k;wi
� �� �

and Ap tj;k
� � [tj;k;wj

� �� �
, respectively. If subtask tj;k can be completed by the assignment

Ap tj;k
� � [tj;k;wi

� �� �
but not by Ap tj;k

� � [tj;k;wj
� �� �

, then worker wi will be assigned to subtask tj;k;
� Under the premise of satisfying the above assignment strategies, workers who can provide the higher profit increase will
be selected.

If worker wi is the best choice for several subtasks, then we compare the profit increase of different subtasks, and assign
worker wi to the subtask with the largest profit increase and update I (lines 10–14). Additionally, we update Ap with I (line
15) and remove these assigned workers from VC (line 16). If any subtask in ET meets the completion condition, we update Tp

and Dj;a k < a 6 lð Þ, and set the flag flagj;k of subtask tj;k to 0, which indicates that subtask tj;k reaches the completion condition
mentioned in Definition 3 (lines 17–23). Finally, we apply the filtering algorithm to obtain a new set of executable tasks ET
(line 24). After several iterations, we can obtain a stable assignment result Ap, i.e. the currently executable tasks cannot
match more workers (line 26).

5.3. Analysis of the Greedy Algorithm

In this subsection, we first analyze the time complexity of the greedy algorithm, and then discuss the result obtained by
the algorithm.

Theorem 2. The time complexity of the greedy algorithm is O max nml;mn2;m2n
� �� �

.

Proof. In Algorithm 4, we assume that each worker wi (1 6 i 6 n) is a valid candidate worker for each subtask tj;k
(1 6 j 6 m;1 6 k 6 l). The time required to obtain a set of valid candidate workers for each subtask is O nmlð Þ (line 2). The
time required to obtain a set of executable tasks is O mlð Þ (line 3). In the WHILE loop, at least one worker is assigned to a
subtask in each iteration, so there are at most n iterations. In each iteration, the maximum number of executable subtasks
in ET is m and it takes O mnð Þ time to assign a worker to each executable subtask (lines 6–9). To prevent workers from being
redistributed, O m2

� �
time is required to compare all of the matching pairs in I (lines 10–14). Moreover, O mð Þ time is required

to check whether any subtasks in ET satisfy the completion condition (lines 17–22), and then, O mlð Þ time is necessary to
update ET (line 23). Therefore, the maximum time complexity of the greedy algorithm is O max nml;mn2;m2n

� �� �
.

To analyze the result of the algorithm, we first prove the following theorem.

Theorem 3. The total profit V Ap
� �

obtained by the greedy algorithm is monotonic and submodular.
Proof. We first prove the monotonicity of V Ap
� �

. In the greedy algorithm, we select the best worker for each subtask in turn

in each round. At timestamp th, the assignment result is Ah
p , and the total profit is V Ah

p

� 	
. At timestamp thþ1, we assume that

workerwi is assigned to subtask tj;k, so the assignment result is Ahþ1
p ¼ Ah

p [tj;k;wi
� �

and the total profit is V Ahþ1
p

� 	
. According

to Eq. (2), we have V Ahþ1
p

� 	
� V Ah

p

� 	
¼ V Ah

p tj;k
� � [tj;k;wi

� �� 	
� V Ah

p tj;k
� �� 	

. Based on Eq. (3), we can obtain the profit increase
127

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
as DV tj;k;wi
� � ¼ V Ah

p tj;k
� � [tj;k;wi

� �� 	
� V Ah

p tj;k
� �� 	

. According to assignment strategies in the greedy algorithm, we obtain

DV tj;k;wi
� �

> 0. Therefore, the total profit V Ap
� �

obtained by the greedy algorithm is monotonic.
According to [35], to prove the submodularity of V Ap

� �
, it requires to prove that

V Ap [tj;k;wi
� �� �� V Ap

� �
P V A0p [tj;k;wi

� �� 	
� V A0p

� 	
, where Ap #A0p #cAp , and a matching pair tj;k;wi

� �
is included in cAp

but not in A0p. Since Ap #A0p, we can get Ap tj;k
� �

#A0p tj;k
� �

. According to Eq. (1) and Eq. (2), we have
V Ap [tj;k;wi
� �� �� V Ap

� � ¼ V Ap tj;k
� � [tj;k;wi

� �� �� V Ap tj;k
� �� �

¼ bj;k
js Ap tj;kð Þ[tj;k ;wih ið Þj�js Ap tj;kð Þð Þj

jskj;k j � ci;j;k

P bj;k
js A0p tj;kð Þ[tj;k ;wih ið Þj�js A0p tj;kð Þð Þj

jskj;k j � ci;j;k

¼ V A0p tj;k
� � [tj;k;wi

� �� 	
� V A0p tj;k

� �� 	
¼ V A0p [tj;k;wi

� �� 	
� V A0p

� 	
:

ð4Þ
Therefore, the total profit V Ap
� �

obtained by the greedy algorithm is submodular.

Based on the above analysis, we have proved that the total profit V Ap
� �

obtained by the greedy algorithm is nonnegative,
monotonic and submodular, according to [35], the greedy algorithm can achieve a result with guaranteed approximate

bounds, that is, 1� 1
e

� � � V fAp

� 	
, where fAp is the global optimal assignment result.

6. The game approach

In real-world crowdsourcing applications, workers can log on to the platform freely and select tasks according to their
preferences. Although the greedy algorithm can obtain a local optimal assignment Ap based on the SAT mode [22], it faces
the limitation that workers cannot choose tasks independently. Inspired by this fact, we introduce a game algorithm, in
which each worker can repeatedly adjust his/her selection according to the strategies of others until reaching stability.

6.1. The game theory

Before proposing our game algorithm, we introduce some information about game theory [36–39] in this subsection.
A strategic game consists of a set of players, and each player has a set of strategies. In addition, for each player, a utility

function is used to measure the utility value of each strategy of the player. Moreover, an essential feature of a strategic game
is that each player’s utility depends on the list of all the other players’ strategies. There are n players in a strategic game
G ¼ S;uð Þ, where S denotes the Cartesian product of user strategies, that is, S ¼ S1 � S2 � � � � � Sn, and Si is the strategy set
of player i. u ¼ u1;u2; � � � ; unð Þ represents the utility profile composed of all users. For player i 1 6 i 6 nð Þ, in each round of
the game, he/she makes a strategy si 2 Si to maximize his/her utility ui depending on the strategies s�i of other players.

The purpose of the game G ¼ S;uð Þ is to find a Nash equilibrium s� 2 S, where no one wants to change his/her strategy
unilaterally, because each player i 1 6 i 6 nð Þ can meet the condition ui s�i ; s

�
�i

� �
P ui si; s��i

� �
, where s� ¼ s�i ; s

�
�i

� �
. That is to

say, a Nash equilibrium of a strategic game can be regarded as a strategy profile, and its attribute is that no player can
increase her/is utility by choosing a different action, given the other players’ actions.

For example, in a strategy game, there are two players A and B, and they have two strategies, L and M. We can get four
strategy profiles L; Lð Þ; L;Mð Þ; M; Lð Þ, and M;Mð Þ, correspondingly there are four utility combinations 2;2ð Þ; 0;3ð Þ; 3;0ð Þ, and
1;1ð Þ. The first action in each strategy profile is player A’s strategy and the first number in each utility combination is player
A’s payoff to the corresponding strategy profile. Therefore, if player A chooses the action L and player B chooses the actionM,
then player A’s utility is 0 and player B’s utility is 3. To find a Nash equilibrium, we can examine each strategy profile in turn.
For the strategy profile L; Lð Þ, by choosing M rather than L, player A obtains a utility of 3 rather than 2, given player B’s strat-
egy. Thus L; Lð Þ is not a Nash equilibrium. Additionally, Player B also can increase her utility by choosing strategy M rather
than L. In the same way, neither L;Mð Þ nor M; Lð Þ is a Nash equilibrium. However, for the strategy profile M;Mð Þ, neither
player can increase her/is utility by choosing a strategy different from the current one. Therefore, the strategy profile
M;Mð Þ is a Nash equilibrium.

6.2. The Game Algorithm

In the context of game theory, the MSCTA problem can be modeled as a game, namely the MSCTA game. The collected
workers are players in the MSCTA game, and the strategic space is the set of tasks Tp. In addition, the purpose of the MSCTA
game is to maximize the total profit V Ap

� �
.

128

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
Algorithm 5: The MSCTA Game
129
Input: A set of tasks Tp and workers Wp
Output: An assignment result Ap
1: Apply the Greedy Algorithm to get a initial result Ap
2: VC Use VCJ designed in Algorithm 2

3: ET Use filtering designed in Algorithm 3

4: While ET is not stable then

5: While Nash equilibrium is not reached then

6: for worker wi 2Wp do

7: Select subtask tj;k 2 ET by selection strategies� �

8: Update Ap tj;k

9: end for

10: end while

11: for each subtask tj;k 2 ET do

12: if tj;k meets the completion condition then

13: flagj;k ! 0� �

14: Tp Tp n tj;k� �

15: Dj;a Dj;a n tj;k , where k < a 6 lð Þ� � � �� �

16: VC VC n wij tj;k;wi 2 Ap tj;k� � � �� �

17: Wp Wp n wij tj;k;wi 2 Ap tj;k

18: end if

19: end for

20: Apply the filtering algorithm to update ET

21: end while

22: Return Ap;
By defining the utility function ui of each worker wi 1 6 i 6 nð Þ as the profit increase DV tj;k;wi
� �

in Eq. (3), we obtain
ui si; s�ið Þ ¼ DV tj;k;wi
� �

¼ V Ap tj;k
� �� �� V Ap tj;k

� � n tj;k;wi
� �� �

;
ð5Þ
where si represents the strategy of worker wi and s�i is the strategy vector of all workers except wi.
In Algorithm 5, we propose a game algorithm to solve the MSCTA problem. We first initialize the assignment Ap (line 1).

Then, according to Definition 3, we apply the VCJ algorithm to obtain a set of valid candidate workers VCj;k for each subtask
tj;k 2 Tp (line 2). In addition, since subtasks belonging to the same task are dependent, we apply the filtering algorithm to get a
set of executable tasks ET (line 3). Taking ET as the current strategy space, based on the strategies of other workers, each
worker wi 2Wp iteratively optimizes his/her strategy to maximize his/her own utility ui until the inner WHILE loop reaches
a Nash equilibrium (lines 5–10). Additionally, each worker wi selects the best subtask tj;k 2 ET according to the following
selection strategies (line 7):

� the selected subtask tj;k must guarantee that the utility of worker wi is greater than 0, ui ¼ DV tj;k;wi
� �

> 0;
� worker wi preferentially selects the subtasks that meet the completion condition mentioned in Section 3. For example,
worker wi has two valid candidate subtasks tj;k; tl;h

� �
to select and can obtain two assignment results

Ap tj;k
� � [tj;k;wi

� �� �
and Ap tl;h

� � [tl;h;wj
� �� �

, respectively. If subtask tj;k can be completed by the assignment
Ap tj;k
� � [tj;k;wi

� �� �
, while subtask tl;h cannot be completed by the assignment Ap tl;h

� � [tl;h;wi
� �� �

, then worker wi will
select subtask tj;k;
� under the premise of satisfying the above selection strategies, worker wi will select the subtask that can bring higher util-
ity.After the internal WHILE loop is completed, the algorithm checks whether any subtasks in ET have reached the com-
pletion condition mentioned in Definition 3 and makes the following updates: update the identifier flagj;k indicating that
tj;k has reached the completion condition to 0, remove tj;k from Tp and Dj;a k < a 6 lð Þ respectively, remove wi from Wp and
VC respectively (lines 11–19). Finally, the algorithm applies the filtering algorithm to obtain a new set of executable sub-
tasks ET (line 20) and continue to execute the external WHILE loop until ET reaches stability.

6.3. Analysis of the Game Algorithm

In this subsection, we analyze the characteristics of the MSCTA game from the following aspects: the stability, the con-
vergence rate, and the result quality.

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
The stability. According to the introduction to game theory in Section 4, the internal WHILE loop can be considered as a
game g ¼ s;uð Þ where workers included in Wp are the players and the set of executable subtasks ET is the strategic space of
the players. To analyze the stability of the MSCTA game, we first discuss whether the internal WHILE loop can reach a Nash
equilibrium, and then, we analyze whether the external WHILE loop can reach stability.

Before proving that the internal WHILE loop can reach a Nash equilibrium, we introduce the definition and properties of
potential games [40]:

� A game G ¼ s;uð Þ is a potential game if and only if there exists a potential function p such that
ui si; s�ið Þ � ui s0i; s�i

� � ¼ p si; s�ið Þ � p s0i; s�i
� �

, where ui is the utility of player wi; si and s0i are two different strategies of play
wi, and s�i denotes the vector of all workers’ strategies except for that of player wi.
� For a potential game G ¼ s;uð Þ, if the strategy set of workers is a finite set, then it always converges to a pure Nash
equilibrium.

Inspired by the definition of potential game and the properties of potential game, we have the following theorem.
Theorem 4. The internal WHILE loop (lines 5–10 in Algorithm 5) can reach a Nash equilibrium.
Proof. We first prove that the internal WHILE loop is a potential game. We take the total profit function V Ap
� �

mentioned in
Eq. (4) as the potential function p. In addition, si and s0i indicate that worker wi chooses subtask tj;k and subtask t0j;k, respec-
tively. Moreover, according to Algorithm 5, tj;k and t0j;k are executable tasks in ET. Thus, we obtain
p si; s�ið Þ � p s0i; s�i
� �

¼ V Ap tj;k
� �� �þ V Ap t0j;k

� 	
n ht0j;k;wii

� 	
þ P

tx;y2CT 0p
V Ap tx;y

� �� � !

� V Ap t0j;k
� 	� 	

þ V Ap tj;k
� � n htj;k;wii

� �þ P
tx;y2CT 0p

V Ap tx;y
� �� � !

¼ V Ap tj;k
� �� �� V Ap tj;k

� � n htj;k;wii
� �� �

� V Ap t0j;k
� 	� 	

� V Ap t0j;k
� 	

n ht0j;k;wii
� 	� 	

¼ ui si; s�ið Þ � ui s0i; s�i
� �

;

ð6Þ
where, CT 0p ¼ CTp n tj;k; t0j;k
n o

. Consequently, the internal WHILE loop is a potential game. According to the properties of a

potential game, since the strategic space of each worker in the internal WHILE loop is limited, it can be concluded that
the internal WHILE loop can find a Nash equilibrium.

We now analyze the stability of the external WHILE loop. In each round of the external WHILE loop, if any subtasks in ET
reach the completion condition mentioned in Section 3 after the internal WHILE loop reaches a Nash equilibrium, then we
remove these subtasks from ET and apply the filtering algorithm to get a new set of executable tasks ET. If there are sufficient
workers, ET eventually becomes an empty set, that is, all subtasks meet the completion condition mentioned in Definition 3.
If there are not enough workers, ET will not be updated continuously because no subtasks contained in ET meet the comple-
tion condition.

From the above analysis of the internal WHILE loop and the external WHILE loop, it can be concluded that the MSCTA
game can reach stability.

The convergence rate. To discuss the convergence rate of the MSCTA game, it is necessary to analyze the number of
rounds required for the external WHILE loop and the internal WHILE loop to reach stability and to calculate the time com-
plexity of each round.

Since the internal WHILE loop can be regarded as a potential game, to estimate the upper limit of the number of rounds
required for the internal WHILE loop to reach a Nash equilibrium, we discuss a special case where the utility function value
of each worker is an integer. We assume that pz sð Þ ¼ z� p sð Þ, where z is a multiplicative factor that makes pz sð Þ 2 Z.

Lemma 1. For the internal WHILE loop, the number of rounds necessary to achieve a Nash equilibrium must be less than
pz s�ð Þ, where s� is the optimal joint strategy of the workers that can select the tasks in the internal WHILE loop.
Proof. A workerwi changes his selection from current strategy si to a better strategy s0i, and the value of pz sð Þ should increase
by at least 1 for the following reasons: 1) pz sð Þ 2 Z; and 2) p si; s�ið Þ � p s0i; s�i

� � ¼ ui si; s�ið Þ � ui s0i; s�i
� �

> 0. Therefore, the value
of the potential function pz sð Þ increases until the optimal joint strategy s� is reached, where no one changes his/her current
strategy unilaterally. Consequently, the number of rounds required for the internal WHILE loop to find a Nash equilibrium
must be less than pz s�ð Þ. The proof of the lemma has been completed.
130

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
Next, we compute the value range of pz s�ð Þ. Since the strategic space in the internal WHILE loop is ET and pz s�ð Þ 2 Z,
according to Eq. (4), we can get pz s�ð Þ 6Ptj;k2ETdbj;ke.

For the external WHILE loop, the number of rounds required to reach stability depends on the number of updates of ET.
When the internal WHILE loop reaches equilibrium, if only one subtask meets the completion condition, then the maximum
number of rounds required for the external WHILE loop to reach a Nash equilibrium is ml.

Since the number of rounds required for the external WHILE loop and the internal WHILE loop to reach stability has been

calculated, we can obtain that the maximum time complexity of the MSCTA game is O max m2l2n;m2nlpz s�ð Þ
� 	� 	

. Specifically,

in Algorithm 5, to obtain a set of valid candidate workers for each subtask, the required time is O nmlð Þ (line 2). To get a set of
executable tasks, the required time is O mlð Þ (line 3). In each round of the internal WHILE loop, there are at mostm executable
subtasks in ET, so that O mnð Þ time is required for the workers to select the best subtasks (lines 6–9). Moreover, since the
maximum number of rounds required for the internal WHILE loop to reach an equilibrium is pz s�ð Þ, we obtain that the time
complexity of the internal WHILE loop is O pz s�ð Þmnð Þ (lines 5–10). Then, O mð Þ time is required to update
flagj;k; Tp;Dj;a k < a 6 lð Þ;Wp and VC (lines 11–19). In addition, the maximum number of rounds required for the external
WHILE loop to reach stability is ml. In summary, the maximum time complexity of the MSCTA game is

O max m2l2n;m2nlpz s�ð Þ
� 	� 	

.

The result quality. To evaluate the quality of the result achieved by the MSCTA game, we can apply the following three
measures [40]:

� social optimum (OPT). OPT is the global maximum value of the objective function.
� price of stability (PoS). PoS is the ratio of the maximum value obtained in all Nash equilibrium solutions to the global max-
imum value, which indicates the upper bound of the ratio of the objective function value obtained by Nash equilibrium to
the global maximum value.
� price of anarchy (PoA). PoA is the ratio of the minimum value obtained among all Nash equilibrium solutions to the global
maximum value, which is the lower bound of the ratio of the objective function value obtained by Nash equilibrium to the
global maximum value.
Theorem 5. In the MSCTA game, the maximum value of PoS is 1 and the minimum value of PoA is Vmin tð Þ�num initð Þ
V eAp� � , where Vmin tð Þ is the

minimum profit obtained from any subtask that meets the completion condition in the initial assignment Ap;init and num initð Þ is the
number of subtasks that satisfy the completion condition in Ap;init .
Proof. We define the global optimal task-and-worker assignment as fAp , the assignment of the largest objective function
value in all Nash equilibrium solutions is represented as A�p. In addition, the total profit can be described as

V Ap
� � ¼ p Ap

� �
. Therefore, we can get OPT ¼ V fAp

� 	
P V A�p

� 	
. As a result, PoS ¼ V A�pð Þ

OPT � 1.

Since the internal WHILE loop is a potential game, we obtain that the profit increase of each worker is equal to the
increase in the total profit, and the total profit will continue to increase until a Nash equilibrium is reached. In addition, the
MSCTA game is based on the result of the greedy algorithm, and Ap;init is the initial assignment of the game algorithm, Vmin tð Þ
is the minimum profit obtained from any subtask that meets the completion condition in the initial assignment Ap;init and
num initð Þ is the number of subtasks that satisfy the completion condition in Ap;init . Therefore,
PoA ¼ V Ap;init
� �
OPT

P
Vmin tð Þ � num initð Þ

V fAp

� 	 : ð7Þ
The proof of the theorem has been completed.
7. Experimental study

In this part, we first describe the data sets used in our experiments, then introduce the approaches applied to solve the
MSCTA problem, and finally conduct experiments to measure the effect of different parameters on the results.
Table 4
Parameter Information of Real Data Set from [3].

Parameters Values

the number of subtasks, ml 5 k, 6 k, 8 k, 10 k
the number of workers, n 3 k, 5 k, 7 k, 9 k

131

Table 5
Parameter Information of Real Data Set from [41].

Parameters Values

the budget for subtasks, b�; bþ
� �

[1, 5], [6, 10], [11, 15], [16, 20]

the start time range, a�; aþ½ � [0, 5], [0, 10], [0, 15], [0, 20]

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
7.1. Data Sets

We test our proposed algorithm by applying synthetic and real data sets, and refer to [12] to set all parameters.
To test our algorithms, we use two real data sets from [3,41], and the default values of the parameters are in bold font in

Table 4 and Table 5, respectively. For the data set from [3], we extract part of the records of Chengdu, China, on November 11,
2016, including 10000 tasks and 9000 workers. For the Meetup dataset from [41], we extract records of Chicago in November
2017, containing 1000 workers and 1000 tasks.

For both real data sets, we use the positions of users and events to initialize the locations of workers and tasks in the

MSCTA problem, which are linearly mapped into a 0;1½ �2 space. We set every ten events to form a multi-stage complex task
and establish dependencies according to the start processing time of each task in both real data sets; the size of the skill uni-
verse jsj is set to 70. The waiting time wt of each event is randomly selected in 1;15½ � and ensures that the waiting time of a
subtask is longer than the subtasks it depends on. The velocity v of each worker is randomly distributed in the range of
0:001;0:01½ �; the maximum moving distance d of each worker is set as 0.2 and the cost of moving unit distance c is 10.
For the data set from [41], we test the impact of budget range b�; bþ

� �
and start time range a�; aþ½ � on the assignment results,

varing from 1;5½ � to 16;20½ � and 0;5½ � to 0;20½ �, respectively. The skills of workers and tasks are set according to the tags of
users and events in the data set. For the data set from [3], we test the impact of the number of workers and the number of
tasks on the assignment results, from 3 k to 9 k and 5 k to 10 k, respectively. Additionally, the number of skills required for
each subtask is randomly selected within 1;3½ � and each worker has one skill.

For the synthetic data set, the values of the parameters are shown in Table 6. Specifically, the locations of workers and

tasks are randomly generated in a 2D data space 0;1½ �2. For the tasks, the total number of the subtasks ml varies from
300 to 1200 at an increment of 300; the number of stages l contained in each multi-stage complex task changes from 3
to 6, and we set the dependency between subtasks based on the length of the waiting time. In addition, the number of skills
required for each subtask is randomly selected within the range of sk�; skþ

� �
, changing from 1;2½ � to 1;5½ �. Moreover, the start

time a and waiting time wt of each task are randomly distributed within the range of 0;20½ � and 20;30½ �, respectively. For
workers, the number of workers n varies from 500 to 2000, and the number of skills skmastered by each worker is randomly
selected within the range of 1;2½ �. Additionally, we generate the moving speed v of each worker to be randomly distributed in
the range of 0:001;0:01½ � and set the cost of moving unit distance c as 10. Moreover, the maximummoving distance d of each
worker varies from 0.05 to 0.4. For both workers and tasks, the size of the skill universe jsj is set to 70.

7.2. Approaches

In this subsection, we introduce the approaches applied to address the MSCTA problem. We compare the greedy algo-
rithm and the game algorithm with a baseline algorithm, called the MSSCG algorithm, which refers to the MSSC greedy algo-
rithm in [12].

Specifically, in each round of the greedy algorithm, the platform selects the best worker for each subtask according to the
assignment strategies mentioned in Section 5. However, the achieved assignment result is a local optimal solution, all
matching pairs are determined by the platform, and workers cannot choose independently. By contrast, in each round of
the game algorithm, workers can randomly select the best subtask according to their preferences until the algorithm reaches
a Nash equilibrium. Since we apply the greedy algorithm to initialize the result of the game algorithm, we abbreviate the
game algorithm as G G in our experiments. In addition, similar to the greedy algorithm, the MSSC G algorithm selects the
worker with the highest profit increase in each round, but ignores the dependency constraints between tasks, and does
not consider whether the task can meet the completion conditions.

In our experiments, we only change one parameter at a time, and the remaining parameters are set to the default values.
All of our experiments were run on an Intel Core i5-8400 CPU @2.80 GHz with 8 GB RAM.
Table 6
Parameter Information of Synthetic Data.

Parameters Values

the number of stages, l 3, 4, 5, 6
the number of skills for subtasks, jskj [1, 2], [1, 3], [1, 4], [1, 5]
the number of subtasks, ml 300, 600, 900, 1200
the number of workers, n 500, 1000, 1500, 2000
the maximum moving distance, d 0.05, 0.1, 0.2, 0.3, 0.4

132

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
7.3. Experiments

7.3.1. Experiments on synthetic data set
For synthetic data, we analyze the effect of the following parameters on experimental results: the number of task stages l,

the number of skills jskj of each subtask, the number of subtasks ml, the number of workers n, and the maximum moving
distance d of workers.

Effect of the number of stages l. In Fig. 2(a), when l increases, the profits obtained by our algorithms decrease. With increas-
ing l, the number of executable subtasks included in ET decreases, resulting in fewer subtasks available for matching in each
round, and making many subtasks unable to be effectively matched due to the dependency constraint. In addition, we obtain
that the profit obtained by G G is more than the profit obtained by the greedy algorithm. Moreover, the profit obtained by the
greedy algorithm is smaller than that obtained by the MSSC G algorithm at first, and then is greater than that obtained by the
MSSC G algorithm when l is greater than 4.

In Fig. 2(b), with the increase of l, the running time of G G and the greedy algorithm decreases. Due to the fewer subtasks
included in ET, the time complexity of each round in our algorithms is lower, and the number of subtasks for valid matching
will be reduced due to the constraint of dependency. Since the MSSC G algorithm does not consider the dependency con-
straint, its running time remains unchanged.

Effect of the number of skills of each subtask. Fig. 3 presents the effect of the number of skills jskj on the results. It is
observed from Fig. 3(a) that when jskj�; jskjþ� �

changes from 1;2½ � to 1;5½ �, the profits obtained by our algorithms decrease.
The reason is that the increase in jskj�; jskjþ� �

makes it increasingly more difficult to meet the skill constraints of the sub-
tasks. In addition, it is observed from the figure that the profit obtained by G G is greater than the profits obtained by the
greedy algorithm and the MSSC G algorithm.

In Fig. 3(b), with increasing jskj�; jskjþ� �
, the running time increases for all of the algorithms. This is because with increas-

ing jskj�; jskjþ� �
, each subtask needs to be matched with more workers to complete, making the MSCTA problem more com-

plex and requiring more running time.
Effect of the number of subtasks ml. It is observed from Fig. 4(a) that the profits obtained by our methods increase when ml

increases from 300 to 1200. The reason is that the increase in ml allows more subtasks to be assigned to the workers, result-
ing in higher profits. In addition, the profit obtained by G G is the most, followed by the greedy algorithm, and the MSSC G
algorithm gets the least profit.

As shown in Fig. 4(b), the running time of each algorithm increases with increasing ml. This is because the more subtasks
cause the MSCTA problem to be more complicated, and more time is required to complete the matching of tasks and work-
ers. Moreover, the running time of the MSSC G algorithm is shorter than that of G G but is longer than that of the greedy
algorithm.

Effect of the number of workers n. Fig. 5 shows the impact of n changing from 500 to 2000. As observed from Fig. 5(a), the
profit obtained by our approaches increases with increasing n. The reason is that when n increases, each subtask has more
options to match better workers. However, because the number of subtasks is given, we can deduce that when n increases to
complete all subtasks, the profit will remain stable. Compared with G G, the greedy algorithm obtains lower profit. In addi-
tion, the profit obtained by the greedy algorithm is almost equal to that obtained by the MSSC G algorithm at first, and then is
greater than that obtained by the MSSC G algorithm when n is greater than 1500.

An examination of Fig. 5(b) shows that the running time of all algorithms increases with increasing n, and the reason for
this trend is similar to that of the trend observed in Fig. 4(b). The greedy algorithm has the least running time, followed by
the MSSC G algorithm, and G G has the longest running time.

Effect of the maximum moving distance of workers d. As shown in Fig. 6(a), when d increases from 0:05 to 0:2, the profits
obtained by our algorithms increase, and then when d further increases from 0:2 to 0:4, the profits tend to be stable. The
reason is that, when d increases from 0:05 to 0:2, each subtask has more options to match better workers, so the profit
Fig. 2. Effect of the number of stages.

133

Fig. 3. Effect of the number of skills.

Fig. 4. Effect of the number of subtasks.

Fig. 5. Effect of the number of workers.

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
increases. However, since the number of subtasks has been given, the number of tasks that each worker can choose will not
continue to increase with increasing d, so the profit remains stable when d further increases from 0:2 to 0:4. In addition, G G
obtains the most profit, followed by the greedy algorithm, and the MSSC G algorithm obtained the least profit.

It is observed from Fig. 6(b) that the running time of our algorithms first increases with increasing d and then tends to be
stable. The reason for this trend is similar to that observed in Fig. 6(a). When d increases from 0:05 to 0:2, each subtask has
more options to match better workers, so the MSCTA problem becomes more complicated, and the running time of our algo-
rithms increases. However, when d further increases from 0:2 to 0:4, the number of subtasks that each worker can choose
will not continue to increase with increasing d, so the running time of our algorithms remains stable.
7.3.2. Experiments on real data sets
For the real data set from [41], we analyze the effect of the budget range b�; bþ

� �
and the range of start time a�; aþ½ � on

experimental results.
134

Fig. 6. Effect of the maximum moving distance.

Fig. 7. Effect of the budget range.

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
Effect of the budget range b�; bþ
� �

. Fig. 7 illustrates the influence of the budget range b�; bþ
� �

from 1;5½ � to 16;20½ �. It is
observed from Fig. 7(a) that the profits obtained by all algorithms increase with the increase of the budget. This is because
the increase in b�; bþ

� �
can attract more workers to complete tasks and generate more profit. Moreover, we also find that the

profit obtained by the greedy algorithm is greater than that obtained by the MSSC G algorithm, but is less than that obtained
by G G.

An examination of the results presented in Fig. 7(b) shows that the running time of G G increases obviously with the
increase of b�; bþ

� �
, while the running time of the greedy algorithm increases slightly. The reason is that, with an increase

in b�; bþ
� �

, each subtask has more options to match better workers, making the MSCTA problem more complex and increas-
ing the running time of our algorithms. Moreover, the greedy algorithm has the least running time, followed by the MSSC G
algorithm, and the running time of G G is the most.

Effect of the range of start time a�; aþ½ �. Fig. 8 depicts the experimental results of a�; aþ½ � from 0;5½ � to 0;20½ �. In Fig. 8(a),
with the increase of a�; aþ½ �, the profit received by our algorithms decreases. Because the increase in a�; aþ½ � disperses the
Fig. 8. Effect of the range of start time.

135

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
distribution of subtasks and workers over time, it is difficult to match enough workers to complete the subtasks. Moreover, it
is observed that G G obtains the highest profit, followed by the greedy algorithm, and the MSSC G algorithm gets the least
profit.

An examination of Fig. 8(b) shows that as a�; aþ½ � increases, the running time of G G decreases. The reason is similar to
that for the results presented in Fig. 8(a); namely, the increase in a�; aþ½ � disperses the distribution of the subtasks and work-
ers over time, which implies that the strategic space of each worker becomes smaller and that the complexity of the MSCTA
problem is reduced, thereby reducing the running time of our algorithms. In addition, we observed that the running time of
the MSSC G algorithm is more than that of the greedy algorithm.

For the real data set from [3], we analyze the effect of the number of subtasks ml and the number of the workers n on
experimental results.

Effect of the number of subtasks ml. It is observed from Fig. 9(a) that the profit obtained by our methods increases when ml
increases from 5000 to 10000. The profit obtained by G G is the most, followed by the greedy algorithm, and the MSSC G
algorithm gets the least profit. The reason is similar to that for the results presented in Fig. 4(a).

As shown in Fig. 9(b), the running time of each algorithm increases with increasing ml. The running time of the MSSC G
algorithm is shorter than that of G G but is longer than that of the greedy algorithm.

Effect of the number of workers n. Fig. 10 shows the impact of n changing from 3000 to 9000. As observed from Fig. 10(a),
the profit obtained by our approaches increases with increasing n, and then gradually stabilizes. The reason is the same as
described in Fig. 5(a). Compared with G G, the greedy algorithm obtains a lower profit, but its profit is greater than that of the
MSSC G algorithm.

An examination of Fig. 10(b) shows that the running time of all algorithms increases with increasing n. The greedy algo-
rithm has the least running time, followed by the MSSC G algorithm, and G G has the longest running time.

According to the results of the above experiments, we summarize our findings as follows: 1) G G obtains greater profit
than the greedy algorithm and the MSSC G algorithm but requires the longest running time; and 2) the profit obtained
by the greedy algorithm is less than that obtained by G G, but its running time is the shortest among all algorithms.
Fig. 9. Effect of the number of subtasks.

Fig. 10. Effect of the number of workers.

136

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
8. Conclusion

In this paper, we propose a new problem in spatial crowdsourcing, that is, the multi-stage complex task assignment
(MSCTA) problem, where each task is composed of multiple complex subtasks (or stages) with dependencies. The purpose
of the MSCTA problem is to allocate workers to multi-stage complex tasks to gain the maximal total profit. In addition to the
constraint of dependency, this problem is also constrained by the maximal working area, skills, budget, and deadline. We
first demonstrate that the MSCTA problem is NP-hard and then propose a greedy algorithm and a game algorithm to solve
this problem. Finally, we have conducted many experiments to demonstrate the efficiency of our algorithms. In future work,
we will further study the influence of workers’ preferences on the MSCTA problem, and consider how to combine with the
proposed algorithms when multiple preferences exist at the same time. In addition, we also plan to schedule workers in
advance by predicting where and when tasks will appear, so that tasks can be completed more efficiently.

CRediT authorship contribution statement

Zhao Liu: Conceptualization, Methodology, Writing - original draft. Kenli Li: Supervision, Funding acquisition, Writing -
review & editing. Xu Zhou: Data curation, Validation. Ningbo Zhu: Visualization. Yunjun Gao: Investigation. Keqin Li:Writ-
ing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos.61772182, 62172146, 61802032,
62172157), Zhejiang Lab (Grant No. 2021KD0AB02), and the Project of HuNan Science and Technology Innovation Plan
(2020RC2032).

References

[1] Lei Chen, Cyrus Shahabi, Spatial crowdsourcing: Challenges and opportunities, IEEE Data Eng. Bull. 39 (4) (2016) 14–25.
[2] Meituan (2020). https://www.meituan.com/. Accessed September 4, 2020..
[3] Didichuxing (2020). https://www.didiglobal.com/. Accessed September 4, 2020..
[4] Taskrabbit (2020). http://www.taskrabbit.com/. Accessed September 4, 2020..
[5] Yan Liu, Bin Guo, He Du, Zhiwen Yu, Daqing Zhang, and Chao Chen. Poster: Foodnet: Optimized on demand take-out food delivery using spatial

crowdsourcing. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, pages 564–566, 2017..
[6] Libin Zheng, Lei Chen, Multi-campaign oriented spatial crowdsourcing, in: 2018 IEEE 34th International Conference on Data Engineering (ICDE), 2018,

pp. 1248–1251.
[7] Y. Li, J. Gao, P.P.C. Lee, L. Su, C. He, C. He, F. Yang, W. Fan, A weighted crowdsourcing approach for network quality measurement in cellular data

networks, IEEE Transactions on Mobile Computing 16 (2) (2017) 300–313.
[8] Habibur Rahman, Saravanan Thirumuruganathan, Senjuti Basu Roy, Sihem Amer-Yahia, and Gautam Das. Worker skill estimation in team-based tasks.

Proceedings of the VLDB Endowment, 8(11), 1142–1153, 2015..
[9] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, Stefano Leonardi, Online team formation in social networks, in: Proceedings of

the 21st international conference on World Wide Web, 2012, pp. 839–848.
[10] Theodoros Lappas, Kun Liu, Evimaria Terzi, Finding a team of experts in social networks, in: Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, 2009, pp. 467–476.
[11] Tianshu Song, Xu. Ke, Jiangneng Li, Yiming Li, Yongxin Tong, Multi-skill aware task assignment in real-time spatial crowdsourcing, GeoInformatica 24

(1) (2020) 153–173.
[12] Peng Cheng, Xiang Lian, Lei Chen, Jinsong Han, Jizhong Zhao, Task assignment on multi-skill oriented spatial crowdsourcing, IEEE Transactions on

Knowledge and Data Engineering 28 (8) (2016) 2201–2215.
[13] Wangze Ni, Peng Cheng, Lei Chen, Xuemin Lin, Task allocation in dependency-aware spatial crowdsourcing, in: 2020 IEEE 36th International

Conference on Data Engineering (ICDE), 2020, pp. 985–996.
[14] Decui Liang, Wen Cao, Xu. Zeshui, Mingwei Wang, A novel approach of two-stage three-way co-opetition decision for crowdsourcing task allocation

scheme, Information Sciences 559 (2021) 191–211.
[15] Xiaoyu Zhang, Xiaofeng Chen, Hongyang Yan, Yang Xiang, Privacy-preserving and verifiable online crowdsourcing with worker updates, Information

Sciences 548 (2021) 212–232.
[16] Xu. Wenqiang, Liangxiao Jiang, Chaoqun Li, Improving data and model quality in crowdsourcing using cross-entropy-based noise correction,

Information Sciences 546 (2021) 803–814.
[17] Yongxin Tong, Zimu Zhou, Yuxiang Zeng, Lei Chen, Cyrus Shahabi, Spatial crowdsourcing: a survey, The VLDB Journal 29 (1) (2020) 217–250.
[18] Xiaohui Bei and Shengyu Zhang. Algorithms for trip-vehicle assignment in ride-sharing. In Thirty-Second AAAI Conference on Artificial Intelligence,

pages 3–9, 2018..
[19] Shibo He, Dong-Hoon Shin, Junshan Zhang, Jiming Chen, Toward optimal allocation of location dependent tasks in crowdsensing, in: IEEE INFOCOM

2014-IEEE Conference on Computer Communications, 2014, pp. 745–753.
[20] Zhao Chen, Peng Cheng, Yuxiang Zeng, Lei Chen, Minimizing maximum delay of task assignment in spatial crowdsourcing, in: 2019 IEEE 35th

International Conference on Data Engineering (ICDE), 2019, pp. 1454–1465.
[21] Mohammad Asghari, Cyrus Shahabi, On on-line task assignment in spatial crowdsourcing, in: 2017 IEEE International Conference on Big Data (Big

Data), 2017, pp. 395–404.
[22] Leyla Kazemi, Cyrus Shahabi, Geocrowd: enabling query answering with spatial crowdsourcing, in: Proceedings of the 20th international conference

on advances in geographic information systems, 2012, pp. 189–198.
137

http://refhub.elsevier.com/S0020-0255(21)01206-8/h0005
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0030
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0030
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0030
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0035
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0035
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0045
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0045
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0045
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0050
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0050
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0050
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0055
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0055
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0060
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0060
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0065
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0065
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0065
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0070
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0070
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0075
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0075
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0080
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0080
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0085
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0095
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0095
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0095
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0100
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0100
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0100
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0105
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0105
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0105
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0110
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0110
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0110

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
[23] Peng Cheng, Xiang Lian, Zhao Chen, Rui Fu, Lei Chen, Jinsong Han, and Jizhong Zhao. Reliable diversity-based spatial crowdsourcing by moving
workers. Proc. VLDB Endow., pages 1022–1033, 2015..

[24] Dawei Gao, Yongxin Tong, Jieying She, Tianshu Song, Lei Chen, Xu. Ke, Top-k team recommendation and its variants in spatial crowdsourcing, Data
Science and Engineering 2 (2) (2017) 136–150.

[25] Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, Maximizing the number of worker’s self-selected tasks in spatial crowdsourcing, in: Proceedings of
the 21st ACM sigspatial international conference on advances in geographic information systems, 2013, pp. 324–333.

[26] Y. Liu, B. Guo, C. Chen, H. Du, Z. Yu, D. Zhang, H. Ma, Foodnet: Toward an optimized food delivery network based on spatial crowdsourcing, IEEE
Transactions on Mobile Computing 18 (6) (2019) 1288–1301.

[27] Yan Zhao, Yu. Yang Li, Han Su Wang, Kai Zheng, Destination-aware task assignment in spatial crowdsourcing, in: Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, 2017, pp. 297–306.

[28] Yan Zhao, Kai Zheng, Yang Li, Han Su, Jiajun Liu, and Xiaofang Zhou. Destination-aware task assignment in spatial crowdsourcing: A worker
decomposition approach. IEEE Transactions on Knowledge and Data Engineering, pages 2336–2350, 2020..

[29] Yi Xu, Yongxin Tong, Yexuan Shi, Qian Tao, Ke Xu, and Wei Li. An efficient insertion operator in dynamic ridesharing services. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pages 1022–1033, 2019..

[30] Peng Cheng, Lei Chen, Jieping Ye, Cooperation-aware task assignment in spatial crowdsourcing, in: 2019 IEEE 35th International Conference on Data
Engineering (ICDE), 2019, pp. 1442–1453.

[31] L. Wang, Z. Yu, Q. Han, B. Guo, H. Xiong, Multi-objective optimization based allocation of heterogeneous spatial crowdsourcing tasks, IEEE Transactions
on Mobile Computing 17 (7) (2018) 1637–1650.

[32] M. Xiao, K. Ma, A. Liu, H. Zhao, Z. Li, K. Zheng, X. Zhou, Sra: Secure reverse auction for task assignment in spatial crowdsourcing, IEEE Transactions on
Knowledge and Data Engineering 32 (4) (2020) 782–796.

[33] L. Zheng, L. Chen, Multi-campaign oriented spatial crowdsourcing, IEEE Transactions on Knowledge and Data Engineering 32 (4) (2020) 700–713.
[34] Vijay V. Vazirani, Approximation algorithms, Springer, 2001.
[35] George L Nemhauser, Laurence A Wolsey, Marshall L Fisher, An analysis of approximations for maximizing submodular set functions, Mathematical

programming 14 (1) (1978) 265–294.
[36] Chubo Liu, Kenli Li, Zhuo Tang, Keqin Li, Bargaining game-based scheduling for performance guarantees in cloud computing, ACM Transactions on

Modeling and Performance Evaluation of Computing Systems (TOMPECS) 3 (1) (2018) 1–25.
[37] Zheng Xiao, Zhao Tong, Kenli Li, Keqin Li, Learning non-cooperative game for load balancing under self-interested distributed environment, Applied

Soft Computing 52 (2017) 376–386.
[38] J. Hu, K. Li, C. Liu, K. Li, A game-based price bidding algorithm for multi-attribute cloud resource provision, IEEE Transactions on Services Computing

(2018) 1.
[39] Zhao Liu, Xu. Kenli Li, Ningbo Zhu Zhou, Keqin Li, Incentive mechanisms for crowdsensing: Motivating users to preprocess data for the crowdsourcer,

ACM Transactions on Sensor Networks (TOSN) 16 (4) (2020) 1–24.
[40] Dov Monderer, Lloyd S. Shapley, Potential games, Games and Economic Behavior 14 (1) (1996) 124–143.
[41] Meetup (2020). https://www.meetup.com/. Accessed September 4, 2020..

Zhao Liu is currently working for a Ph.D. degree in computer science and technology with the College of Information Science
and Engineering, Hunan University, Changsha, China. His research interests include spatio-temporal data management and AI
accelerators.
Kenli Li received the PhD degree in computer science from Huazhong University of Science and Technology, China, in 2003. His
major research interests include parallel computing, highperformance computing, and grid and cloud computing. He has
published more than 200 research papers in international conferences and journals such as the IEEE Trans. On Computers, IEEE
Trans. on Parallel and Distrib. Syst., and ICPP. He is a senior member of the IEEE and serves on the editorial board of the IEEE-TC.
138

http://refhub.elsevier.com/S0020-0255(21)01206-8/h0120
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0120
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0125
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0125
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0125
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0130
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0130
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0135
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0135
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0135
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0150
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0150
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0150
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0155
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0155
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0160
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0160
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0165
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0170
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0170
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0175
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0175
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0180
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0180
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0185
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0185
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0190
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0190
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0195
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0195
http://refhub.elsevier.com/S0020-0255(21)01206-8/h0200

Z. Liu, K. Li, X. Zhou et al. Information Sciences 586 (2022) 119–139
Xu Zhou received the Ph.D. degree in computer science and technology from Hunan University, China, in 2016. She is currently
an Associate Professor with the College of Computer Science and Electronic Engineering, Hunan University. She has published
over 30 papers in international journals and conferences, such as the IEEE Trans. on Knowl. and Data Eng., the IEEE Trans. Parallel
Distrib. Syst., and the IEEE Trans. on Computers. Her current research interests include parallel and distributed processing, and
database systems.
Ningbo Zhu received a Ph.D. degree in engineering from the computer use and application, Nanjing University of Science and
Technology, Nanjing, China, in 2005. He is a Professor at the College of Information Science and Engineering, Hunan University,
Changsha, China. His research interests include pattern recognition and intelligent system, digital image processing and net-
work and information security.
Yunjun Gao received the PhD degree in computer science from Zhejiang University, China, in 2008. He is currently a professor
with the College of Computer Science, Zhejiang University, China. His research interests include spatial and spatio-temporal
databases, metric and incomplete/uncertain data management, and spatio-textual data processing. He is a member of the ACM
and the IEEE, and a senior member of the CCF.
Keqin Li is a SUNY Distinguished Professor of computer science with the State University of New York. He is also a National
Distinguished Professor with Hunan University, China. His current research interests include cloud computing, fog computing
and mobile edge computing, energy-efficient computing and communication, embedded systems and cyberphysical systems,
heterogeneous computing systems, big data computing, high performance computing, CPU-GPU hybrid and cooperative com-
puting, computer architectures and systems, computer networking, machine learning, intelligent and soft computing. He has
authored or coauthored more than 810 journal articles, book chapters, and refereed conference papers, and has received several
best paper awards. He holds nearly 60 patents announced or authorized by the Chinese National Intellectual Property
Administration. He has chaired many international conferences. He is currently an associate editor of the ACM Computing
Surveys and the CCF Transactions on High Performance Computing. He has served on the editorial boards of the IEEE Trans-
actions on Parallel and Distributed Systems, the IEEE Transactions on Computers, the IEEE Transactions on Cloud Computing, the
IEEE Transactions on Services Computing, and the IEEE Transactions on Sustainable Computing. He is an IEEE Fellow.
139

	Multi-stage complex task assignment in spatial crowdsourcing
	1 Introduction
	2 Related work
	3 Problem statement
	4 Batch-based framework
	5 The greedy approach
	5.1 The definition of profit increase
	5.2 The Greedy Algorithm
	5.3 Analysis of the Greedy Algorithm

	6 The game approach
	6.1 The game theory
	6.2 The Game Algorithm
	6.3 Analysis of the Game Algorithm

	7 Experimental study
	7.1 Data Sets
	7.2 Approaches
	7.3 Experiments
	7.3.1 Experiments on synthetic data set
	7.3.2 Experiments on real data sets

	8 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References

