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In recent years, with rapid technological advancement in both computing hardware and algorithm, Artificial
Intelligence (AI) has demonstrated significant advantage over human being in a wide range of fields, such
as image recognition, education, autonomous vehicles, finance, and medical diagnosis. However, AI-based
systems are generally vulnerable to various security threats throughout the whole process, ranging from
the initial data collection and preparation to the training, inference, and final deployment. In an AI-based
system, the data collection and pre-processing phase are vulnerable to sensor spoofing attacks and scaling
attacks, respectively, while the training and inference phases of the model are subject to poisoning attacks
and adversarial attacks, respectively. To address these severe security threats against the AI-based systems,
in this article, we review the challenges and recent research advances for security issues in AI, so as to depict
an overall blueprint for AI security. More specifically, we first take the lifecycle of an AI-based system as a
guide to introduce the security threats that emerge at each stage, which is followed by a detailed summary
for corresponding countermeasures. Finally, some of the future challenges and opportunities for the security
issues in AI will also be discussed.
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1 INTRODUCTION

Artificial Intelligence (AI) was first introduced at the Dartmouth Conference convened by John
McCarthy during the summer of 1956, marking the birth of the AI discipline [97]. However, it was
not until 2006, with the introduction of the deep learning concept by Hinton et al. [66], that a
new wave of AI applications was ushered in, which was enabled by fast growing computational
resources, the emergence of more efficient algorithms, and the explosive growth of data on the
Internet.

So far, AI technology has revolutionized many aspects of our daily lives [24, 31, 47, 78, 88, 94,
100, 140, 158, 172] and it empowers us to rethink how we could integrate information, analyze data,
and use the resulting insights to improve the overall decision-making process. In order to take the
lead in the field of AI, major national strategic plans for AI have been laid out. For instance, the U.S.
White House released the “National Strategic Plan for Artificial Intelligence Research and Devel-
opment” in 2016 [12], while DARPA announced in September 2018 that it would invest nearly $2
billion in the future to develop next-generation AI technologies [147]. In addition, the State Coun-
cil of China issued the “New Generation Artificial Intelligence Development Plan” [43] in 2017.
Nowadays, the level of AI development has become an important reflection of the comprehensive
national power of each country.

However, there are bound to be two sides to the development of AI, where its security is becom-
ing a significant concern, especially in security-sensitive infrastructures. According to a leading
American technology blog Gizmodo, from 2000 to 2013, 144 people died in surgeries involving
robotic assisted surgeons [33]. Statistically, the AI-based recruiting tool used by Amazon from
2014–2017 favored hiring men, raising concerns about the fairness of AI [37]. In March 2018, Uber’s
automated vehicle crash triggered fears about AI safety [134]. In addition, the image recognition
algorithm pulse proposed by Menon et al. [102] has once again sparked great controversy, with
someone using the pulse algorithm to restore a blurred image of Obama only to be restored to
a white man [154]. According to The Register, a French chatbot based on GPT-3 suggested that
model patients commit suicide [119]. In high-risk areas, such as autonomous driving, healthcare,
and finance, and so on, a very tiny error or vulnerability could end up costing millions or billions
of dollars, and even, sometimes, human lives.

Though the AI systems are generally “smart”, they are also “fragile”, which means that they can
be easily fooled or attacked. Sun et al. [142], Yakura et al. [168], and Zhang et al. [174] discuss AI-
related attacks and defenses with graph, audio, and text data, respectively. Chakraborty et al. [23]
and Ozdag et al. [113] provide an overview of AI model-related security threats. Unlike other AI
security-related reviews that focus on a single type of data or a particular phase of the AI lifecycle,
we discuss security threats and countermeasures involving a wide range of typical AI applications,
such as image classification, speech recognition, natural language processing (NLP), and many
other scenarios. In addition, we take the AI system lifecycle as a clue to explore and analyze the
possible security threats and their defenses at each stage of the AI lifecycle.

The overall framework discussed in this work is shown in Figure 1. It is worth mentioning that
MITRE, Microsoft, and 11 other organizations have jointly released the Adversarial Machine

Learning (ML) Threat Matrix [42], an ATT&CK-style framework designed to help security
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Fig. 1. The overall framework of attack and defense strategies for the AI systems.

analysts quickly locate and remediate attacks on ML systems. The adversarial ML threat matrix is
the first attempt toward a knowledge base for ML system attacks and is under initial development.
It contains attack techniques specific to ML systems as well as techniques applicable to ML and
non-ML systems. Our work can enrich the matrix, especially for ML systems attacks. Since the
Threat Matrix is still undergoing refinement, its attack vectors have not encompassed the latest
attack techniques, such as sensor spoofing attacks [132] and image scaling attacks (ISAs)
[121, 161]. Furthermore, our framework shows the corresponding countermeasures for different
phases of security issues, which can serve as a reference for MITRE to supplement defense
techniques in the future. Specifically, the lifecycle of an AI system can be generally divided into
five phases: data collection, data pre-processing, model training, model inference, and system
integration, each of which is vulnerable to different sets of security threats.

— In the data collection phase, Security risks are closely related to the means of data being
collected. There are two main types of data collection methods: software based collection
and hardware based collection. One representative attack on the hardware based collection
method is the sensor spoofing attack [132], which an attacker performs the sensor attack
by accessing or tampering with the data provided by sensors [131, 132]. The software-based
data collection method mainly refers to collecting digital data, and its security risks include
data biases [37, 111, 154], fake data [30], and data breach [38, 145].

— The data pre-processing phase. Note currently, the scaling attack generally targets the im-
age domain, in which the image data may be tampered with during the pre-processing step,
thus becoming a potential attack surface [76, 120, 121, 161]. Specifically, for the insidious
ISAs, the attacker tampers with the image and abuses the (visual) cognitive differences be-
tween humans and machines to achieve a spoofing and escape attack bypassing even careful
manual inspection. Unlike adversarial example attacks, which rely on the model, ISAs only
target the data pre-processing step [121, 161]. The attacker utilizes �p -norm [161] to control
the distance between the target image and the attack image to increase the attack success
rate. Data randomization [161], quality monitoring [76], image reconstruction [120] are main
techniques to defeat the ISA.
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— In the model training phase, the causative attacks affect the training data and the train-
ing process by injecting poisonous data fed into the model and thus tampering with the
trained model. Generally speaking, the causative attack mainly refers to data poisoning at-
tacks [15, 27, 50, 61, 93, 160], which are divided into two groups, namely availability attacks
[15, 160] and integrity attacks [61]. For availability attacks, the poisoning points are usually
found based on the gradient information [14, 77] of the model, or the poisoning data are
automatically generated using an auxiliary network [169]. The availability attack deterio-
rates the overall performance of the model for any input. In contrast, the integrity attack
does not affect the classification of normal inputs but only those attacker-chosen ones. The
backdoor attack [62, 151] and clean label poisoning attack [130] are representative integrity
attacks. Existing strategies for defending against poisoning attacks include data sanitization
[13, 77, 139], robustness training [90], and certified defenses [139].

— In the inference phase, the evasion attacks [2, 4, 18, 22, 55, 136, 148, 159] are normally per-
formed at the model inference phase to degrade or interfere with the model’s predictive
performance by crafting adversarial examples, which are usually through minor and seman-
tically consistent alterations on the input but without altering the target model [174]. Such
attacks have been studied extensively in image classification [18, 55, 159], speech recogni-
tion [2, 22, 148], NLP [136], and malware detection [4, 84]. There has been a large number of
adversarial example generation strategies developed in recent years, such as classical Fast

Gradient Sign Method (FGSM) [55], Jacobian-based Saliency Map Attack (JSMA) [114],
and DeepFool [105] have been developed, which are mainly realized by optimization search
or gradient-based information. Correspondingly, countermeasures have been interactively
devised, including model-based strategies such as distillation [115], detectors [95], network
verification [75], and data-based measures such as adversarial training [55], data randomiza-
tion [163], and input reconstruction [36, 138].

— In AI system integration phase, security issues become rather complicated. In practical ap-
plication scenarios, the system integration of AI applications involves not only the security
risks of AI technology itself, but also the problems arising from the joint point of the sys-
tems, networks, software, and hardware on board. These threats include the confidentiality
of AI data and models [48, 175], code vulnerabilities [162], AI bias [64, 154], and so on. The
security of AI requires the concerted efforts of researchers in various fields.

In short, the security threats of AI have become an urgent issue in the development and applica-
tion of AI, especially for security-sensitive scenarios [33, 134]. According to the different phases in
the AI system that attacks are targeting, this work elaborates on the corresponding vulnerabilities
and their corresponding countermeasures.

2 DATA COLLECTION-RELATED ATTACKS AND DEFENSES

2.1 Overview

Data is the driving force behind the rapid development of AI. It takes many different forms. For
example, the types of data include but are not limited to: images and audio captured by hardware
devices (e.g., sensors), documents and logs automatically generated by computer systems, and
those (e.g., text, image, video, trace) which result from our Internet activities. Furthermore, the
security issues involved in data collection are not unique to AI, which essentially exist in any
industry requiring data collection. Lin et al. [89] summarized the requirements, objectives, and
technologies for data collection related to network security. They argue that data collection needs
to meet the following security objectives: confidentiality, integrity, non-repudiation, authenti-
cation, privacy protection, and self-protection. However, they recognize that most existing data
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Table 1. Methods, Potential Pitfalls, and Defenses of Data Collection

Methods Security issues Typical scenarios Potential defenses

Software-based
data collection

Data bias [37, 111, 154] Social networks, Recommend system
Detection and filtering [64],
Standardized Management

Fake data [30, 155] Internet of Things, Social networks Detection and filtering [16]
Data breach [38, 145] Scenarios required data collection are covered Encryption or authentication

Hardware-based
data collection

Sensor spoofing attack [79, 131, 132, 135] Internet of Things
Input filtering [173], Sensor

enhancement and Baseband offset [133]

collection technologies meet functional requirements but normally overlooked security goals.
Though there is a lack of consensus on the classification of data collection method. It can be
generally categorized into software-based data collection and hardware-based data collection [89].
Software-based data collection is in the digital world, while hardware-based data collection is the
critical point of converting physical quantities in the physical world into digital forms. Table 1
summarizes the attacks and defenses related to data collection.

2.1.1 Software-Based Data Collection. The daily activities of Internet users generate the ma-
jority of data in digital form. Data collectors use software program tools to collect data (e.g.,
crawlers or “scrapers” of content). Software-based data collection requires packet capture appli-
cations, packet capture libraries, operating systems, device drivers, and network cards to work to-
gether to complete the data collection process. Theoretically, problems in any part of the process
will affect the quality of data collection. We will discuss the security risks caused by software-based
data collection methods and their corresponding defenses, using online social networks as an ex-
ample. Data bias and fake data are representative security risks confronted by social networks’
data collection.

2.1.2 Hardware-Based Data Collection. Hardware-related data collection devices include sen-
sors, hardware probes, mobile terminals, data acquisition generation cards, inline taps, network
interface cards, mobile terminals, and so on. The potential threat of each type of data collection
method varies according to the underlying design principle of the hardware. Sensors are the most
widely used data collection tool, and they offer the advantages of efficiency and flexibility. We take
the security threats of sensor data collection to illustrate some typical security risks of hardware-
based data collection methods.

2.2 Attacks

2.2.1 Data Bias. AI is very sensitive to training data. Data source selection and data prepara-
tion may introduce bias [111]. For example, the platform may be driven by business concerns (e.g.,
specific promotions) or political maneuvers to “nudge” user behavior in social networks. In addi-
tion, social platforms discourage third parties from collecting data and impose many restrictions
on the Application Programming Interface (API). As a result, data collectors can only collect
limited data or data that are different from what the platform presents to regular users.

AI’s incomplete learning bias raises a variety of concerns, such as gender discrimination, racism,
and so on. For example, Amazon Human Resources used an AI-enabled recruiting software be-
tween 2014 and 2017 [37]. As a result, Amazon hired more male applicants while downgrading the
resumes of female applicants. Someone on Twitter used the PULSE algorithm to restore an input
blurred image of Obama to a new face with skewed white features [154]. Although not intentional,
AI biases undermine the integrity of the AI. We need to improve the data collection criteria and
develop tools to diagnose and mitigate bias.
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2.2.2 Fake Data. The fake data issue is not a challenge unique to the AI domain. Wanda
et al. [155] innovated the pooling function of the convolutional neural network. In addition, they
proposed a new dynamic deep neural network (DNN) model algorithm to detect fake profiles
in online social networks. Cobb et al. [30] discussed the security challenges in the data collection
process of the data collection application, Open Data Kit (ODK). They explored the sources of
fake data in the IDK data collection process and its defensive measures.

2.2.3 Data Breach. Data breach is a persistent issue. Sweeney et al. [145] first found that only
three information fields (place, gender, date of birth) could uniquely identify half of the U.S. pop-
ulation. It is worth noting that data breach is not only a problem specific to the data collection
phase but can also occur during the training and inference phases of the model [38].

2.2.4 Sensor Spoofing Attack. Data generated from the physical world need to be digitalized
and collected using relevant sensor elements for subsequent model training and inference. Sensors
are ubiquitously integrated into, smart wearable devices, automated driving vehicles, and Light

Detection and Ranging (LIDAR), which are the underlying core components responsible for
data measurement and collection. Attackers can exploit the physical properties of sensors to con-
struct malicious samples to spoof sensors to interfere with data collection [132]. According to the
targeted channel, Shin et al. [131] identified three vectors for sensor spoofing attacks: regular chan-
nel, transmission channel, and side channel. Shoukry, Yasser et al. [132] presented a Non-invasive
spoofing attack through regular channel. In order to mislead the sensor into producing a malicious
speed, the attacker first blocks the magnetic field generated by the rotating gear on the left. The
magnetic field generated by the malicious actuator that detects wrong speed is then transmitted to
the Anti-lock Braking Sensor (ABS), which consequentially leads to the sensor spoofing attack.
Foo Kune et al. [79] performed a low-power Electromagnetic Interference (EMI) attack by com-
bining backdoor coupling pair circuit with an analog sensor to perform malicious signal injection.
The audio signal is picked up by a microphone. Then the incoming signal is amplified and EMI
is injected via an amplifier. After that, they are transmitted to an analog-to-digital converter and
subsequently to the microprocessor, which eventually disabled the electronic components. Son
et al. [135] attacked the Unmanned Aerial Vehicle (UAV) with the fact that the output of the gy-
roscope would fluctuate with the noise at its own resonance frequency. At the resonant frequency
of the gyroscope, injecting a specific noise can make the gyroscope resonate, thus deteriorating
accuracy and interfering with the operation of the UAV.

2.3 Defenses

Data collection can mitigate security threats by employing data security protection strategies in
hardware security, software security, and cyber security. There is a wide variety of data collection
protection strategies. Furthermore, the protection strategies vary by scenario. Inspired by data se-
curity strategies, we suggest the following three categories as data collection protection measures.

2.3.1 Detection and Filtering. Hinnefeld et al. [64] investigated AI bias and designed a series
of strategies (e.g., optimizing preconditioning, rejecting option classification, learning fair repre-
sentation, and adversarial de-weighting) to detect and mitigate AI bias. To mitigate the threat of
data breach, Birnbaum et al. [16] proposed an unsupervised outlier detection technique to detect
falsified survey data and illustrated the need to use automated data quality monitoring. In terms
of hardware data collection, Zhang et al. [173] conducted software and hardware based defense
for different anchor points of attacks. They found that sensor enhancement and baseband offset
are useful in defending against sensor spoofing attacks. In the case of microphones, adding a low
pass filter while amplifying the microphone amplitude can suppress voice signals above 20 kHz,
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which means that human “inaudible” voice commands will be filtered out. Ignjatovic et al. [126]
demonstrated that the traditional iterative filtering algorithm aggregating multiple data sources
for trust assessment is vulnerable to collusion attacks, so they proposed an iterative filtering tech-
nique with better convergence and more robustness to secure sensor networks. We can discard
data captured by collection tools that lack trustworthiness and credibility. In addition, attackers
can perform a spoofing attack by recording and replaying the command given by users. Although
filtering is a convenient and effective defense, we need to be wary of filtering rules that introduce
data bias.

2.3.2 Data Provenance and Authentication. Proper sensor trust mechanisms can be adapted to
disable the data collected from untrusted devices or unauthorized devices. Firstly, the trustiness of
sensor nodes should be checked before aggregating data from them through trustworthiness eval-
uations [85, 86]. The other commonly used security mechanism is authentication. For instance,
a physical challenge-response authentication mechanism, PyCRA, was established by Shoukry
et al. [133], in which the sensors use physical probes to continuously and actively sense the sur-
rounding environment. An authentication mechanism is achieved by analyzing the active response
to detect manipulated analog signals to defend against malicious sensor attacks.

2.3.3 Standardized Management. Human misuse can also affect the quality of collected data,
which requires the management and training of relevant personnel. Therefore, we need to examine
security requirements for data collection (confidentiality, integrity, identity verification, etc.) and
develop corresponding management procedures to secure data collection [89, 91]. In addition, the
establishment of appropriate incentive mechanisms can encourage data providers to share their
data more honestly, which is beneficial to the quality of data collection.

3 SCALING ATTACKS AND DEFENSES

3.1 Overview

The size of the image data used to train the models is usually fixed. For example, the image fed into
the model is generally sized 224×224 or 32×32, which is smaller than the original—due to the image
pre-processing step. In the data pre-processing phase, for example, the images need to be scaled
to match the model input size. Image scaling generates a new image with lower/higher resolution
in terms of pixels than the original while preserving the original visual features and scaling it
proportionally. However, during scaling process, attackers can misuse the scaling algorithm to
adjust the pixel-level information to craft a camouflage image, resulting in a dramatic change
in visual semantics before and after image scaling. As shown in Figure 2, Xiao et al. [161] have
crafted an attack image based on a “sheep” image, which visually disguises the “wolf” as a “sheep.”
Once the image is down-sampled or resized, the real “wolf” is revealed. Moreover, Xiao et al. [161]
verified the effectiveness of the attack on multiple cloud-based image servers like Microsoft Azure,
Aliyun, Tencent, and Baidu image classification service. For instance, Baidu cloud server identified
the image as a “wolf” with high confidence. Notably, the ISA is powerful to be agnostic to different
models as long as they employ the same rescaling function to fit the same model input size. Table 2
presents an overview of ISAs and defenses in the data preprocessing phase.

3.2 Attacks

Xiao et al. [161] first revealed ISA by exploiting the inverse of the interpolation algorithm. As
shown in Figure 3, a perturbation matrix Δ1 is first added to the original image “srcimg” e.g.,
digit number 8 to produce the attack image “attackimg” that embeds the targeted image e.g., digit
number of 6. while Δ2 is the difference between the target image “targetimg” and the output image

ACM Computing Surveys, Vol. 55, No. 1, Article 20. Publication date: November 2021.



20:8 Y. Hu et al.

Fig. 2. Example of a scaling attack [161]. Fig. 3. Automatic attack image crafting [161].

Fig. 4. A clean-label poisoning attack [121]. Fig. 5. Overview of Decamouflage [76].

“outimg.” Finally, the optimal attack image is generated based on the interpolation algorithm in the
constraints of Δ1and Δ2. Once the image-scaling operation is routinely performed on attack image,
the model sees the targeted image e.g., digit number of 6, and thus identifies it as the attacker’s
target of 6, which is a source-to-target attack [161]. Such an attack is still effective even when the
deployed system is a black-box to the attacker, as it is relatively easy to infer required parameters
such as the input image size or/and the underlying rescaling function used by that model through
e.g., exhaustive trials. This is due to the fact that the commonly used type of input image sizes
or/and rescaling functions are limited.

The root cause of the ISA is from the interaction of downsampling and convolution, which is
theoretically analyzed by Quiring et al. [120] from a signal processing perspective. They conducted
experiments on three ML imaging libraries (OpenCV, TensorFlow, and Pillow) to confirm the ex-
istence of such interaction. By making the attack image consistent with the scaled image in the
color histogram, Quiring et al. [121] introduced a new Adaptive ISA, which reduced the success
rate of ISA detection by inspecting the color histogram.

In addition, the authors combined the ISA with the poisoning attack, successfully hiding the
triggers of the backdoor attack [121]. As illustrated in Figure 4, the ISA technique is used to hide
the triggers before data pre-processing, ensuring that the content and labels of the attack images
with triggers are visually consistent, thus bypassing the manual inspection of poisoned images.
Once the downscaling operation, as a standard step in most cases, is executed, the trigger is imme-
diately exposed. Such poisoned samples via image-scaling ensure the concealment of the trigger
and achieve the effect of the backdoor attack.

3.3 Defenses

Quiring et al. [120] developed an image reconstruction method to defend against ISAs. Selective
median filters and random filters are employed in their work to identify pixel points that have been
altered during scaling. Then the remaining pixels in the image are used to reconstruct modified
contents e.g., through median. The defense method proposed by Quiring et al. [120] avoids to
modify the original neural network, but simply combines with existing image libraries to defend
against scaling attacks.

Image reconstruction prevents ISAs by the relationship between downsampling frequency
and image scaling, but degrades the quality of the input image [120]. Therefore, as illustrated in
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Table 2. Image Scaling Attacks and Defenses

Attacks Attack strategy Potential defense

Xiao [161] Reducing the �p -norm distance between the target and attack image
Randomization,

Quality Monitoring

Quiring [120] Reducing the color histogram gap between the target and attack image
Image reconstruction [120],

Attack detection [76]

Figure 5, Kim et al. [76] integrated rescaling, filtering and steganalysis into a scaling attack
detection framework—decamouflage. Specifically, (i) Scaling detection method firstly performs
downscaling and then upscaling operations on the input image to construct a “copy” image, then
compares the similarity of the image on the color histogram before and after between the input im-
age and its “copy”: The attacker injected pixels in the input image are expected to be removed from
the “copy” attributing to the upscaling. (ii) Filtering detection filters the image using filters. (iii)
The samples suspected to attack images are transformed into two-dimensional space by Discrete

Fourier Transform (DFT) and perturbed pixels embedded by ISA are detected using steganalysis.
Subsequently, the Mean Squared Errors (MSE), Structural Similarity Index (SSIM), and Cen-

tered Spectrum Points (CSP) metrics are used to quantify the similarity before and after, and
the derive detection boundaries for each detection method independently. Finally, an ensembled
technique is performed to identify whether the incoming image is an attack image or not.

In general, Quiring et al. [120] eliminated the attack effect but does not specifically detect
whether the input image is an attack image. Whereas, Kim et al. [76] detected the presence of
malicious attacks and rejects the attack images. Detection is preferred in case that the any attack
is required to be traced. In addition, it is possible to adapt [120] to further eliminate the attack
effect by reconstructing the attack image to get the correct prediction once the input is detected
as adversary, which can alleviate quality degradation caused by the image reconstruction in [120].

4 DATA POISONING ATTACKS AND DEFENSES

4.1 Overview

AI systems are trained based on large curated data. However, the data quality directly affects the
performance of the model trained. In this context, an attacker can poison the training set to manip-
ulate the inference behavior of the model. From the perspective of the model and the attack target,
poisoning attacks can be divided into two categories: availability attacks [15, 160] and integrity
attacks [61].

— Availability attacks are known as denial-of-service attacks, where the attack goal is to max-
imize the overall loss of the model and cause a degradation in model performance as well
as misclassification. For example, social media chatbots have a rich corpus and which is
expanded by interactions with humans. When an attacker affects the chatbot with some
statements with no contextual relevance, the chatbot will not conduct a normal logical chat.

— Integrity attacks are where the attacker accomplishes targeted damage by carefully design-
ing poisoned data without affecting the model’s classification of clean samples [27, 61, 93].
The most representative integrity attack is the backdoor attack. Backdoor attacks only
misclassify inputs containing specific (explicit or even inexplicit) triggers and the backdoor
can still be retained in a downstream transfer learning task. As an example of backdoor
attack, in malware detection, an attacker marks a file containing a specific string as benign
data and puts it into the training of the detector. After the model is trained and deployed, the
attacker simply adds the particular string to the malware to evade detection, as any malware
with the specific string functioning as a trigger will be associated with the benign class.
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Fig. 6. Changes in classification models before and after poisoning attacks.

Based on the differences in attack behavior and classification results, poisoning attacks are di-
vided into Error-Specific attacks and Error-Generic attacks. Suppose there is a clean sample C with
the true label ytrue. The attacker constructs a poisoned sample set C ′ and adds it to the training
set of model M , causing model M to misclassifyC , i.e., M (C ) � ytrue. If M (C ) is a specific class tar-
geted by the attacker, it is an Error-Specific poisoning attack. Whereas, if M (C ) is any class other
than ytrue, it is an Error-Generic poisoning attack. As shown in Figure 6(a), the solid line indicates
the binary classifier under normal conditions. Suppose a small amount of poison data is added to
training sets. In that case, the decision boundary will be shifted, resulting in a classification effect
as separated by the dotted line. Therefore, instances within the closed region formed by the in-
tersection of the normal model and the poisoned model will be misclassified during the inference
phase. As shown in Figure 6(b), Class A instances will be misclassified as Class B.

4.2 Attacks

Next, we will detail various poisoning attack methods, which we also have summarized in Table 3.

4.2.1 Availability Attacks. Availability attacks are known as denial-of-service attacks. Represen-
tative availability attacks include gradient-based attacks and Generative Adversarial Network

(GAN) based. Availability attacks with poisoning can be formally represented as a bi-level opti-
mization problem [14, 15, 99]. The inner optimization is a model training problem on a poisoned
training set. The outer optimization is to maximize the attacker’s objective A, which is usually the
classification loss function L of the clean dataset on the poisoned model obtained from the inner
optimization. The formal representation is as follows:

D∗c ∈ argmax
D′c ∈Φ(Dc )

A
(
D ′c ,θ

)
= L
(
D̂val , ŵ

)
, s.t. ŵ ∈ argmin

w
l
(
D̂tr ∪ D ′c ,w

)
. (1)

Attackers have only access to a proxy dataset D̂ of the data source. D̂ is divided into two disjoint
subsets D̂tr and D̂val . The D̂tr and the poisoned sample setD ′c are used to train the model to obtain
the poisoning model parameter ŵ . D̂val is used to test the classification effect on clean dataset in
the surrogate model by a simple loss function L(D̂val , ŵ ). In other words, the effect of poisoned
samples on clean data is determined by the parameter ŵ .

Gradient-based Attacks. The major challenge of gradient-based poisoning attack is the calcula-
tion of the gradient ∇xc

A of the attack target with respect to the poisoning point. In general, both
the gradient-based ascent and reverse gradient optimization obtain the optimized poisoning point
x by calculating the gradient of the attack target with respect to each poisoning point.

— Gradient-based ascent. The gradient ascent poisoning attack technology is optimized by
adopting a gradient ascent approach [14, 77]. Assuming that the attack function A

(
D ′c ,θ

)
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Fig. 7. An overview of the GAN-based

poisoning method [169].

Fig. 8. An example of clean label poisoning.

is differentiable for parameters w and input x , the required gradient is calculated using the
chain rule as follows:

∇xA = ∇xL +
∂wT

∂x
∇wL, (2)

where ∂w
∂x

denotes the hidden dependence of the classifier parameters on the poisoned data.
Mei et al. [99] proposed an implicit equation that uses the Karush–Kuhn–Tucker (KKT)
condition instead of the inner optimization problem to derive the gradient. By differentiating
at the poisoned point, the gradient can be solved. Then, a two-layer optimization problem
is transformed into a single-layer constrained optimization problem. Although the optimiza-
tion is simplified, the complexity of gradient computation makes it only applicable to a lim-
ited number of learning algorithms.

— Reverse gradient optimization. Reverse gradient optimization by Muñoz-González et al. [109]
is the first poisoning attack against a deep learning framework. They update the parameters
by reversing the learning process. The inner optimization problem is replaced by learning
iterations. The required gradient in the external optimization problem is obtained through
the incomplete parameters in the inner optimization problem. They Assume that one poison-
ing point xc is optimized at a time. In the inner optimization problem, a total ofT iterations
are performed. Thus, the parameter WT is obtained. The chain rule is used to calculate the
gradient for updating the poisoning points.

GAN-based Attacks. Yang et al. [169] designed a generator inspired by GAN to accelerate the
production of poisoned samples. The generator firstly randomly selects a sample xi from the clean
training set Dt for yielding a poisoned sample. Then, the discriminator uses the poisoned data
generated by the generator to calculate the loss of the clean data. Subsequently, the generator
updates the poisoned data using the new weighting function of gradient and loss provided by
the discriminator. The process is iterated continuously until the termination condition is reached.
Figure 7 illustrate an overview of the GAN-based poisoning method. The target model acts as a
discriminator while the generator is an additional model designed to generate the poisoning data
xp . The poisoning data obtained from the (t − 1)th update is input to the generator to obtain the
poisoning data xp (t ) updated in the t iteration. Then, xp (t ) is injected into the discriminator and

the weighted gradient f (L
(p )
i , gradient) is calculated to update the target model. Only one update

of the target model is required for each iteration, which can greatly reduce the time of poisoning
data generation.

4.2.2 Integrity Attack. Integrity attacks can accomplish targeted damage without affecting the
model’s classification of normal samples. Backdoor attacks are the most representative integrity
attacks.

ACM Computing Surveys, Vol. 55, No. 1, Article 20. Publication date: November 2021.



20:12 Y. Hu et al.

Backdoor Attacks. Backdoor attacks [62] do not affect the results of clean data being classified in
the backdoor model, but will produce deviations from the expected results for inputs containing
specific triggers secretly controlled by an attacker. Backdoor attacks is a typical integrity poisoning
attack by adding triggers to clean samples for creating poisonous samples whose labels are usually
modified into the targeted label. Significantly, the trigger, such as its position, shape, or color, can
be under the arbitrary control of the attacker. For an input x , its poisoned counterpartA(x ,m,Δ) is
obtained by stamping a trigger. Take image domain as example,m represents the trigger position.
Δ denotes the trigger color, pattern, and other information. The final trigger optimization problem
minimizes the dissimilarity of the latent representations of two models in the feature space, which
can be formally described as

Δf = argmin
Δ

∑
x ∈X

∑
xt ∈Xt

D (Fθ (A(x ,m,Δ), Fθ (xt ))) , (3)

where t denotes the target attack class, xt denotes input of the target attack class. Fθ (x ) denotes the
output of x under parameterθ or the intermediate output of a certain layer in neural network. Since
the trained triggers will activate some specific neurons in the model, D (·) is utilized to measure
the difference in neuronal activation states for clean inputs and inputs with added triggers. The
commonly usedD (·) is the MSE. Gu et al. [61] proposed a backdoor attack against neural networks,
where each neuron can be regard as an inner feature. The layer between the layer where the
selected neuron is located and the output layer is retrained so that the trigger establishes a strong
connection with the target class of neurons in the output layer.

Turner et al. [151] considered a backdoor attack in which the injected poisoned samples are
visually consistent with the label. To maintain the consistency of the label, they modify the pixel
value of the original backdoor pattern by the backdoor trigger magnitude so that the backdoor
trigger pattern is visually inconspicuous. Experiments show that this approach can generate an
unobtrusive trigger and be learned by the model to achieve a successful backdoor attack. Barni
et al. [9] added backdoor by corrupting the target class sample data. Once a backdoor signal is
encountered, the network identifies the sample as the target class. The method allows selecting
appropriate perturbations according to different classification tasks and target classes. For example,
for the MINIST digital classification task, they define the backdoor additive perturbation based on
the slope signal as v (i, j ) = jΔ

m
, 1 ≤ j ≤ m, 1 ≤ i ≤ �.m and l are the number of columns and rows

of the image, respectively. The backdoors formed by this method are more stealthy and have higher
attack success rate. However, they only corrupt the target class samples and need to increase the
data poisoning ratio to achieve high attack success rate.

Clean Label Poisoning. Shafahi et al. [130] proposed clean label poisoning attack that retains
the consistency between the label and visualize content of the image. In brief, they make the
model decision boundary change by adding poisoned data (labeled as base class) to the training
set, causing clean target instances around the poisoned data to be misclassified as base class. The
attack is depicted in Figure 8. The target class and the base class are firstly determined. Then a
target instance t and a base instance b are selected from the target and base class, respectively. A
poisoned sample x is constructed under the �2-norm constraint in a way that x is visually similar
to the base class but close to the target class in the feature space representation. Poisoning data
generation by feature collision is formulated as

p = argmin
x
‖ f (x ) − f (t )‖22 + β ‖x − b‖22 , (4)

where f (x ) is the representation of x in the penultimate layer of the model, called the feature
space representation of x—feature space representation. ‖ f (x ) − f (t )‖22 is the �2-norm measuring
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Table 3. Data Poisoning Attack Methods

Category Attack Strategy Advantages Disadvantage

Availability attack
Gradient-based [14, 77, 109] Model robustness enhancement High computational complexity

GAN-based [169] Low time overhead, low complexity, model irrelevant Poor generalization

Integrity attack
Backdoor [9, 62, 151]

Does not affect normal sample classification,
model irrelevant, highly concealed, high generalizability

Scenarios limited to image recognition,
need to retrain or introduce additional models

Clean label poisoning [130] Easy implementation High computational complexity

Table 4. Data Poisoning Defense Methods

Defense strategy Advantages Disadvantages

Data sanitization [77, 110]
High generalizability, easy implementation,

high detection success rate in certain scenarios
Easy overfitting for small samples,
high computational overhead

Robust training [71, 90]
Model robustness enhancement,

low complexity
High computational overhead

Certified defenses [139] High interpretability High complexity

the feature space similarity to the target instance, and β regulates the visual similarity of the
poisoned sample x to the base class from the raw input space. The optimization problem is solved
by a forward–backward splitting iterative process. To be precise, the first step (forward) minimizes
the �2 distance between the target instance and the poisoned instance in the feature space. The
second step (reverse) is to minimizes the distance between the poisoned data and the base instance
in the input space. The optimization following Equation (4) can provide a set of poisoned images
that look like the base class but are consistent with the target class in the deep feature space so
that the base class label needs no change.

4.3 Defenses

Data poisoning attacks inject poisoned data into the training set to disrupt the functionality of
learning algorithms. Poisoned data have different characteristics from clean data, which means
that poisoned data can be treated as anomalies so that anomaly detection can be used as a defense.
Data sanitization [13, 34, 77, 110, 139] usually applying anomaly detection or model robustness
training [17, 28, 71, 90, 127] can be adopted to defend against the data poisoning attacks. We
summarize these defenses in Table 4.

4.3.1 Data Sanitization. Nelson et al. [110] presented Reject On Negative Impact (ROIN)
against data poisoning attacks on spam filters. If the data have a significant negative impact on
the classifier, it is treated as poisoned data and removed from the training set. Although ROIN
has shown excellent performance in defending against data poisoning attacks in certain scenarios,
such as identifying attack e-mails with a 100% success rate, it is too expensive to test every data
sample in the training set. Moreover, overfitting is prone to occur when the dataset is smaller than
the number of features. Koh and Liang [77] applied the influence functions in robust statistics to
calculate the effect of data points on the prediction of the classifier. The method proposed by Koh
and Liang was able to determine the influence of each data item without retraining the model—
ROIN [110] requires retraining the model—using only the gradient and the Hession matrix, which
ensures that the data points impairing the performance can be quickly identified.

4.3.2 Robust Training. Robust training generally strongly relies on some feature assumptions.
Liu et al. [90] relaxed the assumptions and achieved strong defensive performance by improv-
ing robust low-rank matrix approximation and robust principal component regression. Jagielski
et al. [71] designed an adversarial defense technique called “TRIM” by using a pruning loss function
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to compute different subsets of residuals in each iteration for robust training of linear regression
models. In general, the Support Vector Machines (SVMs) are not robust to outliers. Xu et al. [164]
improved the correntropy induced loss function and constructed the rescaled hinge loss function
to extend the robustness of SVM.

4.3.3 Certified Defenses. Steinhardt proposed a certified defense against poisoning attacks
[139]. A framework was designed for defenders who adopt anomaly exclusion and empirical risk
minimization, aiming to study the entire attack space for a given defense. Assume that Dc and Dp

denote the clean and poisoned datasets, respectively, and θ denote the parameters of the classi-
fier. The corresponding defenses are designed for scenarios where the feasible set is dependent
on the poisoned data Dp or not. In the case of independence on Dp as an example, they pro-
posed a fixed defense approach. In the iterative solution process, the current worst attack point
(x (t ),y (t ) ) = argmax(x,y )∈F �(θ

(t−1) ;x ,y) is found first each time. Then the model is updated in

the direction of that attack point to get θ (t ) . Eventually, the worst poisoning attack dataset Dp can
be found. The worst-case validation error upper bound M is found based on Dp , which is approxi-
mated as the training error on the entire dataset (clean and poisoned data). Anomalies on a clean
dataset do not unduly affect the model.

4.3.4 Other Defenses. To mitigate the impact of backdoor attacks, a particular class of data poi-
soning attacks, Wang et al. [156] proposed Neural Cleanse by exploiting the principle that the
trigger is eventually the (abnormal) smallest perturbation required to tamper all images to the tar-
geted class. Therefore, Neural Cleanse identifies such smallest perturbation to reverse engineering
the trigger, which can be consequentally used to unlearn the backdoor for removal. Liu et al. [92]
pruned redundant neurons in neural networks that were not sensitive to classification while us-
ing clean data to fine-tune the models, thus allowing them to classify properly. However, their
approach assumes that all models are potentially implanted with backdoors, and blindly perform-
ing pruning fine-tuning on models tends to degrade the accuracy of normal models performing
normal tasks. Chen et al. [25] detected poisoned data by activation clustering techniques based
on the difference in the activation status of neurons in the neural network between poisoned and
original data. Gao et al. [51] proposed STRIP to detect trigger inputs during run-time without any
ML technique. The principle is, for the input-agnostic backdoor attack, that the trigger input will
always be classified into the targeted label regardless of the input content. This is because the trig-
ger fully hijacks the model. Therefore, when the strong perturbation is added to the trigger input,
the prediction is less influenced: insensitive to perturbation. However, the normal input should
be sensitive to strong perturbations. So that examination of the randomness of predictions of a
set of perburbed replica of inputs can distinguish trigger input and normal input: trigger input
exhibiting low randomness, while normal input exhibiting high randomness.

5 ADVERSARIAL EXAMPLE ATTACKS AND DEFENSES

5.1 Overview

Adversarial example attack performed in the inference phase is the most studied security threat
of AI system. Suppose there is a clean sample x with f (x ) = ytrue predicted by a trained model M .
The attacker adds an imperceptible perturbation δ to x to create an adversarial example x ′ = x +δ ,
which is sufficient to mislead the model to produce a wrong output f (x ) � ytrue, also known
as untargeted attacks. In terms of targeted attack, it is to mislead the model to yield an attacker
targeted class f (x ) = ytarget � ytrue. Due to the lack of interpretability and complexity of DNNs,
there is still no uniformity regarding the causes of AI vulnerability to adversarial attacks. Some
researchers argue that the leading cause of adversarial attacks is the highly non-linear nature of
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Fig. 9. Overview of the FGSM adversarial example

generation [55].

Fig. 10. Overview of the process of adversarial

attacks and ASR [67].

the model [116], while Goodfellow et al. [55] believed that it is caused by the linear behavior of
the model in a high-dimensional space. A relatively recent study by Ilyas et al. [70] indicates that
the adversarial example is closely related to the non-robust features, which are highly predictive,
yet brittle and (thus) incomprehensible to humans. The problem of adversarial example attack has
been demonstrated in various AI-related fields below.

5.1.1 Image Classification. In the image domain, the aim is to add perturbations slightly to the
original pixels that are unrecognized with naked eyes while misleading models [18, 35, 45, 55, 80].
The concept of adversarial examples was first introduced by Szegedy et al. [146]. They found that
the semantic information (a certain feature) contained in the high level of neural networks is
distributed across the spatial structure of the network rather than individual neurons, and the
mapping between the input and output of the neural network is mostly discontinuous. Therefore,
adding disturbances of the same magnitude to the same input can render different neural networks
to make similar misclassifications. Specifically, neural networks have certain blind spots, and reg-
ular perturbations can be injected into the input image to fool the network. Fast Gradient Sign

Method (FGSM) by Goodfellow et al. [55] is an early representative adversarial example genera-
tion algorithm in the image field. As an example in Figure 9, for the original input x , the established
model identifies it as panda y. After adding carefully crafted human imperceptible noise, the net-
work outputs a gibbon y with a 99.3% probability of not matching the original class, although it
is a panda image discernible to the naked eye. Since the pixel values representing the image are
approximately continuous, the similarity between the fake image and the legitimate image can
be discerned artificially and intuitively. In other areas like speech recognition, NLP, and malware
detection, data and classifier structures are more complex, which requires more caution when
mounting adversarial example attacks.

5.1.2 Speech Recognition. Automatic Speech Recognition (ASR), which requires filtering
and digitization operations on the raw audio before acoustic features can be extracted, is a tech-
nology that enables intelligent devices to recognize and understand human speech or/and convert
it into text [112]. Besides MFCC, the DFT and the Fast Fourier Transform (FFT) can also extract
speech features. The framework of ASR is shown in Figure 10. Firstly, by dividing the speech signal
into several blocks, which could be overlapped. Then, the spectrum map is obtained by calculating
the amplitude of the spectrum for each block through FFT, and the Mel-Spectrum is obtained by
performing Mel-Filters on the spectrum. Next, the MFCC is derived by cepstrum analysis [108].
Finally, the obtained MFCC is input to the neural network for recognition/classification. The Mel-
Filters serves to deform the frequency to follow the spatial distribution of human ear hair cells.
The end-to-end ASR systems [3, 32, 123] usually utilize the Connectionist Temporal Classifica-

tion (CTC) loss function [57] to derive characters but not phoneme sequences directly. The gap
between human and machine speech recognition generates unmonitored channels through which
adversarial examples can be implanted with commands. Compared with the image classification

ACM Computing Surveys, Vol. 55, No. 1, Article 20. Publication date: November 2021.



20:16 Y. Hu et al.

Fig. 11. Discrete perturbation in text processing

schematic [49].
Fig. 12. Malware detection confrontation example.

domain, the adversarial examples of ASR systems are more difficult to craft since some common
audio processing operations are highly prone to introduce additional noise.

5.1.3 Natural Language Processing. NLP is to recognize human language by computers. Appli-
cations of NLP range from input recognition, tag classification to analytical understanding and
processing of words and sentences [54] as well as chapters [73, 96] of documents. Adversarial
example attacks also exist in NLP, though there are fewer studies than image and audio domains.
Pixel-level adversarial attack methods cannot be directly mounted for generating in NLP due to
the differences between image pixels and text data. Firstly, image data (e.g., pixel values) are con-
tinuous in the numerical profile, but text data label types are discrete. In general, text data needs
to be vectorized before feeding into a DNN. Word embeddings are usually used as input to DNNs.
However, the networks can fail to match the word embedding space [54]. Secondly, the perturba-
tion to the image is a modification at the pixel value level difficult to perceive. While for subtle
textual perturbation, it is extremely vulnerable to be detected. As exemplified in Figure 11, slights
modification of the characters of words in the original input sample (1) can result in invalid words
and thus affect the overall semantics of the sentence to a large extent. Therefore, for text-type ad-
versarial example attacks, Most studies focus on tasks of reading comprehension than short texts.

5.1.4 Malware Detection. Malware detection is the process of classifying software features ex-
tracted by static or dynamic analysis using AI technology. Static analysis extracts and analyzes the
features of malware samples without execution. Dynamic analysis, on the other hand, requires
executing them and analyzing their corresponding features. Commonly used tools for dynamic
analysis include sandboxes, simulators, and so on. [170]. Features commonly used in malware de-
tection are byte sequences, opcodes, APIs and system calls, network activity, file systems, PE files,
and so on [152]. As in Figure 12, firstly, feature sequences that represent malware are filtered by
feature extraction. Then, a malware classifier is trained over the dataset consisting of the feature
sequences. The adversarial example attacks aim at adding some functionally independent features
to the feature vector to generate malware adversarial examples.

5.2 Attacks

The adversary attack capability is determined by how much information the attacker has about
the model, including training data, feature sets, learning algorithms, and so on. Based on available
knowledge by the attacker, attacks may be divided into three main groups: white-box, black-box,
and grey-box.

— White-box attack: The attacker is with full knowledge about the target model, including
the type of neural network model, the parameters and training algorithm, and so on. The
adversary applies known knowledge to identify vulnerable feature spaces to facilitate the
generation of adversarial examples. Since white-box attacks require computing the gradient
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Table 5. Adversarial Examples Generation Methods

Method Scenarios Strengths and weaknesses
Attack

specificity
Category

L-BFGS [146] Image classification
Optimization-based search,

high computational complexity
targeted/

untargeted
white-box

FGSM [55]
Image classification
Speech recognition
Malware detection

Gradient-based, single iteration,
simple computation,
large perturbation

targeted/
untargeted

white-box

I-FGSM/
BIM

[80] Image classification Iterative FGSM, more efficient
targeted/

untargeted
white-box

ILCM [80] Image classification

Make the probability of
the minimum class increase,

iterative solution,
essentially similar to BIM

targeted white-box

JSMA [114]
Image classification

Natural language processing
Malware detection

�0 attack with large perturbation,
suitable for black-box migration attack,

requires microscopic target model,
difficult to be realistic

targeted
untargeted

white-box

Deep fool [105] Image classification
Based on decision surface,

small perturbation, low complexity;
low success rate of black box attack

targeted/
untargeted

white-box

C&W [21]
Image classification

Natural language processing
Malware detection

Gradient optimization solving,
with high complexity

targeted/
untargeted

white-box

UAP [104] Image classification
No need to solve optimization
problems, gradient calculations

untargeted white-box

MalGAN [69] Malware detection
Gradient-independent;

high attack success rate,
high overhead

– black-box

EvadeML [167] Malware detection
Gradient-independent,

high attack success rate,
not easily scalable

– black-box

ATNs [124] Image classification
Can attack one or more networks;

higher training costs
targeted/

untargeted
white-box/
black-box

ZOO [26] Image classification

Approximate gradient estimation;
high success rate,

more expensive to query
and estimate gradients

targeted/
untargeted

black-box

Houdini [29] Image classification Spoofing gradient
targeted/

untargeted
black-box

One pixel [141] Image classification

Single-pixel perturbation,
no gradient information,

heuristic solution,
low efficiency

targeted/
untargeted

black-box

with respect to the input, while the gradient is discrete in the textual case, white-box attack
methods based on gradient optimization are challenging to be applied to NLP.

— Black-box attacks: Contrary to white-box attacks, the adversary does not know any knowl-
edge about the model but is allowed to analyze the vulnerability/weakness of the model by
querying the AI system with carefully devised inputs and observing the outputs. Black-box
attacks are more practical but more challenging to design.

— Grey-box attacks: The scenario of grey-box attack was introduced by Meng et al. [101]. It is
also known as semi-white box attacks [165]. The attacker needs to obtain partial knowledge
of the model (except for the model parameters) to complete the attack on the target model
[142]. Grey-box attacks are not common in practice [174].

Though this work does cover adversarial example attacks in all fields for the sake of illustrating
the current typical adversarial example construction methods, the image classification that has
been widely used in practice is the main focus, as shown in Table 5. Beyond that, some attacks in
other areas are briefly discussed in Section 5.2.3.

5.2.1 White-Box Attacks.

L-BFGS. Szegedy et al. [146] first demonstrated that a small amount of perturbation impercep-
tible to humans to an image could mislead neural networks. However, the complexity of solving
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the optimization problem for the minimum perturbation was too high, so they opted Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) for the approximate solution by finding the minimum. Con-
cretely, the problem of constructing an image x ′ similar to x : minimize ‖∇‖22 by transforming
it into a convex optimization problem with the �2-norm constraint, is formally expressed as
min c ‖x − x ′‖22 + Jθ (x ′, l ) s.t. x ′ ∈ [0, 1]n . The hyperparameter c > 0. The adversary tries to
constrain the similarity between the adversarial example and the normal sample by the regulariza-
tion function based on �p -norm while using the loss function Jθ (x ′, t ) to make x ′ be misclassified
as the target class t . The adversarial example after perturbations are still in the normal image
fetch range x ′ ∈ [0, 1]n . Meanwhile, they showed that introducing adversarial examples into the
training process can improve the model generalization.

FGSM. Goodfellow et al. [55] devised FGSM to calculate adversarial perturbations. Compared
with L-BFGS, the calculation of FGSM only needs to be performed in the backpropagation stage,
so its generation of adversarial examples is faster and more suitable for scenarios where a large
number of adversarial examples need to be generated. Suppose x and y are the original image and
the corresponding label, respectively. Jθ (x ,y) is the loss function. Based on the difference in attack
behavior, FGSM is further classified into targeted and non-targeted attacks. The FGSM attack by
Goodfellow et al. [55] can be represented as Equation (5). Kurakin et al. [81] extended it to targeted
attack as Equation (6).

x ′ = x + ε × sign (∇x Jθ (x ,y)) , non-target, (5)

x ′ = x − ε × sign (∇x Jθ (x ,y ′)) , target on y ′. (6)

Take the targeted attack, for example. FGSM first identifies the class with the lowest probability
as the target. Subsequently, the original image is subtracted from a set perturbation, thereby
generating an adversarial example sufficient for misleading the model to output the target class.
The FGSM has been recently improved by a number of studies, such as R+FGSM [149] and
MI-FGSM [39]. Notably, FGSM has not only made remarkable achievements in the field of image
classification but also in the field of speech recognition. Previous studies have explored how acous-
tic features can be extracted to generate audio adversarial examples, Gong et al. [53] proposed
the first end-to-end audio adversarial example generation method based on gradient sign.

BIM & ILCM. FGSM generates adversarial examples by adding perturbations to each pixel point
in the gradient direction in a non-iterative manner. In contrast, the Basic Iterative Method (BIM)
Iterative FGSM (I-FGSM) by Kurakin et al. [80], uses an iterative approach to find the perturbation
for each pixel point. BIM is represented formally as follows:

x ′0 = x , x ′i+1 = Clipx,ϵ
{
x ′i + α × sign

(∇x J
(
x ′i ,ytrue

))}
. (7)

Each time, the individual pixels grow (or decrease) in steps of α based on the previously gener-
ated adversarial example x ′. A cropping operationClipX ,ϵ {x ′} is then performed to constrain the
individual pixels of the new example from deviating too much from the original image x . Ideally,
the adversarial example can be found with a variation of less than ε for each pixel. In the worst
case, the same effect as FGSM can be achieved. In addition, Kurakin et al. [80] designed the Class
Iterative Methods Method (ILCM) by replacing the class ytrue in the adversarial perturbation with
the lowest probability class yLL .

JSMA. Papernot et al. [114] scrutinized the relationship between the model input features and
output results and introduce the JSMA adversarial example generation algorithm. It consists of
three main processes as follows:
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(1) Compute the forward derivative ∇F (X ) = ∂F (X )
∂X = [

∂Fj (X )
∂Xi

]i ∈1,M, j ∈1,N .
(2) Calculate the adversarial saliency map S using the results of (1). A higher value of the saliency

map indicates that the corresponding input features significantly influence the classification
result.

(3) Select significant pixels for disturbance according to the saliency map in (2). The pixel values
of the selected pixel points are increased or decreased and then iterated until the model
output them as the target class.

JSMA is stealthy and only needs to perturb some important pixel points rather than the whole
image. In addition, JSMA has been used in NLP and malware detection. Grosse et al. [59] employed
the Jacobian matrix to generate adversarial examples of Android malware to escape the detection
of a DNN-based malware detector.

C&W. Carlini and Wagner [21] suggested an optimization-based algorithm C&W to attack de-
fensive distillation networks by setting a loss function that measures the difference between
the inputs and outputs. The loss function contains an adjustable hyperparameter and a param-
eter controlling the confidence of adversarial examples, which can be formally expressed as
f (x ′) = max(max{Z (x ′)i : i � t } − Z (x ′)t, − κ). Z denotes softmax function, and κ is a constant.
The C&W algorithm is divided into �0, �2, �∞ depending on the norms.

— �0 means gradually finding pixel points that have less influence on the classification result
and then fixing these pixels. Until no more such unaffected pixel points can be found, the
remaining pixels are perturbed.

— �2 allows a balance between the degree and amount of modification:

minimize
�
�
�
�

1

2
× (tanh(w ) + 1) − x

�
�
�
�

2

2
+ c × f

( 1
2
× (tanh(w ) + 1)

)
.

— �∞ restrictions on changes and iterative updates in place of �2 penalties: minimize c × f (x +
δ ) +

∑
i [(δi − τ )+].

In the NLP domain, Sun and Tang [143] provided the C&W algorithm to attack the case prediction
model to obtain sensitive content in each doctor-patient record, including information about the
patient’s medical history and the treatment program proposed by doctors.

UAP. Unlike FGSM, DeepFool, ILCM, which only perturb single images, Universal Adversarial

Perturbation (UAP) is a special method that perturbs multiple images. Adding universal perturba-
tions on multiple images induces images to be misclassified without solving optimization problems
or gradient computation [104]. Specifically, for a d dimensional data distribution μ, there exists a
classifier k (x ) for each sample x ∈ Rd : k̂ (x + δ ) � k̂ (x ) for “most” x ∼ μ . The perturbation ξ de-
notes the radius of the �p ball and satisfy the constraint ‖δ ‖p ≤ ξ . P

x∼μ
(k̂ (x+δ ) � k̂ (x )) ≥ 1−p. The

goal is to identify a perturbation vector δ , which can be added to all examples, and the examples
are misclassified with probability 1−p. Note that different networks obtain different perturbation
results, and even different initializations of the same network do not obtain the same perturbation
results. There are other further studies on UAP, such as GD-UAP [107], NAG [125], and AAA [124].

DeepFool. The FGSM needs to select perturbation factor ε manually. To solve this problem, Fawzi
and Frossard proposed a more adaptive DeepFool attack [105] and an evaluation metric for classi-
fier robustness. DeepFool does not require selecting a perturbation factor ε and achieves an attack
on the general non-linear decision function by multiple linear approximations. A hyperplane can
be used to distinguish the two classes for binary and linear classifiers. We only need updates x
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to the other side of the straight line or hyperplane to obtain x ′. The projection distance f (x0 )

‖w ‖22
w of

the minimum perturbation θ can be found by measuring the shortest distance from x to the line
and making x plus this distance and then converting it to the other side of the plane. Deepfool can
perform both untargeted and targeted attacks. The untargeted attack traverses all classes and finds
the sample with the least variation, while the targeted attack is performed against the hyperplane
of the target class [105].

5.2.2 Black-Box Attacks.

ATNs. Most of the traditional adversarial examples are constructed based on gradient informa-
tion and thus are only suitable for white-box attack scenarios. In contrast, Baluja and Fischer
proposed two adversarial example generation methods Perturbation-ATN (P-ATN) and Adev-

ersarial Autoencoding (AAE) [8] for attacking one or more networks based on Adversarial

Transformation Networks (ATNs). The optimization objective of ATNs is to minimize the joint
loss functions Lχ and LY to generate adversarial examples: arg minθ

∑
xi ∈χ βLχ (дf ,θ (xi ),xi ) +

Ly ( f (дf ,θ (xi )), f (xi )). The ATNs can not only perform targeted as well as non-targeted attacks,
but also has the option to train the network in a black-box or white-box manner.

ZOO. Inspired by the work of Carlini and Wagner [21], Chen et al. [26] proposed ZOO attack,
which generates adversarial examples directly by estimating the gradient of the target model while
does not require any information about the model. Chen proposed the ZOO attack by modifying
its loss function. ZOO attack is capable of performing both targeted and untargeted attacks. In case
of a targeted attack, the loss function is as Equation (5). For an untargeted attack, the loss function
can be replaced as Equation (6).

f (x, t ) = max
{
max
i�t

log[F (x)]i − log[F (x)]t ,−κ
}
, (8)

f (x) = max

{
log[F (x)]t0 −max

i�t0

log[F (x)]i ,−κ
}
. (9)

The performance of ZOO and C&W attacks is comparable, but the cost of querying and estimating
gradients is higher for ZOO.

Houdini. Houdini is a method that generates adversarial perturbations based on the gradient in-
formation of the network’s differentiable loss function [29], which can be tailored for the task loss.
It is applied not only in image classification but also in speech recognition and semantic segmen-
tation. Houdini can be used both as a non-targeted and targeted attack. In their paper, the authors
describe how the Houdini algorithm can be applied in three different domains: Human Pose Es-
timation, Semantic segmentation, and Speech Recognition. The ABX test results show that it is
impossible to distinguish the Houdini-based algorithm using DeepSpeech-2 model [3] to generate
the adversarial examples from the original audio.

One Pixel. Su et al. [141] performed an adversarial attack algorithm called one pixel attack that
requires only a small number of pixel points to be changed. Only one pixel point needs to be mod-
ified in an extreme case, and no information about the network parameters or gradients needs to
make the attack. One Pixel Attack also applies to attack models where gradients are not differen-
tiable or difficult to compute. One Pixel Attack does not have many restriction on the magnitude of
the perturbations. The perturbations are encoded into matrices, i.e., candidate solutions. Differen-
tial evolution is applied to get the optimal solution. A candidate solution contains a fixed number
of perturbations. Each perturbation contains five components, x, y coordinates and perturbed RGB.
One pixel is modified at a time. Firstly, each pixel is iterated and modified to generate a child image
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(candidate solution), subsequently compared with the parent image. Based on the preset determi-
nation rules, the child image with the best attack effect is retained accordingly and proceeds to the
next iteration. Finally, when the preset number of iterations is reached, or the actual class label is
below 5%, the iteration is stopped, and the adversarial attack is completed.

EvadeML. Xu, Qi, and Evans [167] used genetic programming to attack Portable Document

Format (PDF) malware classifiers. The mutation of variants is controlled by the score provided
by the Cuckoo sandbox that examines the runtime behavior. In their work, each variant in genetic
programming is evaluated by a target classifier as well as an oracle. The target classifier is a black
box that outputs the confidence score of malware. Next, the selected variants are randomly ma-
nipulated by mutation operators to produce the next generation of the population. The process
continues until an evasive sample is found or a threshold number of generations is reached. The
authors reported a 100% evasion rate against both the PDFrate and Hidost malware classifier but
admitted the process is computationally expensive.

MalGAN. Recently, MalGAN [69] is introduced to generate PE executable malware adversarial
examples. This approach creates a fully differentiable substitute model trained to generate modi-
fied malware features with corresponding inputs. The substitute model is then used for gradient
computation in a modified GAN to produce evasive malware variants. The generator is used to gen-
erate adversarial examples. A malware feature vectorm and a noise vector z are the inputs to the
generator network. Each element inm indicates whether a feature exists or not. The noise vector
z is randomly sampled from a uniform distribution [0, 1). Removing features from binary malware
during malware feature generation may result in malfunction. Therefore, the authors chose to add
irrelevant features instead of removing them. MalGAN does not depend on the model gradient
and has a higher success rate of the attack. However, it requires greater overhead compared to the
gradient attack approach.

5.2.3 Other Attacks.

— Speech recognition. CommanderSong [171] designed the first robust cross-air practical ad-
versarial attack against ASR systems. The researchers considered the speaker noise, receiver
distortion, and generic background noise in the physical attack and first built a noise model.
Subsequently, noise and random small perturbations were added to the song X (t ). The gra-
dient descent optimization was then used to make the pdf-ids of the modified song X ′(t )
similar to the command b thus fooling Kaldi [117]. Alzantot et al. [2] illustrated the first ge-
netic algorithm-based generation of audio adversarial instances for black-box attacks, thus
avoiding the tedious work of computing the MFCC derivatives. The attacker created a pop-
ulation of candidate adversarial examples by injecting random noise and then calculated
the fitness score of each population member to generate the next generation of adversarial
examples from the current generation by applying selection, crossover, and mutation. In-
spired by Alzantot’s work [2], Taori et al. [148] crafted targeted adversarial audio based on
genetic algorithms and gradient estimation. In order to make it suitable for phrases and sen-
tences, momentum mutation and CTC Loss were introduced. Experiments showed that their
research could decode phrases of any length on more complex deep speech systems.

— Natural language processing. Based on Wikipedia reading comprehension examples, Jia
and Liang performed ADDSENT and ADDANY to generate sentences that look similar to
the question but do not inconsistent in semantics with the correct answer [73]. Song and
Shmatikov [136] found that adversarial samples are equally capable of fooling Optical

Character Recognition (OCR). So they generated adversarial images of the printed text
of individual words sufficient to cause the Tesseract system to misidentify the subject by
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Table 6. Adversarial Examples Defense Methods

Defense
motivation

Defense strategy Defense approach Advantages Disadvantages

Model

Modified network
Models Defense distillation [115]

Easy to train, low overhead
better generalization, ability Highly correlated with the model,

high computational complexityGradient regularization [106] Model robustness enhancement
Deep compression network [60] High robustness

Model enhancement Feature squeezing [166] Low complexity Impairs model prediction performance

Additional network
Detector [95] Low complexity,

model irrelevant
Worse generalization,

no contribution to model robustnessGAN-based [74, 82]
Validation network Network verification [56, 75] High interpretability Huge computational overheads

Data
Modified

training process
or input data

Adversarial training [1, 55, 129, 144, 149]
Easy implementation,

strong defense capabilities
Difficult to converge,

high computational overhead
Data randomization [163]

Data compression [41]
Input reconstruction [36, 138]

replacing the original word with its antonym. The discrete nature of text data hardens the
adversarial example attack on NLP tasks. There are still a number of works overcoming
such difficultly. To address this challenge, Li et al. [83] proposed Bert-Attack to ensure
the semantic consistency and sentence fluency of the generated adversarial samples by
replacing words with high semantic impact.

— Malware detection. Gross et al. [59] performed adversarial example attack against malware
binary features in Android malware detection. Hu et al. [68] demonstrated an adversarial
example sequence generation method that can be used to attack models in RNN detection
systems. However, Arjovsky and Bottou [5] pointed out that GAN suffers from training-
related stability problems, and it may not converge in a given dataset the attack method
in [68] endure such problems as well. Anderson et al. [4] employed reinforcement learning
to evade ML-based malware detection for the first time. Specifically, they predefined a
series of functionally irrelevant modification operations, and then reinforcement learning
is performed to get the optimal sequence of modification operations, but the success rate of
the attack was the only 24%.

5.3 Defenses

The adversarial defense technology should avoid excessive modifications to the original model
structure while ensuring that the model’s performance (e.g., speed, memory usage, model classifi-
cation accuracy) is not weakened. Methods for defending against adversarial example attacks have
been studied extensively in the image classification domain, with speech recognition and malware
domains second and NLP domain the least [20]. Therefore, we will elaborate the defense methods
against adversarial examples attacks focusing on image classification and a few other domains. We
summarize defense methods in Table 6.

5.3.1 Defensive Distillation. Hinton et al. [65] reported the first systematic study of distillation.
The idea behind distillation is to migrate fine-grained knowledge from large-scale training models
to small-scale models, allowing small-scale to perform learning tasks accurately and more effi-
ciently. Based on Hinton’s research, Papernot et al. [115] approved a defensive distillation method.
A small model (distilled network) is provided to simulate a large, computationally intensive model
(initial) to address the problem of missing information without compromising accuracy. Defensive
distillation is capable of defending against most adversarial example attacks and is easy to train.
As shown in Figure 13, the specific defense process is as follows: firstly, the teacher model/initial
network is trained using the hard label, setting the temperatureT . The output class probability of

the softmax layer of the initial network is F (X ) = [ ezi (X )/T∑N−1
l=0 ezl (X )/T ]i ∈0...N−1. Next, the cross-entropy
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Fig. 13. Architecture of defensive distillation [115]. Fig. 14. Feature-squeezing framework for detecting

adversarial examples [166].

loss function is calculated. The soft label derived from the teacher model is then utilized for train-
ing the distilled network (student model). Finally, the last layer of the distilled network (student
model) is modified, and set temperature T = 1, thus predicting the class of unknown inputs with
high confidence. The advantages of defensive distillation are high generalization ability and low
training overhead. However, it does not contribute to the robustness of neural networks [19, 21].

5.3.2 Gradient Regularization. Gradient regularization refers to adding constraints to the objec-
tive function during training to avoid significant changes in the model output with changes in the
input. Typically, small perturbations do not significantly affect the output. Lyu et al. [21] trained
the model using a joint set of regularization methods to defend FGSM-based attacks. It is worth
noting that adversarial training significantly reduces the curvature of loss functions and the clas-
sifier’s decision boundary. Accordingly, Moosavi-Dezfooli et al. [106] proposed a new curvature
regularization strategy that directly minimizes the curvature of the loss surface. Their approach
significantly improves the robustness of the neural network but may damage the model’s perfor-
mance (e.g., reduce the accuracy). Besides, regularization methods and adversarial training can be
combined to defend against adversarial attacks, but the computational complexity is too high.

5.3.3 Deep Compression Networks. Gu and Rigazio constructed Deep Contractive Networks

(DCN) based on Contractive Auto Encoders (CAE) and proved that the method effectively im-
proves the robustness of neural networks [60]. They trained Denoising Autoencoders (DAE) to
remove the adversarial noise. The objective function of the DCN consists of the autoencoder and
a smoothing penalty, which is an end-to-end training procedure. JDCN (θ ) =

∑m
i=1 (L(t (i ),y (i ) ) +∑H+1

j=1 λj × ‖
∂h

(i )
j

∂h
(i )
j−1

‖2), where t (i ) and y (i ) denote the real and predicted labels of the input x (i ) , re-

spectively. The penalty term consists of the scaling factor λ and the Frobenius norm ‖ ∂h
(i )
j

∂h
(i )
j−1

‖2.

5.3.4 Feature Squeezing. There are two methods of data compression in the field of image classi-
fication: (i) Reduce the color depth and encode colors with lower values. (ii) Use the spatial smooth-
ing filter, which allows multiple inputs to be mapped into a single value. Feature squeezing is a
model-enhancing technology that reduces the representation data’s complexity by compressing
the input features to resist adversarial perturbations. As shown in Figure 14, Xu et al. [166] pro-
cessed the input images using the two compression methods mentioned above and then fed them
to the same model separately to obtain two prediction results prediction1 and prediction2. Finally,
prediction1 and prediction2 are compared with the prediction0 of the original unprocessed input
to obtain the differences d1, d2, respectively. Once this difference is greater than a given threshold
T, the input is discriminated as an adversarial example but not legitimate. The effectiveness of the
defense varies for different forms of attacks and different squeeze technology. For attacks based
on �0-norm and �∞-norm are more suitable for the color bit depth squeeze, while for attacks based
on �2-norm, either squeeze method is less effective. It is important to stress that feature squeezing
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Fig. 15. SafetyNet consists of a conventional classi-

fier with an RBFSVM [95].

Fig. 16. Overview of the defense-GAN algorithm

[128].

does not modify the model itself, so it can be easily integrated with other defense strategies to
obtain better defense results.

5.3.5 Detectors. A detector is a mechanism that discriminates whether a detected image is an
adversarial sample or not. Usually, the criteria for the detector to discriminate the adversarial
samples can be freely defined. The most straightforward approach is to label the adversarial and
legitimate samples to train a classifier. There are two main types of classifier training methods.
One approach is to train a classifier by directly labeling the adversarial examples and the original
samples separately in the initial stage. Another way is to train a classifier by labeling the adver-
sarial and clean samples only on a specific layer’s output values. Metzen et al. [103] completed
the training of a binary classification task based on a small detector for distinguishing real data
from adversarial examples. Li et al. [84] summarized various types of adversarial attacks in the
malware detection domain and trained an SVM classifier to defend against adversarial example
attacks using a manipulated dataset. As shown in Figure 15, Lu et al. [95] developed SafetyNet,
in which the output of the Relu function is used as features of the detector and distinguishes be-
tween legitimate samples and adversarial examples by an RBF-SVM classifier. SafetyNet consists
of the original classifier (VGG19/ResNet) and the adversary detector (RBF-SVM), which rejects the
samples if the detector shows them adversarial. Besides, researchers based on criteria such as PCA
[87], maximum mean discrepancy [58], uncertainty [46] to distinguish adversarial examples.

5.3.6 Gan-Based. Attributing to the rise of GAN and its excellent performance [128], many
researchers have applied it to adversarial example defense [74, 82]. Samangouei et al. [128] re-
duced the efficiency of adversarial perturbations based on GAN and proposed a strategy Defense-
GAN, a strategy capable of defending against both white-box and black-box attacks. As shown in
Figure 16, the Defense-GAN does not modify the classifier structure and training process. How-
ever it is crucial to train a stable GAN network and to choose the appropriate hyperparameters,
otherwise defense-GAN does not achieve the expected defense. The specific process is as follows:

(1) Generate R random noise vectors z
(1)
0 , z

(2)
0 , . . . , z

(R )
0 based on random number generators.

(2) Fed the random vector z
(1)
0 , z

(2)
0 , . . . , z

(R )
0 , and the sample x to the trained GAN network to

find z
∗ that satisfies the objective function: Minimize ‖G (z) − x‖22 .

(3) z
∗ is fed into the generator network for training until the generator generates an image x̂

that satisfies the distribution of clean samples.
(4) Classify x̂ = G (z∗).

5.3.7 Network Verification. Network validation can be used to check whether a sample violates
certain properties of DNNs or whether a sample within a determined range (distance from the
original sample) changes its label value. In the defense phase of adversarial example attacks, an
adversarial example is discriminated if its input is detected to violate some properties of DNNs.
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Therefore, network validation is based on the detection of new unknown attacks by the model
itself. Katz et al. [75] devised the Reluplex detection method based on the satisfiability modulo
theory solver to verify the Relu activation function of a neural network. The high computational
complexity of neural network verification is an NP-complete problem, so Katz speeded up the
verification by prioritizing the order of the nodes to be checked and sharing information about
the verification to speed up the computation. Reluplex only checks the robustness in the vicinity
of a few individual input points. Gopinath et al. [56] extended the reluplex method and proposed
Deepsafe. It automatically identifies and verifies a safe region of the input space in which the
network is robust to specific label misclassification and can defend against specific targeted attacks.

5.3.8 Adversarial Training. As the name implies, adversarial training means adding adversarial
examples crafted by attack algorithms such as FGSM to the training set during the training phase.
It is a brute force defense scheme and a regularization tool to alleviate the model’s overfitting
problem. Adversarial training requires vast amounts of adversarial examples to train networks
against single-step attacks but ineffective against iterative attacks. The first studies of adversarial
training came from Goodfellow et al. [55], who obtained a more robust model in this way. It also
means that the ability of the model to defend against adversarial examples are improved. They
found that this approach could defend well against white-box attacks but was not useful in black-
box scenarios. Tramer et al. [149] further carried out ensemble adversarial training to expand
the training set and thus increase the diversity of adversarial samples, achieving a better defense
effect even in black box scenarios. In the audio domain, Sun et al. [104] first proposed to train
robust acoustic models on natural samples supplemented with adversarial examples, which were
dynamically generated by FGSM. They validated the method on two different datasets: Aurora-4,
CHiME-4 finding that adversarial training effectively improved the convolutional neural network
robustness. Nevertheless, regardless of the defense, new adversarial examples were always found
to mount adversarial attacks [104].

5.3.9 Data Randomization. The term data randomization refers to perform randomization tech-
nology to mitigate the adversarial effects. Xie et al. [163] mitigated the adversarial effects by ran-
domly resizing the images and using random padding technology to disrupt the structure of spe-
cific adversarial perturbations during the forward propagation phase of the model. Specifically,
it consists of two steps. (i) Firstly, the input image is resized randomly. (ii) Then, zero random
padding is applied around the resized image. The location of the padding is chosen randomly. Data
randomization is effective in defending against both single-step attacks and iterative attacks. The
data random defense method not only requires no additional training and is less computationally
intensive but is also compatible with other adversarial defense methods.

5.3.10 Input Reconstruction. Song et al. [138] found significant differences in the distribution
of log-likehoods between perturbed and benign images. In the image training set distribution, the
probability density of the adversarial examples was much lower than that of the benign samples
and was mainly located in the low probability region. Based on this, Song et al. [138] proposed the
PixelDefend defense method to purify the input data to move it back to the high probability region
of the training distribution by means of reconstruction to purify the maliciously adversarial images.
Specifically, for an input image X, the goal is to find the image X

∗ that maximizes the probability of
distribution P(X) within the ϵdefend -ball of X. ϵdefend is used to control the example reconstruction
behavior. If no adversarial examples are detected, the samples are not changed, ϵdefend = 0. The
PixelDefend defense method does not need to retrain the model, but may not be applicable to
scenarios with large spatial distribution of datasets.
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5.3.11 Other Defenses. There is a wide variety of methods for generating adversarial examples,
and it is difficult to use one defense technology to resist all adversarial example attacks. There-
fore, many researchers have started to study the combination of various defense technologies
to enhance the effectiveness of defenses. For example, Meng et al. [101] established the MagNet
defense framework, which combines one or more separate detector networks and a reformer net-
work, capable of defending against black as well as grey-box attacks. A semidefinite relaxation
based technology was introduced by Raghunathan et al. [122] to generate certificates. These cer-
tificates are then used to train a more robust network against adversarial example attacks. Prakas
et al. [118] performed a new integrated defense method by combining pixel deflection and wavelet
denoising technology, which uses adaptive soft thresholding in the wavelet domain to smooth the
output of the model. This defense method can effectively defend against the latest adversarial at-
tacks. Zhang et al. [176] trained a multi-redundant architecture defense model on the randomized
data using Voltage Over Scaling (VOS) technology to defend against adversarial example attacks.
Since their defense method HRAE requires a lot of training, it is more suitable for offline environ-
ments. Gradient masking tries to hide the gradient information of the network, thus preventing
the attacker from constructing adversarial examples using gradient solving methods. However,
gradient masking is difficult to defend against black-box attacks [149].

6 AI SYSTEM INTEGRATION

AI technology is ubiquitous. Although we have discussed the threats and countermeasures of AI-
itself, the security issues appear to be more complex when AI is integrated into real-world appli-
cations. The security issues are different for different application scenarios, and we should take
a global view of the security of AI. This section will explore several security risks in the actual
integration phase.

— AI confidentiality. Confidentiality of AI includes data confidentiality and model confiden-
tiality. Confidentiality of AI generally explicitly related to model privacy, though it can also
(indirectly) result in security issues [175], such as model inversion [48] and model extrac-
tion [150]. Model inversion refers to the inverse analysis of a model to obtain private data
based on the mapping relationship between inputs and outputs. Model extraction, for an-
other, is generally understood to mean executing an acceptable number of queries through
an API and observing the output results (probabilities or labels) to infer model parameters or
extract an approximate model that closely matches the target model. For both types of pri-
vacy problems, privacy risks are commonly mitigated using DP-differential privacy [40, 44],
homomorphic encryption [52], or model watermarking [153]. It appears that current AI secu-
rity and privacy issues are addressed separately. Though challenging, it is worth considering
addressing them systematically and concurrently [72, 137], which ensures data and model
privacy while maintaining the security of AI systems.

Federated learning [98], proposed by a Google research team, is a new distributed ML tech-
nique that has become another critical new branch of AI. Federated learning aggregates local
models trained over localized data held by each client to update the global model. Federated
learning primarily mitigates privacy issues, but it lacks auditing of local data and control
of participant behavior, which is likely to introduce security issues. The client-side of fed-
erated learning, central server, and communication channels are easy targets for attackers.
The most typical is poisoning attacks, which can be achieved through data poisoning or/and
model poisoning [7, 11], user-side/server-side GAN attacks [157], and privacy issues in feder-
ated learning [63]. Designing countermeasures against security attacks is more challenging
than centralized training due to the lack of access to data and limited control over clients.
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— Code vulnerability protection. Current AI system technologies (e.g., deep learning) are built
on frameworks (e.g., Tensorflow, Caffe, and Torch). These frameworks rely on a variety of
base libraries and third-party components that have greatly facilitated the development of
AI technologies. However, they are not designed to be flawless and have vulnerabilities [162].
More coretely, a recent study has shown that unaudited third-party code snippet—the code
response for loss computation—can implant backdoor into the deep learning model [6]. Al-
though code vulnerabilities are part of the model implementation process, they are also a
critical part of the security deployment of AI systems.

7 CHALLENGES AND OPPORTUNITIES

Although the above mentioned attacks and countermeasures have been widely studied, there are
still various challenges and opportunities.

— Identify a defense mechanism that can be applied to different kinds of sensor devices. Due
to the continuous updating of new data collection devices and tools, there is abundant room
for further progress in protecting the security of data during the data collection process.
Sensor security issues mainly lie in the design of the hardware and the malicious signal
injection performed by attackers on the hardware. On the hardware side, researchers need
to modify and verify the physical properties and logical wiring of the sensor. On the software
side, researchers need to design reasonable strategies to identify and reject malicious signals
during the data collection phase of the sensor, such as the sensor needs to clean the data
signal, amplification, and other pre-processing operations. Secondly, sensor malicious signal
identification technology generalization is poor. It is urgent to identify a defense mechanism
that can be applied to different kinds of sensor devices, making it impossible for attackers
to bypass the defense mechanism.

— Enhancing AI model interpretability. Current research on AI systems lacks the interpretabil-
ity of models mounted. Yet, we struggle to explicitly analyze and explain what security prob-
lems occur in AI under what circumstances. As a result, attackers are always able to find the
attack surface of AI, while we are unable to identify potential security vulnerabilities prior
to their exposure and exploitation by the attackers. We urgently need to strengthen the
mathematical validation of AI models and enhance the interpretability of AI.

— Strengthen the dual protection of security and privacy for AI systems. Security and privacy
are closely related, and AI systems not only have the aforementioned security challenges but
also suffer from privacy risks [175], such as model inversion [48] and model extraction [150].
The current security and privacy issues for AI are addressed separately. Future research
on the integration of both privacy and security areas needs to be strengthened [72, 137] to
ensure the privacy issues of data and models while maintaining the security of AI systems.

— Holistic Security Assurance. As pointed by Bertino [10], we can use holistic security assur-
ance to mitigate AI security threats. Simply focusing on a specific episode, e.g., adversarial
example attack, or data poisoning, is insufficient or ineffective. This could overlook some
facts. For example, while it is important to prevent adversarial example attacks on traffic
sign images, it is worthwhile to leverage multiple sources of information, such as map marks
and radar information, to jointly make decisions, eliminating the risks of a single source. In
addition, when integrating the AI application, system security, data security, and software
security can all be taken into account to build a holistic assurance process. That is to say,
mounting the practices in other security domains, e.g., the data provenance in data security,
can efficiently reduce the risk of data poisoning attacks and help build a secure AI system.
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8 CONCLUSION

AI has been widely used in various fields, which will lead to a new round of industrial change
and drive human society into the era of intelligence. However, AI technology development has
not matured. Security risks exist at all stages of the AI system lifecycle. Although numerous
countermeasures have been proposed, there are still various challenges that require to be addressed.
This article details the progress of security research in data collection, model training, model
inference, and integrated applications of AI systems, and reviews related defense technologies.
We conclude by summarizing the challenges and opportunities for security issues related to AI
systems. Although AI development technology is in full swing, its increasingly prominent security
issues also prompt us to be more vigilant to protect its higher, faster, and better development.
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