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Abstract—In recent years, erasure codes have become the de facto standard for data protection in large scale distributed cloud

storage systems at the cost of an affordable storage overhead. However, traditional erasure coding schemes, such as Reed-Solomon

codes, suffer from high reconstruction cost and I/Os. The recent past has seen a plethora of efforts to optimize the tradeoff between the

reconstruction cost, I/Os and storage overhead. Quiet different from all prior studies, in this paper, our erasure coding technique makes

the first attempt to take advantage of the unequal failure rates across the disks/nodes to optimize the system reliability and

reconstruction performance. Specifically, our proposed technique, the Unequal Failure Protection based Local Reconstruction Code

(UFP-LRC) divides the data blocks into several unequal-sized groups with local parities, assigning the data blocks stored on more

failure-prone disks/nodes into the smaller-sized group, so as to provide unequal failure protection for each group. In this way, by

exploiting the nonuniform local parity degrees, the proposed UFP-LRC enables the data blocks that are stored on more failure-prone

disks/nodes to tolerate a greater number of failures while suffering from less repair cost than others, leading to a substantial

improvement of the overall reliability and repair performance for cloud storage systems. We perform numerical analysis and build a

prototype storage system to verify our approach. The analytical results show that the UFP-LRC technique gradually outperforms LRC

along the increase of failure rate ratio. Also, extensive experiments show that, when compared to LRC, UFP-LRC is able to achieve a

10 to 15 percent improvement in throughput, and an 8 to 12 percent reduction in decoding latency, while retaining a comparable overall

reliability.

Index Terms—Cloud storage system, erasure codes, unequal failure protection, reconstruction

Ç

1 INTRODUCTION

1.1 Motivation

ERASURE codes have become the de facto standard for data
protection in large scale distributed cloud storage sys-

tems. In view of potential disk/nodes failures in Petabyte or
Exabyte data centers operating 7� 24 [1], [2], [3], [4], [5],
data redundancy is indispensable for ensuring reliability
and availability. Conventional triple replication can quickly
become too expensive when facing exponential growth of
data [6], [7], [8] in data centers. In contrast, erasure codes
can achieve higher levels of reliability as well as much lower
storage overhead [9], [10]. An increasing number of cloud
storage systems such as Windows Azure [11], Amazon S3

[12], Google GFSII [13], HDFS and f4 in Facebook [14], [15],
DiskReduce [16] and EMC ATMOS [17] are adopting era-
sure codes to achieve high data availability with significant
reduced cost.

In this regard, Reed-Solomon (RS) codes become a popu-
lar choice recently owing to their maximum distance separa-
ble (MDS) property. For example, RS(6, 3) is used in Google
GFSII [13], RS(10, 4) in HDFS-RAID in Facebook [18], RS(10,
6) in DiskReduce [16], and RS(9, 3) in EMC ATMOS [17],
respectively. However, stemming from the traditional com-
munication systems, the Reed-Solomon codes suffer from
tremendous network bandwidth and I/O cost in the follow-
ing reconstructionmanner.

A reconstruction process for disks/nodes failure, gener-
ally launched as a background job, can take a few hours to
days in a large scale cloud storage system [19]. Read requests
for currently unavailable data may also trigger reconstruc-
tion operations on-the-fly. These result in degraded perfor-
mance in that more time is needed to recover the lost data.
Motivated thereby, a plethora of efforts have been devoted
recently to optimize the reconstruction performance both in
theory and practice [19], [20].

Network-coding based regenerating codes are theoreti-
cally shown to be near optimal erasure codes [5], [21], [22].
Minimum-storage-regenerating (MSR) codes are optimal
with regard to storage overhead and network cost. MSR
codes achieve identical redundancy-reliability tradeoff to
RS codes, while significantly lowering network load as it
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can recover an unavailable block by merely downloading a
small fraction of the data from any d blocks. Unfortunately,
in addition to the difficulty of overcoming coding and exact
recovery challenges [23], [24], [25], MSR codes also face con-
siderable additional I/Os overhead induced by reading all
d available blocks in order to compute a linear combination
for reconstruction. Recently proposed product-matrix-MSR
codes (PM-MSR) based PM-RBT code [20], [26], can achieve
a joint optimality over I/O-storage and network cost while
suffering from a high storage redundancy.

A new class of practical erasure codes named local recon-
struction codes (LRC) has been widely employed in major
cloud storage systems [11], [14], [27]. LRC introduces local
parities along with a few global parities in order to reduce
the minimal number of blocks needed to reconstruct a single
block failure [11]. Indeed, single block failures dominate
data unavailability (often more than 99 percent) in real sys-
tems [3], [28] that fits LRC designing goal. Other prevailing
distributed storage systems such as ceph [27] and HDFS-
Xorbas of Facebook [14] also exploit similar local recon-
struction strategies.

Nonetheless, existing erasure codes offer identical level
of failure protection for all blocks by trading off the storage
and reconstruction cost. However, a number of observations
show that not all disks/nodes are of equal failure rates in
reality. For instance, the failure rates of disks may be corre-
lated with the wear (e.g., for solid state disks) and usage
during different periods of their lifetimes [1]. As a result,
data loss and subsequent reconstructions are mainly trig-
gered by those failure-prone diks/nodes. Therefore, it is
desirable, from a system performance point of view, to have
an erasure code where blocks stored on more failure-prone
diks/nodes that are better protected.

1.2 Our Contributions

Motivated thereby, in this paper, we present an Unequal
Failure Protection based Local Reconstruction Code (a.k.a.,
UFP-LRC) for distributed cloud storage systems. Different
from existing designs, UFP-LRC, by protecting blocks with
different redundancy based on their likelihood of failure,
optimizes systematically the reliability and reconstruction
performance of the storage system.

First, UFP-LRC divides data blocks into unequal-sized
groups, the smaller-sized of which consists of data blocks
that will be stored on more failure-prone disks/nodes. For
simplicity, in this paper, we term those blocks (either data or par-
ity blocks) more failure-prone blocks. Specifically, by comput-
ing one local parity in each group and the global parities for
all data blocks, UFP-LRC enables more failure-prone blocks
within the smaller group to have a higher protection level
and thus can tolerant more failures than others. Since data
unavailability mainly results from more failure-prone
blocks, under UFP-LRC, the enhancement of their erasure
tolerance will lead to an improvement in overall data avail-
ability. Second, as there are unequal local parity degrees in
different groups, the parities with lower degrees can facili-
tate more efficient reconstruction. In other words, the more
failure-prone the blocks are, the parity with lower degree
they share, and thus the less reconstruction cost they entail.
Intuitively, the reconstructions for the more failure-prone
blocks will outweigh all other contributions to the overall

reconstruction cost under certain conditions (e.g., when
the failure rates of these more failure-prone blocks exceed
those of other blocks to a certain extent). Therefore, under
UFP-LRC, the savings of the reconstruction cost for the
more failure-prone blocks substantially achieve a reduction
in the overall reconstruction cost.

Our main contributions are summarized as follows:

(1) To the authors’ best knowledge, the UFP-LRC is the
first work to provide unequal failure protection for
disks/nodes of distributed cloud storage systems.
The UFP-LRC improves the overall reliability as well
as the reconstruction efficiency.

(2) We provide a generalized construction of the genera-
tor matrix for the UFP-LRC. The generalized genera-
tor matrix facilitates the implementation of UFP-
LRC by searching the coefficients over a small finite
field.

(3) We implement the UFP-LRC over a Hadoop based
prototype cloud storage system. Evaluations on our
prototype storage system validate that, compared
to LRC, UFP-LRC can achieve improvement in thro-
ughput and reduction in decoding latency, while
retaining a comparable overall reliability.

The rest of this paper is organized as follows. Sections 2
and 3 present the related work and the motivation. The
key designs and definition of UFP-LRC are introduced in
Section 4. The code selection and efficiency analysis are pre-
sented in Sections 5 and 6. The Hadoop based prototype
system are demonstrated in Section 7. We also conduct
extensive experiments to evaluate our approach in Section 8.
Section 9 concludes this paper.

2 RELATED WORK

In this section, we review some of the related works that are
the starting point of our research.

Under the popular RS(k; r) codes, a file of size D bytes is
divided into k equal-sized data blocks, each of size D=k
bytes. These data blocks are then encoded into a set (also
called stripe) of k data blocks and r redundant parity blocks.
Any k blocks out the ðkþ rÞ blocks suffice to reconstruct the
entire original file, i.e., up to r arbitrary block failures can be
tolerated. The data and parity blocks will be placed on
selected disks/nodes of different fault domains or racks in
the cloud storage system according to certain deployment
rules. However, they must always read and download all k
blocks from any k surviving disks for every recovery even
though there is only one block failure.

Motivated by the performance bottleneck in reconstruc-
tion of the traditional RS codes, recent erasure codes for dis-
tributed storage system focus on the construction of coding
schemes providing improved tradeoff between storage
overhead and reconstruction cost. In [29], the authors pre-
sented pyramid codes which are featured with obviously
low repair-cost yet slightly high storage-overhead com-
pared with RS codes. But the pyramid codes rely on a expo-
nentially complex search algorithm to discover coding
equation coefficients. To optimize the way pyramid codes
used to construct coding equations and then make imple-
mentation practical, the authors introduced the LRC [11]
which searches the coefficients over a small finite field.
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Meanwhile LRC exploits local parities with lower degrees
than the traditional global parities, thus it can reduce the
minimal number of data blocks that need to be read from
during reconstruction operations. Recently, the LRC has
been shipped in Windows Server 2012 R2 and Windows 8.1
[30] owing to their applicability. As a smart improvement of
LRC, however, the UFP-LRC takes advantage of nonuniform local
parity degrees to address the unequal failure protection issue while
further optimize the data availability and reconstruction perfor-
mance. To our knowledge, this is the first work to address
the problem of the unequal failure protection in the
literature.

The local repair strategies also have been studied in [14],
[27], [31]. The HDFS-Xorbas [14] adopted a locally repair-
able coding strategy based on RS codes and a construction
algorithm. The local parities and global RS parities satisfy
an alignment equation, so that any single block failure (data
or parity block) will have the equal reconstruction cost. In
addition to the exponential complexity of the deterministic
construction algorithm, another disadvantage of this strat-
egy is the extra storage requirement. Both ceph and redhat
[27] provide system-level local repair solutions to reduce
network and I/O consumption for recovery.

On the other hand, several works (e.g., [31], [32]) have
carried out in-depth theoretical analysis of the locality of
codes. In [31], the authors proved the existence of the opti-
mal locally repairable codes, and presented an explicit
locally repairable codes. In [32], the authors established a
tight bound for the redundancy in terms of the code length,
the distance and the locality.

Among available coding schemes, the most relevant but
not identical one to UFP-LRC is the unequal error/erasure
protection (UEP) code which has been widely used in
multi-media and communication systems [33]. Since not all
messages are of equal importance for the user, UEP codes
protect some of the encoded message symbols against more
errors/erasures than others, resulting in their higher recov-
ery probability and earlier recovery. However, UEP codes are
fine-grained bit-level, packet-level or layer-level solutions, which
are unaffordable for the data-intensive yet I/O constrained distrib-
uted cloud storage systems. For example, as a layer-level cod-
ing technique, UEP-LRC [33] first has to extract the
enhancement layer and the more important base layer from
the video, so as to provide unequal protection for them by
using two different LRC codes. On the other hand, the UFP-
LRC also can be adapted to the importance or prioritization
based erasure protection for distributed storage systems.

3 MOTIVATION AND DESIGN GOALS

In this section, we motivate our work by presenting obser-
vations in real system of unequal failure rates across the
population of disks.

3.1 Unequal Failure Rates in Storage Systems

In cloud storage systems, data blocks may be unavailable
due to disk/node failures. A disk/node is considered to
have failed if it is replaced as part of a repair procedure.
This definition for failure implicitly excludes disks/nodes
that are replaced due to an upgrade. Although the causes of
a disk/node failure can vary significantly (e.g., upgrade
replacement, response timeout, and uncorrectable data
errors), the statistical failure rates have been well studied
from the standpoint of manufactures or cloud end-users [1],
[3], [28], [34]. Failure rate � is the frequency at which a
disk/node fails, expressed in failures per unit of time. The
relationship between failure rate and the more often
reported mean-time-to-failure (MTTF) is � ¼ 1� e

�1
MTTF .

The well-known annualized failure rate (AFR) gives the
estimated probability that a disk or node will fail during a

full year of use. AFR can be approximated as � � 8760�100
MTTF

(expressed in %), assuming a very small AFR. For example,
MTTF, as specified in manufacturers’ datasheets, is about
1,000,000 hours, suggesting a nominal annual failure rate of
at most 0.87 percent [28]. However, most of the available
information about MTTF are usually based on man-
ufacturers’ own extrapolation from accelerated life test data
of small populations [34].

Recent studies [1], [34] based on replacement records and
logs of a large population of disks have shed some light on the
practical failure rate for cloud storage systems. Fig. 1 illus-
trates the baseline failure rates for a large population of solid
state disks (SSDs) or hard disks in distributed storage systems.
Evidently, there is a nonuniform distribution of failure rates
across the disks due to various factors (e.g., wear or inherent
raw bit error rate). The highest failure rate is about 5-6 times
more than the lowest. For instance, in [34], based on a large
field sample of disks, the actual AFRs for individual disks
range from 1.7 percent for first-year disks to over 8.6 percent
for three-year-old disks. Even for the same group (see the
baseline in (b)), the failure rates varywithin a certain range.

Particularly, it is observed by Microsoft [2] that disks/
nodes temperatures significantly impact AFR as shown in
Fig. 2. As we can see clearly in Fig. 2a, the AFR rate
increases along with disk temperature. Furthermore, Fig. 2b
shows that there is a significant correlation between the inlet
temperatures observed at a server/node location within a
rack and the failure rate of that server/node. The higher the
average inlet temperature, the higher the failure rate. More
evidence can be found at the online public failure trace
archive [35], which will be omitted here due to space limit.

Unfortunately, existing studies have overlooked this fact
and usually provide identical desired level of failure/era-
sure protection for all disks. Motivated by the above obser-
vations, we make the first attempt in this paper to improve
the reconstruction performance and reliability in cloud stor-
age system by providing unequal protections. Notwith-
standing it is difficult to accurately predict failures/failure
rates, there are useful indicators of disk health as discussed

Fig. 1. Unequal failure rates of disks. (a) Average SSDs failure rates for
various platforms. (b) Annualized hard disks failure rates broken down
by age groups.
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above, including temperature, usage/activity levels and the
disk’s self monitoring parameters (e.g., scan errors and real-
location counts) [1], [34]. These real-time indicators in cloud
storage systems provide the facilitators in the implementa-
tion of the proposed coding scheme.

3.2 Design Goals

In view of the unequal failure rates as well as the recon-
struction challenge, the fundamental design goals of UFP-
LRC can be outlined below:

(1) The blocks that are more failure-prone will be pro-
tected against more failures/erasures. Note that, we
use the terms erasure and failure synonymously: a
block is erased if the disk/node on which it is stored
fails. Let K denote the set of all disks/nodes storing
the data and parity blocks of an encoded stripe. The
disks/nodes in H are more failure-prone, and
H � K. If the data blocks on other disks/nodes, i.e.,
in K nH, are able to tolerate f data block failures,
then the data blocks on disks/nodes of subset H can
tolerate more failure patterns, for example, arbitrary
~f data block failures, where ~f � f .

(2) The reconstruction cost incurred by a single failure
of data blocks on disks/nodes that are more failure-
prone should be as low as possible. Assume that the
loss of a data block on a disk/node in H and K nH
will result in a reconstruction cost of ~c and c, we
have ~c � c. Since the reconstruction operations trig-
gered by the failures of data blocks on disks/nodes
in H account for most of the repair cost, reducing
repair cost for these data blocks will significantly
relieve the performance bottleneck in reconstruction.

4 UNEQUAL FAILURE PROTECTION BASED LOCAL

RECONSTRUCTION CODE

In this section, we use a comparative example to introduce
the UFP-LRC strategy, followed by the formal definition
and construction of UFP-LRC. Note that, we employ shorter
codes for illustration here that are different from real
implementations.

4.1 A Comparative Example Study

The comparative example shown in Fig. 3 illustrates the
coding strategies of LRC [11] and UFP-LRC.

In local repair, LRC(k; l; r) divides the k data blocks into l
equal size group (kl data blocks in each group), and com-
putes one local parity for each group as well as r global pari-
ties. In Fig. 3a, LRC(6, 2, 2) divides the 6 data blocks into two
equal size groups, and computes the local parity block px
with x0; x1 and x2, and py with y0; y1 and y2 respectively. It
also computes the two global parities (p0 and p1) with all
data blocks. If x0 is lost, instead of reading one of the global
parity (p0 or p1) and the other 5 surviving data blocks like
RS(6, 4), the LRC can perform a more efficient reconstruc-
tion of x0 by just reading px and two data blocks (x1 and x2).
However, the local parities compromise the failures toler-
ance capability. Unlike RS(6, 4), LRC(6, 2, 2) is not MDS
code [11] and hence cannot tolerate arbitrary 4 failures (at
most any ðrþ 1Þ ¼ 3 failures). For instance, simultaneous
failures of x0; x1; x2 and px is non-decodable since there are
only two global parities that can help to decode the 3 miss-
ing data blocks. It is impossible to decode 3 lost data blocks from
merely 2 parities, regardless of the coding equations. Thus LRC
is maximally recoverable (MR) code [29], meaning it can
decode any failure pattern that is information-theoretically
decodable.

UFP-LRC is also maximally recoverable, while achieving
desired availability as shown in Sections 5 and 6. Unlike
LRC, UFP-LRC divides the data blocks into several unequal
size groups, so as to let the most failure-prone data blocks
and their local parity form a smallest size group. As shown
in Fig. 3b, UFP-LRC(2+4, 2, 2) puts the more failure-prone
x0; x1, and their local parity px into a small size group x,
while (y0; y1; y2; y3, and py) into a large size group y. Clearly,

Fig. 3. A comparative example of LRC and UFP-LRC. (a) A LRC(6, 2, 2)
scheme. 6 data fragments, 2 local parities and 2 global parities. (b) A
UFP-LRC(2+4, 2, 2) scheme. 2 data blocks in first group x, 4 data blocks
in group y, 2 local parity blocks (px; py) and 2 global parity blocks (p0; p1).

Fig. 2. Unequal AFR of disks/servers at different temperatures observed
by Microsoft [2].
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the key idea of UFP-LRC is nonuniform local parity degrees,
achieving our two design goals outlined below.

First, UFP-LRC can provide unequal failure protection
for different data blocks. In comparison with LRC, in UFP-
LRC, group x can tolerate the simultaneous failure of the
same 3 data blocks and one local parity, i.e., x0; x1; y0 (i.e.,
the identical x2 in Fig. 3a) and px. Thanks to the involvement
of the local parity py associated with y0, it is possible to
decode the 3 data blocks (x0; x1, and y0) via 3 parities (py; p0;
and p1). Actually, as the following Theorem 1 shows, the
data blocks in group x can not only tolerate simultaneous
failure of any ðrþ 1Þ ¼ 3 data blocks and one parity block
but also any up to ðrþ 2Þ ¼ 4 data blocks. By enumerating
all undecodable 4-failure cases, we can find that the unde-
codability ratio of the first group under UFP-LRC and LRC
is 1.4 percent (3 cases) and 3.8 percent (8 cases), respectively.
Therefore, for UFP-LRC, the blocks in group x are more reli-
able than the blocks in group y as well as the same blocks
under LRC.

Second, UFP-LRC can reduce the overall reconstruction
cost.1 Compared with LRC(6, 2, 2), UFP-LRC(2+4, 2, 2) fur-
ther reduces the minimal reconstruction cost from 3 to 2. It
suffices to reconstruct the failure data block x0 merely by
reading x1 and px. It is easy to see that UFP-LRC(2+4, 2, 2)
achieves this at the cost of enlarging the size of group y to 4,
resulting in a higher reconstruction cost for the single failure
within y than LRC(6, 2, 2). However, UFP-LRC is committed
to optimizing the reconstructions for the most failure-prone
data blocks, which account for most of the reconstruction
cost. Consequently, the repair cost savings of x0 and x1 can
lead to a reduction in the overall reconstruction cost under
general conditions.

Let r be the failure rate ratio, which is defined as the ratio of the
failure rate of group x (including the px) to the failure rate of the
other blocks. Let R be the average reconstruction read cost of
single failure. For UFP-LRC(2+4, 2, 2), it needs to take 2 and
4 blocks to repair any of the 3 and 5 blocks (including one
local parity block) within group x and y, respectively. More-
over, it takes 6 blocks to repair any of the 2 global parities,
and the total number of blocks to be repaired is ð3� rþ 7Þ.
Thus, we have R ¼ 3�2�rþ5�4þ2�6

3�rþ7 . Likewise, for LRC(6, 2, 2),

set the same number of blocks be more failure-prone, hence
R ¼ 3�3�rþ5�3þ2�6

3�rþ7 . As Fig. 4 shows, the reconstruction read
cost of UFP-LRC declines more rapidly and becomes lower
than LRC at the intersection points (roughly r ¼1.8 and 2,
respectively).

4.2 Formal Description

In this section, we formally describe UFP-LRC and present
its properties with arbitrary coding parameters.

Definition 1. A UFP-LRCðk0; l; rÞ consists of
Pl�1

i¼0ðk0 þ iÞ
data blocks within l unequal-sized groups, l local parities (one
for each group), and r shared global parities. There are k0 data
blocks within the 1st smallest group, ðk0 þ 1Þ within the 2nd
group, ðk0 þ 2Þ within the 3rd group, . . . ; and ðk0 þ l� 1Þ
within the lth group.

For UFP-LRC(k0; l; r), we put the k0 most failure-prone
data blocks into the first group, while the most l� 1 reliable
data blocks into the lth group. The total number of blocks is
n ¼ lþ rþPl�1

i¼0 ki, where ki is the size of group i,
ki ¼ k0 þ i. Therefore, the normalized storage overhead is

nPl�1

i¼0
ki
¼ 1þ 2ðlþrÞ

lð2k0þl�1Þ. For 1.55x.

Definition 2. r denotes the failure rate ratio of the more failure-
prone blocks (including the parities) to the other blocks.

The r is the key parameter used for evaluating the perfor-
mance of UFP-LRC in our analysis and comparisons.

Theorem 1. The UFP-LRC(k0; l; r) has the following properties:
(1) The minimal reconstruction cost for decoding single fail-

ure is k0, and arbitrary ðrþ 1Þ blocks (data or parity blocks)
failures is decodable. (2) The group of size r̂ ð� rÞ can tolerate
arbitrary ðrþ 1Þ data blocks and one parity block (local or
global parity) failures. In other words, these blocks (including
the local parity blocks) within the most failure-prone
ðr� k0 þ 1Þ groups are always available when any up to
ðrþ 1Þ data blocks and one parity block erasures occur. (3)
The group of size r̂ ð� rÞ can tolerate arbitrary ðrþ 2Þ data
blocks (not including parity blocks) failures.

Proof. For property (1), first, it needs to take k0 blocks to
repair any single failure within the 1st smallest group,
thus the minimal reconstruction cost for decoding single
failure is k0. Then let’s consider two worst cases of arbi-
trary ðrþ 1Þ block failures: if there are ðrþ 1Þ data block
failures, there are at least one local parity and r global pari-
ties that are available for decoding the ðrþ 1Þ failures; if
there are just r data blocks and one parity block failures
occurring within only one group, then there are at least r
global parity blocks available for decoding. For property
(2), let’s consider the worst case: all data blocks and the
corresponding local parity block within a group of size r
are lost. Then at least one data block failure occurs within
the other group, which entails at least one local parity
block. In this way, there are r global parity blocks and one
local parity block available for decoding the ðrþ 1Þ data
blocks successfully. For property (3), similarly, let’s con-
sider the worst case: all data blocks within a group of size
r are lost, which will entail one local parity for decoding.
Furthermore, the last 2 data block failures will occur
within the other groups, which entail at least one more
local parity. Thus there are r global parities and at least 2

Fig. 4. Comparisons of varying reconstruction cost.

1. Note that reconstruction cost in this paper refers to the number of
blocks that need to be read/downloaded for recovery operations
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local parity blocks, which suffice to reconstruct ðrþ 2Þ
data block failures. Therefore, we have proved Theorem 1.

To verify this theorem, let’s take UFP-LRC(2, 3, 2) for
example: the minimal reconstruction cost for decoding
single failure is 2, and any ðrþ 1Þ ¼ 3 block failures are
decodable; and the first group can tolerate any
ðrþ 1Þ ¼ 3 data blocks and one parity block failures;
also, it can tolerate any ðrþ 2Þ ¼ 4 data block failures. In
contrast, the LRC(9, 3, 2) consisting of the same number
of blocks as UFP-LRC(2, 3, 2) doesn’t keep these proper-
ties: for the first group, it can neither tolerate the lost of
ðrþ 1Þ ¼ 3 data blocks and the local parity block within
it from merely 2 global parity blocks, nor the lost of
ðrþ 2Þ ¼ 5 data blocks within the most 2 failure-prone
groups from merely 2 local and 2 global parity blocks.
We can find more examples, such as LRC(8, 2, 2), LRC
(12, 2, 2) and so on.

Particularly, Theorem 1 also explains why we choose to
increase the blocks per group by one in Definition 1. Because
small size groups can tolerate more failure patterns, we
try to put more blocks within the most ðr� k0 þ 1Þ
failure-prone groups so as to obtain high reliability. Let
CF be the fraction of the blocks (including data blocks
and local parities) within these small groups, CF ¼Pr�k0

i¼0
ðk0þiþ1Þ

lþrþ
Pl�1

i¼0
ðk0þiÞ

. As Fig. 5 shows, higher storage overhead

lead to larger CF which is monotonically decreasing

along with l. Furthermore, we have to consider the stor-

age overhead when selecting the coding parameters. The

storage overhead of UFP-LRC(2; l; 2) and UFP-LRC

(3; l; 3) is 1.18x	1.8x and 1.17x	1.71x, respectively. From

the standpoint of tradeoff between CF and storage

redundancy, both of them are potential candidates for
application. tu

4.3 Constructing the Generator Matrix

In this section, we first provide a generalized design of the
generator matrix. The generalized coding equation is
G 
 ðx0; x1; . . . ; xk0�1; y0; y1; . . . ; yk1�1; z0; z1; . . . ; zk2�1; . . .ÞT ¼
ðpx; py; pz; . . . ; p0; p1; . . . ; prÞT . To simplify the searching of
coefficients, based on the Vandermonde Matrix, we can con-
struct the generalized generator matrix below:

G ¼

1 . . . 1 0 . . . 0 . . . 0 0

0 . . . 0 1 . . . 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . . . . . . . 0 1 . . . 1

a1 . . . ak0 b1 . . . bk1 c1 . . . . . .

a21 . . . a2k0 b21 . . . b2k1 c21 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

ar1 . . . ark0 br1 . . . brk1 cr1 . . . . . .

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: (1)

Now, taking the UFP-LRC(2+4, 2, 2) as example, we illus-
trate how to choose the specific coding coefficients for the
generator matrix. For UFP-LRC(2+4, 2, 2), the coding equa-
tion is G 
 ðx0; x1; y0; y1; y2; y3ÞT ¼ ðpx; py; p0; p1ÞT , then the
generator matrix G is

G ¼

1 1 0 0 0 0

0 0 1 1 1 1

a1 a2 b1 b2 b3 b4

a21 a22 b21 b22 b23 b24

0
BBB@

1
CCCA: (2)

Afterwards, we need to determine the value of a and b so
as to decode all the information-theoretically decodable 4
failures. For each failure pattern, we can derive a reduced
encoding matrix Ĝ based on the reduced decoding Tanner
Graph (TG) of G [29], which is used to judge if the failure is
information-theoretically decodable. Fig. 6 depicts a reduced
decoding TG for a decodable four data block (x0; x1; y0; y1)
failures case. Specifically, given this failure case, the reduced
decoding TG is derived by removing all available data blocks
and their edges and failed parity blocks from the original
TG of G. The bold edges show maximum matchings, imply-
ing this failure case is information-theoretically decodable.
In this way, we can derive the Ĝ from G by removing all the
columns that correspond to the available data blocks in the reduced
TG and the rows that correspond to the failed parities in the reduced
TG fromG.

Below we only present some typical cases to explain the
construction of Ĝ for UFP-LRC(2+4, 2, 2).

Four data blocks fail: Assume the 4 failures are equally
divided between two groups, i.e., x0; x1; y0 and y1, we need
4 equations to decode them, and the reduced encoding
matrix Ĝ is derived as follows:

Ĝ ¼

1 1 0 0

0 0 1 1

a1 a2 b1 b2

a21 a22 b21 b22

0
BBB@

1
CCCA: (3)

Fig. 5. Fraction of the blocks in the most ðr� k0 þ 1Þ failure-prone
groups.

Fig. 6. A reduced Tanner Graph. The broken circles refer to the available
data blocks, and the symbol “x” marks the edges to be removed.

HU ET AL.: UNEQUAL FAILURE PROTECTION CODING TECHNIQUE FOR DISTRIBUTED CLOUD STORAGE SYSTEMS 391



Thus, the determinant should be non-singular, jĜj ¼
ða2 � a1Þðb1 � b2Þðb1 þ b2 � a1 � a2Þ ¼ 0.

Three data blocks and one local parity fail: If whole group x
plus one data block of group y are lost. This failure pattern
is a worst case for decoding. Assuming y0 fails, consider px
is lost, we remove the 4th, 5th, 6th columns and the 1st row
from G, which results in the following Ĝ:

Ĝ ¼
0 0 1

a1 a2 b1

a21 a22 b21

0
B@

1
CA: (4)

jĜj ¼ a1a2ða2 � a1Þ ¼ 0.
Similarly, if py; x0; x1 and y0 fail, we have

Ĝ ¼
1 1 0

a1 a2 b1

a21 a22 b21

0
B@

1
CA: (5)

jĜj ¼ b1ða2 � a1Þðb1 � a1 � a2Þ ¼ 0.
The remaining cases are relative simple. To ensure they

are decodable, the Ĝ should be non-singular, and thus have
its inverse matrix. By summarizing all cases, we have the
following conditions:

ai; aj; bs; bt 6¼ 0

ai 6¼ aj; bs 6¼ bt; ai; aj 6¼ bs; bt

ai þ aj 6¼ bs þ bt

ai 6¼ bs þ bt; bs 6¼ ai þ aj

(6)

It is easy to meet these conditions by choosing the a and b
from a finite field GFð25Þ. For instance, let a1 ¼ 00011; a2 ¼
00010; b1 ¼ 11000; b2 ¼ 10000; b3 ¼ 01000 and b4 ¼ 01100,
then the above conditions are satisfied. By selecting the
higher/lower order bits of ai and bi in a staggered manner
within a large finite field space, we can construct long UFP-
LRC. Empirically, within the range of our interest, the GF

(2
Pl�1

i¼0
ðk0þiÞ) suffices for determining the coding coefficients

for UFP-LRC(k0; l; 2).

4.4 Summary

A UFP-LRCðk0; l; rÞ consists of
Pl�1

i¼0ðk0 þ iÞ data blocks
within l unequal-sized groups, l local parities, one for each
group, and r shared global parities. The lower bound of
read cost for reconstructing single failure is ko. We summa-
rize the characteristics of UFP-LRC via a quantitative com-
parison with LRC. Table 1 lists a summary of performance
metrics of the two coding strategies. The UFP-LRC not only
possesses all the advantages of LRC, but achieves better reli-
ability and reconstruction performance as we demonstrate
shortly.

5 CODE SELECTION

We need to select the ideal coding parameters k0; l and r
from a wealth of choices in practice. In this section we
describe and evaluate the tradeoff for the code selection.

5.1 Availability Model and Threshold

Considering the significant demands of reliability in failure-
prone large scale cloud storage systems, we first introduce
the availability analysis for the maximal recoverable codes.
Instead of using the traditional MTTF, which spans centuries or
millennium far longer than disks’ actual lifetimes [1], [28], we
employ the availability as the reliability metric so as to reflect the
impact of disk failures in real world.

For UFP-LRC(k0; l; r), the availability of a block repre-
sents a statistical probability that a block is available over a
large number of failure-prone disks/nodes. It is equal to the
number of ways in which we can distribute i unavailable
blocks (up to ðlþ rÞ) on failed disks/nodes multiplied by
the number of ways in which we can distribute available
blocks (up to n ¼ lþ rþPl�1

i¼0ðk0 þ iÞ) on reachable disks/
nodes, given the percentage of decodable i-failure cases,
divided by the total number of ways in which we can dis-
tribute all of the n blocks on all of the disks/nodes.

Assume we randomly deploy n blocks over N (� n)
disks/nodes and place each block on a different disk/node
so as to avoid correlated failures. Meanwhile assume there
are M currently unavailable disks/nodes. Note that UFP-
LRC(k0; l; r) can tolerate any ðrþ 1Þ failures, and is able to
decode up to ðlþ rÞ failures probabilistically. Let pi be the
percentage of decodable i-failure cases. Therefore, the avail-
ability of a block, denoted by Pa, can be computed as follows:

Pa ¼
Xlþr

i¼0

pi

M
i

� �
N�M
n�i

� �
N
n

� � ; (7)

where pi ¼ 1, if i � ðrþ 1Þ, because all i-failure cases are
decodable; otherwise, 0 < pi < 1. By enumerating all
decodable 4-failure cases for UFP-LRC(2+4, 2, 2) and LRC(6,
2, 2), the p4 is equal to 81:5% and 85:7%, respectively. The
reason why UFP-LRC(2+4, 2, 2) results in lower availability
than LRC lies in the extra undecodable 4-failure patterns
incurred by the group y. For example, the erasure of y0, y1,
y2 and py is undecodable since there are only two useful
global parities.

Nevertheless, the occurrence of undecodable 4-failure
pattern in practice is very rare because the failures mostly
come from the more failure-prone yet more failure-tolerant
small group x. Our design goal is to let UFP-LRC

TABLE 1
A Summary of Performance Metrics

Coding
Metrics

LRC(k; l; r) UFP-LRC(k0; l; r)

Minimal Reconstruction
Cost

dk=le k0

Storage Overhead kþlþr
k

Pl�1

i¼0
ðk0þiþ1ÞþrPl�1

i¼0
ðk0þiÞ

Any (r+1) Failures Tolerance YES YES

Any (r+1) Data Block and
One Parity Block Failures
Tolerance

NO the most ðr� k0 þ 1Þ
failure-prone groups

Any (r+2) Data Block
Failures Tolerance

NO the most ðr� k0 þ 1Þ
failure-prone groups

Maximal Failure Tolerance lþ r lþ r
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outperform RS(6, 3) in terms of availability. We will take the
block availability of RS(6, 3) as the reference threshold
because it not only provides the standard 3-failure tolerant
capability but also obtains lower redundancy than tradi-
tional 3-replication. In Fig. 7, let N ¼ 10; 000 and the failure
ratio M

N varies from 0.01 to 0.2. UFP-LRC(2+4, 2, 2) can
achieve six nines (0.9999996) of availability at the highest
points, while RS(6, 3) only provides five nines (0.999998) of
availability due to the lack of 4-failure tolerant ability. On
the other hand, RS(10, 4) is able to tolerate any 4 failures
and thus offers higher availability than RS(6, 3) at the low
failure ratio (when M

N is less than 0.01), but its availability
falls rapidly along with M

N owing to its low redundancy.

5.2 Tradeoff and Lower Bound

We obtain numerous sets of availability by adjusting the
coding parameters. Using the availability of RS(6, 3) as the
reference threshold, we only keep the coding parameters
sets that yield equal or higher availability than RS(6, 3).
Since each block has to be arranged on a different disk/
node, the number of disks/nodes in a cluster of storage sys-
tem limits the total number of blocks in the code. Further-
more, I/O consumption is another constraint to the number
of blocks in the face of the data-intensive cloud computing
environment. To compare with LRC under the same

condition, we plot the averaged reconstruction cost per sin-
gle failure in Figs. 8 and 9, given the same failure rate for all
blocks (r=1). We only plot the storage overhead and the
reconstruction cost of non-trival sets in Fig. 8. The coding
parameter of each individual point represents certain trade-
off between storage overhead and reconstruction cost. Dif-
ferent coding parameters can lead to the same storage
overhead but remarkably different reconstruction cost. For
instance, the cost of UFP-LRC(2, 2, 2) is R ¼ 3�2þ4�3þ2�5

2þ3þ2þ2 =3.1,
while the cost of LRC(6, 2, 2) is R ¼ 8�3þ2�6

6þ2þ2 =3.6, with nearly
the same storage overhead.

Thus it is only sensible to choose those coding parame-
ters yielding lower reconstruction cost as the lower bound.
The lower bound curve characterizes some candidates of
UFP-LRC for our prototype storage system. Thereby, in
Fig. 9, there are only twelve candidates, UFP-LRC(1, l, 2)
(l=2 to 5) and UFP-LRC(2, l, 2) (l=3 to 10). Note that the
point UFP-LRC(1, 2, 2) is not shown as its storage overhead
exceeds 2.

5.3 Lower Bound Curve Comparisons

For (k; r) Reed-Solomon code, we vary the parameters k and
r and also obtain a lower bound curve as shown in Fig. 9.
Comparisons in Fig. 9 show that both UFP-LRC and LRC
achieve better tradeoff points than Reed-Solomon across the
range of coding parameters. In particular, compared with
RS(7, 3), the UFP-LRC(2, 7, 2) is able to maintain the same
reconstruct cost (i.e., R=7) while reducing the storage over-
head from 1.42x to 1.25x. This is shown by the horizontal
move in Fig. 9. Alternatively, as depicted by the vertical
move in Fig. 9, the UFP-LRC(2, 4, 2) can keep the same stor-
age overhead as RS(7, 3) (at 1.42x) while gaining a reduction
of 31 percent for reconstruction cost (from R ¼7 to 4.8).

For UFP-LRC, the point UFP-LRC(2, 4, 2) is a watershed
compared to LRCwith regard to the reconstruction cost. The
tradeoff point of UFP-LRC with less storage overhead than
UFP-LRC(2, 4, 2) outperforms the corresponding point of
LRC. On the contrary, the point with more storage overhead
incurs more reconstruction cost than LRC. For example, with
the same reconstruction cost (R=7), UFP(2, 7, 2) uses less
storage overhead than LRC(18, 3, 2). In Fig. 9, the values in
brackets denote the coordinates of the tradeoff points. UFP-
LRC(2, 3, 2) keeps the same storage overhead (at 1.55x) while
leading to slightly higher reconstruction cost (R=4) than

Fig. 7. Comparisons of availability under varying nodes/disks failure
ratio.

Fig. 8. Lower Bound.

Fig. 9. Comparisons.
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LRC(9, 3, 2) (R=3.86). Similarly, the UFP(1, 3, 2) undergoes a
slightly higher reconstruction cost than LRC(6, 3, 2), i.e.,
R=2.9 versus R=2.72, under the same storage overhead (at
1.83x). In fact, this inferior of UFP-LRC disappears under the
unequal failure rates as wewill detail next.

5.4 Impact of Unequal Failure Rate

In practice, the failure rate may vary across all blocks. To
simplify the comparisons, for UFP-LRC(k0; l; r) on the lower
bound curve, we assume that the blocks within the most
ðr� k0 þ 1Þ failure-prone groups have relative higher fail-
ure rate than others. According to Definition 2, r is the failure
rate ratio of the more failure-prone blocks (including the parities)
to the other blocks. Thus the averaged reconstruction cost per
single failure R can be computed as follows:

R ¼
Pr�k0

i¼0 rðki þ 1Þki þ
Pl�1

i¼r�k0þ1ðki þ 1Þki þ
Pl�1

i¼0 rkiPr�k0
i¼0 rðki þ 1Þ þPl�1

i¼r�k0þ1ðki þ 1Þ þ r
;

(8)

whereR equals to the total reconstruction cost divided by the num-
ber of failures during certain time period, the

Pr�k0
i¼0 rðki þ 1Þki is

the overall reconstruction cost of themost ðr� k0 þ 1Þ failure-
prone groups, and the

Pr�k0
i¼0 rðki þ 1Þ denotes the number of

failures occurring within the most ðr� k0 þ 1Þ failure-prone
groups during certain time period. According to above equa-
tion, for the specific lower bound points of UFP-LRC, only 3
or 5 blocks (including the local parities) have higher failure
rate than others. To compare with LRC, the number of
the more failure-prone blocks is set to 4 (the mean) for
each LRC point. Therefore, for LRC(k; l; r), twe have

R ¼ 4rdk=leþðkþl�4Þrdk=leþkr
4rþkþlþr�4 .

As shown in Fig. 10, UFP-LRC outperforms LRC across
all points on lower bound curve when r exceeds 3. If we
keep the storage overhead the same, reconstruction cost in
UFP-LRC is lower than that in LRC. On the other hand, if
we keep reconstruction cost the same, UFP-LRC can save
storage overhead compared to LRC. For example, when
r=3.5, the UFP-LRC(2, 3, 2) turns out to obtain lower recon-
struction cost (R=3.3) than LRC(9, 3, 2) at the same storage
overhead, and UFP-LRC(1, 3, 2) also reduce the reconstruc-
tion cost from 2.9 to 2.21, compared to the value in Fig. 9. It
is worth noting that, the r=3 is within the reasonable range

of failure rate ratio as shown in Fig. 1 (up to 5-6). When r

varies within the range of our interest, we can choose an
appropriate point along the trade-off curve, which can
reduce storage overhead and reconstruction cost at the
same time.

6 NUMERICAL ANALYSIS AND COMPARISONS

In this section, we perform a comprehensive comparison of
typical lower bound points (within the range of our interest)
of UFP-LRC and LRC through numerical analysis.

6.1 Decodability Ratio

Properties (2) and (3) in Theorem 1 imply that the UFP-LRC
has better failure tolerance in many cases. However, UFP-
LRC also introduces some extra undecodable failure pat-
terns due to the groups of size larger than r. In Table 2, we
compute the decodability ratio for several lower bound
tradeoff points by enumerating all t-failure (r � t � ðlþ rÞ)
patterns. Table 2 shows that some points of UFP-LRC on
lower bound curve lead to a slightly lower decodability
ratio than the corresponding points of LRC at each t value
with the same redundancy. Particularly, compare to LRC(9,
3, 2), the UFP-LRC(2, 3, 2) achieves a little lower p4 and p5
when t=4 and 5. For example, for UFP-LRC(2, 3, 2), the p5 is
equal to 0.4341 (i.e., 869 decodable cases out of C5

14).
Nonetheless, the key question is whether UFP-LRC can

outperform LRC in terms of availability. The answer is posi-
tive. At the same storage overhead, UFP-LRC(3, 3, 3) out-
performs the lower bound point LRC(12, 4, 2) at all t values.
When t=5, the lower bound point LRC(12, 4, 2) merely
obtain a p5=0.3669. In contrast, the UFP-LRC(3, 3, 3) pro-
vides a much higher p5=0.976 due to the arbitrary five data
blocks failure tolerance of the first group. Undoubtedly, we
can find more candidates if we make a tradeoff between
availability and other performance.

6.2 Availability

Indeed, the UFP-LRC obtains the unequal failure protec-
tions for various blocks by compromising minor availabil-
ity. Fortunately, this slight loss of availability generally is
not important in practice, as UFP-LRC can achieve desired
higher availability than our reference threshold RS(6, 3), as
shown in Fig. 11. As we can see, each lower bound point of
UFP-LRC achieves our desired availability, which is always
higher than that of our reference threshold RS(6, 3). There is
only negligible difference between the curve of UFP-LRC
and the corresponding LRC. For example, the availability of
UFP-LRC(2, 3, 2) is about 4.00E-08 lower than that of the

Fig. 10. Impact of failure rate ratio r.

TABLE 2
Comparisons of Decodability Ratio (pt)

t
Codes

4 5 6

LRC(6,3,2) 0.9545 0.8377 0
UFP-LRC(1,3,2) 0.9364 0.8312 0
LRC(9,3,2) 0.9491 0.4635 0
UFP-LRC(2,3,2) 0.945 0.4341 0
LRC(12,4,2) 0.98 0.3669 0.2926
UFP-LRC(3,3,3) 1.0 0.976 0.6563
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LRC(9, 3, 2) at M
N=0.02. Actually, the reliability of UFP-LRC

is better than that of LRC, as we will show in our system
evaluation shortly. According to the occurrence of failure
patterns in practice, mostly failure cases will take place
within the more failure-prone yet more failure-tolerant
small groups. As a result, UFP-LRC will yield equal or even
higher reliability than LRC in general.

6.3 Reconstruction Cost for Single Failure

The examples in Fig. 4 indicate that UFP-LRC will gradually
overtake LRC for reconstruction performance as r grows.
Compared with the typical lower bound points of LRC,
Fig. 12 further demonstrates this characteristic of UFP-LRC.
We can clearly see the two intersection points (r=1.7 and 2)
where the UFP-LRC(2, 3, 2) and the UFP-LRC(1, 3, 2) begins
to achieve lower reconstruction cost. In addition, both UFP-
LRC schemes decline more rapidly than corresponding
LRC schemes, their advantages will be more obvious when
the failure rate ratio exceeds 4.

7 IMPLEMENTATION IN STORAGE SYSTEM

To confirm the analytical savings provided by the UFP-LRC
in terms of bandwidth utilization and I/Os, we deployed
the UFP-LRC over a Hadoop based prototype cloud storage
system. We now describe the implementation of the system
and reconstruction operations.

7.1 Overview of Our Storage System Architecture

Here we provide an overview of the our prototype system
with erasure coding. As the Fig. 13 depicts, the architecture
of our prototype has three layers: client, servers (web server
and erasure coding server) and clusters (parity blocks nodes
and data blocks nodes). The workload mainly runs on clus-
ters of inexpensive commodity hardware. Each cluster is
composed of a name node and six data nodes, and each
node has at least 2 disks. The name node is the centerpiece
of a cluster. It keeps the directory tree of all files, and tracks
where across the cluster the data is kept. While a data node
stores data and then responds to requests from the name
node for files operations.

Clients can PUT/GET the files directly to/from the stor-
age clusters, after having obtained the addresses of the host
nodes via Apache web server. Based on the replica mecha-
nism of HDFS, the files are originally written to 3 copies to
keep data available. Then the erasure coding server erasure
codes the cold data that not be requested during certain time
period lazily in the background and then deletes their origi-
nal 3 copies. We omit the details of scanning and manage-
ment for cold data. To improve the throughput, the parity
blocks will be separately stored over the relative reliable
(low failure rate) parity blocks nodes cluster which pro-
cesses low workload in the background. The encoded data
blocks are deployed over the data blocks nodes cluster suf-
fering foreground data-intensive workload.

The erasure coding server is able to locate the failed
disks/nodes. In case of a data block node failure, the era-
sure coding server designates a new node to perform recon-
struction operation. Especially, the GET operation that
happens to request currently unavailable data will trigger a
reconstruction on-the-fly.

7.2 UFP-LRC Implementation

Considering the tradeoff between various metrics, we
choose to implement the UFP-LRC(2, 3, 2) in our prototype
system as a complementary technique to the built-in 3-way
data replication of Hadoop. Each file to be stored is frag-
mented into blocks of 64 MB. The unit symbol for encod-
ing/decoding operation is 16 bits in default, which benefits

Fig. 13. Overview of our prototype storage system architecture. Our stor-
age system erasure codes the cold data lazily in the background and
deletes their additional copies.

Fig. 11. Comparisons of availability under varying failure ratio.

Fig. 12. Comparisons of reconstruction cost for the typical lower bound
points.
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the multiplication operating over a desirable small Galois
Field. Nevertheless, the GF(216) has sufficient elements
space to find the required coefficients.

Striping Policy: One solution to use UFP-LRC is to encode
only blocks within a single file together so as to form a stripe
(including data and parity blocks). That works for big files,
however, in case of small files, there are not enough blocks
within each file to be encoded efficiently. Thus we design
the striping policy for encoding based on the statistics from
several clusters of cloud storage vendors. We found that
more than 70 percent of space is occupied by the small files
whose size is less than 2 GB (64�32 MB blocks) while more
than 85 percent of space is used to store directory whose
size is more than 2 GB. Therefore, striping blocks within a
single directory seems to be our favorable candidate. We
employ a MapReduce job to compute parity blocks for each
stripe in a parallel pattern. During a map phase, each map-
per outputs a stripe by reading the original nine data blocks
and calculating the parity blocks. In the reduce phase, a sin-
gle reducer generates metadata gathered from each mapper.

Stream Operations: We exploit all related optimization
techniques to streamline the process. In case of encoding,
the unit symbols to be encoded will be delivered to a FSDa-
taInputStream object. Also, we need a FSDataInputStream
object to search the address of blocks to be encoded from
metadata, and then use a FSOutputStream object to update
the block-id list of metadata on the name nodes after gener-
ating the parity blocks.

7.3 Encoding Procedure

In case of finding out the cold data to be encoded via a peri-
odically scanning over the data blocks nodes cluster, the
erasure coding server initiates a 4-step encoding procedure
as follows.

The first step is to arrange the cold data with the striping
policy mentioned above, after which the erasure coding
server maps the nine data blocks to specific disks with a ran-
dom hash algorithm. The mapping mechanism ensures each
data block to be placed on distinct target disk with different

failure rate. The target disks’ metadata (addresses and IDs)
are cached for later use. According to the failure rates of
these target disks which are indicated by the parameters of
disk health (like SMART [34]), the erasure coding server can
determine which data block should be put into the group x, y
and z of UFP-LRC(2, 3, 2), respectively. In general, it is hard
to derive an accurate failure rate, in the prototype systemwe
use 2-bit indicator scheme to indicate the possibility of disk
failure. Specifically, let the three data blocks groups (x, y and
z) of UFP-LRC(2, 3, 2) correspond to three state, i.e., high,
low, and very low, which are denoted by 11, 10 and 01.

Upon grouping the data blocks, then in step 3, the era-
sure coding server hosts a MapReduce job which performs
the encoding based on the streaming technique. To avoid
interfering the foreground workload processing, all reading
and encoding operations are carried out by the erasure cod-
ing server in the background in case of light workload. As
soon as the erasure coding server successfully executes the
encoding operations, all additional 3 replicas can be deleted
to save storage space. In the final step, all generated parity
blocks are deployed to distinct disks of parity blocks cluster
via a hash mapping, meanwhile the data blocks are sent
back to the target disks of data blocks cluster according to
the cached location metadata. Afterwards, the erasure cod-
ing server appends an entry to its encoding inventory which
consists of all metadata.

7.4 Reconstruction

There are two kinds of reconstruction in our system. Usu-
ally, the reconstruction is an active repair. If losing heart-
beats from a specific disk/node for a while, the erasure
coding server takes for granted that the disk/node fails and
thus designates a new node (named coordinator) to perform
an active yet lazy reconstruction, as shown in Fig. 13.

Unlike the time-consuming active repair responsible for
recovering all missing data blocks, the passive reconstruction
only is triggered by on-demand read. As pictured in Fig. 14,
the read triggers a passive reconstruction on-the-fly in case
that the GET operation requests for some currently unavail-
able data. The web server sends a RECONS_REQUEST_MSG
to erasure coding server, which contains the IP addresses, as
well as IDs of the lost data blocks. Upon the receipt of the
RECONS_REQUEST_MSG, the erasure coding server sends a
RECONS_JOB_ASSIGNMENT_MSG to the name node of
data blocks cluster, and respond to web server with a
ACK. The RECONS_JOB_ASSIGNMENT_MSG contains the
metadata of the parity and data blocks need to be read for
reconstruction, as well as the address of the coordinator
who performs the reconstruction. To further save the recon-
struction cost, the selected coordinator should have at
least one of the data blocks involved in RECONS_JOB_
ASSIGNMENT_MSG. The RECONS_JOB_ASSIGNMENT_
MSG is forwarded to the coordinator to initiate the recon-
struction operations. The coordinator recovers the lost data
blockswith its local cached coefficients. Eventually, the recov-
ered data blocks are built up into a file by the web server and
sent back to client.

8 PERFORMANCE EVALUATION

We perform extensive experiments on 12 data nodes with 28
disks (which is composed of SSDs and hard drives, 16 disks

Fig. 14. Reconstruction procedure for degraded read.
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in data blocks cluster and 12 disks in parity blocks cluster),
2 name nodes (quad-core Intel E3-1225v5 3.3 GHz pro-
cessor, 8 GB RAM), 1 web server, 1 erasure coding server
(quad-core Intel i5-4460 3.2 GHz, 4 GB RAM) and 3 client
nodes that all are connected through a 1 Gbps network.

To simulate the unequal failure rate pattern, we ran-
domly chose some disks as failed ones by holding their
heartbeats periodically, based on the traces of SETI@home
Desktop Clouds in failure trace archive [35]. Let FD denote
the maximal number of failed disks. Thus some disks of the
FD selected disks fail at high frequencies (i.e., the hourly
failure rates ranging from 20 to 40 percent, indicating a
MTTF varying from 5 to 2.5 hours or so), while the remain-
ing disks fail at relative low frequencies (i.e., the hourly fail-
ure rates ranging from 10 to 20 percent, implying a MTTF
varying from 10 to 5 hours). Note that the failure rate of a
disk is variable due to the random selection of the failure
traces. Per our scheme, data blocks deployed on these disks
with high failure rates are put into the small group of indi-
vidual stripe. Moreover, we let PH be the percentage of
disks failing at high rates. For example, when PH=0.5,
roughly half of the failed disks randomly fail at high rate
according to the traces.

8.1 Average Reconstruction Cost per Lost Block

In this experiment, we measure the average reconstruction
cost for a lost block (data or parity block), which is equal to
the total read/downloading cost for reconstruction, divided
by the sum of the number of lost blocks within an individ-
ual stripe. Since the FD exceeds the erasure tolerance of our
codes, there are a few undecodable cases which are not
taken into account. We will detail the percentage of unde-
codable cases shortly.

The results are depicted in Fig. 15. For the three coding
schemes that have nearly the same storage overhead, we
performed the same number of reconstructions for them

and calculated the average value. The reconstruction
cost of UFP-LRC(2,3,2) is slightly higher than LRC(9,3,2)
when PH is small. However, the cost of UFP-LRC(2,3,2)
decreases faster with the increase of PH, and eventually
reaches a lower limit when PH reaches certain points
(e.g., 0.5, 0.6 or 0.7). For example, with FD=6, the recon-
struction cost per block of LRC(9,3,2) is between 3.55 to
3.83, while the faster UFP-LRC(2,3,2) recoveries a block
at a cost of 3.2 to 3.78, obtaining about 10 percent cost
savings. The advantage of UFP-LRC(2,3,2) owes to the
enlarged variance of failure rates among failed disks. This
is consistent with our numeric analysis in Fig. 12. After-
wards, UFP-LRC(2,3,2) and LRC(9,3,2) gradually con-
verge when the PH approaches 1 because of the shrinking
difference of failure rates of disks.

The reconstruction cost of RS(6,3) is close to be linear
with the change to the PH because of its fixed reconstruc-
tion cost for multiple lost blocks. With the increase of FD,
this characteristic of RS(6,3) is more apparent, i.e., still
reading six surviving blocks to recover two or three lost
blocks. That is why the RS codes generally employ a
delaying recovery strategy, which can reduce the average
reconstruction bandwidth but not facilitate the recon-
struction on-the-fly.

8.2 Encoding/Decoding Latency

We compare the real-time latency of encoding and decoding
operations for UFP-LRC and other two codes. We employed
a variety of sizes of unit symbol for encoding/decoding
operations, i.e., 16 bits, 32 bits, 64 bits and 128 bits, while the
16-bit unit symbol obtained the optimal arithmetic perfor-
mance in our system (Intel i5-4460 3.2 GHz, 4 GB memory).

Fig. 16 plots the encoding/decoding latency with varying
file size. We can see that encoding latencies of the three
codes are fairly similar, while UFP-LRC and LRC being
faster than RS in terms of decoding owing to their locality.

Fig. 15. Average reconstruction cost per lost block for various FD with varying PH.

Fig. 16. Latency of arithmetic operations.

HU ET AL.: UNEQUAL FAILURE PROTECTION CODING TECHNIQUE FOR DISTRIBUTED CLOUD STORAGE SYSTEMS 397



For UFP-LRC and LRC, the decoding is a little faster than
encoding in that fewer blocks are involved in arithmetic
operations. With regard to decoding latency, our experi-
mental results show a 8 to 12 percent improvement of UPF-
LRC over LRC, because a smaller number of blocks are
involved in reconstruction. For example, the average
latency of decoding 64 MB and 512 MB file is 322 ms and
2670 ms for UFP-LRC(2,3,2), 363 ms and 3080 ms for LRC
(9,3,2), and 476 ms and 4020 ms for RS(6,3), respectively.
Nevertheless, the latencies of arithmetic operations are typi-
cally in microseconds and becoming neglectable compare to
the latency of I/Os and data transferring during the
reconstructions.

8.3 Throughput of Reconstruction On-The-Fly

To evaluate the performance of reconstruction on-the-fly,
We carried out a set of experiments concurrently running
on 3 client nodes, with a program periodically submitting
GET requests for files to the web server when the system
suffers from disk failures. The size of requested files
ranges from 1 MB to 1 GB. On receipt of the RECONS_
REQUEST_MSG from web server, the erasure coding server
then initializes a reconstruction procedure for the recon-
struction on-the-fly.

From Fig. 17, we observe that the average throughput for
the three coding schemes does not apparently degrade until
the FD reaches 2 or 3. This is because of the fact that the cli-
ent requests do not saturate the capacity of the remaining
disks/nodes. When FD=2, 14 out of 16 disks are still avail-
able. Indeed, when the FD exceeds 3, an obvious degrada-
tion has been observed because the probability to request a
data block on failed disks increases, and accessing those
currently unavailable data blocks requires performing a
reconstruction on-the-fly. Without parity blocks loss in the
nodes cluster, UFP-LRC(2,3,2) and LRC(9,3,2) can avoid
costly reconstruction of parity blocks, so as to improve the
throughput compared to RS(6,3). UFP-LRC(2,3,2) is able to
obtain about 10 to 15 percent higher throughput than LRC
(9,3,2) owing to the high failure rate ratio across the failed
disks. As FD increases, the throughput of UFP-LRC or LRC
drops more rapidly compared with RS(6,3). However, there
is a slight throughput drop for RS(6,3) due to increasing
number of parity blocks to be fetched for repair by the
coordinator.

8.4 Undecodability

We conclude the evaluation by comparing the three codes’
undecodability ratio which is equal to the number of unde-
codable cases divided by the total number of reconstruc-
tions. Since the undecodable cases in practice are rare, we
used a large number of failed disks to increase their occur-
rences. The statistic undecodable cases mainly come from
the disks with high failure rate running above experiments,
as the FD exceeds the maximal erasure tolerance.

The results are shown in Fig. 18. We can see that the RS
(6,3) has the highest undecodability ratio due to its relative
weak 3-failure tolerance. Additionally, for undecodability,
the UFP-LRC(2,3,2) and LRC(9,3,2) are comparable as ana-
lyzed in Table 2. Actually, the undecodability ratio of UFP-
LRC(2,3,2) is slightly lower than LRC(9,3,2) as FD grows
beyond 7, as more failure cases take place within its more
failure-tolerant small groups. These results confirm our
analysis in Section 6.2.

9 CONCLUSION

In this paper, we make the first attempt to provide unequal
failure protection for all blocks in cloud storage systems. Our
proposed technique, UFP-LRC, divides data blocks into sev-
eral unequal-sized groups, assigning more failure-prone
blocks into smaller groups. This way, UFP-LRC achieves
stronger erasure failure protection as well as significant
reconstruction cost savings for more failure-prone blocks.
This leads to a substantial improvement in reliability and
reconstruction performance. Our analytical results show
that UFP-LRCgradually outperforms LRC along the increase
of failure rate ratio. Extensive evaluations on our prototype
storage system also validate that, compared to LRC, UFP-
LRC can achieve a 10 to 15 percent improvement in through-
put while retaining a comparable overall reliability.

ACKNOWLEDGMENTS

This work is partially supported by the National Science
Foundation of China under Grant No. 61572181, 61472131,
61772191, 61433019 and U1611261; National Security Project
under Grant No.BMK2017B02; Science and Technology Key
Projects of Hunan Province under Grant No. 2015TP1004,
2016JC2013 and 2016JC2012; Huxiang Excellent Youth Proj-
ect under Grant No.2017RS3018.

Fig. 18. Decodability ratio with varying FD.Fig. 17. Throughput of reconstruction on-the-fly.

398 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021



REFERENCES

[1] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of
flash memory failures in the field,” in Proc. ACM SIGMETRICS/
Int. Conf. Measure. Modeling Comput. Syst., 2015, pp. 177–190.

[2] S. Sankar, M. Shaw, K. Vaid, and S. Gurumurthi, “Datacenter scale
evaluation of the impact of temperature on hard disk drive fail-
ures,” ACM Trans. Storage, vol. 9, no. 2, Jul. 2013, Art. no. 6.

[3] D. Ford, et al., “Availability in globally distributed storage sys-
tems,” in Proc. 9th USENIX Symp. Operating Syst. Des. Implementa-
tion, 2010, pp. 1–7.

[4] Q. Liu, D. Feng, H. Jiang, and Y. Hu, “Z codes: General systematic
erasure codes with optimal repair bandwidth and storage for dis-
tributed storage systems,” in Proc. IEEE 34th Symp. Reliable Distrib.
Syst., 2015, pp. 212–217.

[5] H. Chen, Y. Hu, P. Lee, and Y. Tang, “NCCloud: A network-
coding-based storage system in a cloud-of-clouds,” IEEE Trans.
Comput., vol. 63, no. 1, pp. 31–44, Jan. 2014.

[6] B. Calder, et al., “Windows azure storage: A highly available
cloud storage service with strong consistency,” in Proc. ACM
Symp. Operating Syst. Principles, 2011, pp. 143–157.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proc. IEEE Symp. Mass Storage Syst.
Technol., 2010, pp. 1–10.

[8] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,”
in Proc. 9th ACM Symp. Operating Syst. Principles, Dec. 2003,
vol. 37, no. 5, pp. 29–43.

[9] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding versus
replication: A quantitative comparison,” in Proc. Int. Workshop
Peer-to-Peer Syst., 2002, pp. 328–337.

[10] Z. Zhang, A. Deshpande, E. T. X. Ma, and D. Narayanan, “Does
erasure coding have a role to play in my data center,” Micro-
soft, Redmond, Washington, USA, Tech. Rep. MSR-TR-2010–52,
2010.

[11] C. Huang, et al., “Erasure coding in windows azure storage,” in
Proc. USENIX Annu. Techn. Conf., Jun. 2012, pp. 2–2.

[12] (2016). [Online]. AWS Fault Tolerance and High Availability,
https://media.amazonwebservices.com/architecturecenter/
AWS ac ra ftha 04.pdf

[13] J. C. Corbett, et al., “Spanner: Google’s globally-distributed data-
base,” in Proc. USENIX Conf. Operating Sys. Des. Implementation,
2012, pp. 251–264.

[14] M. Sathiamoorthy, et al., “XORing elephants: Novel erasure codes
for big data,” Proc. VLDBEndowment, vol. 6, no. 5, 2013, pp. 325–336.

[15] M. Subramanian, et al., “f4: Facebook’s warm BLOB storage
system,” in Proc. USENIX Conf. Operating Sys. Des. Implementation,
2014, pp. 383–398.

[16] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, “DiskReduce: Rep-
lication as a prelude to erasure coding in data-intensive scalable
computing,” Carnegie Mellon University, Pittsburgh, PA, USA,
Tech. Rep. CMU-PDL-11–112, 2011.

[17] M. Whele. (2013). [Online], EMC ATMOS Cloud Storage Architecture,
https://poland.emc.com/collateral/software/white-papers/
h9505-emc-atmos-archit-wp.pdf

[18] D. Borthakur, HDFS and Erasure Codes (HDFS-RAID), Aug. 2009.
[Online]. Available: http://hadoopblog.blogspot.com/2009/08/
hdfs-and-erasure-codes-hdfs-raid % .html

[19] M. Xia, et al., “A tale of two erasure codes in HDFS,” in Proc. 13th
USENIX Conf. File Storage Technol., 2015, pp. 213–226.

[20] K. V. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and
K. Ramchandran, “Having your cake and eating it too: Jointly
optimal erasure codes for I/O, storage and network-bandwidth,”
in Proc. 13th USENIX Conf. File Storage Technol., 2015, pp. 81–94.

[21] J. Li and B. Li, “Cooperative repair with minimum-storage
regenerating codes for distributed storage,” in Proc. IEEE Conf.
Inf. Comput. Commun., 2014, pp. 316–324.

[22] A. Dimakis, K. Ramchandran, Y. Wu, and S. Changho, “A survey
on network codes for distributed storage,” Proc. IEEE, vol. 99,
no. 3, pp. 476–489, Mar. 2011.

[23] F. Andr, A. Kermarrec, E. L. Merrer, G. Straub, N. L. Scouarnec,
and A. van Kempen, “Archiving cold data in warehouses with
clustered network coding,” in Proc. 9th ACM Eur. Conf. Comput.
Syst., 2014, Art. no. 21.

[24] D. Papailiopoulos, J. Luo, A. Dimakis, and C. Huang, “Simple
regenerating codes: Network coding for cloud storage,” in Proc.
IEEE Conf. Inf. Comput. Commun., 2012, pp. 2801–2805.

[25] Y. Han, P.Hung-Ta, R. Zheng, andH.M.Wai, “Efficient exact regen-
erating codes for byzantine fault tolerance in distributed networked
storage,” IEEETrans. Commun., vol. 62, no. 2, pp. 385–397, Feb. 2014.

[26] K. Rashmi, N. Shah, and P. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a
product-matrix construction,” IEEE Trans. Inform. Theory, vol. 57,
no. 8, pp. 5227–5239, Aug. 2011.

[27] Locally Repairable Erasure Code Plugin. (2016). [Online]. Available:
http://docs.ceph.com/docs/hammer/rados/operations/erasure-
code-lrc

[28] B. Schroeder and G. Gibson, “Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you?” in Proc. 5th USE-
NIX Conf. File Storage Technol., 2007, Art. no. 1.

[29] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,”
ACM Trans. Storage, vol. 9, no. 1, pp. 1–28, Mar. 2013.

[30] C. Huang, “LRC Erasure Coding in Windows Storage Spaces,” in
Proc. Storage Developer Conf., 2013.

[31] D. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Trans. Inform. Theory, vol. 60, no. 10, pp. 5843–5855, Oct. 2014.

[32] V. Cadambe and A. Mazumdar, “Bounds on the size of locally
recoverable codes,” IEEE Trans. Inform. Theory, vol. 61, no. 11,
pp. 5787–5794, Nov. 2015.

[33] X. Song, X. Peng, J. Xu, G. Shi, and F. Wu, “Unequal error protec-
tion for scalable video storage in the cloud,” in Proc. IEEE Int.
Conf. Multimedia Expo, 2015, pp. 1–6.

[34] E. Pinheiro, W. Weber, and L. A. Barroso, “Failure trends in a
large disk drive population,” in Proc. 5th USENIX Conf. File Storage
Technol., 2007, pp. 17–29.

[35] D. Kondo, B. Javadi, A. Iosup, and D. Epema, “The failure trace
archive: Enabling comparative analysis of failures in diverse dis-
tributed systems,” in Proc. 10th IEEE/ACM Int. Conf. Cluster Cloud
Grid Comput., 2010, pp. 398–407.

Yupeng Hu received the MS and PhD degrees in
computer science fromHunanUniversity, China, in
2005 and 2008, respectively. He is currently an
associate professor in the College of Computer
Science and Electronic Engineering, Hunan Uni-
versity. Hewas in theDepartment of Computer Sci-
ence and Engineering, UT-Arlington as a visiting
scholar from 2015 to 2016. He was also with IBM
China Development Laboratory as an academic
visitor in 2012. His research interests include stor-
age systems, erasure coding, and security. He is a

senior member of the IEEE and ACM.

Yonghe Liu received the BS and MS degrees
from Tsinghua University, and the PhD degree
from Rice University, in 1998, 1999, and 2004
respectively. He is currently an associate pro-
fessor in the Department of Computer Science
and Engineering, UT-Arlington. Before joining
CSE@UTA in January 2004, he worked in the
Texas Instruments for about two and half years.
His research focuses on networking, wireless
systems, and their system prototyping. He is a
member of the IEEE.

Wenjia Li (M’11) received the Ph.D. degree in
computer science from the University of Maryland
Baltimore County, Baltimore, MD, USA, in 2011. In
2014, he joined the Department of Computer Sci-
ence, NewYork Institute of Technology, New York,
NY, USA, where he is currently an Assistant Pro-
fessor. He was an Assistant Professor of computer
science with Georgia Southern University, States-
boro, GA, USA, from 2011 to 2014. He has auth-
ored or co-authored over 50 peer-reviewed
publications in various journals and conference

proceedings. His current research interest include cyber security, mobile
computing, and wireless networking, particularly security, trust, and policy
issues for wireless networks, cyber-physical systems, Internet of Things,
and intelligent transportation systems. His research has been supported by
the National Institute of Health (NIH) and the U.S. Department of Transpor-
tationRegion 2 University Transportation Research Center (UTRC).

HU ET AL.: UNEQUAL FAILURE PROTECTION CODING TECHNIQUE FOR DISTRIBUTED CLOUD STORAGE SYSTEMS 399

https://media.amazonwebservices.com/architecturecenter/AWS ac ra ftha 04.pdf
https://media.amazonwebservices.com/architecturecenter/AWS ac ra ftha 04.pdf
https://poland.emc.com/collateral/software/white-papers/h9505-emc-atmos-archit-wp.pdf 
https://poland.emc.com/collateral/software/white-papers/h9505-emc-atmos-archit-wp.pdf 
http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid % .html
http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid % .html
http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid % .html
http://docs.ceph.com/docs/hammer/rados/operations/erasure-code-lrc
http://docs.ceph.com/docs/hammer/rados/operations/erasure-code-lrc


Keqin Li is a SUNY distinguished professor
of computer science. His current research
interests include parallel computing and high-
performance computing, distributed computing,
energy-efficient computing and communication,
heterogeneous computing systems, cloud com-
puting, big data computing, CPU-GPU hybrid
and cooperative computing, multicore comput-
ing, storage and file systems, wireless commu-
nication networks, sensor networks, peer-to-
peer file sharing systems, mobile computing,

service computing, Internet of things, and cyber-physical systems. He
has published more than 460 journal articles, book chapters, and ref-
ereed conference papers, and has received several best paper
awards. He is currently or has served on the editorial boards of the
IEEE Transactions on Parallel and Distributed Systems, the IEEE
Transactions on Computers, the IEEE Transactions on Cloud Com-
puting, the IEEE Transactions on Services Computing, and the IEEE
Transactions on Sustainable Computing. He is a fellow of the IEEE.

Kenli Li received the PhD degree in computer
science from the Huazhong University of Science
and Technology, China, in 2003. He was a visit-
ing scholar with the University of Illinois at Urbana
Champaign, from 2004 to 2005. He is currently
the Dean of College of Computer Science and
Electronic Engineering, Hunan University. His
major research interests include parallel comput-
ing, cloud computing, and big data processing.
He is currently served on the editorial boards of
the IEEE Trans. on Computers, the International

Journal of Pattern Recognition, and the Artificial Intelligence. He is a
senior member of the IEEE.

Nong Xiao received the BS and PhD degrees
in computer science from the National University
of Defense Technology, China, in 1990 and
1996, respectively. He is currently a professor in
the School of Data and Computer Science,
Sun Yet-Sen University. His research interests
mainly include grid computing, storage, and
architecture. He is amember of the IEEE.

Zheng Qin received the PhD degree in computer
science from Chongqing University, P. R. China,
in 2001. He is a professor in the College of Com-
puter Science and Electronic Engineering, Hunan
University, China. His main interests include the
computer networking, network and information
security, big data and cloud computing. He is a
member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

400 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 1, JANUARY-MARCH 2021



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


