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a b s t r a c t

By exploiting two simplified nonlinear activation functions, two zeroing neural network (ZNN) models
are designed and studied to efficiently tackle the time-varying matrix pseudoinversion problem.
Compared with ZNN activated by previously presented activation functions, these two simplified
finite-time ZNN (SFTZNN) models (called SFTZNN1 and SFTZNN2) not only achieve faster finite-time
convergence, but also possess better robustness. In addition, the SFTZNN1 and SFTZNN2 models have
simpler structure compared with the widely used sign-bi-power activated ZNN model. Theoretical
analysis is presented to obtain the maximum convergence time for the SFTZNN models in ideal
conditions. Besides, when external perturbations are injected into the proposed SFTZNN models, upper
bounds of the steady-state residual error are theoretically calculated. Comparative simulations and one
engineering application case validate the feasibility and superiority of the two new SFTZNN models
when solving time-varying matrix pseudoinversion.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Finding the Moore–Penrose pseudoinverse of a matrix has
lways been an essential problem in various science and engi-
eering fields, including signal processing [1], image noise reduc-
ion [2], tensor nearness problem [3], adaptive robust control [4]
nd robotics [5]. Due to the variety of applications of matrix
seudoinverse, many researchers have investigated numerical
lgorithms for this problem. For example, Newton’s iteration
ethod was used in [6] and [7] to obtain the Moore–Penrose
seudoinverse while Grevilles recursive method was investigated
n [8] and singular value decomposition was studied in [9]. More
rogress such as using Cholesky factorization algorithm to com-
ute the matrix pseudoinverse has been made for addressing
his problem. However, all of these numerical algorithms pos-
ess serial-processing property. In addition, the minimum time
omplexity of these algorithms is no less than the cube of the
atrix dimensions. Therefore, these numerical algorithms usually
re unable to meet the requirements to delivery large scale com-
utation within very limited time. For example, when applying
hese algorithms to online or real-time applications, we need to
xecute them at every sampling period and increase the sampling
ate for better accuracy. However, these conventional numerical
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ttps://doi.org/10.1016/j.asoc.2020.106735
568-4946/© 2020 Elsevier B.V. All rights reserved.
algorithms cannot complete such tasks due to time cost that is
larger than the limited running time gap.

Recently, due to the comprehensive study on neural net-
works [10–12], recurrent neural network (RNN) has been ex-
tensively investigated by researchers [13–17]. RNN models can
be implemented physically by hardware, and their computa-
tion process can be parallel and distributed, which means high
computation efficiency. Thus, neural network methods usually
have less time complexity than conventional numerical methods.
Moreover, because of its capability to solve numerous mathemat-
ical time-varying problems, continuous-time RNN model is con-
sidered to be an efficient tool to deal with online problems like
the time-varying matrix pseudoinversion. Traditional gradient-
based neural networks (GNNs) use scalar-type error value to
monitor the performance. The neural network will make the error
norm converge to zero with the gradient-descent method [18,
19]. However, GNNs do not perform well in solving the time-
varying problems with huge lagging-errors. Then a special re-
current network called the zeroing neural network (ZNN) was
proposed in [20,21] to deal with such problem. By utilizing the
time-derivative information of dynamic coefficients, ZNN models
successfully tackle time-varying problems via eliminating the
lagging-error. Generally, ZNN models use an indefinite function
called error function to monitor the error. By designing different
activation functions, new ZNN models for the same problem can
be greatly enriched with different performance. Furthermore, by
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pplying a special activation function called the sign-bi-power
Sbp) function and some other novel activation functions, ZNN
odels are able to solve a time-varying problem in finite time

22–26].
Following the inspiration of accelerating ZNN models by us-

ng finite-time convergent activation functions, in this paper,
wo nonlinear activation functions are explored to establish two
implified finite-time ZNN (SFTZNN) models to solve the time-
arying pseudoinverse matrices. Generally, ZNN models are as-
umed to be working in condition free of any type of perturbation.
owever, perturbations are unavoidable in real world. Pertur-
ations may be caused by realization errors and other external
rrors, substantially reducing the accuracy of ZNN models. For
his reason, we further investigate the robustness of two SFTZNN
odels and compare the results with other ZNN models. For
etter illustrating the highlights of this paper, we compare our
ork with some recent results (i.e., [27–30]), and the comparative
esults have been listed in Table 1. From this table, it can be
oncluded that our work is not only efficient on solving the
ime-varying/static pseudoinversion problems, but also has faster
inite-time convergence speed. Besides, we compare our work
ith Ref. [31] in Tables 2 and 3, which show the main contribu-
ions and novelties from our work. From the comparison of these
esults, it can be concluded that our work has made major contri-
utions in terms of time-varying problem solving, model design,
ctivation function comparison, rigorous robustness analysis, and
obotic motion application. In addition, unlike other works that
gnore robustness analysis or only study single type of noise, our
ork investigates the robustness performance of the proposed
odel in the presence of different types of noises. The following

s a summary of the major contributions of this paper.

(1) Two simplified finite-time convergent activation functions
are introduced and studied for time-varying matrix pseu-
doinverse problem solving, because they have less complex-
ity than the Sbp function.

(2) Two SFTZNN models are developed for obtaining the pseu-
doinverse of a time-varying matrix based on these two sim-
plified activation functions. Furthermore, the upper bounds
of convergence time are provided.

(3) Perturbed SFTZNN models are proposed to illustrate the
superior robustness of two simplified activation functions,
with theoretical proofs given to determine the steady-state
residual error upper bounds under perturbations.

(4) The comparative numerical experiments demonstrate better
convergence performance of two SFTZNN models in the
presence of various perturbations. In addition, an appli-
cation on redundant manipulators further illustrates the
feasibility of SFTZNN models in real world.

. Problem description and ZNN model

This section contains two parts. First, let us present the math-
matical description of the time-varying matrix pseudoinverse.
hen, we introduce and generalize a ZNN model for such a prob-
em.

.1. Problem description

Pseudoinverse is also called the Moore–Penrose inverse. In
athematics, given a dynamic matrix M(t) ∈ Rm×n, the pseu-
oinverse M+(t) ∈ Rn×m is a matrix that satisfies the following
quations [32]:

M+(t)M(t)M+(t) = M+(t),
M(t)M+(t)M(t) = M(t),(
M(t)M+(t)

)T
= M(t)M+(t),(

+
)T +
M (t)M(t) = M (t)M(t).

2

It should be noted that pseudoinverse M+(t) exists for any ma-
trix M(t) [32]. Particularly, if M(t) is full rank all the time,
i.e., rank(M(t)) = min{m, n}, ∀t ∈ [0,+∞), then MT(t)M(t) is
nonsingular when m > n while M(t)MT(t) is nonsingular when
m < n. Thus we use following equations to obtain the dynamic
pseudoinverse of M(t) [32]:

M+(t) =

{
MT(t)

(
M(t)MT(t)

)−1
, if m ⩽ n,(

MT(t)M(t)
)−1MT(t), else.

(1)

In this paper, we assume that the first order time derivative
of M(t) is continuous and M(t) is a full rank matrix all the
time, which guarantees the existence and uniqueness of solution
M+(t). Furthermore, we only consider the condition that m > n,
because the situation of m ⩽ n is similar to the case of m > n.

To lay foundations for theoretical analysis, we introduce the
following Lemma to guarantee the boundness of (MT(t)M(t))−1

[20].

Lemma 1. There exists a number α > 0, α ∈ R that

min
∀i∈{1,...,n}

⏐⏐λi(MT(t)M(t))
⏐⏐ ⩾ α, ∀t ⩾ 0. (2)

where λi(·) denotes the ith eigenvalue of matrix MT(t)M(t) ∈ Rn×n.
If the norm of MT(t)M(t) satisfies

MT(t)M(t)

F ⩽ εM , ∀t ∈

[0,+∞), then ∥(MT(t)M(t))−1
∥F is also uniformly upper bounded

by a scalar [20]:

ϕ(α, ε2M , n) =

n−2∑
i=0

C i
nε

2(n−i−1)
M

αn−i +
n3/2

α
.

where C i
n := n!/(i!(n − i)!), εM ∈ R is the upper bound of the

robenius norm of MT(t)M(t).

2.2. ZNN

ZNN has been developed and introduced first by Zhang et al.
since 2002. Then, in the past decades, ZNNs were extensively
developed to deal with different time-varying problems, includ-
ing the time-varying matrix pseudoinverse. Compared with GNN,
ZNN possesses higher convergence speed, and eliminates the
large steady-state residual error that appears in the former one.
The design process of ZNN for matrix pseudoinverse problem is
illustrated below [27,33].

We first define an error matrix E(X(t), t) ∈ Rn×m rather
than the scalar energy function to evaluate the process of matrix
pseudoinversion, which is presented in the following:

E(X(t), t) := MT(t)M(t)X(t) − MT(t), (3)

where M(t) ∈ Rm×n is a dynamic full rank matrix; and, dynamic
atrix X(t) ∈ Rn×m representing the pseudoinverse of M(t) is
nknown and should be obtained.
Then, error matrix’s derivative Ė(X(t), t) is designed to force

ach element eij(t), i = {1, . . . , n}; j = {1, . . . ,m} of E(X(t), t)
converge to zero as time goes. Based on this idea, Ė(X(t), t) can
be formulated particularly as follows:
dE(X(t), t)

dt
= −Γ F (E(X(t), t)), (4)

where F (·) : Rn×m
→ Rn×m represents a matrix mapping, whose

elements are the same and denoted by f (·). For the clarity and
consistence of analysis, in this paper we assume Γ = γ I , where
γ > 0 ∈ R is a design parameter that can adjust the convergence
speed of ZNN. Combining the formula (4) with another formula
(3), we get the dynamic equation of the ZNN model for matrix
pseudoinversion:

MT(t)M(t)Ẋ(t) = −
(
ṀT(t)M(t) + MT(t)Ṁ(t)

)
X(t)

˙ T ( T T ) (5)

+ M (t) − γ F M (t)M(t)X(t) − M (t) ,
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able 1
he main novelties and differences of this work from Refs. [27–30].
# Item [27] [28] [29] [30] Our paper

1 Problem type Static Time-varying Time-varying Time-varying Time-varying
2 Activation function Linear sign-bi-power sign-bi-power Linear SFTAF2
3 Robustness analysis No No No Yes Yes
4 Noise type None None None Model Model & differential
5 Convergence Exponentially Finitely Finitely Exponentially Finitely (accelerated)
Table 2
The main novelties and differences of this work from Ref. [31].
# Problem Type Model AF comparisons Application

Our work Pseudoinverse Time-varying ZNN Abundant Robot manipulator control
[31] Quadratic programming Static DNN None Parameters estimation
Table 3
The main novelties and differences of this work from Ref. [31].
# Quantitative robustness analysis Noise elements Noise type (analytical) Noise type (experimental)

Our work Rigorous Differential & model Unknown & time-varying Sinusoidal
[31] None Model None Mean Gaussian White
where X(t) is the state matrix as well as the output of neural
network, with initial state being X(0) ∈ Rn×m.

Thanks to previous research, we have already known that the
onvergence speed and the robustness of ZNNs varies when using
ifferent functions f (·). In general, activation functions of ZNNs

can be divided into the following:

(1) Linear activation function

f (x) = x, (6)

(2) Power activation function

f (x) = xp, p ⩾ 3, (7)

(3) Bipolar Sigmoid activation function

f (x) =
1 − exp(−ξx)
1 + exp(−ξx)

, ξ > 2, (8)

(4) Power-Sigmoid activation function

f (x) =

{
xq if |x| ⩾ 1,
(1+exp(−ξ ))
1−exp(−ξ ) ·

1−exp(−ξx)
1+exp(−ξx) else.

(9)

where ξ > 2 and q ⩾ 3.

It has been known that when the linear activation function is
applied, ZNNs possess exponential convergence rate. But it should
also be noted that, due to the nature of the exponential function,
the closer the error function eij(t) gets to zero, the slower the
convergence rate is. To overcome this shortcoming, researchers
introduce nonlinear activation functions to accelerate the conver-
gence speed of ZNNs. Activation functions (7), (8) and (9) are all
potential choices that can be used to achieve this goal. In-depth
study shows that (7), (8) and (9) still cannot achieve finite-time
convergence, which means that each eij(t) does not decrease to
zero after infinite time. Then, the Sbp activation function was
introduced to accomplish finite-time convergence [22,23], which
is presented as below:

f (x) =
1
2
sgnτ (x) +

1
2
sgn

1
τ (x), τ ∈ (0, 1), (10)

with sgnτ (x) defined as

sgnτ (x) =

⎧⎨⎩
|x|τ if x > 0,
0 if x = 0,

τ

−|x| if x < 0.

3

Recently, two new activation functions modified from the Sbp
function have been proposed in [31,34], which are called the
Simplified Finite-Time Activation Function 1 (SFTAF1):

f (x) = sgnτ (x), τ ∈ (0, 1), (11)

and the Simplified Finite-Time Activation Function 2 (SFTAF2):

f (x) = β1sgnτ (x) + β2x, τ ∈ (0, 1), (12)

where β1 > 0 and β2 > 0. For brief expression, in the fol-
lowing discussions, ZNN model (5) will be named as the Simpli-
fied Finite-Time Zeroing Neural Network 1 (SFTZNN1) model or
the Simplified Finite-Time Zeroing Neural Network 2 (SFTZNN2)
model when using the activation function SFTAF1 or SFTAF2.
The above two SFTAFs differ from other activation functions on
multiple aspects. As can be seen from the SFTAF1 (11) and the
SFTAF2 (12), when compared with the linear, power, bipolar
and power-sigmoid activation functions, the special piecewise
sgnfi(x) function have been added which gives them finite-time
convergence property. When compared with the Sbp activation
function, the SFTAF1 and the SFTAF2 have dropped the power
function part: sgn1/τ (x)/2, which makes their structure simpler
and their computation complexity lower.

To the most of our knowledge, there has not been enough
efforts that use the SFTAF1 or the SFTAF2 on solving the time-
varying matrix pseudoinversion yet. Furthermore, the robustness
of the proposed two SFTZNN models has not been well studied
under external perturbation.

3. Convergence analysis

Section 2 gives a general ZNN model that can be used to obtain
the time-varying matrix pseudoinversion as well as several kinds
of activation functions, such as the SFTAF1 and the SFTAF2. In this
section, we will theoretically analyze and compare the conver-
gence speed between different activation functions, in which the
superiorities of SFTAF1 and SFTAF2 will be demonstrated.

Proposition 1. Given a time-varying matrix M(t) ∈ Rm×n satisfy-
ing Lemma 1, if monotonically increasing odd activation function f (·)
is used, then the state matrix M(t) of ZNN model (5) starting from
arbitrary initial states M(0) = M0 ∈ Rn×m will always converge to
the theoretical pseudoinverse M∗(t) of time-varying matrix M(t).
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heorem 1. In the condition of Proposition 1, if SFTAF1 (11) is used,
he SFTZNN1 model will converge to the theoretical pseudoinverse

+(t) globally in finite time

tf ⩽
|Emax(0)|1−τ

γ (1 − τ )
, (13)

here Eij(t) represents the ijth element in E(t), and |Emax(0)| =

ax{|Eij(0)|}.

Proof. It can be referred in Refs. [22,31,34,35], and thus omitted.

Theorem 2. In the condition of Proposition 1, if SFTAF2 (12) is used,
he SFTZNN2 model will converge to the theoretical pseudoinverse

+(t) globally in finite time

tf ⩽ tmax =
1

ρ2(1 − τ )
ln
ρ2|Emax(0)|1−τ + ρ1

ρ1
, (14)

here Emax(0) is defined the same as in Theorem 1, ρ1 = γ β1 and
2 = γ β2.

roof. It can be referred in Refs. [22,31,34], and thus omitted.

roposition 2. Under the given conditions of Proposition 1, if we
use the linear, bipolar-sigmoid, power, and power-sigmoid activation
functions in Section 2, then the neural network is unable to make
eij(t) converge to zero in finite time.

Proof. Let us respectively consider the situations of using the lin-
ear, bipolar-sigmoid, power, and power-sigmoid activation func-
tions.

(1) For the simple linear function, the equality ėij(t) = −γ eij(t)
exists, and the entry error is eij(t) = exp(−γ t)eij(0), mean-
ing that |eij(t)| = |exp(−γ t)eij(0)| > 0 with t ∈ (0,+∞).
Obviously in finite time, entry error eij(t) will not converge
to zero.

(2) For the bipolar-sigmoid case, we first assume that it is able
to achieve finite-time convergence within interval [0, t1]
where t1 ∈ R+ is the finite convergence time upper bound.
Then, ZNN model (5) can be written as an equivalent dif-
ferential equation:

deij(t)
dt

= −γ ·
1 − e−ξeij(t)

1 + e−ξeij(t)
.

Such an equality can be rewritten as

γ dt = −
1 + e−ξeij(t)

1 − e−ξeij(t)
deij(t).

Then, integrating the above equality from initial time to
time instant t1:∫ t1

0
γ dt =

∫ eij(t1)

eij(0)
−

1 + e−ξeij(t)

1 − e−ξeij(t)
deij(t),

t1 =
1
γ
eij(0) −

2
ξ
[ln |1 − e−ξeij(t)|]

eij(t1)
eij(0)

.

Because limeij(t1)→0 ln |1 − e−ξeij(t1)| = −∞, so
limeij(t1)→0 t1 = +∞, which contradicts with our previ-
ous assumption for t1. Thus the bipolar-sigmoid activation
function cannot converge in finite time.

(3) Consider the power function f (x) = xp, ZNN model (5)
becomes ėij = −γ epij, the solution can be derived as eij(t) =

eij(0){(p − 1)ep−1
ij (0)γ t + 1}−1/(p−1). Clearly, |eij(t)| > 0

holds for arbitrary t ⩾ 0. Therefore, we can conclude
that the power function is not able to achieve finite-time
convergence.
4

(4) For the power-sigmoid function, this is a piecewise func-
tion. In the evolvement of the neural network, we suppose
that tf is the finite time instant when eij(t) converges to
zero. There must exist δ > 0 making |eij(t)| fall into (0, 1)
in the time span (tf −δ, tf ). However, from the above proof
associated with the bipolar-sigmoid case, we conclude that
the part of activation function (9) defined in x ∈ (0, 1)
cannot achieve finite-time convergence. This contradiction
proves that the power-sigmoid function cannot converge
in finite time.

In a word, the neural network is unable to make eij(t) converge to
zero in finite time when using the linear, bipolar-sigmoid, power,
and power-sigmoid activation functions.

Remark 1. From Theorems 1–2 and Proposition 2, when using
activation functions (6)–(9), although the ZNN model can con-
verge to the theoretical solution of the problem, it is not able to
achieve finite-time convergence. In addition, Theorems 1–2 prove
that, using the new activation functions SFTAF1 and SFTAF2, the
entry error eij(t) of the ZNN model will converge to zero glob-
ally and in finite time. Hence, compared to activation functions
(6), (7), (8) and (9), the SFTAF1 and SFTAF2 possess superior
convergence performance. Furthermore, as proved in [28], the
convergence time upper bound of the ZNN model using (10) is
max

{
2|E−(0)|1−τ/[γ (1 − τ )], 2|E+(0)|1−τ/[γ (1 − τ )]

}
, being two

times as much as that using the SFTAF1. Evidently, the SFTZNN1
and SFTZNN2 also possess superior convergence performance
compared to the ZNN model using the Sbp function. Besides,
the SFTAF1 and SFTAF2 has less computation amount than the
Sbp function, which makes them more suitable for real world
applications.

4. Robustness analysis

When implementing neural networks using circuits, some per-
turbations may exists. For example, components in analog circuits
may result in high-order residual errors, while truncation or
roundoff errors may happen in digital circuits too. The aforemen-
tioned errors eventually may cause model-implementation errors
in neural networks [36].

The ZNN model (5) is proposed to find the time-varying matrix
pseudoinverse under ideal conditions free of errors. But in real-
istic applications, the errors aforementioned are unavoidable and
should be eliminated or reduced. In order to address this problem,
we add the differential error and the model-implementation error
into ZNN model (5). Thus we get following dynamics:

MT(t)M(t)Ẋ(t) =
˙̂MT(t) −

(
˙̂MT(t)M(t) + MT(t) ˙̂M(t)

)
X(t)

− γ F
(
MT(t)M(t)X(t) − MT(t)

)
+∆C (t),

(15)

here ∆C (t) ∈ Rn×m denotes the model implementation error,
nd ˙̂M := Ṁ + ∆B represents the time derivative of M(t) with
B(t) ∈ Rm×n denoting the differential error.
If we substitute ˙̂M := Ṁ + ∆B into (15), then the ZNN model

ith perturbation can be reformulated as the following dynamic:

MT(t)M(t)Ẋ(t) =ṀT(t)−
[ (

Ṁ(t) +∆B(t)
)TM(t)

+ MT(t)
(
Ṁ(t) +∆B(t)

) ]
X(t)

− γ F
(
MT(t)M(t)X(t) − MT(t)

)
+ ∆T

B(t) +∆C (t).

(16)

hen, defining error matrix E(t) = MT(t)M(t)X(t) − MT(t), dy-
namics (16) can be rewritten as

Ė(t) =∆T
B(t) −

(
∆T

B(t)M(t) + MT(t)∆B(t)
)
X(t)( ) (17)
− γ F E(t) +∆C (t).
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rom the definition E(t) = MT(t)M(t)X(t)−MT(t) and the condi-
tion that

(
MT(t)M(t)

)−1 exists for any time instant t ∈ [0,+∞),
t follows that X(t) =

(
MT(t)M(t)

)−1(E(t) + MT(t)
)
. Substituting

this equality into (17), we then get

Ė(t) = − γ F
(
E(t)

)
−

(
∆T

B(t)M(t) + MT(t)∆B(t)
)

·
(
MT(t)M(t)

)−1(E(t) + MT(t)
)

+
(
∆T

B(t) +∆C (t)
)
.

(18)

Let B(t) := −
(
∆B(t)T(t) + MT(t)∆B(t)

) (
MT(t)M(t)

)−1, equality
(18) becomes

Ė(t) = −γ F
(
E(t)

)
+ B(t)E(t) + B(t)MT(t) +∆T

B(t) +∆C (t),

which is equivalent to the following vector form:

ė(t) = −γ F
(
e(t)

)
+ D(t)e(t) + D(t)a′(t) + b′(t) + c(t), (19)

where e(t) := vec(E(t)) ∈ Rmn×1 represents a vector whose
elements are obtained by piling all columns from E(t) into a
single column vector. The dimension of activation function array
F becomes mn × 1 owing to the vectorization. Besides, b′(t) :=

vec(∆T
B(t)) ∈ Rmn×1, c(t) := vec(∆C (t)) ∈ Rmn×1, a′(t) =

vec(MT(t)) ∈ Rmn×1, and D := I ⊗ B(t) with symbol ⊗ denoting
the Kronecker product, the detailed information about Kronecker
product can be seen in [37,38].

Before further analyzing the robustness of proposed ZNN
model (19), we firstly introduce an important lemma that will
help us to complete the procedure.

Lemma 2. Let fL(x), fS(x), fPS(x), fSbp(x), fSFTAF1(x) and fSFTAF2(x)
denote the linear (6), power-sigmoid (9), Sbp (10), SFTAF1 (11) and
SFTAF2 (12) activation functions respectively. Then, these activation
functions possess following properties.

(1) In the condition |x| ∈ (0, 1), |fL(x)| < |fPS(x)| always holds.
(2) In the condition |x| ∈ (0, 1), β1 = β2 = 1, if τ ⩽

(2ξ exp(−ξ ))/(1 − exp(−2ξ )), then |fPS(x)| ⩽ |fSFTAF1(x)| and
|fPS(x)| ⩽ |fSFTAF2(x)| always hold, where the definition of ξ and
τ are the same as in function (9), (11) and (12).

Proof.

(1) Define an auxiliary function g(x) = η(1 − exp(−ξx))/(1 +

exp(−ξx)) − x, where η = (1 + exp(−ξ ))/(1 − exp(−ξ )).
Clearly, g(x) satisfies g(0) = g(1) = 0. If we take the
derivative of g(x) with respect to x, we can get

g ′(x) = η
2ξ exp(−ξx)

(1 + exp(−ξx))2
− 1.

Taking the derivative of g ′(x) with respect to x, we get

g ′′(x) = −2ηξ 2e−ξx 1 − exp(−2ξx)
(1 + exp(−ξx))4

.

Obviously, g ′′(x) < 0 if x ∈ (0, 1). Thus g(x) is a convex
function in the domain field of x ∈ (0, 1). Taking g(0) =

g(1) = 0 into consideration, we conclude that if x ∈ (0, 1),
g(x) > 0. Since η(1 − exp(−ξx))/(1 + exp(−ξx)) > 0 and
x > 0, |fL(x)| < |fPS(x)| is true in x ∈ (0, 1). Besides, fL(x), and
fPS(x) are odd functions, so |fL(x)| < |fPS(x)| holds true when
|x| ∈ (0, 1).

(2) Define auxiliary function ψ(x) = η(1 − exp(−ξx))/(1 +

exp(−ξx)) − sgnτ (x) with ξ > 2, 0 < τ < 1, η = (1 +

exp(−ξ ))/(1 − exp(−ξ )), and sgnτ (x) formed by

sgnτ (x) =

⎧⎨⎩
|x|τ if x > 0,
0 if x = 0,

τ

−|x| if x < 0.

5

Clearly, ψ(0) = ψ(1) = 0. Firstly, let us consider the
condition of x ∈ (0, 1), and we can obtain the first order
derivative of ψ(x):

ψ ′(x) = η
2ξ exp(−ξx)

(1 + exp(−ξx))2
− τxτ−1.

From ψ ′(x), we obtain limx→0+ ψ ′(x) = −∞. Therefore,
there must exist δ1 > 0, making ψ ′(x) > 0 in x ∈ (0, δ1).
Furthermore, we get the second order derivative of ψ(x):

ψ ′′(x) = −2ξ 2η
1 − exp(−ξx)

(1 + exp(−ξx))4
+ τ (1 − τ )xτ−2.

Obviously, ψ ′′(x) is a monotonically increasing function in
the domain field of x ∈ (0, 1). Because limx→0+ ψ ′′(x) =

+∞, there must exist δ2 > 0 making ψ ′′(x) > 0 in the
domain field of x ∈ (0, δ2). Therefore, we should discuss the
following two different conditions.

(1) If ψ ′′(x) ⩾ 0 is true when x ∈ (0, 1), then we can find
a point a where ψ ′(x) < 0 in x ∈ (0, a), ψ ′(a) = 0
and ψ ′(x) > 0 in x ∈ (a, 1). According to ψ(x)’s figure,
ψ(x) < 0 holds for x ∈ (0, 1).

(2) If ψ ′′(x) < 0 is true in interval (b, 1), where ψ ′′(b) = 0.
Then, ψ ′(x) will decrease in (b, 1). Because ψ ′(1) =

(2ξ exp(−ξ ))/(1 − exp(−2ξ )) − τ ⩾ 0, ψ ′(x) will not
drop below zero in this case. Therefore, from the figure
of ψ(x) we know that ψ(x) < 0 still holds true in the
domain of x ∈ (0, 1).

From two conditions above, we can obtain ψ(x) < 0 in
interval (0, 1), which means that fSFTAF1(x) > fPS(x) > 0
when x ∈ (0, 1). Since that fSFTAF1 and fPS are odd functions,
|fNFTAF1(x)| > |fPS(x)| in |x| ∈ (0, 1). Besides, we can easily
obtain that |fSFTAF2(x)| > |fSFTAF1(x)| when |x| ∈ (0, 1), and
β1 = β2 = 1, thus |fSFTAF2(x)| > |fPS(x)|.

The proof of Lemma 2 is now complete.

Theorem 3. If ∥∆B(t)∥F ⩽ εB, ∥∆C (t)∥F ⩽ εC , and ∥M(t)∥F ⩽
εM hold true at any time point t ⩾ 0, with 0 < εB, εC , εM <

+∞. Then in the condition of γ > 2εAεBϕ, computation error
∥MT(t)M(t)X(t) − MT(t)∥F of the perturbed ZNN model (19) is
limited under maximum value of (

√
l+l)(2εM2εBϕ+εB+εC )/2(γ ρ−

2εMεBϕ), where l = mn is the total number of elements in matrix
M(t). Furthermore, the steady-state residual error ∥MT(t)M(t)X(t)−
MT(t)∥F tends to decrease to zero as γ → +∞.

Proof. Considering the vectorial perturbed ZNN model (19),
we define a Lyapunov function candidate v = ∥e(t)∥2

2/2 =

eT(t)e(t)/2 =
∑nm

i=1 e
2
i (t)/2 ⩾ 0. Clearly, v is an positive definite

variable and it satisfies that v = 0 only under the condition
when e(t) = 0. Besides, v has no upper bound if ∥e∥2 keeps
increasing. Moreover, since eTDe is a scalar value, we get eTDe =

(eTDe)T = eTDTe, which means eTDe = eT D+DT

2 e. Thus we can get
the differential equation of v:

v̇ = eTė = eT(−γ F (e) + De + Da′
+ b′

+ c)

= −γ eF (e) + eTDe + eTDa′
+ eT(b′

+ c)

= −γ eTF (e) + eT
D + DT

2
e + eTDa′

+ eT(b′
+ c).

(20)

or the first term of above equation, it satisfies that

− γ eTF (e) = −

l∑
γ |ei|f (ei). (21)
i=1
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onsidering the second term of (20), based on the mathematical
haracteristic max1⩽r⩽n |λr (B)| ⩽ ∥B∥F, we get

eT
D + DT

2
e ⩽ eTe max

1⩽r⩽n2

⏐⏐⏐λr(D + DT

2

)⏐⏐⏐
= eTe max

1⩽r⩽n2

⏐⏐⏐λr( I ⊗ B + (I ⊗ B)T

2

)⏐⏐⏐
= eTe max

1⩽r⩽n2

⏐⏐⏐λr( I ⊗ (B + BT)
2

)⏐⏐⏐
= eTe max

1⩽r⩽n2

⏐⏐⏐λr(B + BT

2

)⏐⏐⏐
⩽ eTe∥B∥F,

(22)

where ∥B∥F satisfies following inequalities:

∥B∥F =
(∆T

BM + MT∆B)(MTM)−1

F

⩽
(∆T

BM

F +

MT∆B

F

)(MTM)−1

F

= 2∥∆T
BM∥F∥(MTM)−1

∥F

⩽ 2∥∆T
B∥F∥M∥F∥(MTM)−1

∥F

= 2εMεBϕ.

Thus, substituting above inequalities into (22), we obtain

eT
D + DT

2
e ⩽ eTe∥B∥F ⩽ eTe · 2εMεBϕ, (23)

or the third term of (20), according to Da′
= vec(BMT), which is

btained from the Kronecker product’s mathematical character-
stics, and ∥vec(BMT)∥2 = ∥BMT

∥F, we get

∥Da′
∥2 =

vec(BMT)

2

=
BMT


F

⩽ ∥B∥F
MT


F

⩽ 2ε2MεBϕ.

For the last term of (20), it follows from max1⩽i⩽l |b′
i| ⩽ ∥b′

∥2 and
max1⩽i⩽l |ci| ⩽ ∥c∥2 that

eT(b′
+ c) = eTb′

+ eTc

⩽

l∑
i=1

|ei|max
1⩽i⩽l

⏐⏐[b′
]i
⏐⏐ +

l∑
i=1

|ei|max
1⩽i⩽l

⏐⏐[c]i⏐⏐
⩽

l∑
i=1

|ei|∥b′
∥2 +

l∑
i=1

|ei|∥c∥2

⩽

l∑
i=1

|ei|(εB + εC ).

(24)

Hence, in view of above inequalities (20), (21), (22), (23) and (24),
we have

v̇ ⩽ −

l∑
i=1

(
γ |ei|f (|ei|)

)
+ eTe · 2εMεBϕ

+

l∑
i=1

(
|ei| · 2ε2MεBϕ

)
+

l∑
i=1

(
|ei|(εB + εC )

)
= −

l∑
i=1

|ei|
(
γ f (|ei|) − 2|ei|εMεBϕ − 2ε2MεBϕ − εB − εC

)
.

(25)

Having the above inequalities, we now analyze the following two
situations.

(i) If γ f (|ei|) − 2|ei|εMεBϕ − 2ε2MεBϕ − εB − εC ⩾ 0 holds in

time interval [t0, t1)∀i ∈ 1, 2, . . . , l, then v̇ ⩽ 0 indicates

6

that error vector e(t) will always converge toward zero,
which in the mean time implies that the state X(t) of the
perturbed ZNN model (19) converges toward the theoretical
time-varying pseudoinverse of M(t). If v̇ = 0 is true when
t = t2, t2 ∈ [0,+∞), e(t) reaches its steady state. Otherwise,
the perturbed ZNN model (19) will fall into following cir-
cumstance along with γ f (|ei|)−2|ei|εMεBϕ−2ε2MεBϕ−εB−εC
decreasing.

(ii) Considering γ f (|ei|) − 2|ei|εMεBϕ − 2ε2MεBϕ − εB − εC ⩽ 0,
∃i ∈ 1, 2, . . . , l at any time point t . The upper bound of v̇
might be positive, implying v̇ may be in two situations as
v̇ ⩽ 0 and v̇ > 0. In these cases, the error vector may
not necessarily converge to zero, meaning the solution of
the ZNN model may not converge to the theoretical solution
M+(t). However, even in the worst case v̇ > 0 when e(t)
diverges beyond, because |ei(t)| keeps increasing, the upper
bound of v̇ also decreases as long as γ f (|ei|)−2|ei|εMεBϕ > 0
is satisfied. In this case, as time evolves, there must exist a
certain time instant t3 making v̇(t3) ⩽ 0, thus e(t) stays in
steady state or decreases again.

Therefore, we obtain the conclusion that the residual error
∥e(t)∥ will not always increase, and it is confined by a certain
upper bound. Thus, inequality (25) can be rewritten as

v̇ ⩽ −

l∑
i=1

|ei|(γ f (|ei|) − 2|ei|εMεBϕ − 2ε2MεBϕ − εB − εC )

= −

l∑
i=1

|ei|(γ ρi|ei| − 2|ei|εMεBϕ − 2ε2MεBϕ − εB − εC ),

(26)

here there exists ρi = f (|ei|)/|ei| ⩾ 1. We now analyze a
situation when any |ej|, j ∈ {1, . . . , l} can achieve its highest
value, when the upper bound of v̇(t) is zero in (26) according to
the above analysis:

l∑
i̸=j

[
(γ ρi − 2εMεBϕ)|ei|2 − (2ε2MεBϕ + εB + εC )|ei|

]
+

[
(γ ρj − 2εMεBϕ)|ej|2 − (2ε2MεBϕ + εB + εC )|ej|

]
= 0.

(27)

Evidently, the left side of the above equation (27) is a quadratic
function of |ej|. Besides, we can easily obtain:

−

l∑
i̸=j

[
(γ ρi − 2εMεBϕ)|ei|2 − (2ε2MεBϕ + εB + εC )|ei|

]
≤

l∑
i̸=j

(2ε2MεBϕ + εB + εC )2

4(γ ρi − 2εMεBϕ)
≤

(l − 1)(2ε2MεBϕ + εB + εC )2

4(γ ρ − 2εMεBϕ)
,

(28)

when |ei| = (2ε2MεBϕ+εB +εC )/2(γ ρi −2εMεBϕ), with parameter
requirement γ > 2εMεBϕ/ρ, where ρ = min{ρi|i = 1, . . . , l}. To
calculate the upper bound of |ej|, we refer to the characteristics
of quadratic function about |ej|, it yields from the above (27) and
(28) that:

|ej| ≤
1
2
(1 +

√
l)
2ε2MεBϕ + εB + εC

γ ρ − 2εMεBϕ
.

Because ej can be any elements in e(t), every element of e(t) is
bounded by the same formula:

max
1⩽i⩽l

|ei(t)| ⩽
1
2
(1 +

√
l)
2ε2MεBϕ + εB + εC

γ ρ − 2εMεBϕ
. (29)

If there exists any entry error |ek(t)|, k ∈ {1, 2, . . . , l} goes
beyond inequality (29), v̇ is limited to be negative, forcing ∥e(t)∥2
to decrease. In this situation, |ek(t)| decreases into bound to stop v
from decreasing. Therefore, inequality (29) indicates the absolute
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alue of all single element |ei(t)|, ∀i ∈ {1, 2, . . . , l} in e(t) could
not go beyond the upper bound. In addition, we obtain

∥E(t)∥F = ∥e(t)∥2 ⩽

√ l∑
i=1

e2i (t) ⩽
√
lmax
1⩽i⩽l

|ei(t)|.

The above analysis leads to

lim
t→+∞

∥E(t)∥F ≲
1
2
(l +

√
l)
2ε2MεBϕ + εB + εC

γ ρ − 2εMεBϕ
.

he proof of Theorem 3 is now complete.

The proof of Theorem 3 not only proves that steady state
esidual error ∥MT(t)M(t)X(t)−MT(t)∥F is upper bounded around
(
√
l + l)(2εM2εBϕ + εB + εC )/2(γ ρ − 2εMεBϕ), but also proves

that entry error |ei(t)|,∀i ∈ {1, 2, . . . , l} is upper bounded around
1+

√
l)(2εM2εBϕ+εB+εC )/2(γ ρ−2εMεBϕ). Evidently, the steady

tate residual error can be made very small by increasing design
arameter γ . If γ satisfies following inequalities

⩾ (1 +
√
l)(2εM2εBϕ + εB + εC ) + 4εMεBϕ/2ρ,

hich is derived from 1 ⩾ ((1+
√
l)(2εM2εBϕ+εB +εC ))/(2(γ ρ−

εMεBϕ)), then entry error |ei(t)|,∀i ∈ {1, 2, . . . , l} would be
bounded within interval [0, 1].

Theorem 4. In addition to the general robustness result that
obtained in Theorem 3, when γ ⩾

(
(1+

√
l)(2εM2εBϕ + εB + εC )+

εMεBϕ
)
/2ρ, the perturbed ZNN model (19) possesses following

properties.

(1) If the power-sigmoid activation function fPS is used, then the
upper bound of steady state residual error ∥E(t)∥F is smaller
than that using linear activation function fL.

(2) If activation function fSFTAF1 is used with τ ⩽ (2ξ exp(−ξ ))/(1−
exp(−2ξ )), then the upper bound of steady state residual error
∥E(t)∥F is smaller than using fPS.

(3) If β1 = β2 = 1, using activation function fSFTAF2 can get even
smaller steady-state residual error upper bound than that using
fSFTAF1.

roof. Obviously, when γ ⩾
(
(1 +

√
l)(2εM2εBϕ + εB + εC ) +

εMεBϕ
)
/2ρ, entry error |ei(t)|,∀i ∈ {1, 2, . . . , l} falls into the

nterval [0, 1] as t → +∞. In this situation, the parts of activation
functions defined in x ∈ [−1, 1] take effect. Theorem 3 implies
that, for the perturbed ZNN model, we have ∥E(t)∥F ⩽ 1

2 (l +

l)(2ε2MεBϕ + εB + εC )/(γ ρ − 2εMεBϕ). Thus, under the same
circumstances, the larger ρ is, the smaller upper bound of ∥E(t)∥F
will be. Besides, because all the activation functions f (·) are odd
function, f (x) < 0 when x < 0. If ei(t) < 0, we have
|f (ei(t))|
|ei(t)|

=
−f (ei(t))
−ei(t)

=
f (−ei(t))
−ei(t)

=
f (|ei(t)|)
|ei(t)|

= ρ.

For ei(t) > 0, evidently ρ = |f (ei(t))|/|ei(t)| holds true too.
Therefore, ρ = |f (ei(t))|/|ei(t)| when ei(t) ̸= 0.

(1) Lemma 2 implies |fPS(x)| > |fL(x)|, ∀|x| ∈ (0, 1). Thus
in the condition that |ei(t)| < 1, we obtain ρPS/ρL =

|fPS(ei(t))|/|fl(ei(t))| > 1, which implies, by using power-
sigmoid activation function, we are able to get smaller upper
bound of steady-state error ∥E(t)∥F than that using linear
activation function.

(2) Lemma 2 also proves that, in the condition of τ ⩽
(2ξ exp(−ξ ))/(1 − exp(−2ξ )), |fFTAF1(x)| > |fPS(x)| where
|x| ∈ (0, 1). So, ρSFTAF1 > ρPS holds true when |ei(t)| < 1.
Clearly, the upper bound of ∥E(t)∥F is smaller when using
f than f .
SFTAF1 PS

7

(3) In the condition that β1 = β2 = 1, we can readily obtain
|fSFTFA2(x)| > |fSFTAF1(x)|. Similarly, ρSFTAF2 > ρSFTAF1, thus by
using the SFTAF2, we get better steady-state residual upper
bound than the SFTAF1.

he proof of Theorem 4 is now complete.

. Numerical verification

To validate the superior convergence and robustness perfor-
ance of the ZNN model (5) using our newly introduced SFTAF1
nd SFTAF2, two numerical examples are introduced in this sec-
ion. In addition, to illustrate the superiority of finite-time con-
ergence compared to non-finite time convergence as well as the
etter robustness of the SFTAF1 and the SFTAF2, other activation
unctions including fL, fPS and fSbp are used in the numerical
examples too.

5.1. Convergence discussion

Let us consider the following time-varying matrix A(t) with
full rank:

M(t) =

[ sin(3t) cos(3t)
−cos(3t) sin(3t)
sin(3t) cos(3t)

]
∈ R3×2. (30)

Then, according to Eq. (1), the theoretical time-varying pseudoin-
verse of matrix (30) can be obtained as

M+(t) =

[
0.5sin(3t) −cos(3t) 0.5sin(3t)
0.5cos(3t) sin(3t) 0.5cos(3t)

]
. (31)

Since the theoretical pseudoinverse M+(t) is provided, we will
use it as a criterion in the following convergence experiments
to validate the superiority and efficacy of the SFTAF1 and the
SFTAF2. The simulation results are shown in Figs. 1–3.

First, we investigate the finite-time convergent property of
the SFTZNN1 and SFTZNN2 models. Without loss of generality,
in this example, we set the parameter γ = β1 = β2 = 1,
and τ = 0.2. Just as shown in Fig. 1, beginning with a random
selected initial state X(0) ∈ R2×3, state matrices X(t) ∈ R2×3 of
SFTZNN1 and SFTZNN2 converge to the time-varying theoretical
pseudoinverse (31) precisely and quickly. Besides, the residual
error ∥E(t)∥F = ∥MT(t)M(t)X(t)−MT(t)∥F is shown in Fig. 2. Note
that, X(0) ∈ R2×3 is generated randomly from [−1, 1] ∈ R2×3,
and we can calculate the maximum initial entry error. We define
the initial state matrix X(0) as follows:

X(0) =

[
x11 x12 x13
x21 x22 x23

]
.

Then, we obtain the initial error matrix E(0) as follows:

E(0) = MT(0)M(0)X(0) − MT(0)

=

[
1 0 1
0 −1 0

][ 0 1
−1 0
0 1

]
X(0) −

[
1 0 1
0 −1 0

]
=

[
2x21 − 1 2x22 2x23 − 1

x11 x12 + 1 x13

]
.

So, we have the maximum initial entry error |Emax(0)| = max
{

|E+(0)|, |E−(0)|
}
⩽ 3. According to Theorem 1, we can obtain the

convergence time upper bounds of SFTZNN1 and SFTZNN2 as

t1 =
3(1−0.2)

1 − 0.2
≈ 3.01 s,

t2 =
1

ln
(30.8

+ 1)
≈ 1.5327 s.
0.8 1
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Fig. 1. Solutions obtained by ZNN model (5) activated by SFTAF2 (12), where red dotted curves denote theoretical pseudoinverse of (30) and blue solid curves denote
the solution.
Fig. 2. Steady-state error ∥E(t)∥F produced by ZNN model (5) for the time-varying pseudoinverse.(a) Activated by SFTAF1 with τ = 0.2. (b) Activated by SFTAF2
ith τ = 0.2.
Fig. 3. Trajectories of residual error ∥E(t)∥F .
p
a
∥

f
t

learly, as shown in Fig. 2, the convergence time of SFTZNN1
nd SFTZNN2 both fall within theoretical upper-bounds, which
erifies the correctness of Theorem 1 in the experimental aspect.
Then we investigate the convergence speed superiority of the

FTAF1 and the SFTAF2 when compared to other aforementioned
ctivation functions. In this case, we set the design parameter
 t

8

= 3 and ξ = 4 in fPS. For fSFTAF1, fSFTAF2 and fSbp, we set τ = 0.2,
nd β1 = β2 = 1. The transient trajectories of residual errors
E(t)∥F synthesized by ZNN model (5) using different activation
unctions are depicted in Fig. 3(a). Evidently, Fig. 3(a) shows
hat ∥E(t)∥F synthesized by fL, and fPS converge exponentially
o zero, instead of diminish directly to zero like f , f
NFTAF1 SFTAF2
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Fig. 4. State solutions of the perturbed ZNN model (19) activated by SFTAF2 (12), where red dotted curves represent the theoretical solution (31) and blue solid
urves represent the solution obtained by neural network.
nd fSbp. This finding verifies the correctness of Proposition 2 in
he experimental aspect. More importantly, Fig. 3(a) illustrates
hat fSFTAF1 and fSFTAF2 possess better convergence speed compared
o other activation functions, where residual error of SFTZNN2
onverges to zero within 1.6 s, which is even better than that of
FTZNN1 (about 3 s).

.2. Robustness discussion

For the purpose of showing robustness superiority of our
ewly introduced activation function SFTAF1 (11) and SFTAF2
12), we evaluate the performance of the perturbed ZNN model
19) with two types of perturbations, which are described as the
ollowing form

∆B(t) = ε1

[ sin(8t) −sin(8t)
cos(8t) sin(8t)

−cos(8t) cos(8t)

]
,

∆C (t) = ε2

[
0 −sin(8t) 0

sin(8t) 0 cos(8t)

]
,

ith ε1 = ε2 = 0.5. The design parameters of aforementioned
ctivation functions are set to be the same as previous one.
As can be observed from Fig. 4 which is produced under the

arge differentiation error and implementation error, the per-
urbed ZNN model (19) activated by SFTAF2 still converges to
he theoretical pseudoinverse with small residual error. Besides,
he state solution trajectories of SFTAF1 are similar, and thus are
dmitted here. Fig. 3(b) shows that, when using the SFTAF1 or
FTAF2 activation function, the steady-state residual error is al-
ays smaller than that using activation functions (6), (9) and (10).
ig. 3(b) also shows that, compared with the SFTAF1 function,
FTAF2 achieves better result with faster convergence rate under
erturbation. These findings inversely verifies the correctness of
heorem 4.
Moreover, we observed from simulation data that the upper

ound of residual error decreases when the design parameter
ncreases. In simulation, magnitude of the maximum steady-state
esidual error becomes about 10 times and 100 times smaller
han that of γ = 1 when we set γ = 10 and γ = 100 respec-
ively. This is exactly what we expect according to Theorem 3.
9

6. Application on manipulator kinematic control

In this section, we will apply the proposed neural dynam-
ics to control a three-link robot by obtaining the time-varying
pseudoinverse matrix.

6.1. Introduction to kinematics control

Given a redundant robot manipulator, its end-effector’s three-
dimensional coordinate in space is denoted by a vector r(t) ∈ Rm,
and its joint-space vector is denoted by θ (t) ∈ Rn. The rela-
tionship of these two vectors can be described by the following
mathematical model [27,39]:

r(t) = f (θ (t)), (32)

where f (·) : Rn
→ Rm denotes a matrix function mapping from

θ (t) to r(t). The above equation is determined by the mechanical
structure of the specified robot manipulator. Then, the inverse
kinematics problem is defined as finding the control variables θ (t)
corresponding to any given trajectories r(t). Unfortunately, due to
nonlinear property of f (·), it is usually impossible for us to find
analytical solution of f −1. Therefore we cannot get the analytical
solution of θ (t) through f −1(r(t)).

Thus, the inverse kinematics problem is generally solved at the
velocity level. Differentiating (32) with respect to t , we obtain the
relationship between velocity ṙ(t) and θ̇ (t):

J(θ (t))θ̇ (t) = ṙ(t), (33)

where J(θ ) ∈ Rm×n is the Jacobian matrix defined as J(θ ) =

∂ f (θ )/∂θ and θ̇ (t) ∈ Rn is the joint velocity. Because m < n in
the redundant manipulator, (33) obviously have infinite number
of solutions.

One solution to (33) is to use the pseudoinverse of J(θ ) which
is widely adopted by current research. Generally, pseudoinverse
type solution is formulated as minimum velocity norm (MVN)
form [28]:

θ̇ (t) = J+(t)(ṙ(t) + λb(r(t) − f (θ ))),

where J+(t) = JT(t)(J(t)JT(t))−1
∈ Rn×m denotes the right Moore–

Penrose inverse of J(t), and λb > 0 ∈ R is the feedback gain
used to ensure the precision of the end-effector position. Now,
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Fig. 5. Positioning result and top view of ellipse-path tracking task using the SFTZNN2. (a) Difference between the ellipse path and the actual end-effector position.
(b) Top view of the whole tracking motion process.
Fig. 6. End-effector and joint parameters together with some of their errors when accomplishing the ellipse-path tracking task. (a) Position error. (b) Joint velocity
rror. (c) Joint angle. and (d) Joint velocity.
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e apply our ZNN model (5) to such a MVN scheme. That is, we
se the following dynamics to obtain J+(t):

Ẋ(t)J(t)JT(t) + X(t)
(
J̇(t)JT(t) + J(t)J̇T(t)

)
= J̇T(t) − γ F

(
X(t)J(t)JT(t) − JT(t)

)
.

6.2. Simulation based on three-link planar manipulator

According to the mechanical structure of the three-link planar
robot manipulator, its Jacobian matrix J(θ ) can be obtained as
follows:

J =

[
−s1 − s2 − s3 −s2 − s3 −s3

]
,
c1 + c2 + c3 c2 + c3 c3

10
where we set the length of each link li, i = 1, 2, 3 as 1 m, with
si = sin(

∑i
j=1 θj) and ci = cos(

∑i
j=1 θj). In addition, we set the

design parameter γ = 1, and λb = 1. The duration is set as 10 s,
and the initial joint angle being set as θ (0) = [π/6, π/9, π/12].

The desired path of the end-effector is an ellipse path and
he simulation results are shown in Figs. 5–6. Fig. 5 illustrates
hat the end-effector tracks the expected ellipse-path sufficiently
lose. Fig. 6(a) and (b) shows that the positioning/velocity errors
etween the actual path and the expected path is at the order of
0−7 m and 10−8 m. Such a magnitude is clearly usable in real
orld applications. Besides, it can be observed from Fig. 6(c) and
d) that the change of joint angle θ (t) and joint velocity θ̇ (t) is
mooth, which indicates our ZNN model (5) is very suitable for
uch engineering applications.
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The simulation results of controlling a planar manipulator
using ZNN model (5) substantiates the superiority of SFTAF1
and SFTAF2. These observations also validate the effectiveness of
this neural network with activation function SFTAF1 and SFTAF2
when applied to control redundant manipulator.

7. Conclusion

Two simplified finite-time activation functions which called
the SFTAF1 and the SFTAF2 are exploited to modify zero neural
network (ZNN) for solving the pseudoinverse of time-varying
matrix in real time. Different from traditional activation functions
like the linear function and the power-sigmoid function, SFTAF1
and SFTAF2 make ZNN achieve finite-time convergence rather
than the exponential convergence. That is, the SFTAF1 and SFTAF2
activated ZNN models (called the SFTZNN1 and the SFTZNN2) are
able to obtain the exact solution of the time-varying matrix pseu-
doinverse within an certain amount of time. Furthermore, it has
been theoretically validated that the SFTZNN1 and SFTZNN2 mod-
els possess superior convergence and robustness performance,
with simpler structure when compared with the Sbp function.
The numerical verifications demonstrate the theoretical analysis,
high accuracy and superiority of the SFTZNN1 and SFTZNN2 mod-
els. In addition, a successful application of the SFTZNN2 model
to control a three-link planar is also presented. Future work will
be accelerating the SFTZNN1 and SFTZNN2 models to fixed-time
convergence when solving time-varying matrix pseudoinverse,
and further enhance robustness of such two ZNN models in
presence of different types of noises.
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