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Incentive Mechanisms for Crowdsensing: Motivating Users

to Preprocess Data for the Crowdsourcer
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Crowdsensing is a popular method that leverages a crowd of sensor users to collect data. For many crowd-

sensing applications, the collected raw data need to be preprocessed before further analysis, and the prepro-

cessing work is mainly done by the crowdsourcer. However, as the amount of collected data increases, this

type of preprocessing approach has many disadvantages. In this article, we construct monetary-based incen-

tive mechanisms to motivate users to preprocess the collected raw data for the crowdsourcer. For two com-

mon crowdsensing scenarios, we propose two system models, which are the single-task-multiple-participants

(STMP) model and the multiple-tasks-multiple-participants (MTMP) model. In the STMP model, we design an

incentive mechanism based on game theory and prove that there is a Nash equilibrium. In the MTMP model,

we develop an incentive mechanism based on an auction and demonstrate that the incentive mechanism

has the desirable properties of truthfulness, individual rationality, profitability, and computational efficiency.

Furthermore, the utility maximization problems of the crowdsourcer and users are simultaneously consid-

ered in our incentive mechanisms. Through theoretical analysis and extensive experiments, we evaluate the

performance of our incentive mechanisms.
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1 INTRODUCTION

Crowdsensing is a product of the development of the Internet of Things (IoT) [48], and it in-

cludes the properties of flexibility, wide coverage, and scalability. Due to the great characteristics

of crowdsensing, various applications have been designed [22], such as collecting healthy data [3,

9], sensing environment information [15, 25, 28], and monitoring traffic flows [36, 37, 39].

Many crowdsensing applications can directly analyze the collected raw data without any prepro-

cessing, such as noise monitoring [35] and Wi-Fi measurement [8]. However, other crowdsensing

applications, due to their own needs and the nature of the raw data, cannot directly consume the

collected raw data [24]. Therefore, before further analysis, preprocessing, such as the filtering and

denoising of the collected raw data, needs to be performed.

As mentioned in Reference [1], the preprocessing work is mainly completed by the crowd-

sourcer, i.e., the cloud or edge server, as shown in Figure 1. However, with the explosive growth of

data in various industries [27], this type of preprocessing will face many challenges. First, a large

amount of raw data will overwhelm the storage space of the crowdsourcer. Second, a large amount

of redundant data will consume the bandwidth, which can cause network congestion. Finally, for

delay-sensitive applications, crowdsourcers with limited computing power may not complete the

data analysis in time, thereby affecting people’s experiences.

For example, in Reference [23], the authors mentioned that many crowdsenisng-based multime-

dia applications require a lot of resources in terms of transmission bandwidth, computing power,

and storage resources, such as the Twitch TV platform, which attracts over 44M visitors per month

and every second its servers are loaded with thousands of live channels, which means large-scale

resources are needed to handle online video synchronization, processing, and transcoding; even

though the cloud-computing technology has been applied by crowdsourcers, however, simulta-

neous bursts of multimedia data access, processing, and transmissions in the cloud may cause

bottlenecks, which have been highlighted in Reference [2] using real-world measurement.

In view of the above situation, and considering the popularization and enhancement of intelli-

gent sensing devices, in this article, we construct monetary-based incentive mechanisms to moti-

vate users to preprocess the collected raw data for the crowdsourcer. In this way, the crowdsensing

system can reduce the workload of the crowdsourcer, lower the transmission energy costs, and im-

prove the efficiency. Especially with the development of 5G and the pervasion and enhancement of

mobile devices, users’ computing power should receive more attention in crowdsensing systems.

For instance, in the crowdsensing-based automatic recognition system of human activities

[5, 45]. To train a machine learning model for human activity recognition, if users only do the

work of data collection and submission, then all the remaining work should be done by the crowd-

sourcer, such as the classification, annotation, and model training. Therefore, when the computing

power and storage space of the crowdsourcer are limited, massive data from different sources and

formats will complicate classification and annotation, thus affecting the efficiency of the system.

Thereby, the model cannot be updated in time, which reduces the accuracy of recognition. If we

can motivate users to classify the collected data and do some annotation work in advance, the

workload of the crowdsourcer can be relieved and the efficiency of the crowdsensing system will

be significantly improved. Moreover, if we can also encourage users to make redundant judgment

on the collected data and motivate users to upload data that help to improve the accuracy of model

recognition, then the required communication bandwidth can be decreased.

Although many incentive mechanisms have been designed for various crowdsensing applica-

tions, most of these mechanisms are either based on the assumption that users directly submit the

collected raw data to the crowdsourcer or they do not consider some critical properties [6, 11, 13,

16, 39, 46]. Unlike these traditional incentive mechanisms, to design an incentive mechanism to
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Fig. 1. Crowdsensing system.

motivate users to preprocess the collected data for the crowdsourcer, we should consider some

challenges:

• Consider the differences in users’ preprocessing abilities. To design an incentive mechanism

to motivate users to preprocess the collected raw data, we should consider the differences in

users’ preprocessing abilities, which directly affect the quality of the sensing service. More-

over, if a user does not have the ability to preprocess the collected data, the crowdsourcer

will not recruit him.

• Simultaneously consider the utility maximization problems of the crowdsourcer and users.

The purposes of both the crowdsourcer and users are to maximize their own utilities, and

they can make their strategies independently. Therefore, it is a challenge to design an in-

centive mechanism that can simultaneously consider the utility maximization problems of

both the crowdsourcer and users.

• Guarantee the number of participants. The number of participants is a requirement of a

crowdsensing system achieving high-quality sensing services. In addition, we also know

that the more participants there are, the more efficient the system will be. Therefore, we are

required to reasonably allocate tasks to ensure the number of participants. However, due to

the limited budget of the crowdsourcer, it is also a challenge to design incentive mechanisms

to balance the number of participants and the crowdsourcer’s budget.

• Meet the desirable properties. Since our incentive mechanisms are based on an auction

mechanism, another challenge is to design an incentive mechanism to meet the four

desirable properties: truthfulness, individual rationality, profitability, and computational

efficiency.

In this article, for two common crowdsensing scenarios, we propose two system models and

design the corresponding incentive mechanisms to motivate users to preprocess the collected raw

data. For the single-task-multiple-participants model, we create an incentive mechanism named
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the IMSTMP. For the multiple-tasks-multiple-participants model, we develop an incentive mech-

anism called the IMMTMP. Both the IMSTMP and IMMTMP mechanisms are user-centric in-

centive mechanisms, where users can make reasonable strategies independently, and the crowd-

sourcer selects the optimal users for the crowdsensing system. These mechanisms are differ-

ent from crowdsourcer-centric incentive mechanisms, where the crowdsourcer completely con-

trols the rewards for users, and users can only change their sensing service time to cater to the

crowdsourcer.

The contributions of this article can be summarized as follows:

• For different crowdsensing system models, we propose monetary-based incentive mecha-

nisms to motivate users to preprocess the collected data for the crowdsourcer.

• We present utility functions and formulate utility maximization problems for the crowd-

sourcer and users. Moreover, in our incentive mechanisms, we simultaneously consider the

utility maximization problems of the crowdsourcer and users.

• We model our incentive mechanism as a game, where the crowdsourcer and users can make

their strategies independently. In addition, we prove that the game has a Nash equilibrium.

• We design incentive mechanisms based on an auction mechanism, which satisfies four

desirable properties: truthfulness, individual rationality, profitability, and computational

efficiency.

The organization of the remainder of this article is outlined as follows: We first review the

related work in Section 2. We describe the system models in Section 3. In Section 4, we present the

incentive mechanisms for two different models. The experimental analysis is discussed in Section 5.

We conclude the article in Section 6.

2 RELATED WORK

Participants are the foundation of a crowdsensing system, and without a certain number of partici-

pants, the service quality of the crowdsensing system cannot be guaranteed. As users will consume

resources to provide sensing services, various types of incentive mechanisms have been designed

to compensate users, such as monetary-based incentive mechanisms [49], entertainment-based

incentive mechanisms [40], social-based incentive mechanisms [7], and virtual credit-based in-

centive mechanisms [34]. Monetary-based incentive mechanisms are mainly applied in auction

mechanisms and game theory [4, 20, 29, 31, 43]. For example, to address the sensor selection prob-

lem under different scenarios, the authors designed an incentive for long-term user participation

based on a VCG auction policy in Reference [18]. In Reference [32], to take into account the uncer-

tain mobility of participants, the authors designed a framework that leverages game theory and

reverse auction mechanism. In this article, we propose monetary-based incentive mechanisms by

combining auction mechanism and game theory, in which both the crowdsourcer and users are

players. Moreover, our incentive mechanisms can guarantee the number of participants by select-

ing all users who meet the winner conditions as participants, which is different from the RADP-

VPC method [16], which only selects the lowest bidders as participants.

Crowdsensing has been applied to various scenarios, and many corresponding incentive mech-

anisms have been designed [33]. In Reference [39], the authors designed a mechanism to motivate

vehicles to provide real-time information for a traffic management system. Han et al. designed a

game-based incentive mechanism to motivate users to observe and collect data for an environ-

mental monitoring project in Reference [11]. Jin et al. proposed INCEPTION to motivate users to

provide reliable data in Reference [13]. However, these works were based on the situation that

users directly submit the collected data to the crowdsourcer and ignored the fact that users’ com-

puting power can also be utilized to preprocess the collected raw data for the crowdsourcer.
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In Reference [6], Danezis et al. focused on motivating users to participate in a crowdsensing

system but ignored the utility of the crowdsourcer. In Reference [23], the authors motivated smart-

phone users to participate in a cloud-enabled multimedia crowdsensing system, where users can

only choose the duration of its service to maximize their payoffs. In Reference [46], Yang et al. first

proposed a crowdsourcer-centric incentive mechanism where the task reward was given by the

crowdsourcer, and users need to change their service time to cater to the crowdsourcer. Then, the

authors designed a user-centric incentive mechanism but only discussed the utility of the crowd-

sourcer. In other words, these above incentive mechanisms either fail to simultaneously consider

the utility maximization problems of the crowdsourcer and users or do not take into account the

fact that users can bid their sensing services independently.

Many incentive mechanisms have been designed to meet the different goals of crowdsensing

systems. The problem of how to ensure the quality of a sensing service has been studied in Ref-

erences [30, 42, 47]. For example, in Reference [10], Gao et al. utilized the reputation value to

measure the probability of users providing high-quality data, and users were motivated to main-

tain high-quality sensing services in the next stage by adapting an extra bonus. In Reference

[47], to guarantee the quality of users’ contributed data, Yu et al. designed an incentive mech-

anism to motivate participants to provide accurate data, and the incentive mechanism can mo-

tivate and guide participants to contribute accurate data over time. The issue of privacy protec-

tion has been studied in Reference [38]. In Reference [19], to jointly consider the privacy and the

social cost, the authors designed and proposed two frameworks that implement incentive mech-

anisms for privacy protection, which can also achieve approximate social cost minimization. In

addition to the above-mentioned issues, many other issues have been studied. In Reference [21],

the object of energy consumption fairness among participants was considered. In Reference [44],

Xu et al. proposed a crowdsourcing mechanism to align the incentives of the requester, worker,

and platform together, which can improve the four key evaluation indices. In Reference [14],

budget constraints, privacy protection, and service accuracy were all taken into consideration.

In this article, we focus on designing incentive mechanisms that are brief and scalable and sat-

isfy four desirable properties: computational efficiency, individual rationality, profitability, and

truthfulness.

3 SYSTEM ARCHITECTURE AND UTILITY FUNCTIONS

In this section, we first describe the system architecture. Then, we formulate the utility functions

of the crowdsourcer and users. Finally, we present four desirable properties as the performance

metrics of our incentive mechanisms.

The architecture of our crowdsensing system is described in Figure 2, which includes one crowd-

sourcer and many users. Unlike the traditional system architecture, in our system, users will be

motivated to perform data preprocessing on the local devices. The workflow of the system is de-

scribed as follows: First, the crowdsourcer publishes sensing tasks. Second, the crowdsourcer and

users conduct multiple strategy bidding rounds. In each round of bidding, users bid their strategies

for their interested tasks in turn, and then the crowdsourcer selects the user strategies for each

task. Note that, after each round, the users who are not selected by the crowdsourcer will not be

able to continue bidding for the task. After multiple rounds of bidding, the crowdsourcer and users

will reach an equilibrium in which no user is willing to unilaterally change its strategy. Third, the

selected users will complete the data collection work, preprocess the collected data on the local

devices, and then submit the result to the crowdsourcer. Finally, the crowdsourcer will pay the

selected users and conduct further data analysis.
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Fig. 2. The architecture of the crowdsensing system.

3.1 System Architecture

A few comments are in order. First, we assume that the tasks are data partitioned–oriented ap-

plications, which can be partitioned into subtasks of any size [41]. Second, we assume that the

users can collect enough data if requested, and they also have different professional abilities to

preprocess the collected raw data. Specifically, a user who does not have a sufficient preprocess-

ing ability will not be selected as a participant in our crowdsensing system. Finally, the utility of

the crowdsourcer is related to the final preprocessed data, so the sensing service addressed in this

article includes two processes: data collection and data preprocessing.

The crowdsourcer publishes N tasks, τ = (τ1, . . . ,τi , . . . ,τN ), and provides a reward, R, to mo-

tivate users to accomplish these tasks. For a task τi = (vi , ci ,pi ), vi denotes the amount of data to

be collected and preprocessed. ci indicates the importance of the task in τ , which is determined

by the needs of the crowdsourcer. pi is a reward to motivate users to complete the task, where

R =
∑N

i=1 (pi ). In addition, it is obvious that the higher the values of vi and ci are, the more impor-

tant task i is to the crowdsourcer. Therefore, the reward pi can be calculated by

pi = R × vici∑
k ∈N (vkck )

. (1)

Assume that there are M users, φ = (φ1, . . . ,φ j , . . . ,φM ), interested in participating in the

crowdsensing system after receiving the task information. Since users need to consume resources

to complete tasks, they will bid on their sensing services to receive compensation. For task i , user

φ j ’s bidding strategy can be described as s j
i = (bj,i ,qj ). bj,i represents the bidding price for com-

pleting the unit data amount of task i . qj denotes the ability to preprocess collected data, and each

user performs data preprocessing in strict accordance with his/her ability.

The frequently used notations are summarized in Table 1.

3.2 Utility Functions

3.2.1 Utility Functions in STMP. For the scenario where the crowdsourcer only publishes one

task, τi , and there are M users interested in providing sensing services for the task, we propose

the single-task-multiple-participants (STMP) model. In each round of bidding, user φ j sets his/her

bidding strategy s j
i = (bj,i ,qj ), and the bidding strategy set of user φ j is denoted by S j

i , where

s j
i ∈ S

j
i . After each user has sets his/her bidding strategy, the crowdsourcer will select a subset of

users ϕi to participate in the next round of bidding. The crowdsourcer’s selection strategy set is

Φ = 2M , where ϕi ∈ Φ. If user φ j is selected, we describe it as j ∈ ϕi or φ j ∈ ϕi ; otherwise, j � ϕi
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Table 1. List of Notations

Notation Explantation

τi , τ , vi , ci Task i , a set of tasks, the amount of data that needs to be preprocessed in task i , and
the importance of task i , respectively.

pi , oi The reward to motivate users to complete task i and the value that user φ j brings to
the crowdsourcer by completing the unit data amount of task i , respectively.

R, φ j , φ The reward for completing all tasks, user j, and a set of users, respectively.

qj , dj , bj,i User φ j ’s ability to preprocess collected data, the resource consumption required by
user φ j for completing unit data amount of the task, and user φ j ’s bidding price
completing unit data amount of task i , respectively.

s
j
i , s
−j
i , S

j
i The bidding strategy of user φ j for task i , the bidding strategy profile of users except

for user φ j , and the bidding strategy set of user φ j for task i , respectively.

ϕi , Φ, mj,i A selection strategy of the crowdsourcer for task i , the selection strategy set of the
crowdsourcer for all tasks, and the workload that user φ j needs to complete in task i ,
respectively.

ej,i , γj,i The resource consumption required by user φ j to completemj,i and the consumption
required for preparation, respectively.

uj,i , uj the utility that user φ j receives from providing sensing service for task i and the utility
that user φ j receives from providing sensing service for all tasks, respectively.

дi , д The utility of the crowdsourcer obtained from task i and the utility of the
crowdsourcer obtained from all tasks, respectively.

or φ j � ϕi . After multiple rounds of bidding, the strategies of the crowdsourcer and users will not

change.

In each round of bidding, if user φ j is selected, then the workload that he/she needs to complete

is denoted as mj,i . As we all know, among the set of selected users, ϕi , those who have high

preprocessing abilities and low bidding prices will be more favored by the crowdsourcer. Therefore,

mj,i can be calculated by

mj,i

(
s j

i , s
−j
i ,qj

)
= vi

qj/bj,i∑
l ∈ϕi

ql/bl,i
. (2)

Here, the joint bidding strategy s−j
i is for the users except for user φ j . According to Equation (2),

we can also observe that a user without any data preprocessing ability will not be selected to

participate in the crowdsensing system.

As a user will consume resources to complete mj,i , we assume that dj denotes the resource

consumption required by user φ j for completing the unit data amount of the task, and γj,i denotes

the consumption required for preparation. For each user, dj and γj,i are constants in this article.

Therefore, the resource consumption required by user φ j to completemj,i is

ej,i =mj,idj + γj,i . (3)

Thereby, according to Equation (2) and Equation (3), we can determine that the utility that user φ j

receives from providing sensing service for task i is

uj,i

(
s j

i , s
−j
i ,ϕi

)
=mj,ibj,i − ej,i

= vi

qj/bj,i∑
l ∈ϕi

ql

bl,i

(bj,i − dj ) − γj,i .
(4)

The case of j � ϕi means that user φ j is not selected to participate in the next round of bidding,

and we can getmj,i = 0, ej,i = 0, and uj,i = 0.
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The crowdsourcer’s utility is denoted as дi , which is related to the workload completed by each

user and the rewards paid to users. Thereby, we can calculate дi as

дi

(
s j

i , s
−j
i ,ϕi

)
=

∑
k ∈ϕi

(
mk,i

(
oj

i − bk,i

))

=
∑
k ∈ϕi

(
vi

qk/bk,i∑
l ∈ϕi

ql

bl,i

(
oj

i − bk,i

))
.

(5)

Here, oj
i represents the value that user φ j brings to the crowdsourcer by completing the unit data

amount of task i . In addition, oj
i is related to ci and qj , and we assume that oj

i = aciqj , a is a

parameter.

3.2.2 Utility Functions in MTMP. For the scenario where the crowdsourcer publishes N tasks,

and there are M users interested in participating in the system, we propose the multiple-tasks-

multiple-participants (MTMP) model. For user φ j , in each round of bidding, his/her strategy for N

tasks is s j = (s j
1, . . . , s

j
i , . . . , s

j
N

). After each user has set his/her bidding strategy, the crowdsourcer

will select users for each task ϕ = (ϕ1, . . . ,ϕi , . . . ,ϕN ) to participate in the next round of bidding.

The utility of user φ j is uj , which is obtained by providing sensing services for N tasks, is

calculated by

uj (s j , s−j ,ϕ) =
N∑

i=1

(uj,i ), (6)

where

uj,i =

⎧⎪⎪⎨⎪⎪⎩
vi

qj /bj,i∑
l∈ϕi

ql
bl,i

(bj,i − dj ) − γj,i , if j ∈ ϕi ,

0, otherwise .

The crowdsourcer’s utility is denoted by д. According to Equation (5), we calculate д as

д(s j , s−j ,ϕ) =
N∑

i=1

(дi )

=

N∑
i=1

( ∑
k ∈ϕi

��
�
vi

qk/bk,i∑
l ∈ϕi

ql

bl,i

(
oj

i − bk,i

)	

�

)
.

(7)

3.3 Desirable Properties

As Yang et al. mentioned in Reference [46], for the STMP model and the MTMP model, we use the

following four characters as the performance metrics for our incentive mechanisms:

• Rationality: Each participant will get utility by completing the tasks in our crowdsensing

system.

• Truthfulness: No participant can improve his/her utility by providing a bidding price dif-

ferent from its true valuation. In other words, the selection rule needs to be monotonic, and

the winners are paid the critical value.

• Profitability: The value brought by the winners should be more than the rewards paid to

them.

• Computation efficiency: The final result of the bidding should be computed in polynomial

time.
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4 INCENTIVE MECHANISMS

In this section, we introduce the incentive mechanisms for the STMP model and the MTMP model.

In addition, we analyze the incentive mechanisms by using the four desirable properties as per-

formance metrics.

4.1 Incentive Mechanism for the STMP Model

4.1.1 Problem Formulation of the STMP Model. For the STMP model, in each round of bidding,

the crowdsourcer’s purpose is to maximize the utility дi , and its strategy is making a selection ϕi .

User φ j (1 ≤ j ≤ M) aims to maximize his/her own utility uj,i by providing a bidding strategy s j
i .

Based on Equation (4) and Equation (5), the purposes of both the users and the crowdsourcer

can be formulated as utility maximization problems:

maximize uj,i

(
s j

i , s
−j
i ,ϕi

)
,

s.t. ϕi ⊆ Φ,
〈
s j

i , s
−j
i

〉
∈ S j

i ;
(8)

and

maximize дi

(
s j

i , s
−j
i ,ϕi

)
,

s.t. ϕi ⊆ Φ,
〈
s j

i , s
−j
i

〉
∈ S j

i .
(9)

Before solving the utility maximization problems, we need to discuss the conditions that allow

users to win in each round of bidding.

First, a user needs to consume resources to provide sensing services for a task; thereby, users

will not participate in crowdsensing unless they can make a profit. Therefore, if user φ j is selected,

j ∈ ϕi , his/her utility must satisfy

uj,i > 0

⇒ vi ×
qj/bj,i∑
l ∈ϕi

ql

bl,i

× (bj,i − dj ) − γj,i > 0

⇒ bj,i ×
(
viqj − γj,i

∑
l ∈ϕi \j

ql

bl,i

)
> viqjdj + γj,iqj .

According to the above inequality, we can determine that user φ j ’s bidding strategy must satisfy

qj >
γj,i

vi

∑
l ∈ϕi \j

ql

bl,i
, (10)

bj,i >
γj,iqj +viqjdj

viqj − γj,i
∑

l ∈ϕi \j
ql

bl,i

. (11)

If uj,i ≤ 0, then user φ j will not provide sensing services for task i .
Second, since the reward to motivate users to complete task i is given as pi = R, the bidding

price of user φ j must satisfy

bj,i ≤ pi/vi . (12)

However, users are selfish and need to make profits; therefore, their bidding prices may not meet

Inequality (12). When bj,i > pi/vi , the crowdsourcer views it as bj,i = pi/vi .

According to Inequality (11) and Inequality (12), if user φ j is a winner, his/her bidding price

must satisfy
γj,iqj +viqjdj

viqj − γj,i
∑

l ∈ϕi \j
ql

bl,i

< bj,i ≤
pi

vi
. (13)
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Third, from the perspective of the crowdsourcer, in each round of bidding, the purpose is to

maximize its utility дi by selecting a subset of users ϕi . Therefore, if user φ j wants to win in

each round of bidding, his/her bidding strategy should satisfy дi (s j
i , s
−j
i ) > дi (s−j

i ), where дi (s−j
i )

represents the utility of the crowdsourcer without selecting user φ j . In addition, we can deduce

that

дi

(
s j

i , s
−j
i

)
> дi

(
s−j

i

)

⇒
∑
k ∈ϕi

(
vi

qk/bk,i∑
l ∈ϕi

ql

bl,i

(
ok

i − bk,i

))
>

∑
k ∈ϕi \j

(
vi

qk/bk,i∑
l ∈ϕi \j

ql

bl,i

(
ok

i − bk,i

))

⇒
qj

(
oj

i − bj,i

)
bj,i

∑
l ∈ϕi

ql

bl,i

>
∑

k ∈ϕi \j

��
�
qk

(
ok

i − bk,i

)
bk,i

��
�

1∑
l ∈ϕi \j

ql

bl,i

− 1∑
l ∈ϕi

ql

bl,i

	

�
	

�

⇒
qj

(
oj

i − bj,i

)
bj,i

∑
l ∈ϕi

ql

bl,i

>
qj/bj,i

(
∑

l ∈ϕi \j
ql

bl,i
) (
∑

l ∈ϕi

ql

bl,i
)
×

∑
k ∈ϕi \j

(qk

(
ok

i − bk,i

)
bk,i

)

⇒
(
oj

i − bj,i

) ∑
l ∈ϕi \j

ql

bl,i
>

∑
k ∈ϕi \j

(qk

(
ok

i − bk,i

)
bk,i

)

⇒ bj,i

∑
l ∈ϕi \j

ql

bl,i
<

∑
k ∈ϕi \j

qk .

Finally, we get that

bj,i ≤
∑

l ∈ϕi \j ql∑
l ∈ϕi \j ql/bl,i

. (14)

According to Inequality (12), if j ∈ ϕi , then we have

bj,i ≤ pi/vi

⇒
qj

bj,i
≥

qjvi

pi

⇒
∑

l ∈ϕi \j

ql

bl,i
≥

∑
l ∈ϕi \j

qlvi

pi
,

and we can deduce that
pi

vi
≥

∑
l ∈ϕi \j ql∑

l ∈ϕi \j ql/bl,i
. (15)

In other words, the conditions for user φ j to win each round of bidding can be summarized as

follows: the preprocessing ability qj should satisfy

qj >
γj,i

vi

∑
l ∈ϕi \j

ql

bl,i
,

while the bidding price bj,i should satisfy

bj,i > bmin =
γj,iqj +viqjdj

viqj − γj,i
∑

l ∈ϕi \j
ql

bl,i

, (16)

and

bj,i ≤ bmax =

∑
l ∈ϕi \j ql∑

l ∈ϕi \j
ql

bl,i

. (17)
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4.1.2 IMSTMP. In this section, we propose an incentive mechanism, namely, the IMSTMP, for

the STMP model and model it as a dynamic game, which we call the IMSTMP game.

The crowdsourcer and users are players in this game. In each round of bidding, the strategy of

the crowdsourcer is ϕi , where ϕi ∈ Φ. The strategy of user φ j is s j
i , where s j

i ∈ S
j
i ; and the strategy

profile consisting of all users is si = (s1
i , . . . , s

j
i , . . . , s

M
i ), where si ∈ Si and Si = S1

i × S2
i × · · · × SM

i .

In addition, ui = (u1,i , . . . ,uj,i , . . . ,um,i ) denotes the utility profile consisting of all users.

According to Equation (8) and Equation (9), the IMSTMP game can be represented by G =
(Φ, Si ,дi ,ui ), and the purpose of the game is to find the equilibrium where the point (ϕ∗i , s

∗
i ) satis-

fies

s∗i ∈ arg max
s

j
i ∈S

j
i

uj,i

(
s j

i , s
−j
i ,ϕi

)
, s∗i ∈ Si ,

ϕ∗i ∈ arg max
ϕi ∈Φi

дi

(
s j

i , s
−j
i ,ϕi

)
, ϕ∗i ∈ Φ.

(18)

In the IMSTMP game, we would like to emphasize the following points: In a dynamic game

with complete information, each player can get the other players’ bidding strategies. In addition,

in each round of bidding, those unselected users will not be able to continue bidding for the task.

Before we solve the IMSTMP game, we will introduce the background of convex optimization

and Nash equilibrium [12, 26].

Given a convex set S and an objective function f (x ), which is convex and continuously differ-

entiable on S , the convex optimization problem can be denoted as CO (S, f ), that is,

minimize f (x ), subject to x ∈ S .

We extend the above convex optimization problem into an n-player noncooperative game

д = (S, f ), where S = S1 × · · · × Sn and f = ( f1 (x ), f2 (x ), . . . , fn (x )), x = (xi ,x−i ), x−i denotes the

vector of all players’ variables other than player i . Since the purpose of a game is to find the Nash

equilibrium, we have a set of n coupled convex optimization problems CO (Si , fi ), where fi is a

convex function of xi , 1 ≤ i ≤ n. The aim of player i , given x−i , is to

minimize fi (xi ,x−i ), subject to xi ∈ Si .

Furthermore, according to the theorem mentioned in Reference [17], we know that for all 1 ≤
i ≤ n, if Si is a compact convex set, fi (xi ,x−i ) is a continuous function on S , and fi (xi ,x−i ) is a

convex function on Si , then there is a Nash equilibrium for the game д = (S, f ).
According to the information of the convex optimization problem, for the sake of the discussion,

we set function w j,i = −uj,i ; therefore, we have

w j,i =

⎧⎪⎪⎨⎪⎪⎩
−
(
vi

qj /bj,i∑
l∈ϕi

ql
bl,i

(bj,i − dj ) − γj,i

)
, if j ∈ ϕi ,

0, otherwise .
(19)

Therefore, we redefine Equation (8) as

minimize w j,i

(
s j

i , s
−j
i ,ϕi

)
,

s.t. ϕi ⊆ Φ,
〈
s j

i , s
−j
i

〉
∈ S j

i .
(20)

The IMSTMP game can be redefined asG = (Φ, Si ,дi ,wi ), wherewi = (w1,i , . . . ,w j,i , . . . ,wM,i ).
In addition, the purpose of the game G = (Φ, Si ,дi ,wi ) is to find the Nash equilibrium, which can
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be denoted as (ϕ∗i , s
∗
i ), where

s∗i ∈ arg min
s

j
i ∈S

j
i

w j,i

(
s j

i , s
−j
i ,ϕi

)
, s∗i ∈ Si ,

ϕ∗i ∈ arg max
ϕi ∈Φi

дi

(
s j

i , s
−j
i ,ϕi

)
, ϕ∗i ∈ Φ.

(21)

Now, let us discuss a special case of the IMSTMP game. Suppose that the crowdsourcer’s optimal

strategy is given as ϕi =m. In other words, thesem selected users are the optimal participators in

the system. Then, these selected users will bid against each other, and the purpose of each user is

to maximize its utility. Therefore, the selected users can be considered as players in a game, and

the game is represented by G ′ = (Si ,wi ). The purpose of G ′ = (Si ,wi ) is to find an equilibrium

point, which is denoted as

s∗i ∈ arg min
s

j
i ∈S

j
i

w j,i

(
s j

i , s
−j
i

)
, s∗i ∈ Si . (22)

Theorem 1. Suppose that the optimal strategy of the crowdsourcer is given as ϕi =m. The game

G ′ = (Si ,wi ) has a Nash equilibrium.

Proof. First, we prove the strategy set S j
i of user φ j (1 ≤ j ≤ m) is a convex set. For user φ j ,

his/her ability qj is a constant, and the strategy s j
i depends on the bidding price bj,i ; therefore,

S j
i can be regarded as a one-dimensional variable space about bj,i . Moreover, since the optimal

strategy of the crowdsourcer is given as ϕi =m, that is, j ∈ ϕi , bj,i must satisfy bj,i ∈ (bmin ,bmax ],

and so S j
i is compact. For any x ,y ∈ S j

i , we have ρx + (1 − ρ)y ∈ S j
i , ρ ∈ [0, 1], and so S j

i is a convex

set.

Second, we prove that w j,i is a convex function. Since S j
i can be regarded as a one-dimensional

variable space about bj,i , when bj,i ∈ (bmin ,bmax ], we can determine that w j,i is a continuous

function on S j
i . Therefore, we can determine that the function of w j,i is

w j,i = −
(
vi

qj/bj,i∑
l ∈ϕi

ql

bl,i

(bj,i − dj ) − γj,i

)

= −vi

bj,i − dj

1 +
bj,i

qj

∑
l ∈ϕi \j

ql

bl,i

+ γj,i .

Then, we have

∂w j,i

∂bj,i
= −vi ×

(
1 +

bj,i

qj

∑
l ∈ϕi \j

ql

bl,i

)
− bj,i−dj

qj
×∑

l ∈ϕi \j
ql

bl,i(
1 +

bj,i

qj

∑
l ∈ϕi \j

ql

bl,i

)2

= −viqj ×
qj + dj

∑
l ∈ϕi \j ql/bl,i(

qj + bj,i
∑

l ∈ϕi \j ql/bl,i

)2
< 0,

and

∂2w j,i

∂b2
j,i

= 2viqj ×
qj + dj

∑
l ∈ϕi \j ql/bl,i(

qj + bj,i
∑

l ∈ϕi \j ql/bl,i

)3
×

∑
l ∈ϕi \j

ql

bl,i
> 0.

Therefore, we obtain thatw j,i is a convex function on S j
i . According to

∂w j,i

∂bj,i
< 0, and the purpose

of user φ j is to minimize w j,i , we can get that the optimal bidding price b∗j,i is the maximum
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value in its feasible interval, that is, b∗j,i = bmax . Thus, we can get the optimal bidding strategy

s j∗
i = (b∗j,i ,qj ). Therefore, we prove that the game G ′ = (Si ,wi ) has a Nash equilibrium. �

Theorem 2. In G ′ = (Si ,wi ), the bidding price sequence of user φ j is monotonic and bounded.

Proof. According to Theorem 1, in each round, user φ j ’s bidding price is bj,i = b
∗
j,i = bmax . We

initialize b (0)
j,i =

pi

vi
(1 ≤ j ≤ m). Therefore, in the first round, we can get b (1)

j,i ≤ b (0)
j,i . Then, in the

kth round, we assume that b (k )
j,i ≤ b (k−1)

j,i (1 ≤ j ≤ m). As mentioned in Theorem 1, we have

b∗j,i = bmax =

∑
l ∈ϕi \j ql∑

l ∈ϕi \j
ql

bl,i

.

We can observe that, for user φ j , the optimal bidding price b∗j,i increases with bl,i , where l ∈ ϕi\j.
Therefore, in the (k + 1)th round, we can obtain that the bidding price is b (k+1)

j,i = b∗(k+1)
j,i ≤ b∗(k )

j,i =

b (k )
j,i . Therefore, we get that bj,i is monotonic in G ′ = (Si ,wi ).

Based on Inequality (16) and Inequality (17), each user’s bidding price must satisfy bj,i ∈
(bmin ,bmax ], and so we get that b∗j,i is bounded. The proof of the theorem has been completed. �

Based on Theorem 1 and Theorem 2, for the IMSTMP game, we have the following theorem:

Theorem 3. The IMSTMP game G = (Φ, Si ,дi ,wi ) has a Nash equilibrium (ϕ∗i , s
∗
i ).

Proof. We assume that there are M users who are initially interested in participating in the

crowdsensing system. In other words, the strategy of the crowdsourcer is initialized as ϕi = M .

According to Theorem 1, if ϕ∗i = M , then there is a Nash equilibrium s∗i = (s1∗
i , . . . , s

j∗
i , . . . , s

M∗
i )

for the game G ′ = (Si ,wi ). In addition, we can get that G = (Φ, Si ,дi ,wi ) has a Nash equilibrium

(ϕ∗i , s
∗
i ).

However, if user φ j ’s bidding price does not satisfy bmin < bj,i ≤ bmax , then the crowdsourcer

will update the selection strategy ϕi = ϕi \ j. Thus, user φ j will not be selected to participate in the

next round of bidding. Therefore, we can determine that the strategy sequence of the crowdsourcer

is monotonic and bounded. Through multiple rounds of bidding, until ϕi does not change, accord-

ing to Theorem 1, there is a Nash equilibrium s∗i for the gameG ′ = (Si ,wi ). Then,G = (Φ, Si ,дi ,wi )
can reach a Nash equilibrium (ϕ∗i , s

∗
i ).

In addition, based on Theorem 2, the bidding price sequence of each user is monotonic and

bounded in G ′ = (Si ,wi ). Therefore, we can observe that the solution of G = (Φ, Si ,дi ,wi ) con-

verges to an equilibrium. �

The detailed steps of the solution for the IMSTMP game are described in Algorithm 1.

In Algorithm 1, ϕ∗i and s∗i are the respective strategies of the crowdsourcer and users, where ϕi

and si are used to save the previous strategies of the crowdsourcer and users, respectively (line 1).

In each iteration, the system first compares the loop conditions of ϕi � ϕ∗i and si � s∗i (line 2),

which means that the loop conditions are met, and the system equilibrium is not reached. Then,

the system will update ϕi and si (line 3); otherwise, go to line 20. In each round of bidding, the

users in ϕ∗i will set their bidding strategies in turn (lines 4–14). Specifically, for user φ j , he/she will

obtain a filtered strategy set s ′i by calling a function, f ilter , which will be detailed in Algorithm 2

(lines 4–5). Based on s ′i , user φ j calculates q∗j by calling Inequality (10) at first (line 6). If qj ≤ q∗j ,

it means that user φ j cannot profit in the system. Therefore, he/she will set the bidding price as

b∗j,i = 0 (lines 7–8); otherwise, user φ j will calculate the range of his/her bidding price by calling

Inequality (16) and Inequality (17) and get the optimal bidding price b∗j,i = bj,i,max (lines 9–13).

After each user has conducted his/her bidding strategy, the crowdsourcer will update the selection
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ALGORITHM 1: IMSTMP

Require: A set of users φ, task i and reward R
Ensure: A equilibrium (ϕ∗i , s

∗
i )

1: Initialize ϕi , ϕ
∗
i , si , s

∗
i

2: while (ϕi � ϕ∗i and si � s∗i ) do

3: ϕi ← ϕ∗i , si ← s∗i
4: for (each user j in ϕ∗i ) do

5: s ′i ← f ilter (s∗i ,ϕ
∗
i )

6: Calculate q∗j using Inequality (10) based on s ′i
7: if (qj ≤ q∗j ) then

8: b∗j,i ← 0

9: else

10: Calculate bj,i,min using Inequality (16) based on s ′i
11: Calculate bj,i,max using Inequality (17) based on s ′i
12: b∗j,i ← bj,i,max

13: end if

14: Update s∗i based on b∗j,i
15: end for

16: if (bj,i,max ≤ bj,i,min or b∗j,i = 0, j ∈ ϕ∗i ) then

17: b∗j,i ← 0

18: Update ϕ∗i ← ϕ∗i \ j
19: end if

20: end while

21: return (ϕ∗i , s
∗
i )

strategy ϕ∗i (lines 16–19). Finally, the iteration loop will stop if the strategies of the crowdsourcer

and users are not changed, and the algorithm will return ϕ∗i and s∗i as the optimal results (line 21).

ALGORITHM 2: f ilter

Require: A set of users φ, task i , reward R, s∗i , and ϕ∗i
Ensure: s ′′i

1: Initialize s ′i ← 0, s ′′i ← s∗i , and ϕ ′′i ← ϕ∗i
2: for (each user j ∈ ϕ ′′i ) do

3: if (b ′′j,i > pi/vi ) then

4: b ′′j,i ← pi/vi

5: end if

6: end for

7: Update s ′′i based on b ′′j,i
8: return s ′′i

Since the reward to motivate users to complete task i is given, we introduce a function named

f ilter in Algorithm 2, which is used by each user to correct the bids over pi/vi .

4.1.3 The Performance of IMSTMP. We have designed an incentive mechanism for the STMP

model in Section 4.1.2. Now, let us discuss the IMSTMP incentive mechanism using the four desir-

able properties introduced in Section 3.3 as the performance metrics.
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• Rationality: In the IMSTMP incentive mechanism, users will not participate in the crowd-

sensing system unless they make enough profits to compensate for their resource consump-

tion. In addition, for the participants in the crowdsensing system, the crowdsourcer will pay

them based on their bidding prices. Therefore, the IMSTMP incentive mechanism is indi-

vidually rational.

• Profitability: We guarantee дi > 0 from two aspects. One aspect is that according to In-

equality (12), the bidding price bj,i should be less than pi/vi ; and for the case of bj,i > pi/vi ,

the crowdsourcer views it as bj,i = pi/vi . Moreover, pi is part of the crowdsourcer’s util-

ity дi . The other aspect is that according to Inequality (14), the bidding strategy of user φ j

should satisfy дi (s j
i , s
−j
i ) > дi (s−j

i ). Above all, we can guarantee that the IMSTMP incentive

mechanism is profitable.

• Efficiency: The time complexity of Algorithm 2 is O (M ). According to Theorem 3, we can

conclude that the strategy sequence of the crowdsourcer is monotonic and bounded. In

addition, based on Theorem 2, the bidding price sequence of each user is monotonic and

bounded in G ′ = (Si ,wi ). Therefore, we can see that the number of iterations of the while
loop in Algorithm 1 is O (b). In Algorithm 1, the crowdsourcer and users will conduct their

strategies in each loop, so we can determine that the time complexity of Algorithm 1 in

the worst case is O (bM2). Hence, the IMSTMP incentive mechanism is computationally

efficient.

• Truthfulness: According to Theorem 1 and Theorem 3, the optimal bidding price of each

user must be the maximum value in his/her available interval, i.e.,b∗j,i = bmax . Ifb∗j,i > bmax ,

then according to Equation (17), user φ j will not be selected. Based on Equation (5), we can

observe that the utility of the crowdsourcer increases as bj,i decreases; therefore, if user

φ j wins by making his/her bidding price b∗j,i = bmax , he/she will also be selected by the

crowdsourcer by making his/her bidding price b∗
′

j,i ≤ b∗j,i = bmax . Therefore, the IMSTMP

incentive mechanism is truthful.

4.2 Incentive Mechanism for the MTMP Model

In this section, we first formulate the utility maximization problems of the MTMP model. Then, we

design an incentive mechanism, namely, the IMMTMP, for the MTMP model. Finally, we analyze

the performance of the incentive mechanism.

4.2.1 Problem Formulation of the MTMP Model. In the MTMP model, the crowdsourcer pub-

lishes N independent tasks with a total reward R, and M users are interested in participat-

ing in the crowdsensing system. According to Equation (6), the utility function of user φ j is

uj =
∑N

i=1 uj,i . In each round of bidding, user φ j will set a bidding strategy for N tasks, which

is denoted as s j = (s j
1, . . . , s

j
i , . . . , s

j
N

), where s j ∈ S j and S j = S j
1 × · · · × S

j
i × · · · × S

j
N

. The strat-

egy profile consisting of all users’ strategies is s = (s j , s−j ), where s−j = (s1, . . . , s j−1, s j+1 . . . , sM ),
S = S1 × · · · × S j × · · · × SM and s ∈ S .

According to Equation (7), the utility function of the crowdsourcer is д =
∑N

i=1 дi . After users

have made their strategies, the crowdsourcer will select the users, ϕ = (ϕ1, . . . ,ϕi , . . . ,ϕN ), to

participate in the next round of bidding for each task, where ϕi ∈ Φ and ϕ ∈ ΦN .

We know the purposes of both the crowdsourcer and users are to maximize their utilities. Based

on Equation (6) and Equation (7), the purposes of the users and the crowdsourcer can be formulated

as

maximize uj (s j , s−j ,ϕ),

s.t. ϕ ∈ ΦN , 〈s j , s−j 〉 ∈ S ;
(23)
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and

maximize д(s j , s−j ,ϕ),

s.t. ϕ ∈ ΦN , 〈s j , s−j 〉 ∈ S .
(24)

4.2.2 IMMTMP. Based on the reverse auction and IMSTMP, we design an incentive mechanism,

namely, the IMMTMP, for the MTMP model. In the IMMTMP incentive mechanism, the crowd-

sourcer is the buyer, who recruits users to complete the sensing tasks; and the users are the sellers,

who will independently set the bidding strategies for the tasks in which they are interested.

The detailed steps of the IMMTMP are described in Algorithm 3.

ALGORITHM 3: IMMTMP

Require: A set of users φ, a set of tasks τ and reward R
Ensure: s∗, ϕ∗

1: Initialize s , s∗, ϕ and ϕ∗

2: while (|s − s∗ | > ξ2) do

3: s ← s∗,ϕ ← ϕ∗

4: for (j = 1 to M) do

5: for (i = 1 to N ) do

6: s ′i ← f ilter (s∗i ,ϕ
∗
i )

7: Calculate qj,i∗ using Inequality (10) based on s ′i
8: if qj ≤ qj,i∗ then

9: b∗j,i ← 0

10: else

11: Calculate bj,i,min using Inequality (16) based on s ′i
12: Calculate bj,i,max using Inequality (17) based on s ′i
13: b∗j,i ← bj,i,max

14: end if

15: end for

16: Update s∗ based on b∗j,i
17: end for

18: for (i = 1 to N ) do

19: if (bj,i,max ≤ bj,i,min or b∗j,i = 0, j ∈ ϕ∗) then

20: b∗j,i ← 0

21: Update ϕ∗ based on s∗

22: end if

23: end for

24: end while

25: return s∗, ϕ∗

In Algorithm 3, ϕ∗ and s∗ are strategies of the crowdsourcer and users, respectively, whereas ϕ
and s , respectively, are used to save their previous strategies (line 1). In each iteration, the system

compares the loop conditions at first (line 2). Specifically, if the difference between s∗ and s is

smaller than ξ2, then the iteration will stop and go to line 24; otherwise, the system will update

ϕ and s (line 3). Based on the IMSTMP, in each round, users give their optimal bidding strategies

for their interesting tasks in turn (lines 4–17). After users have given their bidding strategies, the

crowdsourcer will select the users to participate in the next round for each task (lines 18–23).

As in the IMSTMP, if user φ j is not selected to participate in the next round for a task, he/she

cannot continue to develop a strategy for this task. The iteration will continue until a termination
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condition is met (line 1). When the termination condition is met, the algorithm will return the

latest ϕ∗ and s∗ as the optimal strategies of the crowdsourcer and users, respectively (line 25).

4.2.3 The Performance of IMMTMP. Now, let us analyze the IMMTMP incentive mechanism

using the four desirable properties introduced in Section 3.3 as performance metrics.

• IMMTMP is Rational: Based on Inequality (10) and Inequality (11), users will not partic-

ipate in a task unless the utility obtained from the task is not negative. In other words, for

user φ j (1 ≤ j ≤ M), if uj,i ≤ 0, then he/she will set bj,i = 0.

• IMMTMP is Efficient: For the IMSTMP, we can observe that the time complexity of Al-

gorithm 1 isO (bM2). Since the IMMTMP is based on the IMSTMP, and there are N tasks in

IMMTMP, we can observe that the worst time complexity of Algorithm 3 is O (bNM2).
• IMMTMP is Profitable: As discussed with the IMSTMP, we guarantee д(ϕ, s ) > 0 from

the following aspects: First, according to Inequality (12), user φ j ’s bidding price bj,i should

be less than
pi

vi
. For the situation bj,i >

pi

vi
, the crowdsourcer views it as bj,i =

pi

vi
. Second,

by Equation (1), we know that pi is part of the given reward R, whereas R comes from

the crowdsourcer’s utility. Finally, as mentioned in Inequality (14), for user φ j , the bidding

strategy s j
i should satisfy дi (s j

i , s
−j
i ) > дi (s−j

i ); otherwise, user φ j will not be selected. Above

all, if user φ j wants to win, he/she should bring profits to the crowdsourcer.

• IMMTMP is Truthful: According to the definition, we can determine that an auction

mechanism is truthful if and only if it satisfies the following points. If user φ j (1 ≤ j ≤ M) is

selected as a participant by bidding s j
i = (bj,i ,qj ), it also wins by using the bidding price

b ′j,i ≤ bj,i . In addition, user φ j would not be selected if it bids b ′j,i > bj,i . In the MTMP

model, the published tasks are independent, and each user’s purpose is to maximize its

utility. Therefore, as discussed in Section 4.1, user φ j ’s optimal bidding price for each task

is the maximum value in its feasible interval. Therefore, we can observe that the IMMTMP

incentive mechanism is truthful.

5 EXPERIMENTS

In this section, we evaluate the performance of our incentive mechanisms. As mentioned in Refer-

ence [46], the performance metrics include the users’ average utility (u), the crowdsourcer’s utility

(д), and the number of participants. We analyze the impact of the following factors on our incen-

tive mechanisms: the number of users (m), user’s cost per unit data (d), and task reward (R). For

the IMMTMP, we also study the impact of the number of tasks (n) on its performance.

5.1 Simulation Setup

This section describes the parameter settings of the system. The amount of data required by a task

(v) is randomly varied from 180 to 200. The importance of a task (c) is distributed over [1,3]. We

assume that o is linearly dependent on c and q, which is defined as o = 2 × cq in this article. For

the sake of discussion, each user’s preprocessing ability (q) is set to a constant of 1. The cost is

uniformly distributed over (0.1,d], where d is varied from 0.1 to 1.3. The consumption required for

preparation (γ ) is distributed over [1,3].

5.2 Evaluation of IMSTMP

To evaluate the performance of the IMSTMP, the number of users (m) is varied from 10 to 300 at

an increment of 50, d is varied from 0.1 to 1.3 at an increment of 0.2, and reward R is varied from

0 to 400 at an increment of 50.

(1) Users’ average utility: Figure 3 shows the impact of the number of users, m, on u, and we

can see that u decreases asm increases; the reason is that, with the increases ofm, more users will
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Fig. 3. Users’ average utility.

Fig. 4. The crowdsourcer’s utility.

participate in the system, and according to Equation (3), more participants means more consump-

tion, so u decreases as m increases. In addition, in Figure 3, the value of u declines sharply when

the number of users increases from 10 to 50, and then there is a slow decline. It is because, at the

beginning, when m increases from 10 to 50, the given reward R makes the tasks very attractive,

so the number of participants increases sharply, but more participants means more consumption,

so the value of u declines sharply; when m increases from 50 to 300, the number of participants

shows a slow growth trend, so the decline of u is a slow trend.

(2) The crowdsourcer’s utility: Figure 4 illustrates the impacts of m, d, and R on the crowd-

sourcer’s utility (д). In Figure 4(a), we fix d and R, and we observe that д remains steady as m
increases. The reason is that, when R is given, for the crowdsourcer, as long as the reward R can

motivate users to provide sensing services, the value of the task will remain stable. In Figure 4(b),

m and R are fixed. We can get that д also remains steady as d increases. Because when R is given,

although the range ofd is increasing, there are always some users who can be motivated to provide

sensing services for the task. In Figure 4(c), we fixm and d , and we can see that д increases sharply

when R increases from 10 to 50, and then д decreases with the further increase of R. The reason is

that, at the beginning, R is too small to motivate users to provide sensing services, so д = 0; then,

when R increases from 10 to 50, some users can be motivated to provide sensing services, so the

task can be completed by these participants and the utility of the crowdsourcer increases sharply;

however, the value of the task is limited, and R comes from it, so when R increases further, the

utility of the crowdsourcer will decrease. Moreover, if R increases to R = o ×v , then д = 0.

(3) The number of participants: Figure 5 presents the impacts of m, d, and R on the number of

participants. In Figure 5(a), we fixd andR, we can get that the number of participants increases with

the increase of m; but more participants means more consumption, and the reward R is given, so

the growth trend of participants will gradually decrease. In Figure 5(b), the number of participants

decreases as d increases. Because a larger d means the costs of users become more diverse, users

are more likely to fail to meet the winning conditions. In Figure 5(c), the number of participants
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Fig. 5. The number of participants.

Fig. 6. Users’ average utility.

increases with R, but its upper limit is m. The reason is that, when R becomes larger, users’ bids

will also increase, so more users can get profits from it, thus the number of participants increases

with R.

5.3 Evaluation of IMMTMP

For the IMMTMP, the parameters are set as follows: the number of users (m) is varied from 50 to

400 at an increment of 50, d is varied from 0.3 to 1.3 at an increment of 0.2, the reward R is varied

from 500 to 3500 at an increment of 500, the number of tasks (n) is varied from 50 to 225 at an

increment of 25, and the consumption required for preparation (γ ) is distributed over [0, 0.3].

In addition, the existing mechanisms [11, 13, 33, 39] were based on the situation that users

directly submit the collected data to the crowdsourcer and ignored the fact that users’ computing

power can also be utilized to preprocess the collected raw data for the crowdsourcer. Besides, in

our incentive mechanisms, users without any data preprocessing ability will not be selected as

participants in the crowdsensing system. Thereby, the existing mechanisms cannot be directly

used in our system, so we compare our mechanism with a baseline method, called BFU, where

users only consider their own profits when making bidding strategies. Specifically, in the BFU,

before users make their bidding strategies, assume that the crowdsourcer will distribute tasks

equally to all users; then to obtain more profit, each user only considers his/her own profit when

making bidding strategy; that is, each user randomly decides the bidding strategy according to

Equation (10) and Equation (11); finally, the crowdsourcer will select users who meet the winner

conditions mentioned in Section 4.1.1 as participants.

(1) Users’ average utility: Figure 6 shows the impact of m on u. We observe that u decreases

as m increases; the reason is that, with the increases of m, more and more users will participate

in the system, and according to Equation (3), more participants means more consumption, so u
decreases as m increases. Besides, in Figure 6, we can find that the value of u declines sharply
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Fig. 7. The crowdsourcer’s utility.

when the number of users increases from 50 to 100, and then there is a slow decline. The reason

is similar to Figure 3. Moreover, the IMMTMP achieves higher u than the BFU.

(2) The crowdsourcer’s utility: Figure 7 shows the impacts ofm, d , R, and n on д. In Figure 7(a),

we fix d , R, and n. We observe that д remains steady as m increases, because the given reward R
can motivate users to complete a certain number of tasks, and the number of tasks that can be

completed remains stable with the increase ofm. In addition, the IMMTMP achieves higher д than

the BFU. In Figure 7(b), д also remains steady as d increases; the reason is similar to Figure 4(b).

In Figure 7(c), we fix m, d, and n, and we observe that, at first, д increases with the increase of R,

then g decreases with the further increase of R. The reason is similar to Figure 4(c). Moreover, at

the beginning, the IMMTMP achieves a higher д than the BFU when R increases from 500 to 2500,

then the BFU gets a higher д than the IMMTMP when R increases from 2500 to 3500, because,

first, when R increases from 500 to 2500, although the actual cost of paying participants in the

IMMTMP is higher than that in the BFU, the profit brought by participants through completing

tasks in the IMMTMP is much more than that in the BFU; second, when R increases to 2500, in the

IMMTMP, all tasks can be completed by the participants, thereby, the crowdsourcer can get the

maximum utility д before the reward R increases to 2500; third, because the reward R comes from

the completed tasks, when R increases from 2500 to 3500, the actual cost of paying participants

in the IMMTMP is equal to R, which is much higher than that in the BFU, and the profit brought

by participants through completing tasks in the IMMTMP is less than that in the BFU, so when

R increases from 2500 to 3500, the BFU gets a higher д. In Figure 7(d), we fix m, d, and R, and we

observe that with the increase of n, д first increases then decreases. Because R is given and shared

by all tasks, at the beginning, with the increase of n, the number of tasks that can attract users

to provide sensing services will increase, so the crowdsourcer’s utility д also increases. However,

according to Equation (1), we can get that, with the increase of n, the reward assigned to each task

will be less and less; that is, the attraction of a task decreases with the increase of n. Finally, no
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Fig. 8. The number of participants.

task can attract users to provide sensing services. Furthermore, the IMMTMP achieves higher д
than the BFU.

(3) The number of participants: Figure 8 shows the impacts of m, d , R, and n on the number of

participants. In Figure 8(a), we can observe that the number of participants basically increases as

m increases, and the IMMTMP achieves more participants than the BFU. The reason is that, when

m increases from 50 to 400, the given reward R can continuously attract users to participate in

the crowdsensing system. In Figure 8(b), when d increases, the number of participants decreases,

because, according to Equation (16) and Equation (17), the smaller the value of d , the less the users’

consumption, the greater the possibility of users will win, so the number of participants decreases

as d increases. In addition, more users can meet the winner conditions in the IMMTMP than in

the BFU. In Figure 8(c), we can see that the number of participants increases with the increase of

R, but the upper limit is m—the reason is similar to Figure 5(c); and the IMMTMP achieves more

participants than the BFU. In Figure 8(d), we can get that the number of participants decreases

as n increases, because with the increase of n, the reward assigned to each task will be less and

less and, finally, no task can attract users to provide sensing services. In addition, in the IMMTMP,

when making bidding strategies, users will consider both their own profits and the crowdsourcer’s

profit, but in the BFU, users only take into account their own interests, so the IMMTMP achieves

more participants than the BFU.

6 CONCLUSION

In this article, we propose monetary-based incentive mechanisms to motivate users to prepro-

cess the collected data for the crowdsourcer. We first study the single-task-multiple-participants

model, where the crowdsourcer only publishes one task. Then, we extend the model to discuss the

multiple-tasks-multiple-participants model, where multiple tasks are published.
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Based on an auction mechanism and game theory, we propose an incentive mechanism (called

the IMSTMP) for the STMP model and prove that the IMSTMP game has a Nash equilibrium. Based

on the IMSTMP, we develop an incentive mechanism (called the IMMTMP) for the MTMP model.

Both incentive mechanisms are truthful, individually rational, profitable, and computationally ef-

ficient. Furthermore, the utility maximization problems of both the crowdsourcer and users are

simultaneously considered in our incentive mechanisms. Finally, we evaluate the performance of

the incentive mechanisms through theoretical analysis and extensive experiments.
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