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Abstract
Deep neural networks (DNNs) are getting deeper and larger, making memory become one of the most important bottle-

necks during training. Researchers have found that the feature maps generated during DNN training occupy the major

portion of memory footprint. To reduce memory demand, they proposed to encode the feature maps in the forward pass and

decode them in the backward pass. However, we observe that the execution of encoding and decoding is time-consuming,

leading to severe slowdown of the DNN training. To solve this problem, we present an efficient parallel memory

compression framework—EPMC, which enables us to simultaneously reduce the memory footprint and the impact of

encoding/decoding on DNN training. Our framework employs pipeline parallel optimization and specific-layer parallelism

for encoding and decoding to reduce their impact on overall training. It also combines precision reduction with encoding

for improving the data compressing ratio. We evaluate EPMC across four state-of-the-art DNNs. Experimental results

show that EPMC can reduce the memory footprint during training to 2.3 times on average without accuracy loss. In

addition, it can reduce the DNN training time by more than 2.1 times on average compared with the unoptimized encoding/

decoding scheme. Moreover, compared with using the common compression scheme Compressed Sparse Row, EPMC can

achieve data compression ratio by 2.2 times.

Keywords Data compression � Deep neural networks training � Multitask parallelism � Pipeline parallelism.

1 Introduction

The outstanding performance of deep neural networks

(DNNs) has made them more popular and widely used

[1, 2]. Coupled with the support of large datasets and

powerful computing resources, DNNs can address

increasingly complex problems, such as action detection,

face recognition, translation, and speech processing [3–8].

Increasingly complex and extensive intelligent applications

have put forward higher requirements on the DNNs accu-

racy, leading to DNNs being getting larger and deeper,

from LeNet [9] with five layers to ResNet [10] with

thousands of layers. However, this also poses greater

challenge on memory, and more data need to be stored

during DNN training. For instance, AlexNet [11] with five

convolution layers and two fully connected layers only

needs 1.1 GB memory during training. On the contrary,

VGG-16 [12] with 16 convolution layers and three fully

connected layers occupies 28 GB memory footprint when

training with a batch size of 256. This far exceeds the 12

GB memory capacity of the state-of-the-art Nvidia Titan X.

Therefore, memory becomes one of the most important

bottlenecks in DNN training [13, 14].

Most of the existing techniques (e.g., network pruning,

network quantization, low-rank approximation, and

knowledge distillation) for memory optimization aim at

DNN inferring, and the key point is to cut back model size

(reduction in weights’ number or bit width) [15–28].

However, DNN training can hardly benefit from these

techniques, because the feature maps generated by the

intermediate layers of the network are the major reason for
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the excessive memory consumption, and the weights only

account for a small part [29]. Moreover, model compres-

sion methods require a trade-off between model size and

model performance, because they more or less lead to

model accuracy loss. Therefore, many optimization tech-

niques targeting feature maps have emerged. For example,

Chen et al. proposed an effective approach that recalculates

the feature maps in the backward pass of DNN training

instead of storing them in GPU main memory [30]. Jain

et al. [29] proposed to encode the feature maps in the

forward pass and decode them in the backward pass for

reducing memory stress during DNN training. In [13], Rhu

et al. developed an approach to reduce memory usage in

training by transferring feature maps back and forth

between CPU and GPU memory. Unfortunately, these

approaches mentioned above all suffer from severe time

overhead when solving the problem of memory.

As we all know, the training of DNN is time-consuming.

How to effectively reduce the memory usage without

affecting the efficiency is a great challenge. In order to deal

with this, we present a framework—EPMC, which aims at

reducing the memory footprint of feature maps in DNN

training and optimizing the execution of data compression

algorithm to reduce the increased overhead. EPMC 0s
implementation mainly has three stages. First, it analyzes

the execution graph of the DNN and identifies where the

compression and decompression modules can be inserted.

Second, it reasonably allocates GPU computing resources

to create the parallel framework based on the computa-

tional complexity of the encoding/decoding task and the

specific ReLU layer. ReLU is usually used as an activation

function in most existing DNNs to increase the nonlinear

relationship between the layers of the neural network and

has been proven to be superior to other activation functions

(such as Sigmoid and Tanh) because of its smaller com-

putational overhead and excellent effects in preventing

overfitting and gradient vanishing. Therefore, we use ReLU

as an example to demonstrate the effectiveness of our

algorithm. Third, it builds a new directed computing graph

with efficient encoding and decoding components.

The main contributions and differences of this paper are

listed as follows.

• Systematic execution analysis We perform systematic

analyses of computation resources and execution time

of each module in DNN training. We observe that the

data compression algorithm occupies a lot of training

time and incurs a GPU underutilization. We also make a

new observation that the data compression algorithm

can perform the pipeline parallelism and multitask

parallelism with ReLU to reduce its impact on training.

• PipeCompress We present PipeCompress, which is a

pipeline parallel optimization approach for the data

compression algorithm of compressed sparse row

(CSR). This approach significantly improves the exe-

cution speed of encoding and decoding.

• Specific-Layer parallelism We propose to execute

PipeCompress and specific ReLU layer in parallel,

leading to a further influence reduction in DNN

training.

• VPEncoding We present VPEncoding, which combines

the precision reduction with encoding to further lower

the memory footprint of feature maps without affecting

the model accuracy. This approach can be extended to

other data compression algorithms.

We evaluate EPMC with four state-of-the-art image clas-

sification DNNs in Pytorch (a deep learning framework).

Our evaluation shows that EPMC can reduce the memory

footprint during training to 2.3 times on average without

accuracy loss. In addition, it can reduce the DNN training

time by more than 2.1 times on average compared with the

unoptimized encoding/decoding scheme. Moreover, com-

pared with using the common compression scheme com-

pressed sparse row (CSR), EPMC can achieve data

compression ratio by 2.2 times. Therefore, it achieves the

purpose of simultaneously reducing the memory con-

sumption and the impact on efficiency during training.

This paper is organized as follows. Section 2 introduces

related work. Section 3 introduces the challenges and

solutions. Section 4 proposes the design and implementa-

tions of EPMC and its three key components. Section 5

evaluates the performance of EPMC architecture in DNN

training. Section 6 concludes the paper.

2 Related work

Memory has become one of the most important bottlenecks

in training as DNNs become larger and deeper, which

significantly limits their deployments and applications. In

view of this, many optimization approaches have been

proposed (as shown in Table 1).

2.1 Model compression

This is a type of technique to reduce the model size for

decreasing memory demand and computing requirement of

increasingly deeper DNNs, including pruning [20, 27],

quantization [15, 23, 28], low-rank approximation [24, 31],

etc. However, these methods run the risk of losing model

accuracy and usually require fine-tuning which causes

additional time overhead to regain the lost performance.
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2.2 Storage reduction for working data

Reducing batch size can effectively solve the problem of

memory shortage during training. However, this approach

significantly increases the training time and slows down

convergence of a model. Also, it lowers GPU utilization

and risks losing accuracy [35]. Chen et al. designed an

approach that cancels the storage of intermediate outputs in

the forward pass and instead recalculates the output of a

layer0s forward pass again in the backward pass [30]. This

technique sacrifices computing for saving memory. How-

ever, it brings significant time and energy overhead. Rhu

et al. proposed a potential approach that simultaneously

utilizes CPU and GPU memory for DNN training and

employs the PCIe links and intelligent prefetch analysis to

transfer some working data between them for mitigating

GPU memory pressure [13]. However, this approach suf-

fers from obvious data transmission overhead, including

energy, power consumption and a certain time cost.

2.3 Data compression

This type of technique is more relevant to our work. Han

et al. proposed to quantize the link weights using weight-

sharing and then employ Huffman coding to the quantized

weights, as well as the codebook to optimize memory [15].

However, this method requires pruning the weights first,

thus the network fine-tuning is inevitable. There is also a

kind of aggressive lossy weight compression technology.

For instance, Zhu et al. designed a novel quantization

technology that reduces the precision of network weights to

ternary values [32]. Binary weight network training is a

more extreme lossy technology, such as Bi-Real Net [33]

and IR-Net [34]. However, these approaches all focus on

the weight and risk losing model accuracy. Jain et al.

proved that feature maps are the major portion of memory

usage in training and proposed to encode/decode them in

the forward/backward pass for memory saving [29].

Unfortunately, encoding and decoding processes are rela-

tively time-consuming and incur insufficient GPU utiliza-

tion, resulting in a severe slowdown of training. However,

the Binarize lossless encoding proposed in this work is still

applicable to some specific layers (such as ReLU-Pool

pair).

Although the method of encoding/decoding the feature

maps mentioned above has some shortcomings, it is suit-

able for solving the insufficient memory of DNN training.

And we find some opportunities to optimize its flaws, while

also further optimizing the memory. Let us briefly intro-

duce the optimization scenario. The gradient calculation of

some layers requires their input/output in the forward pass.

For example, convolution layer uses its input and ReLU

layer uses its output. And the combination of convolution

layer and ReLU layer can be seen everywhere in CNNs,

referred to Conv-ReLU pair. As shown in Fig. 1, the fea-

ture maps output by the intermediate layer needs to com-

plete two operations in the forward pass. On the one hand,

they are the input to the calculation of the following layer.

On the other hand, after the forward calculation, they are

encoded into a smaller memory format for storing. When

the backward computing reaches the corresponding layer,

feature maps are decoded and then participate in gradient

calculation of the layers related to them. From this sce-

nario, we observe that the encoding/decoding process can

be parallelized with specific layer to hide the latency

overhead, and thus leads to memory saving with negligible

performance overhead (see Fig. 1). We also observe that

the combination of encoding and precision reduction can

further reduce memory occupation without model accuracy

loss. Based on these observations, we present EPMC,

which aims to optimize the encoding and decoding of CSR

Table 1 Comparison of the pros and cons of various memory optimization techniques

Characteristics of memory optimization approaches

Model compression Reduce storage for working data Data compression

Pruning [20, 27] , Quantization [15, 23, 28] ,

Low-Rank Approximation [24, 31]

Reducing Batch Size , Recomputing

[30] , vDNN [13]

Weight Compression [15, 32–34]

, Gist [29]

Main characteristics of this paper

� No severe slowdown of training U

` No GPU underutilization U

´ No excessive additional energy consumption U

ˆ No additional data transmission cost U

˜ No model accuracy loss U
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(a common compression scheme) to achieve the above

purposes.

3 Challenges and solutions

As mentioned in the previous section, there are huge

opportunities to reduce memory consumption with negli-

gible performance overhead. However, we also encounter

significant challenges. In this section, we first describe

these challenges and then show our considered solutions.

3.1 Challenges

The challenges we encounter mainly include three key

points.

3.1.1 Expensive encoding/decoding overhead

Feature maps are typically stored and transmitted in high-

dimensional tensor format. However, CSR compression

algorithm in Nvidia cuSPARSE library (referred to CSR-

cuSPARSE) can only deal with two-dimensional matrices,

leading to inevitable computational overhead of dimension

reduction. In addition, CSR-cuSPARSE cannot perform

parallel operations between elements like ReLU. These

problems make execution of CSR-cuSPARSE to be more

time-consuming than ReLU. In Fig. 2, we show the time

proportion occupied by each module in the network when

employing CSR-cuSPARSE in the training of four CNNs.

We can observe that for AlexNet [11], OverFeat [36], and

VGG-16 [12], over 70% of training time is consumed by

CSR-cuSPARSE compression. In Inception [37], this

occupation is about 62%. Obviously, the encoding and

decoding of CSR-cuSPARSE become a major reason of the

severe slowdown in training.

3.1.2 Barriers to parallelize encoding/decoding

The data dependence between DNN layers in the forward

and backward passes makes it difficult to separate

encoding/decoding from training. In addition, the execu-

tion time of encoding/decoding is several times that of

other layers (such as convolution layer) when they have the

same input, which is also not conducive to implement

parallelization. The reason is that the best performance

improvement can only be achieved when the time con-

sumption of each parallel task is close. GPU utilization is

also one of the necessary conditions to be considered for

parallelism.

3.1.3 Memory overhead of high-precision storage

Applying high-precision working data can retain more

information and achieve higher model accuracy. However,

it inevitably brings serious memory overhead. For exam-

ple, as shown in Table 2, training of VGG-16 with a batch

size of 128 consumes 16.07 GB GPU memory in total (i.e.,

1.54GB for model storage and 14.53 GB for storing layer

outputs), which exceeds memory size of an Nvidia 1080Ti

Card. To solve this, batch size has to be reduced or more

GPU cards are required, which indirectly increases training

overhead and cost. In addition, reckless precision reduction

in the working data in the network, such as the unified

Fig. 1 A scheme of employing

CSR-cuSPARSE in CNN

training. Specifically, CSR-

cuSPARSE encodes the feature

maps in the forward pass and

decodes them in the backward

pass to participate in the

gradient calculation,

highlighting the parts that can

be parallelized

Fig. 2 The proportion of time consumption by each module when

applying CSR-cuSPARSE in DNN training. CSR-cuSPARSE con-

sumes a major portion of the training time
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modification of all data structures to a certain format,

results in severe accuracy loss.

3.2 Solutions

Though challenges exist, we find many key points that can

be optimized and developed to solve the challenges.

3.2.1 PipeCompress

To solve the first challenge, we present an efficient

encoding/decoding scheme. When applying CSR-cuS-

PARSE to deal with the high-dimensional feature maps, it

is inevitable to perform multiple loop iterations in the

encoding and decoding processes. As a result, CSR-cuS-

PARSE is called multiple times, and the data processed

each time becomes smaller, which is not conducive to

efficiency. To solve this problem, we add a data processing

step before encoding and decoding. In the forward pass, we

flatten the feature map from a high-dimensional tensor to a

two-dimensional matrix before encoding it. In the back-

ward pass, the encoded feature map is decoded into a two-

dimensional matrix and then restored to the original high-

dimensional tensor. This step allows CSR-cuSPARSE to be

performed only once when encoding/decoding the feature

maps of a layer.

We employ CSR-cuSPARSE with the data flatten

operation in VGG-16 [12] training under different batch

sizes and observe its GPU utilization (see Fig. 3). Unfor-

tunately, CSR-cuSPARSE leads to a serious GPU

underutilization under a small batch size, wasting about

81% of computing resources. And its GPU utilization is

still insufficient even at larger batch size. However, this

means that we can employ the unused computing resources

to implement parallel optimization.

CSR-cuSPARSE encodes a sparse matrix into three

vectors, which record the value, column index, and row

offset of nonzero elements, respectively. The storage order

among elements in the CSR encoding format (referred to

CSR-format) makes encoding/decoding in a row-by-row

serial manner, making it difficult to implement paral-

lelization between elements. Therefore, we design to split

the input by row and parallelize the processing to achieve

efficient encoding and decoding. For instance, we divide a

matrix into several equal parts by row and encode/decode

each part in parallel to cover the waiting time between their

processing.

Based on these three operations: data flattening, seg-

mentation, and parallel processing, we propose the first

solution, referred to as PipeCompress.

3.2.2 Parallel strategy

To solve the second challenge, we propose a parallel

scheme. In Fig. 1, we show the position where CSR-cuS-

PARSE encodes and decodes the feature maps in the Conv-

ReLU pair. The execution order of optimizable modules in

the forward pass is convolution layer ! CSR-cuSPARSE

! ReLU layer. Their execution order in the backward pass

is ReLU layer ! CSR-cuSPARSE ! convolution layer. In

the forward pass, CSR-cuSPARSE encodes the feature

maps output by the previous layer, and ReLU deals with

the output of the convolution layer. In the backward pass,

the encoded feature maps need to participate in the gradient

calculation of the convolution layer and the previous layer

(if necessary). Therefore, they only need to be decoded

before that. The gradient calculation of the ReLU layer

uses the feature maps output by its forward calculation. As

a result, there is no data dependence between CSR-cuS-

PARSE and ReLU in either forward or backward pass.

Moreover, we observe that CSR-cuSPARSE and ReLU

have the same inputs both in forward and backward

propagation.

Based on these characteristics, we can utilize the unused

GPU computing resources to execute ReLU layer during

encoding/decoding without any impact, leading to

Fig. 3 The GPU utilization of CSR-cuSPARSE when employing it in

VGG-16 [12] training under different batch sizes. The ratio increases

with the growth of batch size. However, it has an upper limit

Table 2 Memory usage of VGG-16 training

Type Module Memory usage

Model Memory for params 528 MB

Memory for SGD 528 MB

Memory for momentum 528 MB

Layer outputs Memory for SGD 14.53 GB

Total 16.07 GB
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significant efficiency improvement. This becomes the basis

of our parallel strategy.

3.2.3 VPEncoding

In order to solve the third challenge, we propose an

effective encoding scheme that can reduce the memory

footprint of the feature maps through precision reduction

without affecting the model accuracy. We observe that the

feature maps are computed and stored in FP32 format. In

addition, when the feature maps are encoded into the CSR-

format, the data precision of nonzero element vector is also

FP32. And the data precision of the column-index vector

and row-offset vector is fixed to INT32 format.

In view of this, we investigate some effective tech-

nologies of precision reduction used in DNN training, such

as the selective precision reduction proposed by De Sa et al

in [38] and the delayed precision reduction developed by

Jain et al in [29]. They have proved that DNNs have a

certain tolerance for low-precision data in training. We also

discover that CSR-format fixes the data precision of three

vectors only for conveniently applying. However, this is

not friendly for memory saving. When training the model

under small batch size, the data to be processed are small in

each iteration. When encoding the feature maps into CSR-

format, the element values in the column-index vector and

row-offset vector are not very large and non-negative.

Therefore, data format with a smaller memory footprint

can meet their storage requirements. In addition, the low

precision tolerance of training also allows us to further

reduce the data precision of nonzero element vector. It is

worth noting that we do not modify the precision of the

feature maps that need to be used in the forward calcula-

tion. This prevents data errors from being propagated in the

forward pass, thus ensuring the model accuracy.

Based on these observations, we present variable pre-

cision encoding, called VPEncoding, which can modify the

precision of encoded data in line with storage requirements

to further save memory.

4 Designs and implementations

We design specific implementations based on the above

solutions, which are introduced as follows.

4.1 PipeCompress

In Fig. 4, we show the entire data compression process.

First, in the forward pass, we flatten the high-dimensional

input tensor into a two-dimensional matrix and limit the

column number to be less than 256. Then, we divide this

matrix into k equal parts by row. Second, as shown in

Fig. 5b, we use the multi-stream technology [39] in CUDA

to create k streams and put each part of the data into dif-

ferent streams for processing. There are copy operations of

input/output data before and after the task execution in a

stream. The data copy operations in different streams

cannot be performed in parallel. However, the copy oper-

ations and the CSR-cuSPARSE kernel functions among

different streams can be parallelized. The CSR-cuSPARSE

kernel functions in different streams can also be paral-

lelized. Based on these characteristics, the compression

process is designed as pipeline parallelism to cover the

waiting time between adjacent operations and to achieve

performance improvement (see Fig. 5b). Third, we inte-

grate the output data of all streams.

We rewrite the data compression algorithm to achieve

the pipeline parallel optimization and the data integration

of all streams. When all streams are completed, the output

data are spliced in order. We record the length and the last

element of row offset vector output by each stream. The

encoded data can be divided according to these records and

decoded through k streams in the backward pass.

4.2 Specific-layer parallelism

As introduced in the second solution in Sect. 3.2, no data

dependency and GPU underutilization enable us to execute

CSR-cuSPARSE and ReLU simultaneously. We observe

that the time consumption of encoding in CSR-cuSPARSE

is higher than the forward computing of ReLU. Similarly,

the time consumption of decoding in CSR-cuSPARSE is

also higher than gradient calculation of ReLU. In addition,

ReLU obtains good parallel support in the deep learning

framework. These lead to huge differences in execution

efficiency among them. PipeCompress narrows the elapsed

time difference between them.

We employ multi-stream technology [39] in CUDA to

achieve dynamical allocation of GPU computing resources

and parallelization. As shown in Fig. 6, we focus on two

key points in the forward and backward passes. In the

forward pass, the encoding of PipeCompress is parallelized

with the forward calculation of ReLU. In the backward

pass, the decoding of PipeCompress and the gradient cal-

culation of the ReLU are performed in parallel.

We formalize our parallel problem as follows. Let T(N)

be the parallel execution time of the two tasks, where N is

their shared GPU computing resources. We have

TðNÞ ¼ max T1ðnÞ; T2ðN � nÞð Þ; ð1Þ

where T1ðnÞ is the execution time of PipeCompress with n

denoting the number of computing resources allocated to

PipeCompress, and T2ðN � nÞ is the execution time of

ReLU. T(N) is determined by the execution time of the

slower task. Through allocating an appropriate amount of
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computing resources to each of them, the execution times

of T1ðnÞ and T2ðN � nÞ are as close as possible, thereby

obtaining an approximate optimal solution for parallel

execution.

Based on the above scheme, we built a parallel frame-

work. In each Conv-ReLU pairs, PipeCompress is inserted

into training and executed in parallel with ReLU. The total

number of streams is determined according to the training

and GPU parameters, denoted as m. The dynamical allo-

cation of computing resources we employ is derived from

the Hyper-Q technology supported by Nvidia0s GPUs of the
Kepler architecture [40]. In addition, our framework allo-

cates computing resources to each stream in line with the

computational complexity of the tasks in them. Specifi-

cally, let N be the total amount of computing resources

shared by the ReLU and PipeCompress. We assign n and N

� n to PipeCompress and ReLU, respectively. In addition,

we assign m � 1 streams to execute PipeCompress. In each

stream of pipeline parallelism in PipeCompress, the allo-

cated input data are 1
m�1

of the original input, and the

allocated computing resources are n
m�1

.

4.3 VPEncoding

When encoding the feature maps into CSR-format during

DNN training, we reduce the data precision of the nonzero

element vector from FP32 to a smaller data format (such as

Fig. 4 An example of efficient encoding. This example shows the processes of flattening, splitting, encoding parallelization, integrating, and

precision reduction in the input data

(a)

(b)

Fig. 5 a An example of a CSR-

cuSPARSE compression

without any optimization. b An

example of a data compression

process using five streams for

pipeline parallel optimization,

highlighting the performance

improvement. The input data

are accordingly divided into five

parts

Fig. 6 In the forward and backward passes, the PipeCompress is

executed in parallel with specific ReLU through multitask parallelism

Neural Computing and Applications

123



FP16). In addition, when the column number of input

matrix is less than 256, we can use UINT8 format instead

of INT32 format for data storage in the column-index

vector. The data format of the row-offset vector can also be

modified from INT32 to UINT16 and can even be set to

UINT8 format when the batch size is smaller.

4.4 Efficient parallel memory compression:
EPMC

Based on the above three schemes, we design the frame-

work of EPMC, as shown in Fig. 7. Typically, DNN

frameworks such as Pytorch/TensorFlow orderly integrate

all layers of a network into a directed computation graph.

According to the original computation graph, GPU per-

formance parameters, and the DNN training parameters,

the EPMC 0s scheduler generates a new computation graph,

which employs our proposed three optimization compo-

nents (PipeCompress, VPEncoding, and Specific-Layer

Parallelism) to efficiently solve memory problem.

5 Experimental evaluation

In this section, we provide extensive experiments to show

the performance of our framework.

5.1 Parameter configuration

5.1.1 Platforms

We evaluate EPMC’s ability of to reduce memory footprint

and its impact on DNN training in Pytorch deep learning

framework. The evaluation is performed on an Nvidia

Kepler Tesla K40c card [41] with 12 GB of GDDR5

memory using CUDA9.0 and cuDNN v7.1 and an Nvidia

GeForce GTX 1070 card [42] with 8 GB of GDDR5

memory using CUDA10.1 and cuDNN v7.6 (Table 3).

5.1.2 Applications

We evaluate EPMC on four state-of-the-art image classi-

fication CNNs: AlexNet [11], OverFeat [36], VGG-16 [12],

and Inception [37], employing ImageNet training dataset

[43]. These CNNs exhibit a wide range of layer sizes and

shapes and also represent the development of CNNs over

the past few years.

5.1.3 Baselines

Our first baseline is called Pytorch baseline, which is the

original memory allocation strategy of the Pytorch frame-

work without any of our optimization. This baseline is used

to evaluate the memory footprint reduction in EPMC and

study the impact of our framework on training and accu-

racy of the model. The feature maps that need to be stored

and participate in the gradient calculation have been proved

to be the major reason for the excessive memory occupa-

tion [29], thus Pytorch baseline consists of only feature

maps. It does not include weights, gradients, etc.

The second baseline is to serially insert CSR-cuS-

PARSE in Pytorch baseline to encode/decode feature maps,

called serial baseline, which is used to compare the

memory compression ratio of our framework and evaluate

the effect of our specific-layer parallel strategy.

5.1.4 Comparison metrics

We use Memory Footprint Ratio (MFR) to evaluate the

memory footprint reduction in our framework. In addition,

we use execution time ratio (ETR) to evaluate the perfor-

mance improvement of our proposed PipeCompress and

specific-layer parallel strategy. MFR and ETR are defined

as follow:

MFR ¼ Memory Footprint of Baseline

Memory Footprint after Encoding
; ð2Þ

ETR ¼Execution Time after optimization

Execution Time of Baseline
: ð3Þ

Fig. 7 Architecture of EPMC - Scheduler identifies where the PipeCompress can be employed. And it allocates computing resources and builds

parallel frameworks for layers according to their computational complexity
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5.2 Performance of EPMC

Our framework EPMC is to reduce the memory footprint of

feature maps and minimize the impact of encoding/de-

coding on DNN training. In this section, we evaluate these

indicators separately. In addition, we also present the

impact of applying EPMC optimization on the convergence

and accuracy of models. The experimental results are

shown as follows.

5.2.1 Memory footprint reduction

In Fig. 8, we show the Memory Footprint Ratio (MFR)

achieved by EPMC and serial baseline optimizations when

compared to Pytorch Baseline. Feature maps in different

networks have varied sparsity. Therefore, the MFR values

are also different. We observe that the serial baseline

results in a MFR of about 1.4 times on average for the four

CNNs, and EPMC achieves a MFR of up to 2.6 times for

VGG-16 [12], with an average of 2.3 times. This experi-

ment shows that EPMC brings more significant memory

saving compared to serial baseline, which enables us to

train a larger network with a larger batch size in the single-

GPU environment, thereby indirectly accelerating the

model convergence.

5.2.2 Performance overhead

We train the networks that employ our framework for

memory optimization (shown as EPMC). Pytorch baseline

is utilized as the basis for comparison to evaluate the

efficiency of EPMC and serial baseline. As shown in Fig. 9,

serial baseline results in about 3.3 times Execution Time

Ratio (ETR) for AlexNet [11] and OverFeat [36], and it

even reaches up to 4.5 times ETR for VGG-16 [12] and

Inception [37]. This means that serial application of CSR-

cuSPARSE compression scheme leads to severe slowdown

of DNN training. However, when using our framework

EPMC to optimize memory, the impact on the DNN

training is greatly reduced. EPMC results in only about 1.5

times ETR for AlexNet [11] and OverFeat [36]. For VGG-

16 [12] and Inception [37], it reaches 1.7 times ETR on

average. In other words, it brings up to 2.1 times perfor-

mance improvement compared with serial baseline.

5.2.3 Impact on convergence and accuracy

In VPEncoding of our framework, we separately represent

the data structure in nonzero element vector in three for-

mats, FP16, FP10, and FP8. We find that when FP10 and

FP8 are applied, the networks suffer varying degrees of

accuracy losses, while FP16 does not. Therefore, in fol-

lowing experiment, we represent nonzero element vector,

column-index vector, and row-offset vector with FP16,

UINT8, and UINT16, respectively. Figure 10 shows the

training accuracy for different networks with memory

optimization (shown as EPMC) and without memory

optimization (shown as Pytorch baseline). Training accu-

racy curve is a way to observe the convergence and

accuracy of model over time. At the beginning, the accu-

racy of the network is almost 0%. And then, it continues to

improve over time. For example, at 90-th epoch, VGG-16

[12] achieves 81% training accuracy. The figure compares

the deviation between the accuracy of Pytorch baseline (red
Fig. 8 Evaluation of memory footprint reduction. EPMC significantly

optimizes the memory usage

Table 3 Experimental

infrastructure
Experimental infrastructure

GPU Card Architecture Configuration

K40C [41] Tesla 12 GB GDDR5 memory, CUDA9.0, cuDNN v7.1.

GTX 1070 [42] Pascal 8 GB GDDR5 memory, CUDA10.1, cuDNN v7.6.

Baseline Application

Pytorch baseline Evaluate the memory footprint reduction and model accuracy.

Serial baseline Evaluate parallel strategy and memory compression ratio.
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þ) and EPMC (green x) as the training epoch increases. As

shown in Fig. 10, the two curves overlap, which means that

our framework has no effect on the convergence and

accuracy of models. The reason is that what we reduce is

the precision of the feature maps employed for the gradient

calculation in the backward pass, and FP16 has enough

precision to meet the requirements of gradient

computation.

5.3 PipeCompress

In this section, we evaluate the performance improvement

of our proposed pipeline parallel optimization (PipeCom-

press) and how much ETR it achieves when compared to

CSR-cuSPARSE. In the experiment, we use 50% sparsity

inputs with different sizes for evaluation. We set the inputs

as four sets of matrix data with volumes 2000, 8000,

32000, and 128000, respectively. As shown in Fig. 11,

when the input size is relatively small (such as 2000, 8000,

and 32000), the ETR increases linearly with the increase in

stream number. When setting seven streams in PipeCom-

press, it results in up to 4.5–5 times ETR. When the input

size is large, the ETR it reaches no longer increases even if

the stream number grows. We argue that the reason is the

limitation of the number of GPU cores and bandwidth,

leading to competition for computing resources between

streams.

5.4 Specific-layer parallel strategy

In this section, we evaluate the efficiency improvement

brought by our specific-layer parallel strategy and calculate

its ETR when compared to the serial baseline. The input

data are the same as the setting in Sect. 5.3. In parallel

strategy, appropriate computing resources are allocated to

the two algorithms according to the approach in Sect. 4.2.

In PipeCompress, we use seven streams to implement

pipeline parallelism. Figure 12 shows that the PipeCom-

press-ReLU parallel strategy reaches close to 0.7 times

ETR under different input sizes, which means that it brings

an average 30% (100–70 %) performance promotion

compared to the serial strategy. We can observe that the

performance increment slowly reduces as the input size

increases. We argue that the reason is that the available

GPU computing resources are limited, which sets an upper

limit on the efficiency of parallel strategy.

5.5 Variable precision encoding

Finally, we evaluate the effect of VPEncoding in reducing

memory usage. In the experiment, VPEncoding and other

Fig. 9 Impact of EPMC on training. Compared with serial baseline, our framework greatly improves the efficiency and reduces the impact of

encoding/decoding on training

Fig. 10 Impact of EPMC on the convergence and accuracy of model
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four traditional compression methods (i.e., Coordinate

(COO), Compressed Sparse Row (CSR), ELLPACK

(ELL), and Diagonal (DIA)), are employed to encode

feature maps with different sparsity, and their compression

ratios are shown as MFR when compared to the Pytorch

baseline.

Figure 13 shows that the compression ratio of VPEn-

coding significantly higher than other four methods under

different sparsity. DIA is mainly aimed at compressing data

with sparse diagonal, and feature maps usually have non-

uniform sparsity, so this method has a poor compression

effect on feature maps. CSR-cuSPARSE can reduce the

memory footprint only when the sparsity of the input is

higher than 50%. ELL and COO can really compress data

only when the sparsity exceeds 70%. However, our

VPEncoding can reach close to 1.5 times MFR when the

input sparsity is only 10%, which reduces the application

threshold of the data compression algorithm. In addition,

VPEncoding produces up to 13 times MFR when the input

sparsity reaches 90%. The data compression ratio of

VPEncoding is approximately 2.2 times that of CSR-cuS-

PARSE on average.

6 Conclusion

In this paper, we investigate a variety of the memory

optimization schemes and present a framework, EPMC,

which enables us to simultaneously reduce the memory

footprint and the impact of encoding/decoding on DNN

training. We evaluate EPMC with four state-of-the-art

image classification DNNs. Experimental results show that

EPMC can reduce the memory footprint during training to

2.3 times on average without accuracy loss. In addition, it

can reduce the DNN training time by more than 2.1 times

on average compared with the unoptimized encoding/de-

coding scheme. Moreover, compared with the CSR-cuS-

PARSE, EPMC can achieve data compression ratio by 2.2

times.

Fig. 11 ETR of PipeCompress when compared to the unoptimized CSR-cuSPARSE under different input sizes and different numbers of streams.

PipeCompress achieves a significant acceleration as the number of streams increases

Fig. 12 ETR when PipeCompress and ReLU are executed serially and

in parallel. The parallel strategy shortens their execution time by

nearly 30%

Fig. 13 MFR of VPEncoding and CSR-cuSPARSE under different

sparsity input. The memory footprint reduction in VPEncoding is

about two times that of the CSR-cuSPARSE
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