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Abstract—In this article, two Adams–Bashforth-type
integration-enhanced discrete-time zeroing neural dynamic
(ADTIZD) models are proposed to solve the time-varying com-
plex Sylvester equation (TVCSE) problem in the first time. In
ADTIZD models, Adams–Bashforth discrete formulas as novel
discrete formulas are used, giving our ADTIZD models higher
accuracy [truncation error being O(τ5)] but less time and space
complexity than the ordinary multi-instant models. Enhanced
by the integration part, the ADTIZD models can resist large
additive noises, where even constant noises cannot decrease
their precision. All convergence and robustness performance
conclusions about our ADTIZD models are supported by
rigorous theoretical proofs and numerical experiments. More
comparisons between ADTIZD models and other discrete-time
zeroing neural network models are shown in these experiments
too. The efficacy of ADTIZD models is finally been validated
in the simulation of adopting them in controlling a robotic
manipulator.

Index Terms—Adams–Bashforth discretization formula,
derivative approximation, discrete-time zeroing neural dynamic
(DTZND), noise resistance, robot manipulator control,
time-varying complex Sylvester equation (TVCSE).

I. INTRODUCTION

SYLVESTER equation as a fundamental mathematical
problem, has played an important role in various fields.

These fields include signal processing [1], image recovery [2],
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optimization problem [3] and robot kinematics control [4].
The wide applications of the Sylvester equation indicate
that finding and optimizing solutions of this problem are of
great value. This problem has thus attracted more and more
researchers’ interest. Although the time-invariant Sylvester
equation problem has been well studied, solutions for a
more generalized time-varying Sylvester equation (TVSE)
problem are still not good enough yet. When we define
the TVSE problem in a complex number field, such a
problem is called the time-varying complex Sylvester equa-
tion (TVCSE) problem and becomes even more general with
more applications, however its solving methods are also more
insufficient.

Recently, the research works of the artificial neural network
(ANN) are emerging, one reason for this phenomenon is that
ANN inherently possesses a parallel processing structure and,
thus, it can easily utilize the powerful computing resource
of a multicore processor, GPU, or even supercomputer. Since
calculating the solution of the Sylvester equation problem is
computing intensive, researchers have also tried to solve such a
problem using ANN-based schemes. Gradient neural network
(GNN), as an special type of the recurrent neural network,
(RNN) is then proposed to solve matrix problems including
the Sylvester equation problem in [5]. Technically speaking,
GNN uses a scalar number, called the performance index, to
represent the error size. In order to reduce the solution error,
GNN adjusts its state output along gradient decent direction of
the performance index when evolving. Experiments in [6] and
[7] show that GNN has good performance in dealing with the
time-invariant matrix equation problem, however it performs
bad in solving the time-varying matrix equation problems with
persistent large residual error. After discovering the GNN’s
above flaw, another RNN variation, named the zeroing neu-
ral network (ZNN), is investigated in [8]. Compared to GNN,
ZNN uses an error matrix as its performance indicator, every
element in this performance indicator is forced to decrease
toward 0 separately during neural network evolving. In this
way, ZNN has shown advantage in dealing with the time-
invariant and time-varying problems such as the Sylvester
equation problem [1], [9]–[12], whose residual error of the
output solution always decreases to 0.

Although ZNN has been proved to be effective in solv-
ing the TVSE problem, it is worth pointing out that ZNN is
limited when it comes to practical applications. Originating
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from the famous Hopfield neural network [13], ZNNs are
designed to be realized by analog circuit too. However, this
means that the original ZNN cannot handle digital information
directly. It is also difficult for the original ZNN to cooperate
with existing digital equipments, since two times of conver-
sions between digital and analog signals may introduce huge
precision loss. In this day with numerous digital computing
resources, a method that can solve the TVSE problem in the
digital circuit or computer may be more suitable. To overcome
the above disadvantages, our first possible choice can be many
existing numerical algorithms for the static Sylvester equation
problem like in [14]–[16], which mostly belong to iterative
algorithms. Then, with the above numerical algorithms, the
TVSE problem will be treated discretely in time and solutions
need to be calculated at every time instant. But, this discretize
operation has two fatal problems. One problem is that with
high computational complexity of these numerical algorithms,
the larger scale the Sylvester equation is, the longer computa-
tion time each time instant will need. Another problem is that
these algorithms’ solutions will always be behind the theoret-
ical solutions in time, such time delay can result in a large
lagging error.

In light of that continuous-time ZNN (CTZNNs) models
can solve various time-varying matrix problems quickly and
accurately, researchers begin to design discrete-time ZNN
models that can both maintain CTZNNs’ solving capability
and run in the digital circuit [17]–[21]. For these discrete-time
ZNN models, although they also treat time-varying problems
as discrete-time problems, they will calculate solutions of
each time point before rather than behind that time point.
Therefore, discrete-time ZNN models are able to avoid the
lagging error caused by solution time delay. Moreover, since
discrete-time ZNN models are actually computing future solu-
tions of time-varying problems, such problems are termed the
future problems.

Nevertheless, the investigation of discrete-time ZNN mod-
els is not abundant. As far as we have known, there is no
published work that uses the discrete-time ZNN model to
solve the TVCSE problem yet. Moreover, the existing lit-
erature about discrete-time ZNN models [19]–[22] typically
only use discrete formulas that are derived from the approx-
imation formula of the first-order derivative. Then, in these
literature, higher precision of the discrete-time ZNN model
is achieved by designing the discrete formula that involves
more time steps, which means more storage and comput-
ing time consumption. However, building discrete-time ZNN
model should not be confined to this way. It is also true
that there exists better discrete formula than the previous
one that is used in [19]–[22]. Therefore, in this article, we
introduce the Adams–Bashforth formulas as discrete formulas.
Then, a novel integration-enhanced continuous ZNN model
for solving the TVCSE problem will be discretized by such
a discrete formula. Such novel discrete-time ZNN models we
propose for the complex number TVSE problem will be named
as Adams–Bashforth-type discrete-time integration-enhanced
zeroing neural dynamic (ADTIZD) models, which provides
better accuracy but with less space and time complexity.

The remainder of this article is outlined as follows.
Section II first introduces the formulation of the continuous

TVCSE (CTVCSE) problem and its corresponding discrete-
time version: the discrete-time-varying complex Sylvester
equation (DTVCSE) problem. Section II then clarifies the
design of the continuous-time integration-enhanced ZNN
model for solving the CTVCSE problem. In Section III,
the Adams–Bashforth discrete formula is introduced, then
two different ADTIZD models named ADTIZD-K and
Adams–Bashforth-type DTIZD with unknown derivatives
(ADTIZD-U) model are proposed for solving the DTVCSE
problem with or without derivative information. Section III
also theoretically proves these two ADTIZD models’ maxi-
mum steady-state residual error (MSSRE) convergence order
and their inherent noise resistance against different addi-
tive noises. Section IV presents three existing conventional
multi-instant discrete-time integration-enhanced zeroing neural
dynamic (DTIZD) models to be compared with our ADTIZD
models. Section V provides numerical validations for theoret-
ical conclusions about our ADTIZD models and comparisons
across different models. Section VI applies our ADTIZD-U
model in inverse kinematics controlling a robot arm, verifying
our ADTIZD models’ efficacy again. Section VII concludes
this article briefly. Finally, contributions of this article are
summarized as follows.

1) In this article, two discrete-time ZNN models termed
the ADTIZD models for solving the TVCSE problem
are proposed for the first time.

2) The novel Adams–Bashforth formula is utilized to
design discrete-time ZNN models, giving the ADTIZD
models a higher solution accuracy with even less cal-
culations and storage consumption than the traditional
models. The ADTIZD models possess powerful noise
suppression abilities in the same time.

3) Theoretical proofs are presented to support ADTIZD
models’ performance. Numerical experiments are con-
ducted to validate these conclusions and they include
comprehensive comparisons between different models.

4) The ADTIZD-U model is successfully used in robot arm
control application and the results have shown ADTIZD
models’ superiority in practical usage.

II. PROBLEM FORMULATION AND CTIZNN DESIGN

The problem that we aim here is the TVCSE and we
first introduce the CTVCSE problem. Consider the following
equation:

A(t)X(t)+ X(t)B(t) = C(t) (1)

where A(t) ∈ C
p×p,B(t) ∈ C

q×q, and C(t) ∈ C
p×q are

known time-dependent complex matrices and X(t) ∈ C
p×q

is an unknown complex matrix. Equation (1) is the continu-
ous TVSE and we need to obtain X(t) at any time instant in
real time in the CTVCSE problem. In order to facilitate the
investigation of the CTVCSE problem, according to [23], we
assume that A(t),B(t), and C(t) are all smooth matrices with
their derivatives about time and themselves being uniformly
bounded. The assumption that A(t) and −B(t) share no iden-
tical eigenvalues is also provided to ensure that the CTVCSE
problem (1) has a unique solution.
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A. Problem Formulation

On the basis of CTVCSE (1), we now present the DTVCSE
problem that we are going to tackle

An+1Xn+1 + Xn+1Bn+1 = Cn+1 (2)

where An+1 = A(tn+1),Bn+1 = B(tn+1), and Cn+1 = C(tn+1)

are acquired from A(t),B(t), and C(t) in (1) by sampling
at time point tn+1 = (n + 1)τ with n ∈ N stands for the
sampling index and τ ∈ R

+ denotes the sampling gap. In the
DTVCSE problem, due to the real-time solution requirement,
the unknown matrix Xn+1 has to be figured out between the
updating interval [nτ, (n + 1)τ ) ∈ [t0, tf ], where tf ∈ R

+ is
the end time of the DTVCSE problem. However, the future
information of An+1,Bn+1, and Cn+1 for solving Xn+1 within
t ∈ [nτ, (n+1)τ ) are practically unreachable, thus such a kind
of problem like the DTVCSE problem (2) can be termed the
future problem and is extremely hard to solve.

B. Design of CTIZNN

To lay the foundation for the DTIZD models for solving the
DTVCSE problem, the continuous-time integration-enhanced
ZNN (CTIZNN) model needs to be designed first.

The complex Sylvester (1) is reformulated as
(
Iq ⊗ A(t)+ BT(t)⊗ Ip

)
x(t) = c(t) (3)

where ⊗ stands for the Kronecker product, whose detail prop-
erties can be found in [24], x(t) = vec(X(t)) ∈ C

pq and
c(t) = vec(C(t)) ∈ C

pq are the column vectors obtained by pil-
ing columns from X(t) and C(t) into a single column. Besides,
Ip ∈ R

p×p and Iq ∈ R
q×q are the identity matrices. The vector

form of (3) is then further simplified to

M(t)x(t) = c(t) (4)

where M(t) = Iq ⊗ A(t) + BT(t) ⊗ Ip ∈ C
pq×pq. It is worth

noting that the existing design and analyzing methods of
discrete-time zeroing neural dynamic (DTZND) are mostly
based on the real number field, which promotes us to extend
these methods to the DTVCSE problem that has complex
matrices. Therefore, we decompose the complex coefficients
in (4) into M = Mr+iMig, x = xr+ixig, c = cr+icig, in which
i denotes the imaginary unit, Mr ∈ R

pq×pq, xr, cr ∈ R
pq and

Mig ∈ R
pq×pq, xig, cig ∈ R

pq are all real matrices. It follows
from (4) that:

(
Mr + iMig

)(
xr + ixig

) = cr + icig(
Mrxr − Migxig

) + i
(
Mrxig + Migxr

) = cr + icig. (5)

Solving the above equations is equivalent to handling the
following linear equations:

N(t)y(t) = d(t)

N =
[

Mr −Mig

Mig Mr

]
, y =

[
xr

xig

]
,d =

[
cr

cig

]
. (6)

Now, we have successfully transformed the CTVCSE
problem into real numbered linear (6) and the solution X(t)

can be easily recovered from y(t). Let us consider the CTIZNN
formula [25]–[27]

ė(t) = −γ e(t)− ξ

∫ t

0
e(σ )dσ (7)

where γ > 0 and ξ > 0 are the design parameters used to
adjust the model’s convergence rate. Constructing the error
index e(t) = N(t)y(t)−d(t) for (6) and substituting it into ZNN
formula (7), the CTIZNN model for the CTVCSE problem is
obtained

N(t)ẏ(t) = ḋ(t)− Ṅ(t)y(t)− γ (N(t)y(t)− d(t))

− ξ

∫ t

0
(N(σ )y(σ )− d(σ ))dσ. (8)

According to [25]–[27], we have the following lemma about
the stability of CTIZNN design formula (7).

Lemma 1: Error vector e(t) of the CTIZNN formula (7)
globally and exponentially converges to zero vector 0.

Because the unique solution of the CTVCSE problem is
obtained when and only when (6) is solved, we conclude from
Lemma 1 that CTIZNN model (8) globally converges to the
precise solution of (6) as well as the CTVCSE problem.

Finally, for convenience of ensuing investigation, the
CTIZNN model (8) is reconstructed as in [28]

ẏ(t) = N†(t)
(
ḋ(t)− Ṅ(t)y(t)− γ (N(t)y(t)− d(t)− ξv(t)) (9)

where N†(t) ∈ R
2pq×2pq represents the Moore–Penrose inverse

of N(t), while γ ∈ R
+ is a predefined parameter used to

scale CTIZNN’s convergence rate and v(t) = ∫ t
0(N(σ )y(σ )−

d(σ ))dσ ∈ R
2pq is the integral term. Thus, the CTIZNN

model (9) can be applied to solve (6) and retrieve the solution
matrix X(t) of the CTVCSE problem from y(t). To lay the
foundations for the following model design and analyses, we
have the following definitions.

Definition 1: A linear k-step method is consistent (i.e., have
consistency) of order m if its truncation error for smooth exact
solution is O(τm+1) [29].

Definition 2: By obtaining the roots of characteristic poly-
nomial Pk(θ) = ∑k

j=0 λjθ
j, a k-step method

∑k
j=0 λjyn+j =

τ
∑k

j=0 ϕjφn+j is able to be checked if it is 0-stable. Using
θ to represent all roots of Pk(θ), the above k-step method
is 0-stable (i.e., has 0-stability) if |θ | ≤ 1 and |θ | = 1 is
simple [29].

Definition 3: If and only if the k-step method is consis-
tent and 0-stable, it is convergent. When a k-step method is
convergent, it satisfies: y[t/τ ] → y∗(t) for all t ∈ [0, tf ] with
τ → 0. Moreover, a convergent k-step method converges with
the order of its truncation error [29].

III. ADAMS-TYPE DTIZD MODEL

In this section, we introduce the effective Adams–Bashforth
formula to the discrete-time ZNN field and propose two novel
Adams-type DTIZD (ADTIZD) models, which possess higher
precision while still maintaining a simple formula and low
calculation steps as well as low storage consumption. In this
article, Sv[t0, tf ] denotes the set of functions ψ , where first v-
order derivatives of all ψ are continuous within interval [t0, tf ].
Besides, we assume that y(t) ∈ S5[t0, tf ] in (6).
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The general discrete k-step method for solving the ordi-
nary differential equation (ODE) such as CTIZNN dynamic
formula (9) is formulated as in [29] and [30]

yn+k =
k−1∑

j=0

αjyn+j + τ

k∑

j=0

βjẏn+j (10)

where y(t) is an element of state solution y(t), and yn+k is the
approximate value of y(tn+k) calculated using the right-hand
side of (10). In addition, yn+j = y((n+j)τ ), ẏn+j = ẏ((n+j)τ ),
τ is the time gap in Section II-A, and αj, βj ∈ R are constant
values that satisfy α0β0 �= 0. Since we are solving future
problem (6), βk = 0 is always true for utilizing no future
information.

For the purpose of constructing the k-step method (10), we
define the truncation error Tn+k of (10) as

Tn+k = y∗
n+k −

k−1∑

j=0

αjyn+j − τ

k∑

j=0

βjẏn+j (11)

where y∗
n+k is the accurate of y(tn+k) in the CTIZNN

model (8). In light of the Taylor expansion, we have

y
(
tn+j

) = y(tn)+ ẏ(tn)jτ + ÿ(tn)

2!
(jτ)2 + · · ·

ẏ
(
tn+j

) = ẏ(tn)+ ÿ(tn)jτ + y(3)(tn)

2!
(jτ)2 + · · · (12)

where j = 0, 1, 2, . . . , k. Substituting (12) into (11) leads to

Tn+k = l0y(tn)+ l1τ ẏ(tn)+ · · · + lmτ
my(m)(tn)+ · · · (13)

⎧
⎪⎪⎨

⎪⎪⎩

l0 = 1 − (α0 + · · · + αk−1)

l1 = k − (α1 + · · · + (k − 1)αk−1)− (β0 + · · · + βk)

lm = 1
m! (k

m − (α1 + · · · + (k − 1)mαk−1))− 1
(m−1)!(

β1 + 2m−1β2 + · · · + km−1βk
)
, m = 2, 3, . . .

Note that if the magnitude of truncation error Tn+k is O(τ p+1),
we say that (10) is a p-order discrete formula.

Theorem 1: The Adams–Bashforth-type discrete formulas
for solving (9) as an ODE problem with different orders of
truncation error are, respectively, listed as follows [30], [31]:

yn+1 ≈ yn + τ ẏn (14)

yn+2 ≈ yn+1 + τ

2
(3ẏn+1 − ẏn) (15)

yn+3 ≈ yn+2 + τ

12
(23ẏn+2 − 16ẏn+1 + 5ẏn) (16)

yn+4 ≈ yn+3 + τ

24
(55ẏn+3 − 59ẏn+2 + 37ẏn+1 − 9ẏn) (17)

where the truncation error Tn+k of (14)–(17) are
O(τ 2),O(τ 3),O(τ 4), and O(τ 5), respectively. According
to Definition 1, we then term (14)–(17) as the 1, 2, 3, and
4-order Adams–Bashforth discrete formulas, respectively.

Proof: We take the proof of discrete formula (17) for exam-
ple. When the step number is k = 4, let α3 = 1, α0 = α1 =
α2 = 0, l0 = l1 = l2 = l3 = l4 = 0, as well as β4 = 0 in (11),
and from (13), we have the following linear equations:

⎧
⎪⎪⎨

⎪⎪⎩

β0 + β1 + β2 + β3 + β4 = 1
2(β1 + 2β2 + 3β3 + 4β4) = 42 − 32

3
(
β1 + 22β2 + 32β3 + 42β4

) = 43 − 33

4
(
β1 + 23β2 + 33β3 + 43β4

) = 44 − 34.

Solving the above equations, we have the solution as

β0 = − 9

24
, β1 = 37

24
, β2 = −59

24
, β3 = 55

24
.

Therefore, with known αj and βj, discrete formula (17) can
be derived. Besides, we have l5 = 251/720 �= 0 for for-
mula (17); thus, (17) has the truncation error of Tn+4 =
O(τ 5) consider that y(5)(tn) is bounded in (13). As for other
Adams–Bashforth-type discrete formulas (14)–(16), the proof
can be obtained similar to the case of k = 4 and is thus
omitted here.

We exploit the Adams–Bashforth-type discrete (17) to
discretize the CTIZNN model (9)

yn+1 = yn + τ

24
(55ẏn − 59ẏn−1 + 37ẏn−2 − 9ẏn−3)

ẏn+j = N†
n+j

(
ḋn+j − Ṅn+jyn+j − γ

(
Nn+jyn+j − dn+j

) − ξvn+j
)

(18)

where Nn+j and dn+j are obtained by sampling the corre-
sponding matrices at time point tn+j similar to obtaining An+1
in (2). Different from Nn+j and dn+j, vn+j = v(tn+j) cannot be
directly computed. In order to obtain vn+j, we take v(t) as the
solution of another ODE problem v̇(t) = e(t) and calculate its
approximate value with (17) as

vn+4 = vn+3 + τ

24
(55en+3 − 59en+2 + 37en+1 − 9en) (19)

where en+j = Nn+jxn+j−dn+j. Here, in model (18), we assume
that the time derivatives Ṅn+j and ḋn+j are known and directly
acquired. Thus, we name (18) as the Adams-type DTIZD with
the known derivative (ADTIZD-K) model.

Theorem 2: The ADTIZD-K model (18) is consistent and
convergent. Furthermore, the truncation error with which (18)
converges is O(τ 5) for tn ∈ [t0, tf ].

Proof: First, we know from Theorem 1 that the Adams–
Bashforth formula (17) is consistent of order 4. Then, we come
to investigate the residual error of ADTIZD-K model (18). We
let v∗

n+j and ẏ∗
n+j be the accurate values of v(tn+j) and ẏ(tn+j),

respectively, then (18) leads to

ẏn+j = N†
n+j

(
ḋn+j − Ṅn+jyn+j − γ

(
Nn+jyn+j − dn+j

)

− ξvn+j
)

= N†
n+j

(
ḋn+j − Ṅn+jyn+j − γ

(
Nn+jyn+j − dn+j

)

− ξ
(

v∗
n+j + O(τ 5)

))

= N†
n+j

(
ḋn+j − Ṅn+jyn+j − γ

(
Nn+jyn+j − dn+j

)

− ξv∗
n+j

)
+ O

(
τ 5

)

= ẏ∗
n+j + O

(
τ 5

)
(20)

where ẏ∗
n+1 is the precise value of ẏ(tn+j) in the CTIZNN

model (8). Furthermore, from (20) and (18), considering (17)’s
truncation error O(τ 5), we have

yn+1 = yn + τ

24

(
55ẏ∗

n − 59ẏ∗
n−1 + 37ẏ∗

n−2 − 9ẏ∗
n−3 + O

(
τ 5

))

=
(

y∗
n+1 + O

(
τ 5

))
+ O

(
τ 6

)

= y∗
n+1 + O

(
τ 5

)
(21)
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where y∗
n+j is the precise value of y(tn+j) in the CTIZNN

model (8). Hence, the ADTIZD-K model (18) is consistent
with O(τ 5) according to Definition 1. Second, the character-
istic polynomial of (18) is θ4 − θ3 = 0, which has two roots
θ1 = 0 and θ2 = 1 and root θ2 is a simple root. Therefore,
it yields from Definition 2 that the ADTIZD-K model is also
0-stable. Finally, we have the conclusion ADTIZD-K model
being convergent with the truncation error being O(τ 5) from
Definition 3.

As mentioned above, we assume that the time derivatives
of input matrices to be known in ADTIZD-K model (18).
Nevertheless, when dealing with the DTVCSE problem (2)
in real world, the derivative information of An,Bn, and Cn

are commonly unknown, and Ṅn and ḋn are consequently
unknown too. Under this situation, we apply the backward
discrete formulas in [30] to approximate Ṅn and ḋn in (18),
which are

ẏn ≈ 1

τ
(yn − yn−1) (22)

ẏn ≈ 1

2τ
(3yn − 4yn−1 + yn−2) (23)

ẏn ≈ 1

6τ
(11yn − 18yn−1 + 9yn−2 − 2yn−3) (24)

ẏn ≈ 1

12τ
(25yn − 48yn−1 + 36yn−2 − 16yn−3 + 3yn−4) (25)

where the truncation error of (22)–(25) are
O(τ ),O(τ 2),O(τ 3), and O(τ 4), respectively. In order to
match with the precision of ADTIZD-K model (18), approx-
imation formula (25) is selected to approximate first-order
derivatives. Thus, the following ADTIZD-U model is deduced:

yn+1 = yn + τ

24
(55 ˙̃yn − 59 ˙̃yn−1 + 37 ˙̃yn−2 − 9 ˙̃yn−3)

˙̃yn+j = N†
n+j

(Ḋn+j − Ṅn+jyn+j − γ
(
Nn+jyn+j − dn+j

)

− ξvn+j
)

(26)

where Ḋn = (25dn − 48dn−1 + 36dn−2 − 16dn−3 +
3dn−4)/(12τ) and Ṅn = (25Nn−48Nn−1+36Nn−2−16Nn−3+
3Nn−4)/(12τ). Besides, v̇n+j is defined and obtained as in
ADTIZD-K model (18).

Theorem 3: The ADTIZD-U model (26) is consistent and
convergent, which converges with the truncation error being
O(τ 5) for tn ∈ [t0, tf ].

Proof: On the basis of the ADTIZD-U model (26) and the
fact that derivative approximation formula (25) has the residual
error with a magnitude of O(τ 4), in (26), we obtain

˙̃yn+j = N†
n+j

(
(ḋn+j + O(τ 4))− (Ṅn+j + O(τ 4))yn+j

− γ
(
Nn+jyn+j − dn+j

) − ξ
(

v∗
n+j + O(τ 5)

))

= N†
n+j

(
ḋn+j − Ṅn+jyn+j − γ

(
Nn+jyn+j − dn+j

)

− ξv∗
n+j + O(τ 4)

)

= N†
n+j

(
ḋn+j − Ṅn+jyn+j − γ

(
Nn+jyn+j − dn+j

)

− ξv∗
n+j

)
+ O(τ 4)

= ẏ∗
n+j + O(τ 4)

where ẏ∗
n+j is the accurate value of ẏ(tn+j) as in the

ADTIZD-K model (18). Substituting the above equation back
to model (26), we have

yn+1 = yn + τ

24

(
55ẏ∗

n − 59ẏ∗
n−1 + 37ẏ∗

n−2 − 9ẏ∗
n−3

+ O(τ 4)
)

= yn + τ

24

(
55ẏ∗

n − 59ẏ∗
n−1 + 37ẏ∗

n−2 − 9ẏ∗
n−3

)

+ O(τ 5)

which means that ADTIZD-U model (26) is the approxima-
tion of ADTIZD-K (18) model with error being O(τ 5). Thus,
for the ODE (9), ADTIZD-U’s truncation error is O(τ 5) too.
Using the same technique, proving Theorem 2, ADTIZD-U
model (26) is consistent and convergent with residual error
being O(τ 5).

Theorem 4: When utilizing the ADTIZD-K (18)
model and ADTIZD-U (26) model to solve
the future DTVCSE problem (2), the MSSREs
limn→∞ sup‖An+1Xn+1 + Xn+1Bn+1 − Cn+1‖F of such
two models both are O(τ 5).

Proof: First, we consider the ADTIZD-K (18) model.
According to Lemma 1 and Theorem 2, we can obtain
yn+1 = y∗

n+1 +O(τ 5), where yn+1 is the solution outputted by
ADTIZD-K model (18) while y∗

n+1 is the theoretical solution
of (9) when t = tn+1. Thus, when n → ∞, it yields from (6)
that

Nn+1yn+1 − dn+1 = Nn+1

(
y∗

n+1 + O
(
τ 5

))
− dn+1

= Nn+1y∗
n+1 − dn+1 + O

(
τ 5

)

= O
(
τ 5

)
(27)

where Nn+1 is uniformly bounded because An+1 and Bn+1
are uniformly bounded and Mn+1 is consequently bounded.
Moreover, when n → ∞, it follows from (5), (6), and (27)
that the equation Nn+1yn+1 − dn+1 can be reformulated as:

Nn+1yn+1 − dn+1 =
[

Re(Mn+1xn+1 − cn+1)

Im(Mn+1xn+1 − cn+1)

]
= O(τ 5)

(28)

where for any complex matrix M, we have M = Re(M) +
iIm(M). Re(M) and Im(M) are real matrices and i is the
imaginary unit. From the discrete form of linear (4) and above
equality (28), we can get

lim
n→∞ sup‖An+1Xn+1 + Xn+1Bn+1 − Cn+1‖F

= lim
n→∞ sup‖Mn+1xn+1 − cn+1‖2

= lim
n→∞ sup

{
‖Re(Mn+1xn+1 − cn+1)‖2

2

+‖Im(Mn+1xn+1 − cn+1)‖2
2

} 1
2

= lim
n→∞ sup‖Nn+1yn+1 − dn+1‖2

= lim
n→∞ sup‖O(τ 5)‖2

= O(τ 5). (29)
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Equalities (29) have shown that the MSSRE of ADTIZD-
K (18) is with a magnitude of O(τ 5).

We now consider the MSSRE of ADTIZD-U (26) model.
Since its truncation error is O(τ 5) too, using Theorem 3 sim-
ilar to the analysis of ADTIZD-K model, we conclude that its
MSSRE is O(τ 5) too. The proof is now complete.

Theorems 2–4 have illustrated the novelties of ADTIZD
models (18) and (26) with respect to accuracy. In fact,
ADTIZD-K model (18) and ADTIZD-U model (26) not only
converge with the truncation error of O(τ 5) but also solve the
DTVCSE problem (3) accurately with MSSRE being the same
level of O(τ 5). However, the improvement of ADTIZD models
also lies in their robustness under the perturbation of additive
noises. We consider the noise-polluted integration-enhanced
ZNN design formula

ė(t) = −γ e(t)− ξ

∫ t

0
e(σ )dσ +(t) (30)

where (t) ∈ R
2pq is the time-varying additive noise. Thus,

the noise-polluted CTIZNN model from (30) is

ẏ(t) = N†(t)
(
ḋ(t)− Ṅ(t)y(t)− γ (N(t)y(t)− d(t))

− ξv(t)+(t)). (31)

Consequently, the noise-polluted ADTIZD-K model trans-
formed from (31) is

yn+1 = yn + τ

24
(55ẏn − 59ẏn−1 + 37ẏn−2 − 9ẏn−3),

ẏn+j = N†
n+j

(
ḋn+j − Ṅn+jyn+j − γ

(
Nn+jyn+j − dn+j

)

− ξvn+j +n+j
)

(32)

where n+j = (tn+j) and vn+j is calculated the same
as in ADTIZD-K model (18). Note that the noise-polluted
ADTIZD-U model can be obtained similar to obtaining (32),
thus is omitted here. The robustness of noise-polluted
ADTIZND models will be discussed as follows.

Theorem 5: Consider the time-varying noise in noise-
polluted CTIZNN model (31) being linear type (t) = μt + δ
with μ, δ ∈ R

2pq. The noise-polluted ADTIZD-K model (32)
and noise-polluted ADTIZD-U model will converge toward
accurate solution of DTVCSE problem (6) with MSSRE
being limn→∞ sup‖An+1Xn+1 + Xn+1Bn+1 − Cn+1‖F ≤
‖μ‖2/ξ + O(τ 5).

Proof: First, according to [25] and [26], we know that
under conditions of this theorem, the noise-polluted CTIZNN
model (31) converges toward the precise solution of (6) with
the stable residual error being limt→∞ ‖e(t)‖2 = ‖μ‖2/ξ .
Then, consider the noise-polluted ADTIZD-K model (32), fol-
lowing the deducing process of (27) and (29) in Theorem 4,
we have

lim
n→∞ sup‖An+1Xn+1 + Xn+1Bn+1 − Cn+1‖F

= lim
n→∞ sup‖Nn+1yn+1 − dn+1‖2

= lim
n→∞ sup

∥∥∥Nn+1y∗
n+1 − dn+1 + O

(
τ 5

)∥∥∥
2

= lim
n→∞ sup

∥∥
∥e∗

n+1 + O
(
τ 5

)∥∥
∥

2

≤ lim
n→∞ sup

(∥∥e∗
n+1

∥∥
2 +

∥∥∥O
(
τ 5

)∥∥∥
2

)

= ‖μ‖2/ξ + O
(
τ 5

)

where e∗
n+1 = e(tn+1) is the exact error vector of noise-

polluted CTIZNN model (31) at t = tn+1.
If we take the noise-polluted ADTIZD-U model into con-

sideration, its MSSRE is also bounded by ‖μ‖2/ξ+O(τ 5) and
can be proved with the same techniques. Now, Theorem 5 has
been proved.

Remark 1: In terms of robustness, Theorem 5 has demon-
strated the powerful noise resistance abilities of noise-polluted
ADTIZD models. When perturbed by constant additive noise
(t) = δ, such noise is treated as one specific variation of lin-
ear noise (t) = μt + δ with μ = 0. Thus, the noise-polluted
ADTIZD-K model (32) and noise-polluted ADTIZD-U model
can solve the DTVCSE problem (2) effectively with the
MSSRE still being O(τ 5), i.e., almost no accuracy loss. In
other cases when μ �= 0, the MSSREs of noise-polluted
ADTIZD-K (32) and ADTIZD-U models are still bounded as
long as ‖μ‖2 is bounded and this upper bound can be reduced
by increasing ξ .

It is worth noting that the conventional CTZNN formula
has been extensively used in constructing DTZDs. The con-
ventional continuous ZNN formula is ė(t) = −γ e(t), whose
global stability has been proved in [19], [20], and [22].
Correspondingly, the additive noise-polluted continuous-time
ZNN formula is

ė(t) = −γ e(t)+(t). (33)

Our ADTIZD models have made great improvements in
robustness, especially when compared with the noise-polluted
CTZNN formula (33)-based DTZDs. To lay the basis for
ensuing comparisons, we directly present the noise-polluted
Adams-type DTZND with know derivatives (ADTZD-K)
model as

yn+1 = yn + τ

24
(55ẏn − 59ẏn−1 + 37ẏn−2 − 9ẏn−3)

ẏn+j = N†
n+j

(
ḋn+j − Ṅn+jyn+j − γ

(
Nn+jyn+j − dn+j

) +n+j
)

(34)

which bases on the noise-polluted traditional CTZNN (33).

IV. MULTI-INSTANT DTIZD MODELS

In Section III, two different Adams-type DTIZD models
for solving the DTVCSE (2) problem have been proposed
based on the Adams–Bashforth discrete formulas (14)–(17).
Nevertheless, there are some existing discrete formulas that
can be applied to the CTIZNN model (9) for such a problem.
For comparison purpose, some representative multi-instant
DTIZD models will be developed for the DTVCSE problem
in this section. Note that for avoiding repetitive contents, we
only provide models, whose coefficient derivatives from (9) are
known and the inverse matrix are directly computed similar to
the ADTIZD-K (18) model.

A. 6-Instant DTIZD Model

In Section III, it has been assumed that y(t) ∈ S5[t0, tf ], thus
y(t) ∈ S4[t0, tf ] is true. Then, the 6-instant discrete formula has
been presented to discretize various continuous ZNN models,
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whose formula is written as [19]

yn+1 ≈ 6

13
yn + 2

13
yn−1 + 4

13
yn−2 + 3

13
yn−3 − 2

13
yn−4

+ 24

13
τ ẏn. (35)

Discrete formula (35) is convergent and has the truncation
error of O(τ 4) [19], we utilize it on the CTIZNN model (9)
leads to

yn+1 = 6

13
yn + 2

13
yn−1 + 4

13
yn−2 + 3

13
yn−3 − 2

13
yn−4

+ 24

13
τ ẏn

ẏn = N†
n

(
ḋn − Ṅnyn − γ (Nnyn − dn)− ξvn+1

)
. (36)

Then, (36) is termed as the 6-instant DTIZD with the known
derivative (6IDTIZD-K) model. It can be proved by exploiting
techniques from Theorem 2 and 4 that, for the DTVCSE (2)
problem, the 6IDTIZD model is convergent with its MSSRE
limn→∞ sup‖An+1Xn+1 + Xn+1Bn+1 − Cn+1‖F being O(τ 4).

B. 4-Instant DTIZD Model

As in Section IV-A, y ∈ S3[t0, tf ] is also true. Then,
the 4-instant discrete formula is presented in [32], whose
expression is as follows:

yn+1 ≈ 3

2
yn − yn−1 + 1

2
yn−2 + τ ẏn. (37)

The residual error of the above formula (37) is O(τ 3).
Therefore, the following model can be derived by combin-
ing (37) and CTIZNN model (9):

yn+1 = 3

2
yn − yn−1 + 1

2
yn−2 + τ ẏn

ẏn = N†
n(ḋn − Ṅnyn − γ (Nnyn − dn)− ξvn+1). (38)

We name (38) as the 4-instant DTIZD with the known
derivative (4IDTIZD-K) model. Besides, Guo et al.[32] have
proved that (37) is convergent, following the proof process of
Theorems 2 and 4, we are able to prove that the MSSRE of
the 4IDTIZD-K model on solving DTVCSE problem (2) is at
the level of O(τ 3) with its proof being omitted.

C. 2-Instant DTIZD Model

The 2-instant discrete formula or the so-called Euler-type
discrete formula is widely used to construct the DTIZD mod-
els [19]. Derived from the Euler forward difference formula,
the 2-instant discrete formula is written as

yn+1 ≈ yn + τ ẏn (39)

which possesses the truncation error of O(τ 2). We use (39)
to discretize our CTIZNN model (9) and obtain the 2-instant
DTIZD with the known derivative (2IDTIZD-K) model:

yn+1 = yn + τ ẏn

ẏn = N†
n

(
ḋn − Ṅnyn − γ (Nnyn − dn)− ξvn+1

)
. (40)

In [19], the discrete formula (39) has been proved to be conver-
gent. Thus, similar to proving Theorems 2 and 4, we conclude

that the MSSRE level of the 2IDTIZD-K model for solving
DTVCSE (2) problem is O(τ 2) with its proof being omitted.

Remark 2: For demonstrating the differences as well as
novelties of our ADTIZD-K (18) model for the DTVCSE
problem (2), three conventional multi-instant discrete formulas
together with their corresponding DTIZD models have been
proposed in this section. Since the CTIZNN models that we
used in this section are the same, the main difference between
ADTIZD models and multi-instant DTIZD models is clearly
their discrete formulas. For conventional multi-instant discrete
formulas (35), (37), and (39), we can find that: in each update,
they all use several sampling points of y(t) while only using
one sampling point of ẏ(t). This characteristic of conventional
multi-instant discrete formulas exists because they all originate
from the first-order derivative approximation formulas, which
only contain one derivative element. However, such a design-
ing method has limited the investigation process of obtaining
more efficient discrete formulas. For such a reason, we have
introduced the more general form of discrete formulas (10) and
use it to obtain the novel Adams–Bashforth formulas (14)–(17)
in Section III.

Benefiting from its special origin (13), the 4-order Adams–
Bashforth discrete formula (17) and ADTIZD-K (18) model
have made comprehensive performance improvements, which
are listed as follows.

1) Let us consider model accuracy. When τ < 1, the
MSSRE of the ADTIZD-K model is O(τ 5), which is one
order smaller than O(τ 4) of the 6IDTIZD-K (36) model
and is more smaller than MSSRE of 4IDTIZD-K (38) or
2IDTIZD-K (38) model. This means that when τ < 1,
the ADTIZD-K model is more accurate than three
multi-instant DTIZD models that are from Section IV.
Such a precision gap will become even greater when τ
decreases.

2) The ADTIZD-K (18) model has also made improve-
ments in the aspect of neural network complexity. We
can reasonably assume that all history information to be
used in the next update is stored in the neural network,
such as past sampling points of y(t) and ẏ(t). Then, cal-
culations (additions and subtractions) in the proposed
ADTIZD-K (18) model’s each update are even 2pq less
than that of the 6IDTIZD-K (36) model and only equal
to that of 4IDTIZD-K (38) model. As for the storage
complexity, the ADTIZD-K (18) model stores 2pq num-
bers less than the 6IDTIZD-K (36) model, only equal to
4IDTIZD-K (38) model’s storage usage.

The above improvements mainly comes from the novel
Adams–Bashforth discrete formula, which inversely demon-
strates the effectiveness of introducing the Adams–Bashforth
discrete formula.

V. NUMERICAL VALIDATIONS AND COMPARISONS

In this section, for validating the efficacy and superiority
of our ADTIZD models in solving DTVCSE problems, we
will conduct numerical experiments and provide comparisons
between different models. The CTVCSE problem used in the
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Fig. 1. State solutions Xn outputted by the ADTIZD-K model (18) for
solving DTVCSE problem (2). Blue dotted lines are theoretical solutions, red
dotted lines, green dotted lines and orange solid lines are state solutions when
τ = 0.01, 0.005 and 0.001 s, respectively.

following experiments is considered:

A(t) =
[

exp(it) −iexp(−it)
−iexp(it) exp(−it)

]

B(t) =
[

iexp(−it) 2exp(it)
2exp(it) iexp(−it)

]

C(t) =
[ 1

2 iexp(−2it)+ 1 + 1i 1 − 1
2 exp(−2it)

exp(2it)− 1
2 iexp(2it)+ 1 + 1

2 i

]
. (41)

Following the definition of CTVCSE (1) problem’s input
matrices (41), the theoretical solution of the corresponding
CTVCSE (41) problem can be calculated:

X∗(t) = 1

2

[
exp(−it) iexp(−it)
iexp(it) exp(it)

]
.

Thus, the accurate solution of the corresponding DTVCSE
problem (2) is X∗

n = X∗(tn) and can be exploited to verify the
output solutions in experiments. Besides, the problem duration
in the following experiments is set to 20 s.

First, let us examine the performance of ADTIZD-K
model (18) in solving DTVCSE problem (2) within a noise-
free environment. To further present novelties of the proposed
ADTIZD-K model (18), other multi-instant DTIZD models
proposed in Section IV are included in this experiments for
comparison. For illustration convenience, st = 0.2 and ξ = γ 2

are set, where st = γ τ is the step size of DTIZD mod-
els. Evidently, γ and ξ vary with different τ and fixed st.
Elements of the initial vector y(0) are randomly generated in
interval [−1, 1], meaning that the real parts and imaginary
parts of x(0) are both randomly generated within [−1, 1].
Under such conditions, with different sampling time peri-
ods τ = 0.01, 0.005, 0.001 s, the output solutions of our
ADTIZD-K model (18) are plotted in Fig. 1 together with
DTVCSE (2) problem’s theoretical solution. As it is depicted
in Fig. 1, beginning from different original states, the output
solutions of ADTIZD-K models (18) always converge to the
accurate solution of DTVCSE (2) problem quickly and stably.

For comparison purpose, we have conducted more exper-
iments with the ADTIZD-K model and other multi-
instant DTIZD models. The residual errors ‖En‖F gener-
ated by these models in solving DTVCSE problem (2)
are depicted in Fig. 2(a)–(d), where En = AnXn +
XnBn − Cn. Fig. 2(a)–(d) has shown that when τ =
0.05, 0.01, 0.005, and 0.001 s, the steady-state residual errors
‖En‖F of the proposed ADTIZD-K models (18) converge
toward 0 at order of 10−7, 10−10, 10−12, and 10−15, i.e.,

Fig. 2. Residual error ‖En‖F trajectories of ADTIZD-K (18), 2IDTIZD-
K (40), 4IDTIZD-K (38) and 6IDTIZD-K (36) models with different τ, γ,
and ξ for solving the DTVCSE problem (2). (a) τ = 0.05, γ = 4 and ξ = 42.
(b) τ = 0.01, γ = 20 and ξ = 202. (c) τ = 0.005, γ = 40 and ξ = 402. (d)
τ = 0.001, γ = 200, and ξ = 2002.

O(0.055),O(0.015),O(0.0055), and O(0.0015), respectively.
Evidently, the ADTIZD-K model (18) can solve the DTVCSE
problem (2) efficiently with different τ . Furthermore, it can
be observed from Fig. 2(a)–(d) that in each condition, our
ADTIZD-K model (18) always possesses the smallest steady-
state residual error ‖En‖F among all the models. In contrast,
‖En‖F of 6IDTIZD-K model (36), 4IDTIZD-K model (38),
and 2IDTIZD-K model (40) only change in O(τ 2), O(τ 3),

and O(τ 4) patterns, respectively. The above results have veri-
fied the conclusions in Theorem 4 and Section IV. Thus, we
conclude from Theorem 4 that if the sampling time interval
τ drops by ten times, the MSSRE limn→∞ sup‖En‖F of
ADTIZD-K model (18) decreases rapidly by 100 000 times.
This kind of fast precision improvement not only gives the
ADTIZD-K model (18) better performance but also provides
the model with more computation time when certain accuracy
requirement is given.

Now, let us consider examining the robustness performance
of the ADTIZD-K model (18) in solving the DTVCSE
problem (2). Therefore, the noise-polluted ADTIZD-K
model (32) is examined in the following robustness exper-
iments. Besides, the ordinary noise-polluted ADTZD-K
model (34) is added in these experiments as a comparison
model. First, the parameters are set as st = γ τ = 0.2, τ =
0.001, and ξ = γ 2/10 = 4 × 103. Under the pollution of con-
stant additive noise (t) = δ1 = [5, 1,−2, 1, 1,−1, 2, 0]T,
the solution Xn calculated by two noise-polluted models (32)
and (34) are presented in Fig. 3(a), so are the correspond-
ing computation errors ‖En‖F . Clearly, just the constant
noise δ1 has seriously reduced the computation accuracy of
noise-polluted ADTZD-K model (34), whose error ‖En‖F in
Fig. 3(b) keeps stable at a relative high level (about 3 ×
10−2). However, the error ‖En‖F of noise-polluted ADTIZD-
K model (32) becomes stable at about 2 × 10−15, which
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Fig. 3. Output solutions and corresponding computation errors ‖En‖F of
the noise-polluted ADTZD-K model (34) and the noise-polluted ADTIZD-
K model (32) under different types of additive noise perturbations. (a) State
solutions Xn with constant noise δ1. (b) Residual errors ‖En‖F with constant
noise δ1. (c) Solutions Xn with linear noise μ1 + δ1. (d) Residual errors
‖En‖F with linear noise μ1 + δ1. [In solutions, blue dotted lines are accurate
solutions, red solid lines are from noise-polluted ADTZD-K model (34) while
green dotted lines are from noise-polluted ADTIZD-K model (32).].

Fig. 4. Computation errors ‖En‖F of noise-polluted ADTIZD-K model (32)
on solving the DTVCSE problem (2) under perturbation of linear noise μ2t+
δ2 and with different ξ .

can be seen as no accuracy loss when compared with noise-
free results like in Fig. 2(d). Correspondingly, it can be
seen from Fig. 3(a) that the state solution of ADTIZD-K
model (32) overlaps with the accurate solution very well.
We then change the additive noise to more complex linear
type (t) = μ1t + δ1, where μ1 = [1,−2, 3, 3, 0, 1, 0,−2]T

and ‖μ1‖2/ξ ≈ 1.3229 × 10−3, then the state outputs
of noise-polluted ADTIZD-K model (32) and noise-polluted
ADTZD-K model (34) are presented in Fig. 3(c). According to
Fig. 3(c), the solution of noise-polluted ADTZD-K model (34)
becomes more inaccurate and diverges away from the theoret-
ical solution, but the solution of noise-polluted ADTIZD-K
model (32) still matches with the theoretical solution well.
Moreover, the stable residual error of noise-ADTIZD-K (32)
holds stable at about 1.2×10−3 in Fig. 3(d) and this inversely
verifies our analysis results in Theorem 5. On the contrary, the
residual error of noise-polluted ADTZD-K model (34) keeps
going high above 0.1 while showing no sign of stopping.

As we have discussed in Remark 1, the noise resistance abil-
ity of the noise-polluted ADTIZD-K model (32) is enhanced
with the increase of design parameter ξ . In this case, to
avoid occasional factors, the constant additive noise we use is
(t) = δ2 = [4,−2, 5, 0,−1, 3, 4, 1]T while the linear addi-
tive noise is (t) = μ2t + δ2, μ2 = [−3, 0, 1, 2,−1, 3, 1, 2]T

with ‖μ2‖2 ≈ 5.3852. We then change ξ to ξ = 0.1γ 2 =
4×103, 0.2γ 2 = 8×103, 0.5γ 2 = 2×104, and γ 2 = 4×104,

Fig. 5. Profiles of ADTIZD-K model (18) on solving DTVCSE problem (2)
with τ = 5 × 10−4 s. (a) Residual error ‖En‖F . (b) Moore–Penrose inverse
error ‖NnN†

nNn − Nn‖F of MATLAB built-in function.

i.e., ‖μ2‖2/ξ ≈ 1.3463×10−3, 6.7315×10−4, 2.6926×10−4,
and 1.3463×10−4, other settings are kept the same. Thus, the
residual error ‖En‖F of noise-polluted ADTIZD-K model (32)
is illustrated in Fig. 4, which conforms to the bound of MSSRE
‖μ2‖2/ξ + O(τ 5) exactly again. The superior robustness
performance of ADTIZD-K model (18) has now been vali-
dated by the above comparison numerical experiments.

In this work, based on the general ADTIZD-K model (18),
another ADTIZD-U (26) model has also been developed for
situations with insufficient information when coefficients time
derivatives are unknown. Therefore, we are now going to
verify and compare these two models’ efficacy in solving
DTVCSE problem (2). This time, we have conducted more
numerical experiments using different combinations of model
design parameters. There are totally four changing parameters
involved in the combinations, which are st, τ , model type, and
noise type. Besides, we have ξ = 0.5 × γ 2. Corresponding
experiments results are summarized in Table I, where MSSRE
and average computing time per updating (ACTPU) are pro-
vided. It is worth noting that in these experiments, the MSSRE
is defined as max{‖E(t)‖F} ∀t ∈ [19, 20] s, because the
strict definition of MSSRE is max{‖E(t)‖F}, t → +∞ and
is unachievable. As can be observed in Table I, the perfor-
mances of ADTIZD-K model (18) and ADTIZD-U model (26)
are close. In every equivalent experiment, the MSSRE of
ADTIZD-U (26) model is only slightly larger than that of
ADTIZD-K model (18) due to the accuracy loss of the time
derivative approximation. All the data in Table in I also
match with our theoretical conclusions in above sections well.
Furthermore, it can be observed in Table I that the chang-
ing patterns of MSSREs of both ADTIZD models conform to
the theoretical conclusions in Section III well. All ACTPUs
are less than 5 × 10−4 s, meaning that our ADTIZD models
work perfectly with designated τ . Finally, as it is illustrated
in Table I, when ξ = st/τ increases, the MSSREs of noise-
polluted ADTIZD models decrease accordingly, which obeys
the conclusion in Theorem 5.

It should be noted that in testing experiments, we have tried
τ = 5×10−4 s, which means O(τ 5) ≈ O(10−17), however, the
MSSRE of ADTIZD-K model (18) has stuck at about 10−15–
10−16 as shown in Fig. 5(a). The reason for such problem is
that we use the built function in MATLAB to calculate Moore-
Penrose inverse N†

n, but such inverse results have precision
limit. The Moore-Penrose inverse error ‖NnN†

nNn − Nn‖F

presented in Fig. 5(b) is exactly about 1 × 1015 to 1 × 1016.
Based on the result of above trial, the smallest τ we use in
above experiments is τ = 0.001 s for illustration purpose.
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TABLE I
MSSRE AND ACTPU OF DIFFERENT ADTIZD MODELS WITH DIFFERENT PARAMETER SETTINGS ON SOLVING THE DTVCSE PROBLEM (2) WITH

DIFFERENT NOISE POLLUTIONS WHERE ACTPU (×10−4 S) IS IN THE PARENTHESES

VI. APPLICATION TO ROBOT KINEMATICS CONTROL

It has been introduced in Section I that a variety of practical
applications take TVSE problems as their core problems. Thus,
one of our ADTIZD models (18), (26) will be used to inverse
kinematically control a robot arm.

Here, in this section, the redundant robot arm to be con-
trolled is the PUMA 560, which is a robot manipulator with
6 degree of freedoms (DOFs) and works in three-dimensional
(3-D) space. Before entering the robot inverse kinematics con-
trol part, let us first introduce the basic forward-kinematics
equation of such a robot arm [33], [34]

r(t) = φ(η(t))

where r(t) ∈ R
3 is the coordinates of the robot arm’s end-

effector in 3-D space, η(t) ∈ R
6 is the joint angle vector.

Then, φ(·) : R
6 → R

3 denotes the mapping function from the
manipulator’s state parameters to end-effector position, and
φ(·) is determined by PUMA 560’s physical structure and is
known.

Generally speaking, the inverse kinematics control of a robot
manipulator is to figure out the dynamic control parameter η(t)
when given a dynamic end-effector path r(t). However, for a
redundant robot arm, such as PUMA560, its DOF redundancy
results in infinite solutions of η(t) for one same r(t) while the
continuous property of η(t) is also required. Therefore, the
inverse kinematics control of PUMA560 is a very tough job
and we usually solve it in the velocity level with the following
method [35]:

WJ(η(t))η̇(t) = ṙ(t),

η̇(t) = W†
J(η(t))ṙ(t)

(42)

where WJ(η(t)) = ∂φ(η(t))/∂η(t) ∈ R
3×6 is the Jacobian

matrix and is known, and W†
J(η(t)) ∈ R

6×3 stands
for WJ(η(t))’s Moore-Penrose inverse. Evidently, the robot
manipulator control job can be accomplished by obtaining
W†

J(η(t)) in real time and we can obtain this inverse matrix
with the following formula:

X(t)WJ(η(t))WT
J (η(t)) = WT

J (η(t))

where X(t) represents the theoretical value of W†
J(η(t)). If

we set the coefficient matrices in CTVCSE (1) problem as
A(t) = 0,B(t) = WJ(η(t))WT

J (η(t)),C(t) = WT
J (η(t)), the

above equation can be transformed into a special CTVCSE
problem. With the above robot arm tracking control model, the
proposed ADTIZD models (18), (26) can now be used to con-
trol the robot manipulator. Note that the control scheme (42)
not works in position level, thus a position error feedback is
added to (42) as follows:

η̇(t) = W†
J(η(t))(ṙd(t)+ g(rd(t)− ra(t))) (43)

where rd(t) ∈ R
3 denotes the given desired path, ra(t) ∈ R

3

denotes the actual end-effector coordinates and g > 0 is a
scale parameter for adjusting feedback. Also note that to better
simulate the complex real-world application scene where nec-
essary information for the control model may be missing, the
more general ADTIZD-U model (26) is used in the following
simulation. Furthermore, we assume that the derivative of rd(t)
is unknown and use the first-order derivative approximation
formula (25) to get ṙd(t). The information above the control
process can directly obtain is very limited, which may reduced
the tracking control accuracy, but the simulation results can
better reflect real-world performance.

In this simulation, parameters are selected as τ = 0.001
s, st = τγ = 0.2, and ξ = γ 2/2 = 2 × 104 in ADTIZD-U
model (26) and g = 50 in (43), the simulation duration is 20 s.
Then, the PUMA560 is controlled to track a rotated Lissajous
shape path with all corresponding results plotted in Figs. 6
and 7. First, the trajectory of the end effector and the desired
Lissajous path in 3-D space are shown in Fig. 6(a), it is obvi-
ous that end-effector traces the given path precisely and they
overlap strcitly. The movement of the robot manipulator in
the hole tracking process can be seen in Fig. 6(b), where we
can find that all joints of PUMA560 work coordinately and
have successfully finished the tracking task. The motion of
robot arm’s joints can also be reflected by changing curves
of joint angles η(t) or joint angle velocities η̇(t), which are
depicted in Fig. 7(a) and (b), respectively. It can be observed
from Fig. 7(a) and (b) that both joint angles and joint angle
velocities change continuously and smoothly, thus the control
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Fig. 6. Profiles of using the ADTIZD-K model (18) to control robot manip-
ulator PUMA560 to track rotated Lissajous shape path. (a) Actual trace of
the end-effector and the desired path in 3-D space. (b) Motion of the hole
robot arm during tracking control. (c) End-effector position errors in three
dimensions being εx, εy, εz and in space being εa.

Fig. 7. Joint profiles of PUMA560 during tracking process. (a) Joint angel
trajectories. (b) Joint angle velocity trajectories.

signals output by our ADTIZD-U model (26)-based robot con-
trol model are suitable for practical applications. Last but not
least, the position errors of the end effector are demonstrated
in Fig. 6(c), where εx, εy, and εz are the position errors in
three dimensions, respectively, while εa is the total position
error in 3-D space. As can be found in Fig. 6(c), all these
tracking errors are always tiny with their magnitudes being
around 10−6–10−7 m. Therefore, we conclude that the posi-
tioning precision in above simulation experiment is very high,
even though in our previous setting the control model is only
given highly limited information. Now, the efficacy and appli-
cation potential of our proposed ADTIZD-U model (26) have
been validated by the above simulation results.

VII. CONCLUSION

After introducing the novel Adams–Bashforth discrete for-
mulas, in this article, we have used them to discretize a
integration-enhanced CTZNN. Then, the resultant ADTIZD-K
model (18) and ADTIZD-U model (26) for solving the
DTVCSE problem (2) are proposed for the first time. The
convergence, accuracy, and noise tolerance of ADTIZD mod-
els have all been theoretically analyzed and proved, where
ADTIZD models have high accuracy but low calculation and
storage complexity. ADTIZD models are resistant to addi-
tive noises, constant noises cannot influence their accuracy

and they are stable even under large linear noises. In addi-
tion, numerical experiments have been conducted to validate
ADTIZD models’ performance, and comparisons with other
conventional discrete-time ZNN models have demonstrated
our ADTIZD models’ superiority. Finally, the ADTIZD-U
model (26) is successfully applied in the robot manipulator
path tracking control application, showing ADTIZD mod-
els’ efficacy. Further reducing ADTIZD models’ computation
complexity is very meaningful and can be future work.
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