
Neural Networks 152 (2022) 407–418

p
c
S
D
s
2
r
d
p
p
u
t
o
n
t

(
l

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

LAP: Latency-aware automated pruningwith dynamic-based filter
selection
Zailong Chen a,∗, Chubo Liu a, Wangdong Yang a, Kenli Li a, Keqin Li b
a College of Information Science and Engineering, Hunan University, Hunan 410082, China
b Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

a r t i c l e i n f o

Article history:
Received 20 October 2021
Received in revised form 20 February 2022
Accepted 2 May 2022
Available online 10 May 2022

Keywords:
AutoML
Channel pruning
Model compression and acceleration
Reinforcement learning

a b s t r a c t

Model pruning is widely used to compress and accelerate convolutional neural networks (CNNs).
Conventional pruning techniques only focus on how to remove more parameters while ensuring model
accuracy. This work not only covers the optimization of model accuracy, but also optimizes the model
latency during pruning. When there are multiple optimization objectives, the difficulty of algorithm
design increases exponentially. So latency sensitivity is proposed to effectively guide the determination
of layer sparsity in this paper. We present the latency-aware automated pruning (LAP) framework
which leverages the reinforcement learning to automatically determine the layer sparsity. Latency
sensitivity is used as a prior knowledge and involved into the exploration loop. Rather than relying
on a single reward signal such as validation accuracy or floating-point operations (FLOPs), our agent
receives the feedback on the accuracy error and latency sensitivity. We also provide a novel filter
selection algorithm to accurately distinguish important filters within a layer based on their dynamic
changes. Compared to the state-of-the-art compression policies, our framework demonstrated superior
performances for VGGNet, ResNet, and MobileNet on CIFAR-10, ImageNet, and Food-101. Our LAP
allowed the inference latency of MobileNet-V1 to achieve approximately 1.64 times speedup on the
Titan RTX GPU, with no loss of ImageNet Top-1 accuracy. It significantly improved the pareto optimal
curve on the accuracy and latency trade-off.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Convolutional neural networks (CNNs) have demonstrated ca-
abilities comparable to or even surpassing humans in many
omputer vision tasks, such as classification (He, Zhang, Ren, &
un, 2016; Szegedy et al., 2015), detection (Girshick, Donahue,
arrell, & Malik, 2014; Ren, He, Girshick, & Sun, 2015), and
egmentation (Chen, Papandreou, Kokkinos, Murphy, & Yuille,
014; Long, Shelhamer, & Darrell, 2015). However, CNN is noto-
ious for its huge compute and storage requirements, making it
ifficult to integrate it into some mobile applications, e.g., smart
hones or wearable devices. LeCun, Denker, and Solla (1990)
roposed that neural networks have high redundancy, and the
nimportant structures can be safely removed without damaging
he model performance. This makes it possible to deploy CNN
n resource-constrained devices. Hereafter, many effective tech-
iques emerged in the field of model compression and accelera-
ion, which are mainly divided into the following four categories:

∗ Correspondence to: Hunan University, Changsha, Hunan 410082, China.
E-mail addresses: chenzl@hnu.edu.cn (Z. Chen), liuchubo@hnu.edu.cn

C. Liu), yangwd@hnu.edu.cn (W. Yang), lkl@hnu.edu.cn (K. Li),
ik@newpaltz.edu (K. Li).
ttps://doi.org/10.1016/j.neunet.2022.05.002
893-6080/© 2022 Elsevier Ltd. All rights reserved.
parameter pruning and quantization (Han, Mao, & Dally, 2015; Wu,
Leng, Wang, Hu, & Cheng, 2016), low-rank factorization (Denton,
Zaremba, Bruna, LeCun, & Fergus, 2014; Jaderberg, Vedaldi, &
Zisserman, 2014), transferred/compact convolutional filters (Shang,
Sohn, Almeida, & Lee, 2016; Szegedy, Ioffe, Vanhoucke, & Alemi,
2016), and knowledge distillation (Hinton, Vinyals, & Dean, 2015;
Romero et al., 2014).

In particular, among model compression technologies, filter
pruning aims to abandon the least important filters in CNNs to
trade accuracy for latency improvements. It has been proven
to be an effective technique and can be divided into two main
categories: (1) designing hand-crafted heuristics to determine the
pruning policy; (2) using AutoML to search for the optimal sub-
structure. Different layers of CNN have different redundancy, and
the filters in a layer also have unequal importance. These make
filter pruning face the following two core challenges: (1) how
to determine the compression ratio for each layer? (2) how to
choose the filters that should be pruned in a layer?

Previously a few researchers have developed alternative ap-
proaches to meet the first challenge, including handcraft-based
policies (Azarian, Bhalgat, Lee, & Blankevoort, 2020; Lee, Park,
Mo, Ahn, & Shin, 2020) and automation-based strategies (He, Lin,

et al., 2018; Zhong, Ding, Guo, Han, & Wang, 2018). However,

https://doi.org/10.1016/j.neunet.2022.05.002
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.05.002&domain=pdf
mailto:chenzl@hnu.edu.cn
mailto:liuchubo@hnu.edu.cn
mailto:yangwd@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.neunet.2022.05.002


Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418

o
(
h
i
t
r
c
2
m
a
r
s
n
o
m
s
o
a
i
h
t
t
a
d
o
T
a
a
d
r

Fig. 1. (a) Different layers have different proportions (bar) of the overall FLOPs and different latency sensitivity (line) in VGG-19 (Simonyan & Zisserman, 2014).
(latency sensitivity is normalized into [0, 1]. Pruning a filter in the 2nd convolutional layer yields about 47.5 times FLOPs reduction than that of the 16th convolutional
layer.) (b) Multiple search results for VGG-19 on CIFAR-10 (Krizhevsky, Hinton, et al., 2009) under 50% overall sparsity. Searching through reinforcement learning
and obtaining different sub-networks with similar accuracy but different FLOP counts.
such methods are all accuracy-oriented. They only consider the
different accuracy sensitivity of different layers but ignore their
unequal sensitivity to the latency during determining the layer
sparsity. Both the accuracy and latency of CNNs can affect the
application performance, e.g., mobile devices require high model
accuracy and put quite emphasis on processing speed and power
consumption. Lower latency means faster inference speed and
lower energy consumption, which affect user experience and
battery life, respectively.

Input size, kernel size, number of input channels, and number
f output channels all affect the count of floating-point operations
FLOPs) of a layer. This results in that different layers tend to
ave different latency contributions to the model. As shown
n Fig. 1(a), shallow layers account for a larger proportion of
he overall FLOPs, thus imposing greater sparsity on them can
educe more FLOPs. However, according to the empirical poli-
ies (Li, Qian, Jiang, Lu, & Tang, 2018; Morcos, Yu, Paganini, & Tian,
019), pruning the filters in the shallow layer can cause more
odel accuracy loss than that of the deep layer. Therefore, the
ccuracy-oriented pruning approaches may output suboptimal
esults for model latency. As demonstrated in Fig. 1(b), multiple
earches under the same model size constraint yield several sub-
etworks with similar accuracy but different structures. Because
f different latency sensitivity between layers, different structures
ean unequal latency despite their parameter number being the
ame. Fig. 2 (Left) demonstrates the general production process
f using prior pruning approaches for finding the high-accuracy
nd low-latency sub-network of CNN. Step one, using a prun-
ng method to produce a large number of sub-structures with
ighest accuracy. Step two, comparing these results based on
he latency indicator (i.e., FLOPs or inference time) to pick out
he fastest one. This pruning-selecting process is quite inefficient
nd expensive. How to simultaneously optimize accuracy and
elay when designing compact models becomes an urgent multi-
bjective trade-off problem, and it has not yet been explored.
his multi-objective optimization is a bigger challenge and makes
lgorithm design exponentially more difficult. ‘‘In order to design
robust solution, it is also necessary to consider factors such as
isturbance influence, modeling errors, various uncertainties in

eal systems, and robustness and filtering techniques mentioned

408
in existing work (Tao, Li, Chen, Stojanovic, & Yang, 2020; Tao,
Li, Paszke, Stojanovic, & Yang, 2021; Xin et al., 2022; Xu, Li, &
Stojanovic, 2021) should also be considered. Human heuristics or
rule-based polices tend to require the domain expertise and have
a vast design space. Using such methods to solve this problem
is usually high cost, time consuming, labor exhaustive, and may
contribute to the suboptimal results. In this work, we would like
to automate this exploration process in an end-to-end manner by
a learning-based framework.

To this end, we present a latency-aware automated prun-
ing (LAP) framework, which leverages reinforcement learning to
automatically predict layer sparsity under arbitrary model size
constraint. Latency sensitivity is proposed in this work, which
represents the contribution of each layer to the latency. It only
incurs a small computational overhead and only needs to be
calculated once at the beginning of exploration. It acts as a prior
knowledge and is added to the feedback of the exploration pro-
cess along with the accuracy error. This can avoid balancing
the weights between targets when simultaneously optimizing
accuracy and latency. More importantly, it effectively prevents
multiple iterations of trail-and-error of using accuracy-oriented
methods to find the high-accuracy and low-latency model. Specif-
ically, for each layer, the RL agent receives the layer state, and it
then outputs the pruning ratio as the action. After all layers are
pruned, the network is finetuned for one more epoch. Then, both
the accuracy feedback and latency contribution are fed as the
reward to our RL agent. For the compression policy within each
layer, a novel filter selection algorithm is proposed. The dynamic
changes of filters are measured as their importance scores, and
those with least changes are pruned first. The principle behind
this algorithm is that the more active filter has more adaptability
and can compensate for the representation capability of pruned
filters. This filter selection method can effectively avoid the ex-
haustive search by AutoML-based selection approaches (Liu et al.,
2019; Yu & Huang, 2019) and the suboptimal results by static-
based selection manners (Li, Kadav, Durdanovic, Samet, & Graf,
2016; Lin et al., 2020). The effectiveness of our proposed frame-
work is demonstrated with extensive experiments using VGGNet,
ResNet, and MobileNet on CIFAR-10, ImageNet, and Food-101

datasets.



Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418

a

w
a
p

2

w
n
i
s

2

i
H
l
(
o
m

Table 1
Comparison of the pros and cons of various parameter pruning technologies.
Characteristics of parameter pruning technologies

Inter-layer Heuristics Learnable threshold (Azarian et al., 2020) ⧸1⃝ ⧸2⃝ ⧸3⃝,

Momentum (Dettmers & Zettlemoyer, 2019) ⧸1⃝ ⧸2⃝ ⧸3⃝,

Structure (Evci, Gale, Menick, Castro, & Elsen, 2020) ⧸1⃝ ⧸2⃝ ⧸3⃝.

AutoML LSTM (Zhong et al., 2018) ⧸1⃝ ⧸2⃝, Reinforcement learning (He,

Lin, et al., 2018) ⧸1⃝ ⧸2⃝, Binary search (Ding, Ding, Guo, Han,

& Yan, 2019) ⧸1⃝ ⧸2⃝.

Intra-layer Heuristics Feature maps (Lin et al., 2020; Wang, Zhou, Zhang, Bai, &
Zhou, 2018) ⧸4⃝ ⧸5⃝ ⧸6⃝, ℓp-norm (He, Kang, Dong, Fu, & Yang,

2018; Li et al., 2016; Zhuo, Qian, Fu, Yang, & Xue, 2018) ⧸4⃝
⧸5⃝, Geometric median (He, Liu, Wang, Hu, & Yang, 2019) ⧸4⃝
⧸5⃝.

AutoML Greedy slimming (Yu & Huang, 2019) ⧸5⃝ ⧸6⃝, Evolutionary

algorithm (Liu et al., 2019) ⧸5⃝ ⧸6⃝.

Main characteristics of this paper

Inter-layer
1⃝ End-to-end production process ✓
2⃝ Considering the latency sensitivity of each layer ✓
3⃝ No need of domain expertise ✓

Intra-layer
4⃝ Accurate filter selection ✓
5⃝ Considering the dynamic changes of filters ✓
6⃝ No time-consuming filter selection process ✓
b
p
l
b
p
e
t
i
o
e
r

2

w
H
m
t
T
t
s
f
t
l
t
(
a
m
t
c
e
d
t

The main contributions and differences of this paper are listed
s follows.

• Latency-Aware: The different FLOPs proportions between
layers in CNN are shown and analyzed. In addition, latency
sensitivity is first proposed and involved into the design of
high-performance compact models.

• Automation: We present an automated framework for
model compression, which searches the sub-network with
better accuracy and latency in an end-to-end manner. It
frees the human labor from exploring the huge design space
and expensive production process.

• Filter Selection: A simple yet valid algorithm is offered,
which takes the dynamic changes of filters into account
during determining the important filters. An effective filter
regrowth strategy is also provided to achieve more accurate
filter selection.

This paper is organized as follows. Section 2 introduces related
ork. Section 3 introduces the methodology. Section 4 evalu-
tes the effectiveness of our framework. Section 5 concludes the
aper.

. Related work

Filter pruning is one of the model compression technologies,
hich aims to compress and accelerate CNNs at the cost of
egligible accuracy loss (summarized in Table 1). It can be divided
nto two categories: inter-layer-based policy and intra-layer-based
trategy.

.1. Inter-layer-based policy

This policy aims to determine the sparsity ratio of each layer
n CNN and can be divided into two types of research methods.
euristic-based approach is one of them, which needs human
abor to design hand-crafted rules. For example, (1) Azarian et al.
2020) proposed an algorithm, which learns the pruning thresh-
ld of each layer via gradient descent. (2) Dettmers and Zettle-
oyer (2019) calculated the normalized momentum of every
409
layer as their importance scores. (3) Evci et al. (2020) computed
the pruning ratio of each layer based on their structure parame-
ter. Because this type of techniques tends to suffer from a huge
design space and require domain expertise, leading to suboptimal
results, many researchers have turned their eyes to the AutoML-
ased methods, which can automatically find the compression
olicy for each layer. For instance, (1) Zhong et al. (2018) applied
ong short-term memory (LSTM) to predict which layers can
e pruned. (2) He, Lin, et al. (2018) automated the exploration
rocess of layer sparsity via reinforcement learning. (3) Ding
t al. (2019) presented an approach to simultaneously search
he filter numbers that need to be pruned on multiple layers
n a binary search manner. However, aforementioned methods
nly focus on the accuracy sensitivity of layers, leading to an
xpensive pruning-selecting production process and suboptimal
esults when faced multiple design objectives.

.2. Intra-layer-based strategy

The technique in this category is to select unimportant filters
ithin a layer to prune, which also has two research directions.
euristic-based: (1) Lin et al. (2020) applied the rank of feature
aps to guide the filter selection. (2) Wang et al. (2018) searched

he key filters by employing subspace clustering on feature maps.
hese methods are relatively compute-consuming as they select
he filters based on feature maps which tend to have a large
ize. Therefore, many researchers set out to design more efficient
ilter pruning methods. For instance, (3) Li et al. (2016) calculated
he ℓ1-norm of filters as their importance scores and pruned the
east important ones. (4) The ℓ2-norm of filters are represented as
heir importance in He, Kang, et al. (2018) and Zhuo et al. (2018).
5) He et al. (2019) computed the geometric median in a layer
nd pruned the filters closest to this. Nevertheless, the methods
entioned above are all based on the static characteristics of

he network and ignore the importance of the filter’s dynamic
hanges, which may result in the loss of key information. For
xample, two filters with the same ℓp-norm may have opposite
irections. Static-based methods may not be able to identify
he adaptability of the filter when the network is pruned and



Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418
Fig. 2. Overview of our method. Left: Our method replaces the expensive pruning-selecting process of the general production of compact models. Middle: Form
layer-adaptive sparsity as a reinforcement learning problem. Our agent process a pre-trained CNN in a layer-by-layer manner. it receives the state si from layer Li
and then outputs a pruning ratio pi as the action a. After the pruned network is finetuned, the combination of accuracy error and latency sensitivity is fed to our RL
agent as the reward. Right: When the RL agent outputs the pruning ratio pi of layer Li , the adjusted cosine similarity (ACS) of the filters in this layer are calculated
as their importance. The least important filters are pruned first.
t
s
o

becomes incomplete. Moreover, a few AutoML-based pruning ap-
proaches have been proposed. For example, (1) Yu and Huang
(2019) proposed to train a slimmable network and greedily slim
the layer with minimal accuracy drop. (2) Liu et al. (2019) trained
a meta network and used an evolutionary procedure to search the
least important channels. However, exhaustively searching the
least important filters in a network by AutoML-based methods
is computationally prohibitive. Considering a network with ten
layers and each layer contains 64 channels. Under a uniform
50% pruning ratio, the possible combination of pruning could be
(C32

64 )
10, which is an intolerable search space.

2.3. Discussion

To this end, for the layer-adaptive sparsity, our framework
automates this exploration process and takes the latency sensi-
tivity ignored by the previous works into account. It can search
the compression ratio of each layer in an end-to-end manner
and better trade off the accuracy and latency. In terms of the
compression policy within a layer, this work focuses on the
dynamic-based filter selection. The filter’s dynamic changes that
overlooked by other heuristics are measured, and the least active
ones are pruned according to their importance scores under the
pruning ratio given by our RL agent.

3. Methodology

We model the exploration of the layer sparsity as a rein-
forcement learning problem, and propose a new filter selection
method which rank the filters by calculating their adjusted co-
sine similarity (ACS) during the search process (Fig. 2). In our
framework, the actor–critic model with the agent of deep deter-
ministic policy gradient (DDPG) (Lillicrap et al., 2015) is applied to
provide the action: pruning ratio of each layer. The combination
of accuracy error and latency contribution is used as the reward
to search the optimal compression policy. The details of our
framework are described below.

3.1. Preliminary

CNN can be represented by the trainable weights
W=

{
Wi

∈ ROi×Ii×Ki×Ki , 1 ≤ i ≤ l
}
, where Wi is the connection

weights of the ith weighted layer, which connects the layer L
i
410
and layer Li+1. Oi and Ii are the number of output channels and
he number of input channels for layer Li. Ki represents the kernel
ize and l is the number of the weighted layers. The shapes
f input tensor U and output tensor V are Ii × Hi × Wi and

Oi × Hi+1 × Wi+1, respectively. The convolutional operation and
FLOPs related calculation of the ith layer can be represented as:

Vi
j = F i

j × U for 1 ≤ j ≤ Oi, (1)

Ri
f = 2HiWi(IiK 2

i + 1) + 2Hi+1Wi+1K 2
i+1Oi+1 (2)

where F i
j ∈ RIi×Ki×Ki and Vi

j denote the jth filter and the jth
output feature map of the ith layer, respectively. Wi consists of{
F i

j , 1 ≤ j ≤ Oi
}
. Ri

f is the number of FLOPs reduction of pruning
a filter in the ith convolutional layer. Of note is that removing
output channel in layer Li will lead to the reduction of input
channel in layer Li+1.

3.2. Observation (state space)

Our agent acts on the network layer by layer. We use the
same state space for every layer. For each layer Li, the state si

is formulated as:

(i,N, I,O,H,W , stride, K , Lis,Nparams, ai−1) (3)

where i is the layer index, the dimension of the filter is I ×K ×K ,
and the input size is I × H × W . The number of all weights in
layer i are I × O × K × K . Lis denotes the latency sensitivity of
the ith layer, which is normalized into [0, 1] by the Ri

f in Eq. (2).
Nparams is remaining parameter number of layer Li. ai−1 denotes
the action from the last time step. The agent can distinguish one
convolutional layer from another by these states.

In addition, our agent only needs to know how much accuracy
loss and FLOPs reduction the network incurs in each iteration of
the optimization process. The accuracy of the network is validated
at the end of each epoch and fed back directly to the agent. And
the FLOPs reduction of layer Li can be computed by multiplying
its pruning ratio by Lis. These essential features consist the state
space.



Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418

e
s
T
e

3

d
m
d
I
l
t
a
t
a
m
2

3

b
t
l
d
t
l
s
c
t
l
c
M
f
c
m

F

e

Fig. 3. Overview of the calculation of ACS, pruning, adaptation, and regrowth. At the first of kth epoch, the ACS of the filters in every weighted layer between two
pochs are measured as their importance evaluation. Then the filters are ranked by the ACS (red dotted rectangle) and the smaller ones (gray dotted circle) are
elected to be zeroed (black dotted cuboid). After pruning, the network is finetuned for one epoch to recover the performance. Then the pruned filters are regrowed.
his operation is performed at the beginning of the (k+1)-th epoch. It reinitializes the pruned filters to their unpruned values for the next round of importance
valuation of filters (i.e., 2nd and 4th filters for (k+1)-th epoch are regrowed from zero to their values for kth epoch).
t
t
c
v
l
o
a
r

f
w
g
f

f
n
v
d
r

o
D
n
r
a
u
n
s
d

3

(
t
(
t
g
i
t
t

s
i
s
f
o

.3. Action space

‘‘Model compression is quite sensitive to the sparsity ratio, and
iscrete and coarse-grained action spaces may result in subopti-
al results. If a fine-grained action space is used, the number of
iscrete actions explodes as the network gets deeper and deeper.
t is difficult to explore effectively in such a large action space (Lil-
icrap et al., 2015). Furthermore, the discretization departs from
he relative order, e.g., 10% sparsity is more aggressive than 20%
nd even more aggressive than 30%. Therefore, we utilize a con-
inuous action space a ∈ [0, 1] to achieve more fine-grained and
ccurate compression’’. By limiting the action space, the preset
odel size constraint can be accurately achieved (He, Lin, et al.,
018).

.4. Filter selection

Adaptability of filter. Under the action a (pruning ratio) given
y our agent, we measure the dynamic changes of filters in
he corresponding layer as their importance scores. Then the
east important ones are pruned first (Fig. 3). Because euclidean
istance can only measure the distance between data but not
he difference in their directions. On the contrary, cosine simi-
arity distinguishes the difference from the direction, and is not
ensitive to the magnitude. It is necessary to use a metric that
an effectively capture changes in direction and magnitude, and
he ACS is an ideal choice. Its computational complexity is also
ow, thus bringing about negligible time overhead. In order to
ompute the filters’ ACS, Wi is reshaped into a new weight matrix

i with dimension [Oi, Ii × Ki × Ki], where Oi is the number of
ilters, Ii × Ki × Ki is the number of weights of a filter. Without
onfusion, F i is still used to denote the filter vector in Mi weight
atrix during calculating the ACS. Specifically,

¯ ik =

∑Oi
j=1 F

i
j,k−1 +

∑Oi
j=1 F

i
j,k

2Oi
(4)

F i
j = F i

j − F̄ i, (5)

where F i
j,k−1 denotes the jth filter of layer Li for the (k−1)-th

poch. F̄ i is the mean of the 2Oi filters in layer Li for the (k−1)-
th and kth epochs. Then, each filter in Mi

k−1 and Mi
k minuses F̄ i

(see Eq. (5)). This is the adjusted step of ACS. Next, the ACS of
each filter is calculated, details are shown below:

S i
∈ ROi =

{
Ci
j,k = 1 −

F i
j,k−1F

i
j,k

i i , 1 ≤ j ≤ Oi

}
, (6)
∥Fj,k−1∥ ∥Fj,k∥

411
where Ci
j,k is the ACS of the jth filter in layer Li between the (k−1)-

h epoch and the kth epoch, using one minus the ACS is to fit
he nature definitions of similarity, that is, when a filter has no
hange, it is zero, and a filter with larger changes has a larger
alue. S i consists of the ACS of all filters in layer Li. The filter with
arger ACS is more active and more adaptable to the destruction
f the network structure. When the network is pruned, more
ctive filters can quickly make adjustments to compensate for the
epresentation capabilities of the pruned filter.

Pruning. In line with the aforementioned understanding, such
ilters with smaller ACS should be pruned in preference to those
ith larger ACS. Specifically, according to the pruning ratio pi
iven by our agent, Oipi unimportant filters in layer Li are selected
or pruning, i.e., the gray filters in Fig. 3.

Adaptation. After all pruning steps, the network is finetuned
or one more epoch to adapt the remaining filters to the pruned
etwork (see the adaptation step of Fig. 3). After this step, the
alidation accuracy of the pruned network can be obtained to
etect whether the selected filters can effectively recover the
epresentation ability of the model.

Regrowth. The reinforcement learning framework needs a lot
f search iterations before finding the reasonable layer sparsity.
uring the search, the importance of filters changes as the pruned
etwork is fine-tuned. Therefore, those pruned filters need to be
egrowed to participate in the next round of importance evalu-
tion. As shown in Fig. 3, we regrow the pruned filters to their
npruned state at the beginning of the (k+1)-th epoch. Then, the
etwork is retrained for one epoch to adjust all filters into a new
tate for selection. The effectiveness of this policy is empirically
emonstrated in Section 4.3.

.5. Reward function

Most of the existing methods use a single signal as the reward
e.g., accuracy, FLOPs, or model size), and they optimize a cer-
ain objective (e.g., accuracy or FLOPs) under another constraint
e.g., model size). However, this will lead to a local optima for
he preset objective, and cannot cover other equally important
oals. If the reward is designed to optimize multiple objectives,
t will involve balancing the weights of between targets, which is
ime-consuming and difficult. In addition, it is inevitable to find
he appropriate weights again when changing the search model.

As a result, to avoid local optima and weight design, latency
ensitivity is introduced as a prior knowledge in this work, and
t is involved into the exploration loop to guide the efficient
earch. After the adaptation step and before the regrowth step of
ilter selection, the validation accuracy of the pruned network is
btained. As we have already imposed the model size constraint



Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418

b
t
t
e
f

‘

m
d
e
i
0
i
o
t
C
c

3

a
t
L
t
r
i

p

w

w
t
a
n
t

t
Q

Q

a

L

i
t
m
t
r

4

i
e
e
a
c
f

1
p

y limiting the action space, the reward is defined to be related
o both the accuracy and latency. The agent is encouraged to find
he better accuracy and latency by adjusting the sparsity ratio of
ach layer. Driven by this, the reward function R is designed as
ollows:

‘R = −(Accorigin − Accprune) ×

l∏
i

Lis(1 − pi)" (7)

where Accorigin and Accprune are the Top-1 accuracy of original
odel and the pruned model after finetuning, respectively. pi
enotes the pruning ratio of layer Li. The latency sensitivity Ls of
ach layer can be obtained by normalizing their FLOPs reduction
n Eq. (2) into [0, 1]. The sensitivity equal to zero is modified to
.001. This reward function is sensitive to the accuracy feedback,
t also provides an incentive for FLOPs reduction. RL agent can
btain more positive feedback when it gives high pruning ratios
o layers with high latency sensitivity. The latency sensitivity of
NN only needs to be calculated once, thus bringing negligible
ompute overhead.

.6. Agent

As demonstrated in Fig. 2, we apply the DDPG, an off-policy
ctor–critic algorithm for continuous control, in our RL agent to
ackle the compression ratio. This agent receives a state si of layer
i and then outputs a pruning ratio as action ai. Then it moves
o the next layer Li+1 for processing. After pruning all layers, the
eward including both the accuracy error and latency sensitivity
s fed to the agent.

During the exploration noise process, the following stochastic
rocess is used and shown below:
′ (si) ∼ Ntrunc

(
w

(
si | θw

i

)
, σ 2, 0, 1

)
(8)

here Ntrunc(µ, σ , a, b) denotes the truncated normal distribu-
ion, and w is model weights. The noise σ is initialized to 0.5
nd is decayed exponentially after each episode. The truncated
ormal distribution is used here to prevent excessive noise and
o limit it to the [0, 1] range.

A variant form of Bellman’s Equation is employed, where each
ransition in an episode is (si, ai,R, si+1). During the update, the
-function is:

ˆ i = Ri − B + γ × Q
(
st+1, w (st+1) | θQ )

(9)

nd the loss function is presented as:

=
1
N

N∑
t=1

(
Q̂t − Q

(
st , at | θQ ))2

(10)

where N represents the number of steps in this episode, and the
baseline reward B, defined as an exponential moving average of
the previous rewards, is to reduce the variance of the gradient
estimation. The discount factor γ is set to 1 to prevent excessive
emphasis on short-term rewards (Baker, Gupta, Naik, & Raskar,
2016).

4. Experiments

The DDPG (Lillicrap et al., 2015) agent has an actor network
and a critic network. They both use the same network architec-
ture: consisting of two hidden layers, each with 300 units. The
actor network has an additional sigmoid layer to project the ac-
tions into [0,1]. Note that the maximum/minimum sparsity ratios
amax/amin can be set as an other value to accelerate the search
process, e.g., 0.8 for amax and 0.2 for amin. Extensive experiments
are conducted to show the effectiveness and efficiency of our
framework.
 m

412
Datasets and Baselines. Experiments are performed on the
datasets of CIFAR-10 (Krizhevsky et al., 2009), Food-101 (Bossard,
Guillaumin, & Van Gool, 2014), and ImageNet (Deng et al., 2009).
The performance of different algorithms is investigated on widely-
used CNN models, including VGGNet (Simonyan & Zisserman,
2014) with plain structure, ResNet (He et al., 2016) with residual
blocks, and MobileNet (Howard et al., 2017) with depth-wise and
point-wise structures.
Configuration. We employ the deep learning framework Py-
torch (Paszke et al., 2017) to implement the proposed LAP frame-
work. All experiments are executed on four NVIDIA TITAN RTX
GPUs. According to previous experience (Ding et al., 2019; Luo
& Wu, 2020; Luo, Wu, & Lin, 2017) we only prune the internal
layers (except for the layers directly added to the feature maps
in each block) on ResNet. We keep the Batch Normalization (Ioffe
& Szegedy, 2015) layers during pruning instead of merging them
into convolutional layers. The maximum sparsity ratios amax for
all layers are set to 0.85, and the amin is set to 0.2. Note that
modifying the amax and amin is only for faster search, one can
simply use amax = 1 which also produces similar results. We use τ

= 0.01 for the soft target updates and train the network with 64 as
batch size and 2000 as replay buffer size. Our agent first explores
100 episodes with a constant noise σ = 0.5, and then exploits 300
episodes with exponentially decayed noise σ ’’.

Evaluation Protocols. We employ commonly used protocols,
.e., using model accuracy, required FLOPs count, and inference
ime to evaluate algorithm effectiveness, computational require-
ents, and model performance, respectively. In order to evaluate

he execution efficiency of our algorithm, the execution time
equired to optimize each network is presented.

.1. Results on CIFAR-10

The performance of our framework is evaluated against two
nter-layer-based policies (a handcraft-based method RigL Evci
t al., 2020 and an automation-based technique AMC He, Lin,
t al., 2018) on some popular CNNs, including VGG-16, ResNet-56,
nd MobileNet-V1. Several experiments with channel pruning are
onducted on CIFAR-10. These two techniques are introduced as
ollows:

• RigL (handcrafted) (Evci et al., 2020). This heuristic-based
method employs the structure parameter to calculate the
layer sparsity, detail is shown below:

sl = 1 −
nl−1

+ nl
+ wl

+ hl

nl−1 × nl × wl × hl (11)

where sl and nl are the pruning ratio and the neuron number
of layer Li, respectively. And wl and hl denote the width
and height of the convolutional kernel. This method allo-
cates higher sparsity to the layers with more parameters.
For pruning policy within a layer, the weight’s magnitude
is used as importance score. Since this approach aims at
weight pruning while our framework focus on filter pruning,
we modify the weight selection into the filter selection, that
is to rank the filters based on the sum of magnitude of their
weights.

• AMC (automated) (He, Lin, et al., 2018). This work explores
the pruning ratio of each layer via reinforcement learning,
and selects the unimportant filters in a layer based on the
comparison of their magnitudes.

Latency-Aware Detection. We conduct experiments on VGG-
6 and compare our approach with five different compression
olicies under 50% overall sparsity ratio (see Fig. 4). It is worth
entioning that the gap of accuracy loss caused by different



Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418

p
a
l
o
t
s
c
l
p
p
c
5
l
A
l
A
f
m
s

M
c

Fig. 4. Comparisons of pruning policies for VGG-16 (Simonyan & Zisserman, 2014) at 50% overall sparsity ratio on CIFAR-10 (Krizhevsky et al., 2009). The compact
model produced by our method is superior to other strategies both in accuracy and latency.
Table 2
Pruning method comparison of VGG-16, ResNet-56 (He et al., 2016), MobileNet-V1 (Howard et al., 2017) on CIFAR-10. Infer represents
the inference time of pruned models. ExeT is the execution time required to compress the network. M means million (106), and
GPUh indicates how many hours the optimization process takes when using one GPU.
Network Method Top1-Acc FLOPs Infer (ms) ExeT (GPUh)

VGG-16
(91.26%,
313M,
2.82 ms)

0.5 × base 86.27% 81.40M (26.00%) 0.73 –
RigL (Evci et al., 2020) 89.14% 84.21M (26.90%) 0.76 –
AMC (He, Lin, et al., 2018) 89.73% 79.04M (25.25%) 0.71 –
Ours 89.95% 75.01M (23.96%) 0.68 4.43

ResNet-56
(93.26%,
124.9M,
1.60 ms)

0.5 × base 90.47% 31.40M (25.14%) 0.40 –
RigL (Evci et al., 2020) 91.05% 32.62M (26.11%) 0.42 –
AMC (He, Lin, et al., 2018) 91.17% 30.34M (24.29%) 0.39 –
Ours 91.72% 29.01M (23.22%) 0.37 10.59

MobileNet-V1
(91.58%,
46M,
5.69 ms)

0.75 × base 88.07% 26.50M (57.60%) 3.28 –
RigL (Evci et al., 2020) 90.03% 27.53M (59.83%) 3.40 –
AMC (He, Lin, et al., 2018) 91.17% 25.83M (56.14%) 3.19 –
Ours 91.31% 24.39M (53.01%) 3.02 6.84
0.5 × base 87.51% 12.10M (26.30%) 1.50 –
RigL (Evci et al., 2020) 89.42% 12.57M (27.32%) 1.55 –
AMC (He, Lin, et al., 2018) 89.82% 11.73M (25.49%) 1.45 –
Ours 90.09% 11.14M (24.21%) 1.38 7.15
methods cannot be clearly captured by using small pruning ratios.
In addition, some methods can severely damage the network
and cannot recover model performance under large pruning ra-
tios, such as deep and shallow policies, making it difficult for
evaluating the effectiveness and differences of several methods.
So a pruning ratio of 50% is used here. Note that uniform sets
runing rate for each layer uniformly, shallow (Li et al., 2016)
nd deep (He, Zhang, & Sun, 2017) prune shallow and deep
ayers respectively. Considering that fully-connected (FC) layers
ccupy about 89% of the model parameters but less than 1% of
he model FLOPs for VGG-16. Therefore, under a preset model
ize constraint, pruning too much or too little to FC layers will
ause huge fluctuations in the pruning ratio of convolutional
ayers. This makes it difficult to investigate the impact of different
runing methods on the model latency. For example, when the
runing ratio of FC layers is lower than 44%, even if all the
onvolutional layer parameters are removed, the overall sparsity
0% cannot be achieved. Therefore, here the pruning rate of FC
ayers is uniformly set to 50%. As illustrated in Fig. 4, our Latency-
ware framework can find the structure with better accuracy and
atency compared to other five policies. The model learned by
MC (He, Lin, et al., 2018) has high accuracy but is less latency-
riendly. RigL (Evci et al., 2020) tends to prune the layers with
ore parameters. Deep and shallow policies result in a relatively
erious accuracy loss.
Quick Sanity Check. Here we use VGG-16, ResNet-56, and

obileNet-V1 under different overall sparsity for a quick sanity
heck. We compare our framework with two inter-layer-based
413
policies: AMC (He, Lin, et al., 2018) and RigL (Evci et al., 2020).
Table 2 shows the effectiveness of different approaches. Our
framework LAP provides significantly better accuracy and la-
tency. Specifically, for VGG-16, under the overall sparsity 50%,
the pruned model obtained by LAP achieves a higher accuracy
(89.95% vs. 89.73% by AMC (He, Lin, et al., 2018), and 89.14%
by RigL Evci et al., 2020) and less FLOPs (75.01M vs. 79.04M by
AMC He, Lin, et al., 2018, and 84.21M by RigL Evci et al., 2020).
For ResNet-56 and MobileNet-V1, our framework also outputs
more accurate and fast compact models under different model
size constraints. Moreover, the inference time of each network
compressed by our method is significantly less than other ap-
proaches under different sparsities. And the time consumption
of our algorithm for the optimization process of each network is
also offered in Table 2. In addition, the experimental results show
that the automation-based method can find compact models with
higher performance compared to the heuristic-based approach.

4.2. Results on ImageNet

We also explore the performance of our framework for VGG-
16, ResNet-50, and MobileNet-V1 on ImageNet, and compare it
with AMC (He, Lin, et al., 2018), RigL (Evci et al., 2020) and two
global channel pruning techniques (Chin et al., 2020; Lee et al.,
2020) under different compression ratios. The pruning ratios of
25% and 50% are utilized to check the sensitivity of algorithm
outcomes to different sparsity. Here these two global pruning
techniques are briefly introduced:



Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418

n
A
i
f
f
R
b
a
A
b
a
5
s
m
p
a
t
p
l

Table 3
For comparison experiments on ImageNet, our method consistently outperforms other pruning techniques both in accuracy and
latency. M/B means million/billion (106/109), respectively.
Network Method Top1-Acc FLOPs Infer (ms) ExeT (GPUh)

VGG-16
(68.34%,
15.3B,
138 ms)

0.5 × base 61.25% 3.98B (26.01%) 35.90 –
RigL (Evci et al., 2020) 65.93% 4.14B (27.06%) 37.34 –
AMC (He, Lin, et al., 2018) 66.52% 3.86B (25.22%) 34.82 –
LAMP (Lee et al., 2020) 66.40% 3.89B (25.42%) 35.09 –
LeGR (Chin, Ding, Zhang, & Marculescu, 2020) 66.71% 3.87B (25.29%) 34.91 –
Ours 66.93% 3.66B (23.92%) 33.01 18.37

ResNet-50
(76.60%,
4.1B,
53 ms)

0.75 × base 74.80% 2.30B (56.10%) 29.73 –
RigL (Evci et al., 2020) 75.86% 2.39B (58.29%) 30.90 –
AMC (He, Lin, et al., 2018) 76.15% 2.23B (54.39%) 28.83 –
LAMP (Lee et al., 2020) 75.93% 2.26B (55.12%) 29.21 –
LeGR (Chin et al., 2020) 76.25% 2.28B (55.61%) 29.47 –
Ours 76.36% 2.12B (51.70%) 27.40 36.41

0.5 × base 72.00% 1.10B (26.82%) 14.22 –
RigL (Evci et al., 2020) 74.41% 1.14B (27.80%) 14.74 –
AMC (He, Lin, et al., 2018) 74.88% 1.07B (26.09%) 13.83 –
LAMP (Lee et al., 2020) 74.65% 1.08B (26.34%) 13.96 –
LeGR (Chin et al., 2020) 74.99% 1.06B (25.85%) 13.70 –
Ours 75.08% 1.01B (24.63%) 13.06 43.74

MobileNet-V1
(70.60%,
569M,
124 ms)

0.75 × base 68.40% 325M (57.11%) 70.83
RigL (Evci et al., 2020) 69.47% 338M (59.40%) 73.66 –
AMC (He, Lin, et al., 2018) 70.13% 315M (55.36%) 68.65 –
LAMP (Lee et al., 2020) 69.89% 318M (55.89%) 69.30 –
LeGR (Chin et al., 2020) 70.18% 317M (55.71%) 69.08 –
Ours 70.34% 301M (52.90%) 65.60 26.56
0.5 × base 63.70% 149M (26.18%) 32.47
RigL (Evci et al., 2020) 68.35% 155M (27.24%) 33.78 –
AMC (He, Lin, et al., 2018) 68.67% 144M (25.31%) 31.38 –
LAMP (Lee et al., 2020) 68.53% 145M (25.48%) 31.60 –
LeGR (Chin et al., 2020) 68.78% 144M (25.31%) 31.36 –
Ours 69.02% 138M (24.25%) 30.07 29.72
e
e
p
R

• LAMP (handcrafted) (Lee et al., 2020) is a magnitude-
based pruning algorithm that can learn a global rank of
all weights in a network. When obtaining the global rank,
the weights/channels with smallest scores are pruned until
the required global sparsity limit is met. This procedure is
equivalent to the methods of automatically selecting layer
sparsity. For a fair comparison, we modify the LAMP (Lee
et al., 2020) into a channel pruning, the sum of the weight
scores in the filter is calculated as its importance.

• LeGR (automated) (Chin et al., 2020). This approach sets a
weight pair (α−κ) at each layer to determine their sparsity,
and uses evolutionary algorithms to learn the optimal α −κ

pairs. The rank of the filters within layers is based on their
ℓ2-norm.

Different Compression Policies. We evaluate the effective-
ess of our LAP by comparing it with four prior art on ImageNet.
s shown in Table 3, LAP exceeds its counterparts in all aspects,
ncluding Top-1 accuracy and FLOPs reduction. More specifically,
or ResNet-50 and 75% overall sparsity, our framework outper-
orms other four methods both on accuracy (76.36% vs. 75.86% by
igL Evci et al., 2020, 76.15% by AMC He, Lin, et al., 2018, 75.93%
y LAMP Lee et al., 2020, and 76.25% by LeGR Chin et al., 2020)
nd FLOP count (2.12B vs. 2.39B by RigL Evci et al., 2020, 2.23B by
MC He, Lin, et al., 2018, 2.26B by LAMP Lee et al., 2020, and 2.28B
y LeGR Chin et al., 2020). In addition, for MobileNet-V1, our LAP
llows the pruned model to achieve 70.34% Top-1 accuracy and
2.90% FLOP counts of the original network, which significantly
urpass the results produced by other four methods by a large
argin. Under a more aggressive overall sparsity — 50%, LAP also
rovides more accurate and faster models for VGG-16, ResNet-50,
nd MobileNet-V1 against prior art. These results demonstrate
he superiority of our framework, which can learn the better
runing ratio for each layer to achieve the faster network with

ess accuracy loss under arbitrary model size constraint.

414
Inference Speedup. Recently, inference acceleration has drawn
a lot of attention both in industry and academia. By improving the
inference latency, not only the processing speed can be increased,
but also the energy consumption can be optimized. Therefore,
here we evaluate how much the inference speed of MobileNet-
V1 can be improved by our framework on ImageNet compared to
LAMP (Lee et al., 2020) and LeGR (Chin et al., 2020). As illustrated
in Fig. 5(a), our framework significantly improves the pareto
optimal curve of MobileNet on the accuracy and MAC trade-off,
and surpasses LAMP (Lee et al., 2020) and LeGR (Chin et al.,
2020). Specifically, LAP can reduce more FLOPs under similar Top-
1 accuracy than other two methods, e.g., 47.10% FLOPs reduction
(1-52.90%) vs. 44.29% by LeGR (Chin et al., 2020), and 34.45% by
LAMP (Lee et al., 2020) under about 70.20% Top-1 accuracy. As
shown in Fig. 5(b), the inference speed of MobileNet is greatly
improved by our framework. When compared with other two
methods, LAP better trades off the accuracy and latency. Under
the same Top-1 accuracy — 70.6%, inference time of the model
pruned by LAP is 76 ms. It allows unpruned MobileNet (125 ms)
to achieve approximately 1.64 times speedup.

4.3. Ablation study

To comprehensively understand our framework, extensive ab-
lation experiments are conducted on VGGNet, ResNet, and Mo-
bileNet with the dataset CIFAR-10, ImageNet, and widely used
fine-grained dataset Food-101, which contains 101,000 images
of 101 different food categories (75,750/25,250 images for train-
ing/test, respectively).

Detection of each key component. We further evaluate the
ffectiveness of each component in our framework by shi-
lding them separately and observe their impact on model
erformance. Extensive experiments are performed on VGG-16,
esNet-50, and MobileNet-V1. We compare our latency-aware



Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418

o
f
(

p
s
p
a

Fig. 5. (a) Comparisons of the accuracy and MAC trade-off among our framework, LeGR (automated) (Chin et al., 2020), LAMP (handcrafted) (Lee et al., 2020), and
riginal MobileNet-V1. Ours significantly outperforms other methods in the pareto optimal curve. (b) Comparisons of the accuracy and latency trade-off among our
ramework, LeGR (Chin et al., 2020), LAMP (Lee et al., 2020), and unpruned MobileNet-V1. LAP raises the pareto curve of MobileNet-V1 compared to other approaches.
Inference time are measured on NVIDIA TITAN RTX GPU).
Table 4
Evaluation of each component in our framework under different overall sparsity for VGG-16, ResNet-50, and MobileNet-V1 on ImageNet. Rewardacc and Rewardacc+lat
represent accuracy-oriented search protocol and latency-aware search protocol, respectively. The Top-1 accuracy and FLOP count of the pruned model are presented.
M/B means million/billion (106/109), respectively.
Sparsity Filter Selection VGG-16 ResNet-50 MobileNet-V1

Rewardacc Rewardacc+lat Rewardacc Rewardacc+lat Rewardacc Rewardacc+lat

25% Magnitude 67.90%(8.26B) 67.88%(7.79B) 76.15%(2.23B) 76.13%(2.11B) 70.13%(315M) 70.12%(302M)
ACS rank 68.12%(8.25B) 68.11%(7.80B) 76.38%(2.22B) 76.36%(2.12B) 70.34%(314M) 70.34%(301M)

50% Magnitude 66.52%(3.86B) 66.51%(3.65B) 74.88%(1.07B) 74.85%(1.01B) 68.67%(144M) 68.65%(138M)
ACS rank 66.95%(3.86B) 66.93%(3.66B) 75.10%(1.08B) 75.08%(1.01B) 69.04%(145M) 69.02%(138M)
strategy with accuracy-oriented policy and investigate the im-
provement brought by our dynamic-based importance evaluation
method (i.e., ACS) and the magnitude-based filter selection crite-
rion. From Table 4, It can be clearly observed that our latency-
aware strategy significantly brings about more FLOPs reduction
and ensures accuracy compared to the accuracy-oriented reward
policy. For example, for MobileNet-V1 at 50% density, our strategy
allows the model’s FLOPs to be reduced from 144M to 136M
under the magnitude-based filter selection, and from 145M to
138 under the ACS policy while maintaining the similar Top-1
accuracy. In addition, the filter selection guided by our ACS rank
can lead to higher model accuracy than the magnitude-based
policy, e.g., for MobileNet at 50% density, the Top-1 accuracy
is improved by our selection method from 68.67% to 69.04%
under the accuracy-oriented reward policy, and from 68.65% to
69.02% under our latency-aware strategy while the impact on the
latency is negligible. Therefore, our proposed search strategy can
find the more performance-friendly network structure, and our
filter selection criterion can guide more accurate intra-layer filter
pruning.

Different Filter Selection Criteria. There have been many
rior works proposed to identify the important filters. Our filter
election method is compared with two recently emerged ap-
roaches (He et al., 2019; Lin et al., 2020) to show its effectiveness
nd advantages. A brief summary of them is as follows:

• FPGM (He et al., 2019). This criterion calculates the geomet-
ric median of each layer, and measures the distance between
the geometric median and the filters as importance scores.
Those with the smallest distance will be removed first.

• HRank (Lin et al., 2020). The low-rank feature maps contain

less information, and thus pruning these part of feature

415
maps produces very little damage to the model perfor-
mance. Therefore, the average rank of feature maps is rep-
resented as the importance score of the filter that outputs
them in this criterion.

In order to compare these different selection criteria, we eval-
uate their performance on VGG-19 with the dataset CIFAR-10. The
network is trained from scratch with applying uniform pruning
(the same sparsity for each layer) and fine-tuning under different
overall sparsity (i.e., 10%, 20%, and 30%). The purpose of using
these three pruning ratios is to gradually evaluate the effect of
our filter selection method. Moreover, we further explore how
much pruning rate this algorithm can achieve while producing
model accuracy similar to other selection methods. Specifically, a
total of 80 epochs are performed, 1st–69th epochs are performed
for pruning, 70th–80th epochs are performed for fine-tuning, and
finally the compact model with the highest accuracy is obtained.
Each method is repeated 3 times, and the averaged result is
presented. For fair comparison, all experimental settings are kept
unchanged except for the filter selection method. In addition, the
accuracy of the unpruned network trained from scratch is used
as the baseline.

Fig. 6 shows the accuracy curves of different channel selec-
tion approaches. It can be clearly observed that our method
enables the pruned model to obtain consistently and significantly
higher accuracy compared with the other two methods under
various sparsity. This demonstrates that it is reasonable and ef-
fective to employ the dynamic change of filters to represent their
importance. Of note is that our method slightly improves the
accuracy at 10% and 20% overall compression ratios compared to
the baseline.

Fine-grained Dataset — Food-101. We also conduct experi-

ments for VGG-19, ResNet-18, 34, 50, and 101 on Food-101. As



Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418
Fig. 6. Performance comparison of different filter selection methods: the VGG-19 model pruned on CIFAR-10 under different overall compression ratios (i.e., 10%,
20%, and 30%).
Table 5
Pruning results of VGG-19 and ResNet-18/34/50/101 on Food-101.
Network Method Top-1% Top-1 acc. ↓(%) Top-5% Top-5 acc. ↓(%) FLOPs ↓(%) Parameters ↓(%)

VGG-19

VGG-19 73.95 – 91.36 – – –
FPGM (30%) (He et al., 2019) 70.48 3.47 89.91 1.45 50.8 43.7
HRank (30%) (Lin et al., 2020) 70.67 3.28 90.07 1.29 50.8 43.7
Ours (10%) 73.09 0.86 90.93 0.43 18.9 25.2
Ours (20%) 72.12 1.83 90.70 0.66 35.9 34.5
Ours (30%) 71.21 2.74 90.15 1.21 50.8 43.7
Ours (35%) 70.73 3.22 90.11 1.25 58.2 48.3

ResNet-18
ResNet-18 77.21 – 92.98 – – –
HRank (30%) (Lin et al., 2020) 73.86 3.35 90.17 2.81 41.8 36.2
Ours (30%) 74.32 2.89 90.42 2.56 41.8 36.2

ResNet-34
ResNet-34 78.41 – 93.21 – – –
HRank (30%) (Lin et al., 2020) 76.05 2.36 93.03 1.33 41.1 36.5
Ours (30%) 76.31 2.10 93.12 1.24 41.1 36.5

ResNet-50

ResNet-50 79.36 – 95.05 – – –
FPGM (30%) (He et al., 2019) 77.07 2.29 93.62 1.43 41.8 41.6
HRank (30%) (Lin et al., 2020) 77.04 2.32 93.04 2.01 41.8 41.6
Ours (10%) 79.03 0.33 94.48 0.57 15.2 15.2
Ours (20%) 78.14 1.22 93.95 1.10 28.6 29.0
Ours (30%) 77.35 2.01 93.91 1.14 41.8 41.6
Ours (34%) 77.11 2.25 93.56 1.49 52.9 51.7

ResNet-101
ResNet-101 80.03 – 95.42 – – –
HRank (30%) (Lin et al., 2020) 78.96 1.07 93.36 2.06 42.2 41.9
Ours (30%) 79.38 0.65 94.25 1.17 42.2 41.9
shown in Table 5, our selection method exceeds its counterparts
in all aspects, including Top-1 and Top-5 accuracy, as well as
FLOPs and parameters reduction. More specifically, for VGG-19
with the plain structure, our method removes 58.2% FLOPs and
48.3% parameters under 35% pruning ratio, while it only leads to
3.22% Top-1 and 1.25% Top-5 accuracy loss, obviously better than
FPGM (He et al., 2019) and HRank (Lin et al., 2020). In addition,
for ResNet with the residual block, our method also offers bet-
ter results. For instance, 52.9% FLOPs and 51.7% parameters for
ResNet-50 are reduced by our approach, only at the similar cost
of accuracy drop to FPGM (He et al., 2019) and HRank (Lin et al.,
2020) (2.25% Top-1 and 1.49% Top-5 losses), which surpasses
these two state-of-the-art methods. Moreover, when comparing
to HRank (Lin et al., 2020) for ResNet-101 at the 30% sparsity,
higher accuracy are observed, i.e., 79.38% Top-1 vs. 78.96% Top-
1 by HRank (Lin et al., 2020), 94.25% Top-5 vs. 93.36% Top-5
by HRank (Lin et al., 2020). Therefore, our method also achieves
consistent superiority over other filter selection criteria on the
fine-grained dataset.

ACS vs Adaptability. In this section, comparative experiments
are performed to study the relationship between the ACS and
the filter importance. Similar to the comparison experiments
of different filter selection criteria, the VGG-19 is trained from
scratch on CIFAR-10, and the filters with larger ACS are pruned
at different compression ratios. As shown in Fig. 7(a), under 10%
sparsity, the accuracy begins to decline from the 40th epoch and
cannot be recovered. In addition, when setting more aggressive
416
sparsity, the accuracy decreases earlier, i.e., the accuracy declines
from 8th epoch at 20% and 30% sparsity ratios. This proves that
the filters with larger changes have greater adaptability and are
more important.

Cosine Similarity (CS) vs Adaptability. In this evaluation, we
detect the relationship between the direction change of the filter
and its adaptability. Specifically, first, we calculate the cosine
similarity of the filter between different epochs. In this step, the
adjusted operation is canceled, i.e., Eq. (4) and Eq. (5) in Section 3.
Same as Eq. (6) in Section 3, using one minus the cosine similarity,
which makes it be zero when the filter has no direction change,
and the filter with larger change has larger value. Details are
illustrated as follows:

S i
∈ ROi =

{
Ci
j,k = 1 −

F i
j,k−1F

i
j,k

∥F i
j,k−1∥ ∥F i

j,k∥
, 1 ≤ j ≤ Oi

}
, (12)

where Ci
j,k is the cosine similarity of the jth filter in layer Li

between the (k − 1)-th epoch and the kth epoch, S i consists of
the cosine similarity of all filters in layer Li. F i

j,k is the jth filter of
layer Li for kth epoch.

Second, the filters with smaller cosine similarity within layers
are pruned under the same layer sparsity.

Fig. 7(b) shows that the model cannot achieve the accuracy
obtained by our method. Specifically, at 10% sparsity, the model
only achieves 87.52% top-1 accuracy (90.67% by ours). In addition,
the model pruned at 20% and 30% sparsity even cannot converge.



Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418

s
T

w
a

a
d
2
a
s
t
s
f
i
a
i
m
a
b
t
t
t
o

Fig. 7. Detecting the effect of different metrics of filter dynamic changes on filter selection. We train and prune VGG-19 from scratch on CIFAR-10 at different
parsity, i.e., 10%, 20%, and 30%. (a) The filters with larger ACS are selected to be pruned. (b) The filters with smaller cosine similarity (CS) are selected to be pruned.
he Top-1 accuracy of VGG-19 trained without pruning is the baseline (green diamond).
Table 6
Comparisons of Filter Regrowth Strategy for MobileNet-V1 on ImageNet.
Network Method Top1-Acc FLOPs

MobileNet
(70.6%, 569M)

0.75 × base 68.40% 325M (57.11%)
Mean-init 70.23% 303M (53.42%)
Gradient-init 70.28% 302M (53.07%)
Full-weight-init 70.26% 301M (52.90%)
Zero-init 70.28% 301M (52.90%)
Ours 70.34% 301M (52.90%)
0.5 × base 63.70% 149M (26.18%)
Mean-init 68.88% 139M (24.43%)
Gradient-init 68.91% 140M (24.60%)
Full-weight-init 68.94% 139M (24.43%)
Zero-init 68.96% 138M (24.25%)
Ours 69.02% 138M (24.25%)

The reason is that the cosine similarity cannot capture the overall
changes of the filter (including magnitude and direction) like ACS.
In addition, the filter cannot be compared with other filters in
the same layer, e.g., no matter how great the difference between
the magnitude changes of the two filters is, their changes in the
same direction result in the same cosine similarity. This leads
to the inability to accurately measure the adaptability of the
filters and compare their importance. Therefore, the filters with
larger adaptability may be pruned, and the remaining filters can-
not make up for the representation ability of the pruned filters,
leading to the model not being able to converge to the expected
accuracy.

These two findings demonstrate that the heuristic algorithm
e proposed is reasonable and effective for the filter selection,
nd can help us further understand CNNs.
Filter Regrowth Strategy. Previously many researchers

dopted the strategy of initializing the pruned weight to zero
uring parameter exploration (Evci et al., 2020; He, Kang, et al.,
018; Mostafa & Wang, 2019; Zhuo et al., 2018). Experiments
re conducted to evaluate the effectiveness of our filter regrowth
trategy with MobileNet-V1 on ImageNet. Here all experimen-
al settings are kept unchanged except for the filter regrowth
trategy in our LAP framework. Mean-init means that the pruned
ilters are initialized to the mean of all filters in a layer. Gradient-
nit is to use the accumulative gradients of the pruned filters
s the initial state of the next filter selection. Full-weight-init
nitializes the filter as the sum of its unpruned value and accu-
ulative gradients. Zero-init initializes the regrowed filter to zero
nd continues to update it. As demonstrated in Table 6, it can
e clearly seen that the effect of different regrowth strategies on
he model latency is negligible, but they will significantly affect
he model accuracy. Our method rewinds the pruned filters to
heir unpruned state, and outperforms other regrowth policies
n model accuracy under different model size constraints.
417
5. Conclusion and discussion

In this paper, we present latency-aware automated pruning
(LAP), an automated framework for filter pruning, which searches
for the layer sparsity under arbitrary overall model size con-
straint with the accuracy and latency feedback in an end-to-
end manner. Our framework can avoid suboptimal results of la-
tency and labor-consuming pruning-selecting production process
of compact high-performance models. For the compression policy
within a layer, we also offer a novel filter selection algorithm,
which captures the dynamic changes of filters as importance
scores. Compelling results have been demonstrated for VGGNet,
ResNet, and MobileNet on CIFAR-10, ImageNet, and Food-101.
Our framework achieves consistent superiority compared with
some state-of-the-art pruning methods under different networks.
Our framework allows the inference speed of MobileNet-V1 to
be improved from 125 ms to 76 ms without accuracy loss. LAP
realizes the exploration of low-latency models while ensuring
accuracy.

This research, however, is subject to several limitations. First,
this algorithm can only prune pre-trained networks. This means
that the network needs to be trained on a specific dataset in
advance. The trained network is then pruned on the same dataset.
This limits the application scope of the algorithm, i.e., it is dif-
ficult to use it to compress the untrained network. We plan
to make improvements to the algorithm in the future, focus-
ing on the determination process of layer sparsity, leading to
that the algorithm can be applied to untrained networks. Sec-
ond, this algorithm uses reinforcement learning to determine the
layer sparsity, and the exploration process is somewhat time-
consuming. We intend to design other exploration methods that
can search reasonable layer sparsity more quickly or a method
that can directly calculate layer sparsity, leading to that the
algorithm can more efficiently compress dense networks.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was partially supported by the National Key Re-
search and Development Program of China (Nos. 2018YFB0204-
302, 2018YFB1701403), Programs of National Natural Science
Foundation of China (Grant Nos. 62072165, U19A2058). This work
was also sponsored by Zhijiang Lab, China (No. 2020KE0AB01).



Z. Chen, C. Liu, W. Yang et al. Neural Networks 152 (2022) 407–418

R

A

B

B

C

C

D

D

D

E

H

H

H

H

H

I

J

K

L

L

L

L

L

M

M

T

T

W

W

X

X

Y

Z

Z

eferences

zarian, K., Bhalgat, Y., Lee, J., & Blankevoort, T. (2020). Learned threshold
pruning. arXiv preprint arXiv:2003.00075.

aker, B., Gupta, O., Naik, N., & Raskar, R. (2016). Designing neural network
architectures using reinforcement learning. arXiv preprint arXiv:1611.02167.

ossard, L., Guillaumin, M., & Van Gool, L. (2014). Food-101–mining discrimina-
tive components with random forests. In European conference on computer
vision (pp. 446–461). Springer.

hen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2014). Seman-
tic image segmentation with deep convolutional nets and fully connected
crfs. arXiv preprint arXiv:1412.7062.

hin, T.-W., Ding, R., Zhang, C., & Marculescu, D. (2020). Towards efficient
model compression via learned global ranking. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 1518–1528).

eng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition (pp. 248–255). Ieee.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., & Fergus, R. (2014). Exploit-
ing linear structure within convolutional networks for efficient evaluation.
Advances in Neural Information Processing Systems, 27, 1269–1277.

ettmers, T., & Zettlemoyer, L. (2019). Sparse networks from scratch: Faster
training without losing performance. arXiv preprint arXiv:1907.04840.

ing, X., Ding, G., Guo, Y., Han, J., & Yan, C. (2019). Approximated oracle
filter pruning for destructive cnn width optimization. arXiv preprint arXiv:
1905.04748.

vci, U., Gale, T., Menick, J., Castro, P. S., & Elsen, E. (2020). Rigging the lottery:
Making all tickets winners. In International conference on machine learning
(pp. 2943–2952). PMLR.

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hi-
erarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 580–587).

Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding.
arXiv preprint arXiv:1510.00149.

He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018). Soft filter pruning for
accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.
06866.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., & Han, S. (2018). Amc: Automl for
model compression and acceleration on mobile devices. In Proceedings of the
European conference on computer vision (pp. 784–800).

e, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2019). Filter pruning via ge-
ometric median for deep convolutional neural networks acceleration. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(pp. 4340–4349).

e, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 770–778).

e, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating very
deep neural networks. In Proceedings of the IEEE international conference on
computer vision (pp. 1389–1397).

inton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531.

oward, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.
(2017). Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861.

offe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on
machine learning (pp. 448–456). PMLR.

aderberg, M., Vedaldi, A., & Zisserman, A. (2014). Speeding up convolutional
neural networks with low rank expansions. arXiv preprint arXiv:1405.3866.

rizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images. Citeseer.

eCun, Y., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In Advances
in neural information processing systems (pp. 598–605).

ee, J., Park, S., Mo, S., Ahn, S., & Shin, J. (2020). Layer-adaptive sparsity
for the magnitude-based pruning. In International conference on learning
representations.

i, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2016). Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710.
418
Li, G., Qian, C., Jiang, C., Lu, X., & Tang, K. (2018). Optimization based layer-wise
magnitude-based pruning for DNN compression. In IJCAI (pp. 2383–2389).

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).
Continuous control with deep reinforcement learning. arXiv preprint arXiv:
1509.02971.

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., et al. (2020). Hrank:
Filter pruning using high-rank feature map. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 1529–1538).

Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.-T., et al. (2019).
Metapruning: Meta learning for automatic neural network channel prun-
ing. In Proceedings of the IEEE international conference on computer vision
(pp. 3296–3305).

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 3431–3440).

uo, J.-H., & Wu, J. (2020). Autopruner: An end-to-end trainable filter prun-
ing method for efficient deep model inference. Pattern Recognition, Article
107461.

uo, J.-H., Wu, J., & Lin, W. (2017). Thinet: A filter level pruning method for
deep neural network compression. In Proceedings of the IEEE international
conference on computer vision (pp. 5058–5066).

orcos, A. S., Yu, H., Paganini, M., & Tian, Y. (2019). One ticket to win them
all: Generalizing lottery ticket initializations across datasets and optimizers.
arXiv preprint arXiv:1906.02773.

ostafa, H., & Wang, X. (2019). Parameter efficient training of deep convolutional
neural networks by dynamic sparse reparameterization. In International
conference on machine learning (pp. 4646–4655). PMLR.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017).
Automatic differentiation in pytorch.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural
information processing systems (pp. 91–99).

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., & Bengio, Y. (2014).
Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550.

Shang, W., Sohn, K., Almeida, D., & Lee, H. (2016). Understanding and improving
convolutional neural networks via concatenated rectified linear units. In
International conference on machine learning (pp. 2217–2225).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4, inception-
resnet and the impact of residual connections on learning. arXiv preprint
arXiv:1602.07261.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1–9).

ao, H., Li, J., Chen, Y., Stojanovic, V., & Yang, H. (2020). Robust point-to-point
iterative learning control with trial-varying initial conditions. IET Control
Theory & Applications, 14(19), 3344–3350.

ao, H., Li, X., Paszke, W., Stojanovic, V., & Yang, H. (2021). Robust PD-
type iterative learning control for discrete systems with multiple time-
delays subjected to polytopic uncertainty and restricted frequency-domain.
Multidimensional Systems and Signal Processing, 32(2), 671–692.

ang, D., Zhou, L., Zhang, X., Bai, X., & Zhou, J. (2018). Exploring linear rela-
tionship in feature map subspace for convnets compression. arXiv preprint
arXiv:1803.05729.

u, J., Leng, C., Wang, Y., Hu, Q., & Cheng, J. (2016). Quantized convolutional
neural networks for mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 4820–4828).

in, X., Tu, Y., Stojanovic, V., Wang, H., Shi, K., He, S., et al. (2022). Online
reinforcement learning multiplayer non-zero sum games of continuous-time
Markov jump linear systems. Applied Mathematics and Computation, 412,
Article 126537.

u, Z., Li, X., & Stojanovic, V. (2021). Exponential stability of nonlinear state-
dependent delayed impulsive systems with applications. Nonlinear Analysis.
Hybrid Systems, 42, Article 101088.

u, J., & Huang, T. (2019). Autoslim: Towards one-shot architecture search for
channel numbers. arXiv preprint arXiv:1903.11728.

hong, J., Ding, G., Guo, Y., Han, J., & Wang, B. (2018). Where to prune: Using
LSTM to guide end-to-end pruning. In IJCAI (pp. 3205–3211).

huo, H., Qian, X., Fu, Y., Yang, H., & Xue, X. (2018). Scsp: Spectral clustering filter
pruning with soft self-adaption manners. arXiv preprint arXiv:1806.05320.

http://arxiv.org/abs/2003.00075
http://arxiv.org/abs/1611.02167
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb3
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb3
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb3
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb3
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb3
http://arxiv.org/abs/1412.7062
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb5
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb5
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb5
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb5
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb5
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb6
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb6
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb6
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb6
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb6
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb7
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb7
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb7
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb7
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb7
http://arxiv.org/abs/1907.04840
http://arxiv.org/abs/1905.04748
http://arxiv.org/abs/1905.04748
http://arxiv.org/abs/1905.04748
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb10
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb10
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb10
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb10
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb10
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb11
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb11
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb11
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb11
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb11
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb11
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb11
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1808.06866
http://arxiv.org/abs/1808.06866
http://arxiv.org/abs/1808.06866
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb14
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb14
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb14
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb14
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb14
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb16
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb16
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb16
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb16
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb16
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb17
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb17
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb17
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb17
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb17
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb20
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb20
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb20
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb20
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb20
http://arxiv.org/abs/1405.3866
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb22
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb22
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb22
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb23
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb23
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb23
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb24
http://arxiv.org/abs/1608.08710
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb26
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb26
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb26
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb28
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb28
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb28
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb28
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb28
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb29
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb29
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb29
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb29
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb29
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb29
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb29
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb30
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb30
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb30
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb30
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb30
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb31
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb31
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb31
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb31
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb31
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb32
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb32
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb32
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb32
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb32
http://arxiv.org/abs/1906.02773
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb35
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb35
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb35
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb36
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb36
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb36
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb36
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb36
http://arxiv.org/abs/1412.6550
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb38
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb38
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb38
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb38
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb38
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1602.07261
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb41
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb41
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb41
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb41
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb41
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb42
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb42
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb42
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb42
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb42
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb43
http://arxiv.org/abs/1803.05729
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb45
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb45
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb45
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb45
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb45
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb47
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb47
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb47
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb47
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb47
http://arxiv.org/abs/1903.11728
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb49
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb49
http://refhub.elsevier.com/S0893-6080(22)00174-5/sb49
http://arxiv.org/abs/1806.05320

	LAP: Latency-aware automated pruning with dynamic-based filter selection
	Introduction
	Related work
	Inter-layer-based policy
	Intra-layer-based strategy
	Discussion

	Methodology
	Preliminary
	Observation (state space)
	Action space
	Filter selection
	Reward function
	Agent

	Experiments
	Results on CIFAR-10
	Results on ImageNet
	Ablation study

	Conclusion and discussion
	Declaration of competing interest
	Acknowledgments
	References


