2402

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 7, JULY 2025

BEAST-GNN: A United Bit Sparsity-Aware
Accelerator for Graph Neural Networks

Yunzhen Luo”, Yan Ding

Kenli Li

Abstract—Graph Neural Networks (GNNs) excel in processing
graph-structured data, making them attractive and promising
for tasks such as recommender systems and traffic forecasting.
However, GNNs’ irregular computational patterns limit their
ability to achieve low latency and high energy efficiency, par-
ticularly in edge computing environments. Current GNN accel-
erators predominantly focus on value sparsity, underutilizing
the potential performance gains from bit-level sparsity. How-
ever, applying existing bit-serial accelerators to GNNs presents
several challenges. These challenges arise from GNNs’ more
complex data flow compared to conventional neural networks,
as well as difficulties in data localization and load balancing
with irregular graph data. To address these challenges, we
propose BEAST-GNN, a bit-serial GNN accelerator that fully
exploits bit-level sparsity. BEAST-GNN introduces streamlined
sparse-dense bit matrix multiplication for optimized data flow, a
column-overlapped graph partitioning method to enhance data
locality by reducing memory access inefficiencies, and a sparse
bit-counting strategy to ensure balanced workload distribution
across processing elements (PEs). Compared to state-of-the-
art accelerators, including HyGCN, GCNAX, Laconic, GROW,
I-GCN, SGCN, and MEGA, BEAST-GNN achieves speedups of
21.7%, 6.4x, 10.5%x, 3.7x, 40X, 3.3X, and 1.4X respectively,
while also reducing DRAM access by 36.3x, 7.9, 6.6 X, 3.9%,
5.38%, 3.37X, and 1.44 X. Additionally, BEAST-GNN consumes
only 4.8%, 12.4%, 19.6%, 27.7%, 17.0%, 26.5%, and 82.8% of
the energy required by these architectures.

Index Terms—Graph neural network, GNN accelerator, hard-
ware accelerator, bit-serial computation, bit-level sparsity.

Received 17 October 2024; revised 3 March 2025; accepted 28 March 2025.
Date of publication 8 April 2025; date of current version 11 June 2025. This
work was supported in part by NSFC under Grant 62172151, Grant 62202154,
and Grant 62441234, in part by the Major Applied Basic Research Program
of Hunan Province under Grant 2023GK2003, in part by the Science and
Technology Innovation Program of Hunan Province under Grant 2024RC3076,
and in part by the Fundamental Research Funds for the Central Universities.
Recommended for acceptance by M. Rhu. (Corresponding authors: Yan Ding;
Chubo Liu.)

Yunzhen Luo, Yan Ding, Zhuo Tang, Kenli Li, and Chubo Liu
are with the College of Computer Science and Electronic Engineer-
ing, Hunan University, Hunan 410082, China, and also with the Na-
tional Supercomputing Center in Changsha, Hunan 410082, China (e-mail:
luoyunzhen@hnu.edu.cn; ding@hnu.edu.cn; ztang@hnu.edu.cn; 1kl@hnu.
edu.cn; liuchubo@hnu.edu.cn).

Keqin Li is with the College of Computer Science and Electronic En-
gineering, Hunan University, Hunan 410082, China, also with the National
Supercomputing Center in Changsha, Hunan 410082, China, and also with
the Department of Computer Science, State University of New York, New
Paltz, NY 12561 USA (e-mail: lik@newpaltz.edu).

Digital Object Identifier 10.1109/TC.2025.3558587

, Member, IEEE, Zhuo Tang
, Senior Member, IEEE, and Chubo Liu

, Member, IEEE, Keqin Li?, Fellow, IEEE,

, Member, IEEE

1. INTRODUCTION

RAPH Neural Networks (GNNs) have gained significant
G attention due to their great potential to address graph-
structured data. By iteratively aggregating information from
neighboring nodes, GNNs capture intricate correlations, which
facilitates the application of GNNs in various fields such as rec-
ommender systems [40], [25], point cloud segmentation [30],
traffic forecasting [5], and autonomous driving [45].

However, as shown in Fig. 1(a), the irregular computational
patterns in GNNs lead to low inference efficiency [39], [26].
This inefficiency prevents GNNs from meeting the demands
for low latency and energy efficiency in edge computing ap-
plications, such as autonomous driving [45] and point cloud
segmentation [30].

In response, there has been a growing body of research fo-
cused on developing hardware accelerators tailored for GNNS.
State-of-the-art GNN accelerators, such as GCNAX [24],
I-GCN [14], and GROW [21], primarily leverage value spar-
sity in adjacency and feature matrices, optimizing performance
through sparse-dense matrix multiplication (SpDeGEMM).

While these GNN accelerators optimize performance through
value sparsity, they introduce significant memory access over-
heads when applied to dense feature datasets [41]. To ad-
dress this issue, we focus on exploiting the finer-grained
bit-level sparsity inherent in GNNs, which allows for more
efficient memory management and improved computational
performance by reducing redundant memory accesses and un-
necessary bit-level computations. First, Fig. 1(b) illustrates that
the adjacency matrix, which represents edge connections using
a single bit, exhibits over 99.8% bit sparsity. Second, recent
studies have shown that quantizing GNN features and weights
to lower, flexible bit-widths not only maintains accuracy but
also significantly enhances efficiency by reducing memory and
computational overhead [8], [35], [37]. As shown in Fig. 1(f),
flexible bit-widths reduce memory accesses and computational
costs by an average of 71%. Furthermore, as demonstrated in
Fig. 1(c) and 1(d), the bit-level sparsity of quantized features
and weights increases by an average of 29.4% and 53.8%,
respectively, compared to their value-level sparsity.

Nonetheless, existing sparse bit-serial accelerators face lim-
itations that make them unsuitable for GNNs, prompting us
to identify and analyze three key challenges that hinder the
effective adaptation of current acceleration techniques. First, the
different computational phases in GNN layers complicates data

0018-9340 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-6143-2315
https://orcid.org/0000-0001-6956-9260
https://orcid.org/0000-0001-9081-8153
https://orcid.org/0000-0001-5224-4048
https://orcid.org/0000-0002-2635-7716
https://orcid.org/0000-0002-2372-6715
mailto:luoyunzhen@hnu.edu.cn
mailto:ding@hnu.edu.cn
mailto:ztang@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:lkl@hnu.edu.cn
mailto:liuchubo@hnu.edu.cn
mailto:lik@newpaltz.edu

LUO et al.: BEAST-GNN: A UNITED BIT SPARSITY-AWARE ACCELERATOR

Feature Vector

I |
I 1
I I
I i
I
@ i .
I |
| Value Sparsity = 11% | Value Sparsity = 0
i <L Binary . <L Binary
[eT2T0] L1007 : [oTolt]o][oJoltTo] o1 o 0] : oo
I Mo EEGO 000 | BT [TTT0]
I I 0
[2I8Ti2] [2T3]5] 1 [oToTaTo] [iToTeTo] [iT1ToTo] [oT1 n|1|
: Bit Sparsity = 69.4% : Bit Sparsity =40%
~ 1 . 1 < S
Input Graph Aggregation Combination

(a)

100

SULL

T Value Sparsity
| [ @ Bit Sparsity

£
=3
3
S

wy

a
=
N
S

'Y
=

Sparsity (%)

sesy
Sparsity (%)
(SRS
o S 3
T T
] sru
€698
Lese
800
88Y]
600
— 1]
€51
£T5]

DS E NS >
> S~ ARG A &
SEFN & 53

& T

cej‘

(b) Adjacency (c) Feature (d) Weight

O Inference on Chip O Dram Access O Flexible Bit Width O Fixed Bit Width

s 1 s 2,
I = [= =] i |2 e
= 3 fad &4 3 =
2 08 e ﬁ o FE0sT
- ZE
< 06 S R
e | = e - @ b £
o4l B |5 BB TE0AD s S g 2
& & & =S 53 <
02 | S 02 -D ]:I
£ s
0 27 o
> 2 8D & > 'Y ey
FT S & & F S &
ds" » &F & ol v & &
[ C ¢

(e) Latency Breakdown (f) Memory Access and Computation

Comparison

Fig. 1. (a) Illustration of a GNN layer highlighting value and bit-level
sparsity. (b)—(d) Comparison of value-level sparsity and bit-level sparsity in
the adjacency, feature and weight matrices, as applied in the GCN-SGQuant
model [8]. (e) Latency breakdown of GCN-SGQuant on NVIDIA Tesla V100.
(f) Comparison of memory access and computation for GCN-SGQuant, using
a fixed bit width of 16 bits and flexible bit widths varying between 2, 4, 8,
and 16 bits.

flow, necessitating thorough optimization for efficient bit-serial
computation [24]. Second, the irregular structure of graph data
makes it challenging for existing sparse bit-serial accelerators
to address data locality, resulting in redundant memory accesses
[21]. Third, existing sparse bit-serial accelerators are primarily
optimized for convolutional neural networks (CNNs), which
exhibit a more uniform data distribution, allowing for more
predictable processing patterns compared to GNNSs, as shown
in Fig. 2. In contrast, adjacency bit matrices in GNNs follow
power-law distributions, resulting in highly imbalanced data
workloads, creating severe load-balancing issues [13].
Therefore, we propose BEAST-GNN, a sparse bit-serial ac-
celerator specialized for GNNs. First, as shown in Fig. 3,
BEAST-GNN employs sparse coding for the weight bit-matrix
similar to the adjacency matrix, consolidates Aggregation and
Combination into a streamlined sparse-dense bit matrix mul-
tiplication with optimized data flow. Our insight is that since
GNN weights are shared among nodes, they account for a small
percentage of storage [20]. Thus, their bit-sparse matrices can
be encoded and retained entirely on-chip, avoiding repeated
memory accesses required for feature matrices. Second, to

2403

680

R 1 " 400
Z Z
g i g
g120 200
:E:mo E g
— s <.
=40 2200
£ § 8 °
g H . g
=20 £100
cl =l
z z
- - 0
Cora  CiteSeer arXiv  collab GoogLeNet AlexNet ResNetl8 VGG11
(a) Adjacency Bit Matrices (b) Weight Bit Matrices of CNNs
Fig. 2. Comparison of row-wise non-zero elements in (a) the adjacency

bit matrix for graph datasets, and (b) the quantized CNN weight bit matrix
processed through the Im2col transformation, In (a), the horizontal axis
denotes the graph datasets, whereas in (b), it denotes the CNN models [43].

Booth
Encoding\ [0 ][] [0 ][] =
ensing
[ ] DGR
Sparse
= Encodin
= Bit Width
S Vi [a5)-19)-11
]
= V:|21]-5]11
..E 1 -1 -8 T
EV31573-13 % [2[5 2T-2To X
S Vil|-19]11 )17 il ofo]o
O v.[o5]7
Vi V2 Vs Vi Vs Vi
Ve|15])-3]-9
z T
Feature X Weight W W '
Dense Value Dense Value Sparse Bit Dense Bit
Vi V2 Vs Vi Vs Ve
S Vi)t 1|1 2 36 1396
'g V:| 1)1 1 22 67|28
%0 Vi) 1 1 X 217 — -18]288|
~R4HE 1] 1 717 220[388]
& v 1|1 = 68| 76
Vs L 1 2| | 154 334
Adjacency Matrix A XWwW X'

Sparse Bit Dense Bit Dense Value

Fig. 3. The Combination XW and Aggregation A(XW) phases can be
unified into a matrix multiplication process of sparse and dense bit matrices
by transforming the value matrices into bit matrices”. The booth encoding is
to further reduce the number of bits that need to be computed [12].

address irregular data access in the graph structure, BEAST-
GNN performs a column overlap-based reorder operation on
the adjacency matrix, effectively improving data locality. Third,
to handle the power-law distribution of graph-structured data,
BEAST-GNN uses a sparse bit counting strategy to achieve
optimal load balance among PEs.

Compared to the existing state-of-the-art GNN and bit-serial
accelerators, including HyGCN, GCNAX, Laconic, GROW,
I-GCN, SGCN, and MEGA, BEAST-GNN achieves 21.7x,
6.4x, 10.5%, 3.7x, 4.0x, 3.3%, and 1.4x speedup, respec-
tively. Moreover, it reduces DRAM access by 36.3x, 7.9x,
6.6%,3.9x%,5.38x%, 3.37x, and 1.44 X, respectively, while con-
suming only 4.8%, 12.4%, 19.6%, 27.7%, 17.0%, 26.5%, and
82.8% of the energy by the aforementioned architectures. To

OSparse bit matrices for the Laplacian matrix A in GCN can be generated
by applying the same processing used for W.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



2404

the best of our knowledge, BEAST-GNN is the first GNN ac-
celerator that fully utilizes bit-level sparsity. Our contributions
are summarized as follows:

* We conduct an in-depth analysis of the acceleration poten-
tial of state-of-the-art GNN models, considering value and
bit sparsity across various datasets and data bit widths.

* We present BEAST-GNN, a GNN accelerator leveraging
bit-serial computation and bit sparsity to enhance compu-
tational efficiency.

¢ We implement our architecture design in RTL and evaluate
it using detailed microarchitectural simulations on four
real-world graph datasets and three GNN models.

II. BACKGROUND AND RELATED WORK
A. Graph Neural Network Structure

The GNN model consists of multiple layers, each updating
node representations by aggregating features from neighboring
nodes. GNNs efficiently capture complex graph structures, en-
abling them to outperform conventional methods that struggle
with modeling the intricate relationships present in tasks such
as recommendation systems [29], [25] and traffic forecasting
[31, [5]. The computation of a GNN layer has two phases:
Aggregation and Combination. Similar to conventional graph
algorithms [9], [38], the structure of the graph is considered in
the Aggregation phase, where each node gathers information
from its neighbors to compute a message vector. This vector
is then used by the target node to update its representation.
The Combination phase involves a feedforward neural network
that takes the aggregated message vector and the current node
representation to produce a new node representation. These
phases repeat across multiple layers, capturing complex node
interactions within the graph. The forward propagation from
layer [ to [ + 1 is expressed in Eq. (1).

x U+ :g(AX(l)W(l)). (1)

A represents the adjacency matrix of the graph. In this matrix,
each row corresponds to a vertex and represents its connections
with all other vertices in the graph. X () is a matrix containing
input feature vectors of all vertices in layer [, where each
column represents a feature, and each row denotes a vertex’s
feature vector. W is the GNN’s model parameters, which are
subject to training. o is the activation function. It is worth noting
that the weights W are shared among nodes in a GNN, so they
account for a very small percentage of storage compared to the
features X [8].

B. Graph Neural Network Accelerators

Due to the non-Euclidean structure of graphs, GNNs exhibit
irregular memory access patterns and complex data dependen-
cies compared to conventional neural networks [39], [13], [14],
[16], [24], [23], [21], [44]. Consequently, many researchers
are focused on designing specialized hardware accelerators for
GNNs. To address the Aggregation and Combination hetero-
geneity in GNNs, HyGCN [39] introduces a hybrid architecture
accelerator that considers the sparse and dense computation

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 7, JULY 2025

Converting
exp. to value
form

Bit
Parallel
Input

MSB — LSB

(a) (®) ©

Fig. 4. Implementing a 3-bit Multiply-Accumulate operation in hardware
using the inner product form. (a) Bit-parallel computation. (b) Bit-serial
computation for A. (c) Bit-serial computation for A and B.

patterns in GCN operations. However, due to varying computa-
tional requirements of different datasets and models, this hybrid
architecture may lead to load imbalances between the aggrega-
tion and combination engines. AWB-GCN [13] addresses the
power-law distribution in graphs by implementing an online
load-balancing mechanism for GNN accelerators. I-GCN [14]
improves data locality by reordering node processing sequences
on-the-fly, but real-time scheduling adds significant time and
energy overhead. GCNAX [24] and EGCN [16] optimizes
GCN computation by restructuring matrix multiplications as
for loops and enhancing loop efficiency through reordering,
expansion, and fusion. However, for large graphs, optimizing
loop structures alone cannot overcome the challenges of irreg-
ular data access patterns. GROW [21] improves memory access
and overall performance for high-degree nodes by using row-
wise products and Metis-based graph partitioning. However,
sparse connections between subgraphs can lead to increased
DRAM accesses, hindering performance and energy efficiency.
MEGA [44] enables flexible quantization of bit-width for graph
node features through a hardware-software co-design. However,
MEGA can only support its own quantization scheme and does
not exploit bit sparsity.

C. Bit-Serial Computation

Bit-serial computation breaks operands into individual bits,
performing operations sequentially on each bit [7], unlike bit-
parallel computation, where all bits are processed simultane-
ously. Fig. 4 shows bit-parallel and two bit-serial computations
using a 3-bit multiply-accumulate operation. In Fig. 4(b), the
multiplier is input in bit-serial form, converting multiplication
into a series of shift and add operations, adaptable to mul-
tipliers of any bit-width. The execution time depends on the
bit-serial input length. In Fig. 4(c), both multipliers are input
serially, turning multiplication into summation of exponents
of essential bits, with the product decoded by the DEC after
exponential addition. BEAST-GNN’s PE design is optimized
from the configuration in Fig. 4(c) to utilize bit sparsity. Bit-
serial computation allows faster calculations and lower power
consumption with varying bit widths compared to conventional
fixed-width arithmetic circuits. It leverages bit sparsity by com-
puting only non-zero bits, reducing energy requirements [32].
This approach has gained attention in deep learning accelera-
tion for reducing memory bandwidth and computation needs in
CNNs [2], [31], [34].

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: BEAST-GNN: A UNITED BIT SPARSITY-AWARE ACCELERATOR

2405

TABLE I
ACCURACY OF GCN, GIN AND SMP-GNN(SMP) oON CORA, CITESEER, ARXIV AND COLLAB DATASETS WITH VARIOUS QUANTIZATION
METHODS AND BIT WIDTHS. GCN-SGQUANT QUANTIZES FEATURES FOR EACH LAYER AND NODE SEPARATELY
WITHOUT QUANTIZING WEIGHTS. WE QUANTIFIED THE WEIGHTS AS INT16. ‘‘A.B.”” REPRESENTS THE AVERAGE BIT-WIDTH
OF THE FEATURE AND HIDDEN LAYER FEATURE

Dataset GCN [8] GIN [35] SMP [37]
FP32 SGQuant FP32 INTS8 FP32 INT4 INT2
Cora (Accuracy %) 84.50 £+ 1.83 2213; ::21845 73.60 &+ 1.43 7230 £2.73 | 82.80 + 1.45 81.40 &+ 1.52 74.60 £+ 3.73
CiteSeer (Accuracy %) | 74.39 £ 1.32 (722]; ;23‘93(; 56.00 & 1.67 56.20 & 1.98 | 70.00 £ 0.89  68.63 £ 1.23 64.36 £ 1.44
ArXiv (Accuracy %) 70.29 £+ 0.78 (6/261233 (1)2282) 5383 £ 1.16 4638 & 1.20 | 72.58 £ 098 68.58 £ 1.26  65.22 £ 2.65
Collab (Hit@100 %) 51.65 £+ 1.80 5(26?3 ::320;)2 32.81 £ 133 3124 £1.24 | 5333 £ 123 5125+ 182 4732 £2.24
However, existing bit-serial neural network accelerators are TABLE II

designed to handle euclidean data structures, such as pictures
or videos, without taking into account the irregularity of graph
structures. As a result, conventional bit-serial architectures are
ill-equipped to handle the high degree of sparsity present in ad-
jacency matrices in GNNs, which poses a significant challenge
for data locality and load balance.

III. OPPORTUNITIES AND CHALLENGES

In this section, we analyze the impact of bit width and bit
sparsity on GNN computation across different bit widths. Then,
we explore how the Aggregation and Combination phases can
be unified at the bit level. Finally, we analyze the challenges
of designing a bit-serial GNN accelerator that exploits bit-level
sparsity.

A. Bit Width and Sparsity Analysis on GNNs

1) GNNs have flexible requirements for bit widths.
First, during the GNN computation, the adjacency matrix A
must be represented using only a single bit, i.e., either 0 or
1, to indicate the presence or absence of edge connections.
Second, the low bit-width can also be advantageous for the
weights I and feature X. As GNNs employ an iterative neigh-
bor aggregation process for node information fusion, the slight
loss of quantization can be largely mitigated [8], [35], [37].
Table I presents the accuracy performance of multiple GNNs
with varying bit-widths and datasets, corresponding to differ-
ent tasks. The specifics of the datasets and models utilized
in the experiments can be found in Table II. We select two
representative datasets with sparse features, Cora and CiteSeer,
and two representative datasets with dense features, OGBN-
ArXiv(ArXiv) and OGBL-Collab(Collab).

2) GNNs’ matrix multiplication computation process
exhibits significant bit sparsity. Fig. 5 demonstrates that,
when using float32 and value sparsity as the baseline, the GCN-
SGQuant can achieve a maximum speedup potential of 74 x on
the ogbn-collab dataset. For other datasets, the speedup poten-
tial of quantified GNN models ranges from 11x to 71x with
the consideration of bit sparsity. This performance improve-
ment can be attributed to three key factors. First, the adjacency
matrix has a high degree of bit sparsity, reducing the number

OVERVIEW OF DATASETS AND GNN MODEL INFORMATION UTILIZED IN
THE EXPERIMENT. THE ACTIVATION FUNCTION Is RELU

Datasets Cora CiteSeer ArXiv Collab
# of Nodes 2,708 3,327 169,343 235,868
# of Edges 13,264 12,431 1,166,243 | 1,285,465
Feature Length 1,433 3,703 128 128
Feature Value Density 1.27% 0.85% 100% 100%
Hidden GCN 256 256 256 256
Feature GIN 128 128 256 128
Length SMP 64 64 256 256
GCN 2 2 3 3
# of Layer GIN 5 3 2 2
SMP 10 10 10 10
Hidden GCN | 89.82% 90.39% 78.36% 68.86%
Feature GIN | 52.70% 52.12% 51.29% 65.88%
Density(Avg.) | SMP | 53.93% 51.30% 72.36% 69.23%

of computations required. Second, the quantized weights and
features have reduced bit-widths, decreasing the computational
load in bit-serial processing. Third, the quantization process
further increases the bit sparsity of weights and features.
Although the weight and feature matrix exhibits high value
density, a significant number of weights and features have val-
ues close to 0, resulting in a substantial amount of bit sparsity,
particularly for integer and fixed-point number [2].

B. Unifying Aggregation and Combination at Bit Level

GNN layers involve two-phase matrix multiplication, AX W,
where the computation order affects the number of Multiply-
Accumulate (MAC) operations. Research on AWB-GCN [13]
shows AXW can be computed as (AX) x W or A x (XW).
The A x (XW) order offers two benefits: the X W matrix is
generally smaller than X, reducing MAC operations. Addi-
tionally, sparse X matrices enable more efficient computations
with dense W matrices via two consecutive SpDeGEMM oper-
ations, avoiding the underutilization and load imbalance issues
found in hybrid architectures like HyGCN [39]. However, many
datasets, such as Reddit [15], Yelp [42], Collab [19], and ArXiv
[19], have dense X matrices. In these cases, as shown in Fig. 6,
computing XW with SpDeGEMM requires sparse coding of
dense X, leading to increased memory accesses.

We find that the weights exhibit high bit sparsity, as shown
in Fig. 7. We can use the same sparse storage format for
the weight bit matrix and the adjacency matrix, unifying

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



2406 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 7, JULY 2025
2 100 —| O Value-Sparsity @ Bit-Sparsity |
E
& 10
z
g 1f
K]
0.1
g iR EgiolgEEeEgpo|lgEREegrE|lgEREesER|lg e
= = = =
S Lz kB R Rk 2R R cgE EE R clE R R g
Z 0 Z Z B & 8|7 C FZ Z Y & |7 0O FZ 28 % 8|7 0 F 7z & & |70 F 78S &
o % o & o
<] Q <] Q <]
Cora CiteSeer ArXiv Collab Geomean
Fig. 5. Performance improvement potential gains from different bit widths, value sparsity, and bit sparsity. Value-Sparsity under Float32 (FP32) is used as

the baseline. GCN-SGQuant quantizes features for each layer and node separately without quantizing weights. We quantified the weights as INT16.

Normalized
Memory Access

—3
]
g
—

[ ODense E GROW(CSR) B GCNAX(CSC) |

0.5
0

g 5 & 7 2 g = £ & = 2 £ £

3 s B & B 3|8 g %2 £ B

S 4% 55 3 3¢ og

%} - % &~

GCN GIN
Fig. 6. Comparison of memory accesses for GCN and GIN models in dense,

CSR, and CSC formats.

[N}

0.8
= A = m  Cora ®  ogbn-arXiv
S 07 210 y
g Anm A A 5 4 CiteSeer ogbl-collab
S06emmEmEE Z08 ° °
L"‘OSAAAAAAIA"A . na "‘5 A
%' nnoo/\v““ ok .an S506/® ® © e °
N4 ] AEE N u g 2
o P o= g u
203 " § 0418 T a a
E ’ m  Cora ®  ogbn-arXiv 202
D027 A CiteSeer ogbl-collab M

0.1 0.0

0o 2 4 6 8§ 10 12 14 0 1 2 3 4 5 6 7
(a) SGQuant-INT16 (b) Degree-Quant-INTS8

Fig. 7. The bit-wise zero fraction of weights. The horizontal axis represents

the bit position within the binary representation of the weights.

Aggregation and Combination as bit-level SpDeGEMM.
Additionally, the weights W are shared among nodes in a
GNN, making each weight matrix small enough to be stored
on-chip [20]. Thus, sparse coding of the weight bit matrix
can be done on-chip, avoiding repeated memory accesses as
required for feature matrices.

C. Challenges on Accelerator Design

While sparse bit-serial computation can enhance efficiency
and reduce power consumption in GNNSs, existing accelerators
are not optimized for GNNs’ unique computation processes,
necessitating the design of specialized accelerators. However,
designing such accelerators presents three key challenges.

First, GNN layers involve two heterogeneous computa-
tional phases: Aggregation and Combination, making their data
flow more complex than conventional neural networks. Bit-
serial computation introduces an additional bit-width dimen-
sion, complicating matrix multiplication for both phases [2],

[31]. Therefore, the data flow must be carefully analyzed to
optimize computational efficiency in accelerator design. Sec-
ond, the irregular nature of graph data leads to non-contiguous
memory access patterns during the Aggregation phase, causing
frequent cache misses and increased DRAM accesses, which
raise computational latency and energy consumption [39]. This
irregularity hinders the effectiveness of sparse bit-serial ac-
celerators designed for regular data structures. Third, the un-
even distribution of connections in graph data, characteristic of
power-law distribution, complicates load balancing among PEs
[13]. In power-law distributed graphs, a small number of nodes
have many connections, resulting in a few rows or columns in
the adjacency matrix holding the majority of non-zero values.
Without specific load-balancing strategies, this uneven work-
load distribution leads to overloading of some PEs, increasing
computational latency and inefficiency.

IV. BEAST-GNN ARCHITECTURE

In this section, we first present the fundamental design
of BEAST-GNN. Second, we conduct a detailed analysis of
BEAST-GNN’s data flow and propose an optimized data flow
design. Third, we introduce a graph partitioning algorithm to
address the irregular memory access and sparsity challenges
inherent in graph data. Finally, we propose a load balancing
strategy to manage the computational challenges posed by the
power-law distribution of graph data.

A. Architecture Overview

Fig. 8(a) presents an overview of the BEAST-GNN architec-
ture, which comprises a controller, an encoder module, a on-
chip SRAM module, a fetcher and dispatcher, a PE module,
and an activator.

Within the encoders module, the booth encoder employs
Radix-4 booth encoding [4] to encode weights and features
following the value encoding scheme, which transforms val-
ues into exponential input form (for example, representing the
number 1000 as 3, denoting 23). Despite this transformation
into encoded exponential input form, we continue to refer to
it simply as “Bit”. Subsequently, the Sparse Encoder performs
sparse encoding on the bit matrix derived from each set of

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: BEAST-GNN: A UNITED BIT SPARSITY-AWARE ACCELERATOR

2
|PEO||PE1||PE2||PE3| |PEn| Inter-PE <
Accumulator
4 Ly x
I Fetcher and Dispatcher I I Activator I
A
T .
Input SRAM Output SRAM
Weight Feature
Bank /| ﬂ
b Vi ey | T A
Encoder
| Sparse Encoder I‘_' Booth Encoder I Controller =
I Memory Access Handler I
L v
| DRAM |
(@)
Feature Scalar Bit Spad | — Data  — Control |
e B e o0 o ga
I
£ | H—H=ped=—# L
£z 5%, <CINEN Bm
S 2 F—-+H=DECE=)H z I
b : & 2 :D: ~
£a | F—FEDPEGND£+ E booE
< =
& N =] £
[ T+ IE=ADECEDDA @
_— £
@ 4b | g
, 7 :DI
@ Read Input Bits ® Pl g}
e I
i , [ e
@ Decode Terms to Values \ + +D:D: =
3 Accumulate Values ! # Lo
s
@ DeMultiplex based on Coords : ,I :'qul
. I I
® Comp(?se High- and | / _'L.I‘D'
Low-bits Product == b \ ]
® Write Partial Sum Coords Spad
(b)

Fig. 8. (a) Architecture Overview. (b) Processing Element.

weight bits. In Section IV-C, we elucidate the rationale behind
encoding the sparse bit matrix in CSC format through dataflow
analysis.

The on-chip SRAM module comprises an input SRAM and
an output SRAM. The input SRAM contains two areas: a weight
area and a feature area. The fetcher and dispatcher retrieve
computational data from the on-chip SRAM to perform the bit-
serial SpDeGEMM, which is shown in Fig. 3. The fetcher and
dispatcher assign columns of the adjacency matrix or weight
bit sparse matrix, along with their corresponding features, to
the PE module for column-wise product at bit level. Thus, the
sparse matrices are saved in the CSC format. Since the column-
wise product of PEs is executed in parallel and a long column
may dispatch to more than one PE, the Inter-PE Accumulator
is necessary to accumulate the results of the column-wise prod-
uct. Finally, the Activator applies the activation function to the
output.

B. Processing Element Design

Fig. 8(b) depicts the architecture of the Processing
Element(PE), which comprises a Sparse Column Bit (Scratch

2407

Pad)Spad, a Feature Scalar Bit Spad, a Coordinates(Coords)
Spad, 8 adders, a set of decoders, a de-multiplexer, and a Partial
Sum Spad, where Bit Spads are implemented by registers, and
other Spads are implemented by SRAM. For each round of
calculation, the adder reads in 4 sparse column bits and 4 scalar
bits®, with the sparse column bits shared among the 4 column
adders and the scalar bits shared among the 4 row adders. Each
adder is linked to two Feature Scalar Bits, guaranteeing that a
group of Sparse Column Bits can calculate with two distinct
Feature Scalar Bits during a calculation cycle, thus preventing
the adder from idling. Once the adder has completed its
calculations, the results of each row are passed to the decoder
(DEC) to decode the bits as values®. The decoder is designed
with reference to Laconic [31]. Following decoding, the
results of one row of adder calculations need to be summed®.
The term Composer® and its nomenclature originate from
Locanic [31]. Its primary function is to expand the exponent
of Radix-4 Booth encoding, which inherently represents only
8-bit numbers, to accommodate higher bit representations.
BEAST-GNN has opted to extend this capability to 16 bits.
For example, assuming we have two 16-bit numbers a and b,
they can be represented as:

a=an; x 2° + a,,
b=bpn; x 28 + by,. )

In Eq. (2), ap; and a;, respectively represent each 8 bits from
the most significant to least significant in a. Similarly, b follows
the same pattern. We then perform multiplication:

axb=(an; x 28+ ajo) x (bp; x 28 + by,). 3)
Expanding this yields a similar form:

a X b=ap; X bp; X 216+(ahi X bio + a0 X bhz) x 28
+ ago X bio. “

Composer’s inputs and outputs are 16-bit and 32-bit respec-
tively to prevent overflow during calculations.

Finally, summing up these five parts gives us the final
product. Throughout the computation process, BEAST-GNN
guarantees that the intermediate results do not exceed the spec-
ified limits, thereby preventing overflow. Moreover, for signed
numbers, BEAST-GNN initially isolates the sign bit and sub-
sequently establishes the sign based on the computed results.
Thus, if required, the PE of BEAST-GNN can be extended to
accommodate 32-bit in a similar manner.

The result of this summation in Composer® is written to
the Partial Sum Spad® via the de-multiplexer®, according to
the coordinates of sparse matrix. The coordinates of the sparse
matrix are additionally stored in the Partial Sum Spad, a detail
omitted from the figure for clarity.

C. Dataflow Analysis

As BEAST-GNN considers the Combination and Aggrega-
tion process of GNNss at the bit-level, similar to SpDeGEMM,
it introduces an additional bit-width dimension compared to
conventional SpDeGEMM. To analyze the data flow for

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



2408

x (TTH x

T T WT
Sparse Bit Dense Bit Sparse Bit
(a) Frontal x Frontal(FxF)

w' X'
Sparse Bit Dense Bit

(d) Frontal x Lateral(FxL)

Sparse Bit

Fig. 9.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 7, JULY 2025

(b) Horizontal x Frontal(HxF)

x [TTH x EF
w' X'

(e) Horizontal x Lateral(HxL)

T wT . X'
Dense Bit Sparse Bit Dense Bit
(c) Lateral x Frontal(L xF)

T

T T

Dense Bit Sparse Bit Dense Bit

(f) Lateral x Lateral(LxL)

Data flow analysis of BEAST-GNN using tensor slicing: the Combination as an example. We did not include the Horizontal slice of X7 in the

figure because it suffers from the same issue as the Frontal slice of X T which requires access to all nodes. Additionally, the Outer Product, for which the
Horizontal slice of X7 is suited, has low output reuse and consumes a large amount of on-chip memory.

BEAST-GNN, we used a tensor slicing approach, as depicted
in Fig. 9. This approach is based on the multiplication of each
Booth-coded and sparsely coded weighted sparse bit matrix
with the feature bit matrix.

Fig. 9(a)-9(c) depict the three data flow for frontal slices of
X7 where W7 is sliced in frontal, horizontal, and lateral slices,
respectively. This slicing approach requires loading and encod-
ing all node features to obtain a bit matrix of X, which leads to
a significant amount of memory swapping in large graphs. The
horizontal slice of X suffers from the same issue as the frontal
slice of X, which requires access to all nodes. Additionally,
the outer product, for which the horizontal slice of X T is suited,
has low output reuse and consumes a large amount of on-chip
memory. The form of slicing W7 for horizontal slicing and X
for lateral slicing, as shown in Fig. 9(e), is similar to the calcu-
lation process of an inner product. However, this method gener-
ates more index matching operations and suffers from the poor
data reusability [33]. Additionally, in the aggregation phase,
inner product either needs to aggregate all neighbor information
of a node at once, which results in redundant memory access.
The two forms depicted in Fig. 9(d) and 9(f) can utilize the
column-wise product process, where the features of one node
are loaded at a time and the columns of W' can be calculated in
parallel. Furthermore, some datasets’ feature matrices such as
Cora and CiteSeer are inherently sparse, and the column-wise
product approach can skip some columns of the weight matrix
depending on the feature matrix columns [33].

According to the above analysis, we give the specific data
flow based on column-wise product of Combination and Ag-
gregation in BEAST-GNN in Fig. 10. The arrows in Fig. 10
indicate the data flow, where the circled numbers indicate the
order of the data flow. Arrows with the same number indi-
cate that the process is parallel, while an arrow with multiple
numbers indicates that the completion of the data flow
requires waiting for the completion of multiple data flows. The
highlighted portion indicates the smallest part of the computa-
tion process that needs to be loaded onto the chip. As shown in

O
X ®1€| = %lH

! —_—
________ I ®
— —
@ ®
T X 4 I
Sparse Bit Dense Bit Dense Value
(2)
® ©y 2
m—
@ /’i 2,
| o)} o5
¥
X ! =
® : ®
i
=Lt
A XwW X'
Sparse Bit Dense Bit Dense Value

(b)

Fig. 10. (a) Data flow of Combination. (b) Data flow of Aggregation. The
arrows in the figure indicate the data flow, where the circled numbers indicate
the order of the data flow.

Fig. 9, during the Combination phase, denoted as wT x X7T,
only the features of a single node or a subset thereof are required
to be loaded onto the chip. Besides, leveraging the column-wise
product property, computations for each feature dimension are
executed concurrently across multiple PEs. Once the portion
of XW resulting from the combination operation reaches the
size of A or a predefined block size, the Aggregation process
initiates computation, establishing a pipelined workflow.

D. Enhancing Locality by Column-Overlapped Reordering
based Graph Partition

The order of matrix multiplication in BEAST-GNN is to
perform WZXT first, followed by A(XW). However, this
leads to the inability to form a good pipeline when the matrix

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: BEAST-GNN: A UNITED BIT SPARSITY-AWARE ACCELERATOR

Fig. 11.  The data localization of the adjacency matrix significantly improves
after applying column-overlapped reordering, allowing for the reuse of fea-
tures within the overlapped portion (highlighted in red in the figure) between
adjacent column-overlapped blocks, where M denotes the dimension of a
node’s features. Based on the graph partitioning approach depicted in the
figure for matrices A and A-reordered, the memory traffic for the column-
wise product is measured to be 45M and 31M, respectively.

multiplication of the two phases employs the same data flows.
This is because the results obtained from the W7 X” compu-
tation need to be transposed and then entered into the A(X V)
computation phase, which makes it impossible to immediately
consume the columns obtained from the W7T XT computation,
as shown in Fig. 10. Furthermore, in the case of large graphs,
the adjacency matrix must be partitioned during Aggregation
to ensure proper loading of the corresponding node features in
DRAM and on-chip memory, as depicted in Fig. 10(b). How-
ever, the data distribution obtained from direct partitioning is
irregular, resulting in poor data localization and repeated load-
ing of features, which leads to an increase in memory access.

To mitigate these issues, we employ a preprocessing method
called H Pgpco based graph partition to enhance data locality,
where H Pgppco denotes block-diagonal column-overlapped
hypergraph partition [1]. As shown in Fig. 11, this method
of matrix reordering has the following advantages: First, the
reordering of the adjacency matrix results in a significant in-
crease in the overall density over the original adjacency matrix.
Second, since the neighbors of the target node are all in the
closest block possible after the reordering, the times of feature
loading required for aggregation are greatly reduced, which
reduces the on-chip memory footprint and access to memory.
Finally, the overlap of features can be utilized multiple times,
which improves data reusability. Although the algorithm in
[1] exhibits the above advantages, it is limited by the graph’s
diameter, which restricts partitioning efficiency. To overcome
this, BEAST-GNN extends the approach by further partition-
ing large subgraphs after applying the algorithm in [1], en-
abling better scalability and performance on accelerator archi-
tectures. Additionally, as shown in Fig. 11, the row and column
coordinates of the adjacency matrix from [1] are asymmet-
ric post-partitioning, which introduces additional complexity.
BEAST-GNN efficiently addresses this issue by ensuring that
the accelerator can restore the hidden layers’ order after aggre-
gation, facilitating seamless computation for subsequent net-
work layers.

The graph partition process based on H Pgpco is detailed
in Algorithm 1. The inputs to Algorithm 1 include the orig-
inal graph G, the graph’s diameter K, and the target block
size P. The diameter K is crucial as the H Pgpco algorithm
generates a number of blocks equal to K(For multiple

2409

Algorithm 1: H Pppco based Graph Partition.
Input : Original graph G, target block size P, graph
diameter K.
Output: Column-overlapped-reordering graph G*.
/l The HPgpco [1] employs hypergraph-based partitioning

and converts the graph into a column-net hypergraph.

1 HyperG < ColumnNet(G);

2 HyperG' <+ HPgppco(HyperG, K);

3 initialize G*;

4 for each HyperG’,,, € HyperG' do
/I Ksy» denotes the number of partitions for the
subdivided subgraph HyperG~,,,. PARTITION method
is KaHyPar [17]

5 Koy < HyperG',, .num_nodes/P;

6 G, < PARTITION(HyperG’, ,, Ksub);

7 G* G UG

8 return G*;

9 Function ColumnNet (G: Graph):
10 initialize HyperG;
11 for each node € G do
// A node’s target nodes in a directed graph are
L represented as a column in the adjacency matrix.

12 Hyperedge < node.target_nodes;
13 | HyperG < HyperG U Hyperedge;

14 return HyperG,

connected subgraphs select the largest diameter of them). Ini-
tially, the algorithm converts the graph into a column-net hy-
pergraph (line 1), then forms a column-overlapped graph (line
2) to produce K blocks. Subsequently, each block is further
subdivided into smaller segments based on the target chunk size
P to create the final partitioned graph G* (lines 4-7). KyHyPar
[17] is a graph partitioning tool specialized for hypergraphs,
which can balance the graph partitioning efficiently.

The graph partitioning algorithm used in BEAST-GNN
stands apart from the methods employed in I-GCN and GROW.
I-GCN divides the graph into “islands” and “hubs”, where each
node is either part of an island or a hub. While this structure
allows for the reuse of aggregation results within islands, it
requires repeated searches of islands during inference, making
it inefficient for large graphs. GROW, on the other hand, uti-
lizes the METIS [22] algorithm to partition the graph based on
densely connected regions, which increases intra-subgraph den-
sity but leads to greater sparsity between subgraphs. In contrast,
BEAST-GNN’s method optimizes subgraph connections by en-
suring that overlaps in the adjacency matrix are minimized,
concentrating effective elements along the diagonal. As shown
in Fig. 12, BEAST-GNN significantly enhances data locality,
reducing computation cost during the aggregation phase and
improving overall processing efficiency.

The graph partitioning algorithm is performed offline with a
complexity of O(logP(V + E)) [1], where P represents the
number of subgraphs, V' is the number of nodes, and FE is

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



2410

(b) CiteSeer

(c) ArXiv

(d) Collab

Fig. 12.  The effect of H Pgpco based graph partitioning on the adjacency
matrix of (a) Cora, (b) CiteSeer, (c) ArXiv, and (d) Collab. For better
visualization, non-zero dots are enlarged.

the number of edges in the hypergraph, which is negligible
compared to the overall computational overhead of the GNN.
Specifically, the latency measurements for the graph partition-
ing method in a typical CPU configuration are compelling. On
an Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz, the method
processes the datasets in 19ms, 22ms, 813ms, and 829ms, re-
spectively. In contrast, the corresponding inference times for the
GCN-SGQuant model on the same hardware are significantly
higher: 301ms, 367ms, 6282ms, and 9528ms (all averages over
10 runs). Additionally, the graph reordering is performed just
once and can be applied across all models, ensuring that it pro-
vides an efficient, reusable preprocessing step without adding
repetitive overhead.

E. Load Balancing by Sparse Bit Counting Strategy

As illustrated in Fig. 13, although the power-law distribu-
tion of subgraphs diminishes following the partition based on
HPgppco, an observable imbalance in neighbor distribution
remains. Most subgraph nodes have less than 4 neighbors, i.e.,
the maximum number of sparse elements that can be accom-
modated by the PE of BEAST-GNN, while some subgraph
nodes have a much larger number of neighbors than 4. To
mitigate this and boost the operational efficiency of BEAST-
GNN by reducing PE idleness, we have incorporated a Sparse
Bit Counting Strategy into the fetcher and dispatcher module.

As shown in Fig. 14, the fetcher and dispatcher implement a
Counter for each PE, tasked with tracking both the quantity of
sparse bits and the extent of columns they cover within each PE.
Each Counter fetches a column of sparse bits each cycle. When
the PE dispatch cache contains fewer than four sparse bits and
span less than two columns subsequent to dispatch, the sparse
bit will be allocated to the PE Spads. Following this allocation,
the respective feature will be retrieved based on the column
associated with the sparse bit. Conversely, if the PE contains
sparse bits surpassing these thresholds, they will be forwarded
to the next PE Counter. Simultaneously, the content will be
dispatched to the relevant PE for computation. Thus, each PE
is capable of obtaining a maximum of 4 sparse bits from two
distinct columns of the adjacency matrix in a round, owing to

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 7, JULY 2025

& B

arXiv collab

2
S

2
o
3000000000¢  J00DO00DANIO €O O

Number of Neighbors
wee
==
oo ¢

=t
sS

°
°
R
=
CiteSeer

1

Cora

Fig. 13.  The number of neighbors distribution in 4 datasets after H P pco
based graph partition. The target block size of HPgppco based graph
partition is 100.

1
Next PE : r
Counter i

——————

DEMUX / H
-

8bly

Feature
Fetcher

H -| PE1 Counter I——I PE2 Counter H PE3 Counter H PE4 Counter |»

Fetcher and Dispatcher

Fig. 14. Load Balancing by Sparse Bit Counting Strategy.

the PE design enabling concurrent feature computations from
two different rows. For instance, the PE1 receive F ; and Fj 1
simultaneously.

Moreover, BEAST-GNN incorporates an Inter-PE Accumu-
lator, allowing for the subdivision of a column’s elements within
a block across multiple PEs for computation when the count
exceeds 4. Subsequently, the results are accumulated across the
PEs based on their respective coordinates.

FE. Booth Encoder and Sparse Encoder

In Fig. 8(a), once the Memory Access Handler retrieves
weights or features from memory to the chip, the subsequent
step involves passing through the Booth Encoder to obtain
encoded bit-serial computation elements. BEAST-GNN lever-
ages the Radix-4 Booth Encoding technique [4], a method that
significantly diminishes the quantity of displacement operations
and partial products during bit-serial multiplication computa-
tions [31].

Upon obtaining the Booth-encoded matrix, BEAST-GNN
proceeds to partition the matrix based on the relevant bit slices,
routing it to the Sparse Encoder for sparse encoding. Adher-
ing to the principles of Radix-4 Booth Encoding, each value
element in the sparse matrix comprises 4 bits, encompassing
3 value bits and 1 sign bit. For instance, consider the 8-bit
integer 27, represented in binary as 00011011, which, through
Radix-4 Booth encoding, transforms into (none, 5, -2, 0), i.e.,
(none, 0101, 1010, 1000). Here, 5, -2, and O are allocated within
the sparse encoding of the corresponding matrix based on their

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: BEAST-GNN: A UNITED BIT SPARSITY-AWARE ACCELERATOR

[ Feature B Weight [ Adjacency

wlo Encoding . with Encoding

O Others O Encoding

_
|

M| 5. 095 |

g
2
T

0.8 [ ]

0.9

a
T

0.6
0.85

'S
T

0.4
0.8

Ratio of Memory
Consumption
Ration of Latency

S
v
T

0.2 H 0.75

0 0.7
& S s S S B S )
N F ¥ & & o F

T ¥ P T e

“

&

& =

& oo
PO

& F ¥ ¢

& S S

O <2

2,
e,

(@) (b)

Fig. 15. (a) Ratio of memory consumption with and without encoding
adjacency and weight matrix. (b) Latency overhead of encoding adjacency,
weight and feature Matrix.

positions. Furthermore, owing to BEAST-GNN’s implementa-
tion of column-wise product in its data flow, the sparse coding
format aligns with the CSC format.

As shown in Fig. 15(a), applying Radix-4 encoding followed
by bit-sliced CSC encoding to the weight and non-binary ad-
jacency matrices introduces additional on-chip memory con-
sumption. However, because the adjacency matrix has very high
sparsity and the weight matrix is typically small, the overall
increase in memory overhead, including the features, remains
relatively minor. Based on these characteristics, BEAST-GNN
applies Radix-4 and CSC encoding to the adjacency and weight
matrices, while the feature matrix is encoded only with Radix-
4, as shown in Fig. 15(b). The optimized data flow and pipeline
design ensure that this process introduces minimal latency over-
head.

V. EVALUATION
A. Experimental Setup

Benchmark Graph Datasets and Models. The datasets
and models utilized in our evaluation adhere to the configura-
tion outlined in Table II. In addition, since BEAST-GNN can
efficiently handle models quantized with arbitrary bit-widths,
three quantized GNN models, GCN-SGQuant [8], Degree-
Quant GIN(GIN-INTS8) [35], and SMP [37], are selected for
our evaluation experiments. BEAST-GNN can be applied to the
mentioned GNN models due to its ability to efficiently map
their computational processes to matrix multiplication. This
flexibility not only allows BEAST-GNN to meet the compu-
tational demands of the above models but also enables seam-
less integration with other GNN variants, such as GraphSage
[15] by simply adding a sampler. Furthermore, for more com-
plex models like GAT [36], the computation of attention val-
ues e;; = o(W[Wh;||Wh;]) can also be mapped to matrix
multiplication, where o represents the activation function, W
is the weight matrix, and h is the feature matrix.

Baseline Architectures. To benchmark BEAST-GNN
against current state-of-the-art accelerators in terms of
performance, energy efficiency and area, we selected HyGCN
[39], GCNAX [24], GROW [21], Laconic [31], I-GCN
[14], SGCN [41], MEGA [44] for comparison. HyGCN is a
hybrid-architecture GNN accelerator containing an aggregation
engine and a combination engine. GCNAX is a outer product

2411

TABLE III
THE CONFIGURATIONS OF COMPARED ARCHITECTURES

Computing 5 L. Tiling or
Accelerator Unit@ 1GHz Area(mm”)  Precision Graph Partition/Reorder
16 MACs . o
HyGCN* 4 SIMD16 2.085 16 bits Tiling
GCNAX 32 MACs 2.264 16 bits Tiling
Laconicx 8 x 4 LPEs 1.838 1-16 bits —
GROW 32 MACs 1.959 16 bits Graph Patition/Reorder
I-GCN 32 MACs 2.597 16 bits Graph Patition/Reorder
16 MACs . -
SGCN* 4 SIMD16 2.332 16 bits Tilling
4x8x32 BSEs . .
MEGAT 256 Aggre Units 2.136 1-16 bits  Graph Patition/Reorder
BEAST-GNN 64 PEs 1.759 1-16 bits  Graph Patition/Reorder

* 16 MACs for combination and 4 SIMD16 for aggregation.
* The COO format encoding was applied to the adjacency and feature matrices [28].
1 BSEs for combination and Aggre Units for aggregation.

based SpDeGEMM accelerator tailored for GNNs, which
proposes a dynamically reconfigurable loop unrolling and
tiling mechanism for Aggregation. GROW is a row-wise
product based SpDeGEMM accelerator tailored for GNNs.
Laconic is a complete bit-serial accelerator that accounts for
bit sparsity, conducting multiplication computations when
both multipliers are in bit-serial format. Laconic is designed
for conventional neural networks and do not readily adapt
to the inherent irregularity of graph structures. I-GCN is a
GNN accelerator specifically designed to reduce redundant
aggregation computations by utilizing online reordering.
SGCN is a deep GNN accelerator that introduces a specialized
encoding method for handling deep, dense node features.
MEGA is a GNN accelerator that flexibly quantizes graph
node feature bit-widths through a hardware-software co-design
approach.

Methodology. The performance, energy efficiency and area

of BEAST-GNN and baseline architecture are measured by
using the following methods.
Performance. We have developed and implemented a cycle-
accurate and execution-driven simulator to precisely measure
execution time in terms of the number of cycles. The sim-
ulator operates based on the analyzed GNN models, graph
datasets and the reordered adjacency matrices (refer to Ta-
ble II), extracted utilizing PyTorch Geometric [10], KaHyPar
[17], Metis [22], and OGB (Open Graph Benchmark) [19].
To ensure a fair comparison with HyGCN, GCNAX, GROW
and Laconic, I-GCN, SGCN, MEGA, BEAST-GNN has been
set up to deliver equivalent levels of computational throughput
and off-chip memory bandwidth(128GB/s), alongside similar
on-chip SRAM capacity(378KB). The Weight, Feature and
Output SRAM of BEAST-GNN are divided into 16 banks.
We initially set the maximum bit-width to 16 bits for all ar-
chitectures is that the weight matrix of GCN-SGQuant and
hyperparameters of SMP are 16 bits. Table III presents a
concise overview of the crucial architectural parameters within
BEAST-GNN’s baseline configuration. Furthermore, to ensure
a fair comparison, we evaluate the performance of BEAST-
GNN, GROW, and SGCN on the GIN-INT8 and GIN-INT4
models with 8-bit and 4-bit precision, respectively. Among all
fixed 16-bit baselines, GROW and SGCN outperformed the
others.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



2412 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 7, JULY 2025
40.0
30.0
g .
2 \
S 200 | [
-3
W
100 : ‘ : ] 3 | ‘
i , ‘ . .
0.0 | il H ol il ||| I 2l [ i o] Tl li II il il [Tl il il [H
Cora CiteSeer ArXiv Collab | Cora CiteSeer ArXiv Collab | Cora CiteSeer ArXiv Collab | Cora CiteSeer ArXiv Collab | Cora CiteSeer ArXiv Collab
GCN-SGQuant GIN-INT8 SMP-INT4 SMP-INT2 Geomean
[l HyGCN @ GCNAX [ Laconic @ GROW H I-GCN B SGCN B MEGA @ BEAST-GNN
Fig. 16.  Speedup over baseline architectures, normalized to HyGCN (higher is better).
, 1000
¢,
“
2€ 100
=]
Sz 10
=]
0.1
Cora CiteSeer ArXiv Collab Cora CiteSeer ArXiv Collab
GCN-SGQuant GIN-INTS8 SMP-INT2 Geomean
B HyGCN @ GCNAX [ Laconic @ GROW H I-GCN B SGCN B MEGA B BEAST-GNN
Fig. 17. DRAM access reduction, normalized to HyGCN (higher is better).

Area. We measure the modules’ area of architectures by im-
plementing it in RTL using Verilog. The RTL model is syn-
thesized with Synopsys Design Compiler [6] targeting 1 GHz
of operating frequency using the FreePDK 45nm standard-cell
library [11].

Energy Efficiency. In assessing energy efficiency, we uti-
lize a computing’s energy model [18] to quantify energy per
operation for arithmetic operations and off-chip DRAM ac-
cesses. To estimate the power and energy consumption related
to on-chip SRAM usage, we employ CACTI [27] designed
for the FreePDK 45nm process [11]. Given that the on-chip
SRAM space significantly influences the area of chips, we
leverage CACTI’s leakage power to approximate static energy
consumption.

B. Overall Results

Speedup. Fig. 16 shows that BEAST-GNN achieves an
average speedup of 21.7x, 6.4x, 10.5%, 3.7x, 4.0x, 3.3x,
and 1.4x compared to HyGCN, GCNAX, Laconic, GROW,
I-GCN, SGCN, and MEGA respectively. This performance
improvement can be attributed to BEAST-GNN’s effective
utilization of flexible bit-width and bit sparsity in the GNN
computation process, as well as its enhanced data locality
strategies in the aggregation process. Firstlyy, BEAST-GNN
employs a bit-serial computation approach, which can
selectively access and compute only the effective bit-width
required in the GNN computation process, thereby improving
efficiency. Secondly, BEAST-GNN makes full use of bit
sparsity by sparse coding the bit matrices of the adjacency and
weight matrices, and densing the essential bits of the feature
matrices, effectively reducing the computational workload.
Thirdly, BEAST-GNN enhances data locality through a

column-overlapped reordering based graph partition strategy,
which helps to pipeline the Aggregation and Combination
process, ultimately reducing DRAM access. Finally, BEAST-
GNN improves load balancing among PEs through the
Sparse Bit Counting Strategy, further enhancing the overall
computational efficiency. Furthermore, as shown in Fig. 18(a),
BEAST-GNN maintains a significant advantage even under the
same maximum bit-width, achieving 2.58 x and 1.98 x speedup
over GROW and SGCN, respectively. This improvement is
primarily due to the higher bit sparsity enabled by low-
precision quantization and, as illustrated in Fig. 18(b), the
effective reduction of DRAM access through BEAST-GNN’s
reordering algorithm. This evaluation highlights BEAST-
GNN’s ability to efficiently adapt across different bit-widths,
reinforcing its advantage in lower-fixed-precision GNN
processing.

BEAST-GNN’s speedup is exceptionally impressive relative
to HyGCN, given that HyGCN’s (AX )W execution order leads
to a considerable surge in supplementary MAC operations. In
addition, HyGCN employs a hybrid architecture, which can
lead to low utilization of a certain part of the GNN when
the two phases of the GNN are computationally unbalanced.
In comparison, while Laconic is also capable of leveraging
the flexible bit-width and bit sparsity inherent to the GNN
computation process, it struggles to effectively the inherent
irregularities of graph computations. This limitation introduces
a significant number of additional DRAM access operations,
which ultimately hinders Laconic’s performance. For GROW,
GCNAX and I-GCN, because of their default feature matrix
X as a sparse matrix, it brings a lot of extra DRAM accesses
for feature-dense datasets such as arXiv and Collab. As for
SGCN, its encoding method for deep, dense feature matrices
results in more pronounced acceleration effects for SMP with

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



LUO et al.: BEAST-GNN: A UNITED BIT SPARSITY-AWARE ACCELERATOR

~

DRAM Access
Reduction

2 rad :
S o= N W
T

©I0D)
1HISND
ATXAY
qeied
uBIWOIL)
(205}
LIS
ATXY
quned
uBIWOIL)
rI0)
1295901
ATV
qened
ueawWodIn)
©io)
1eogoy) .
ATXIY
qenod
ueIWoIr)

8 bits 4bits 8 bits 4bits
B GROW @ SGCN [0 BEAST-GNN B GROW @ SGCN [ BEAST-GNN

(a) Speedup (b) DRAM Access

Fig. 18. Comparison of Speedup and DRAM Access Reduction for GROW,
SGCN, and BEAST-GNN on the GIN Model. The 8-bits and 4-bits indicate
the maximum bit-width of these architectures, corresponding to the GIN-INT8
and GIN-INT4 models (normalized to GROW).

10 layers, although it is limited by the overhead imposed by
fixed bit-widths and heterogeneous architectures. MEGA is the
architecture most similar to BEAST-GNN. Howeyver, its addi-
tional overhead, compared to BEAST-GNN, primarily arises
from not fully exploiting bit sparsity.

DRAM Access. As shown in Fig. 17, BEAST-GNN achieves
average DRAM access reductions of 36.3x, 7.9x, 6.6x, 3.9x,
5.38x%, 3.37x, and 1.44x compared to HyGCN, GCNAX,
Laconic, GROW, I-GCN, SGCN, and MEGA, respectively.
These significant gains can be attributed to two key aspects
of BEAST-GNN’s design. Firstly, the bit-serial computation
method employed by BEAST-GNN enables flexible access
to data of arbitrary bit-widths, thereby reducing unneces-
sary DRAM accesses. Secondly, BEAST-GNN improves the
density of effective blocks in the adjacency matrix through
its column-overlapped reordering based graph partition strat-
egy, which enhances data reuse and further reduces DRAM
access.

In comparison, HyGCN, GCNAX, and SGCN apply tiling
only to the adjacency matrix without sufficiently enhancing
data locality, resulting in excessive DRAM accesses. Notably,
SGCN introduces an encoding method for dense matrices,
which reduces memory overhead. While Laconic can reduce
DRAM accesses by leveraging flexible bit-width reads on
features and weights, its inability to handle the irregularities
inherent to the Aggregation process introduces significant
overhead. Although GROW performs graph partitioning
using Metis, the sparse connections between the partitioned
subgraphs still result in irregular access patterns. [-GCN
employs a graph reordering strategy designed to identify
frequently aggregated node clusters to reduce redundant
aggregation. However, its online search approach requires
multiple rounds to discover effective clusters, thereby
increasing overhead. MEGA, employing a dynamic node
scheduling strategy called Condense based on METIS,
reduces subgraph overlap but, for larger graphs, struggles with
numerous sparse interconnections due to insufficient global
information.

Energy Efficiency. As illustrated in Fig. 19, BEAST-GNN’s
average energy consumption is only 4.8%, 12.4%, 19.6%,
27.7%, 17.0%, 26.5%, and 82.8% compared to HyGCN,

2413

GCNAX, Laconic, GROW, I-GCN, SGCN, and MEGA
respectively. The energy consumption of all these architectures
includes the accessing off-chip memory. This is due to the
fact that for the inherent irregularities of the graph during
the Aggregation process, the majority of the energy is
expended on off-chip data movement, rather than on-chip
SRAM access or computation. BEAST-GNN’s superior
energy efficiency can be attributed to two key factors. Firstly,
BEAST-GNN’s bit-level computation optimizations effectively
reduce the overall computational workload. Secondly, its
enhanced data localization strategies, enabled by the graph
partitioning techniques employed during the Aggregation
process, contribute to the improved energy efficiency.

Area Analysis. As shown in Table IV, the total area
of BEAST-GNN is 1.759 mm?2, synthesized using a 45nm
standard-cell library. Compared to HyGCN, GCNAX, Laconic,
GROW, I-GCN, SGCN, and MEGA, BEAST-GNN achieves
reductions in chip area of 15.6%, 22.3%, 4.3%, 10.2%, 32.3%,
24.6%, and 17.6%, respectively. The majority of the area (78%)
is occupied by on-chip SRAM, as the main computational units
of BEAST-GNN are the adder and the decoder, which are
significantly smaller in size compared to the MAC units used
in HyGCN, GCNAX and GROW. In SGCN, an additional en-
coder designed specifically for dense feature matrices increases
the area overhead compared to HyGCN. The online graph re-
ordering module in I-GCN, which is used to reduce redundant
aggregation, also occupies a large portion of the on-chip area.
Additionally, the heterogeneous aggregation and combination
architecture in HyGCN, SGCN, and MEGA introduces extra
area overhead.

Ablation Study. To clearly elucidate the sources of BEAST-
GNN’s acceleration, we conducted an ablation study and quan-
tified the impact of isolating our graph partitioning strategy
and load balancing strategy, as shown in Fig. 20. The baseline
BEAST-GNN employs the data flow described in Section IV-C
and the hardware configurations presented in Table IV, without
the application of any other strategies. We average the speedup
of the 4 datasets. The experimental results demonstrate that
the graph partition strategy alone achieves an average 1.47x
speedup, while the load balancing strategy alone delivers an
average 1.39x speedup. By applying both the graph partitioning
strategy and the load balancing strategy, a combined speedup
of 2.21x can be achieved.

Sensitivity Study. Given that BEAST-GNN effectively re-
duces DRAM accesses through its flexible bit-width access
and graph partitioning strategy, we conduct a sensitivity anal-
ysis to further explore the impact of off-chip memory band-
width on the performance of BEAST-GNN and other compared
architectures. Fig. 21 illustrates the changes in speedup for
BEAST-GNN and the compared architectures as the memory
bandwidth is varied from 16GB/s to 256GB/s. All architec-
tures have normalized their own performance with the 128
GB/s memory bandwidth, in order to highlight their robust-
ness at different memory bandwidth levels. As shown in the
figure, BEAST-GNN exhibits the least sensitivity to memory
bandwidth, demonstrating the smallest change in performance
when the DRAM bandwidth is varied. This indicates that

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



2414

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 7, JULY 2025

12

Normalized
Energy Consumption

Cor:

a CiteSeer ArXiv
GCN-SGQuant

Collab | Cora CiteSeer ArXiv

Collab | Cora CiteSeer ArXiv

Collab

Collab | Cora CiteSeer ArXiv

Collab | Cora CiteSeer ArXiv
SMP-INT2

Geomean

B HyGCN E GCNAX [ Laconic @ GROW H I-GCN l SGCN B MEGA B BEAST-GNN

Fig. 19.  Energy consumption, normalized to HyGCN (lower is better).
TABLE IV
THE CONFIGURATION AND BREAKDOWN OF BEAST-GNN
Number
Component 0:_1 Size Area(mm?2)  Power(mW)
Bit Spad 4x2x64 0.036 7.014
4x2x64
Coords Spad (4KB) 0.028 10.257
Processing Adder 8x 64 0.031 10.240
Element Decoder 4x64 0.029 3.840
Accumulator 8x64 0.048 41.856
Composer 2x64 0.042 10.880
DEMUX 64 0.156 7.667
Partial Sum Spad 5004 0.022 7.344
artial Sum Spa (6KB) . .
On-chi Weight SRAM 32KB 0.135 50.544
Merﬁo‘rp Feature SRAM ~ 256KB 0.894 356.976
y Output SRAM 80KB 0.299 121.928
Encoder Booth Encoder 8x 64 0.004 1.441
Sparse Encoder — 0.022 2.166
Others — 0.013 5.462
Total - 1.759 630.272
3
233 231 227
2 | 56 164 1.65 ==
?:T il 156 L e Y 75 4%
&1L
o Q o w w 2} Q w w Q [} w w
2 2 5 5|2 2 & §/2 2 % ¢
H Y H
BEAST-GNN with BEAST-GNN with BEAST-GNN with
Partition Balancing Partition & Counting
Fig. 20. BEAST-GNN’s average speedup when incrementally applying our

proposed optimization strategies (from left to right).

098

Speedup

——1G
= SGON
= MEGA

e BEAST-GNN

0.74

1.06

/ ——can

L

02t

0.84

G"
&

(a) GCN-SGQuant

Fig. 21.

o

)
&

& &
&

0.66

»

P S
& ,5\9 & \'\?’o ,\3“0

(b) GIN-INTS

&
& £

:
P & &

&
A

(¢) SMP-INT4

Sensitivity to DRAM bandwidth (Normalized to 128GB/s).

BEAST-GNN possesses a high degree of robustness in terms
of performance, outperforming the other architectures under
diverse memory bandwidth conditions.

VI. CONCLUSION

In this paper, we propose an architecture for GNN infer-
ence called BEAST-GNN. The architecture is based on bit-
serial computation, which enables the full utilization of bit-level
sparsity during GNN computation, and is specially designed

to optimize the data flow of GNNs. Additionally, the architec-
ture further enhances the GNN computation process by em-
ploying a column-overlapped reorder based partition strategy
and a sparse bit-oriented load balancing strategy, significantly
improving the operational efficiency of GNNs. Compared to
the existing state-of-the-art GNN and bit-serial accelerators,
including HyGCN, GCNAX, Laconic, GROW, I-GCN, SGCN,
and MEGA, BEAST-GNN achieves 21.7x,6.4x, 10.5x,3.7x,

4.0x, 3.3x, and 1.4x speedup, respectively.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their constructive comments.

(1]

(2]

[3]

(4]
[5]

(6]

(71

(8]

(9]

[10]

[11]

REFERENCES

S. Acer and C. Aykanat, “Reordering sparse matrices into block-diagonal
column-overlapped form,” J. Parallel Distrib. Comput., vol. 140, pp. 99—
109, Jun. 2020.

J. Albericio et al., “Bit-pragmatic deep neural network computing,”
in Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchit., 2017,
pp. 382-394.

A. Ali, Y. Zhu, and M. Zakarya, “Exploiting dynamic spatio-temporal
graph convolutional neural networks for citywide traffic flows predic-
tion,” Neural Netw., vol. 145, pp. 233-247, Jan. 2022.

A. D. Booth, “A signed binary multiplication technique,” Quart. J.
Mechan. Appl. Math., vol. 4, no. 2, pp. 236-240, 1951.

X. Chen, J. Wang, and K. Xie, “Trafficstream: A streaming traffic flow
forecasting framework based on graph neural networks and continual
learning,” 2021, arXiv:2106.06273.

Synopsys Design Compiler. Accessed: Apr. 11, 2025. [Online].
Available: http://www.synopsys.com/Tools/Implementation/RTL
Synthesis/Pages/default.aspx

S. Lawson “VLSI signal processing: A bit-serial approach,” Electron.
Power, vol. 32, no. 2, p. 169, 1986.

B. Feng, Y. Wang, X. Li, S. Yang, X. Peng, and Y. Ding, “SGQuant:
Squeezing the last bit on graph neural networks with specialized
quantization,” in Proc. IEEE 32nd Int. Conf. Tools Artif. Intell. (ICTAI),
Piscataway, NJ, USA: IEEE Press, 2020, pp. 1044-1052.

G. Feng et al., “Aggregaterank: Bringing order to web sites,” in Proc.
29th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2006,
pp. 75-82.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” 2019, arXiv:1903.02428.

Free PDK 45 nm open-access based PDK for the 45 nm technology
node. Accessed: April. 10, 2025. [Online]. Available: https://eda.ncsu.
edu/freepdk/freepdk45/

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.


http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/default.aspx
https://eda.ncsu.edu/freepdk/freepdk45/
https://eda.ncsu.edu/freepdk/freepdk45/

LUO et al.: BEAST-GNN: A UNITED BIT SPARSITY-AWARE ACCELERATOR

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Y. Gao, K. Zhang, and S. Jia, “BEM: Bit-level sparsity-aware deep learn-
ing accelerator with efficient booth encoding and weight multiplexing,”
in Proc. IEEE 4th Int. Conf. Circuits Syst. (ICCS), Piscataway, NJ, USA:
IEEE Press, 2022, pp. 187-194.

T. Geng et al., “AWB-GCN: A graph convolutional network accelerator
with runtime workload rebalancing,” in Proc. 53rd Annu. IEEE/ACM
Int. Symp. Microarchit. (MICRO), Piscataway, NJ, USA: IEEE Press,
2020, pp. 922-936.

T. Geng et al., “I-GCN: A graph convolutional network accelerator with
runtime locality enhancement through islandization,” in Proc. 54th Annu.
IEEE/ACM Int. Symp. Microarchit. (MICRO), 2021, pp. 1051-1063.
W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Adv. Neural Inf. Process. Syst., vol. 30,
pp. 1024-1034, 2017.

Y. Han, K. Park, Y. Jung, and L.-S. Kim, “EGCN: An efficient
GCN accelerator for minimizing off-chip memory access,” IEEE Trans.
Comput., vol. 71, no. 12, pp. 3127-3139, Dec. 2022.

T. Heuer, P. Sanders, and S. Schlag, “Network flow-based refinement
for multilevel hypergraph partitioning,” ACM J. Exp. Algorithmics, vol.
24, pp. 1-36, Sep. 2019.

M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers
(ISSCC), Piscataway, NJ, USA: IEEE Press, 2014, pp. 10-14.

W. Hu et al.,“Open graph benchmark: Datasets for machine learning on
graphs,” in Proc. Adv. Neural Inf. Process. Systems, vol. 33, 2020, pp.
22118-22133.

L. Huang et al.,, “Epquant: A graph neural network compression ap-
proach based on product quantization,” Neurocomputing, vol. 503, pp.
49-61, Sep. 2022.

R. Hwang, M. Kang, J. Lee, D. Kam, Y. Lee, and M. Rhu, “Grow:
A row-stationary sparse-dense GEMM accelerator for memory-efficient
graph convolutional neural networks,” in Proc. IEEE Int. Symp. High-
Perform. Comput. Archit. (HPCA), Piscataway, NJ, USA: IEEE Press,
2023, pp. 42-55.

G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1,
pp. 359-392, 1998.

K. Kiningham, P. Levis, and C. Ré, “GRIP: A graph neural network
accelerator architecture,” IEEE Trans. Comput., vol. 72, no. 4, pp. 914—
925, Apr. 2022.

J. Li, A. Louri, A. Karanth, and R. Bunescu, “GCNAX: A flexible and
energy-efficient accelerator for graph convolutional neural networks,”
in Proc. IEEE Int. Symp. High-Perform. Comput. Archit. (HPCA),
Piscataway, NJ, USA: IEEE Press, 2021, pp. 775-788.

Z. Li, Z. Cui, S. Wu, X. Zhang, and L. Wang, “FI-GNN: Modeling
feature interactions via graph neural networks for ctr prediction,” in
Proc. 28th ACM Int. Conf. Inf. Knowl. Manage., 2019, pp. 539-548.
S. Liang et al., “ENGN: A high-throughput and energy-efficient accel-
erator for large graph neural networks,” IEEE Trans. Comput., vol. 70,
no. 9, pp. 1511-1525, Sep. 2021.

N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP Lab., vol. 27, 2009, Art. no. 28.

A. Parashar et al., “SCNN: An accelerator for compressed-sparse convo-
lutional neural networks,” ACM SIGARCH Comput. Archit. News, vol.
45, no. 2, pp. 27-40, 2017.

M. J. Pazzani and D. Billsus, “Content-based recommendation systems,”
in The Adaptive Web: Methods and Strategies of Web Personalization.
Springer, 2007, pp. 325-341.

X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun, “3D graph neural
networks for RGBD semantic segmentation,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 5199-5208.

S. Sharify et al., “Laconic deep learning inference acceleration,” in Proc.
46th Int. Symp. Comput. Archit., 2019, pp. 304-317.

S. Smith, M. McGregor, and P. Denyer, “Techniques to increase the
computational throughput of bit-serial architectures,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 12, Piscataway,
NJ, USA: IEEE Press, 1987, pp. 543-546.

N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “Matraptor:
A sparse-sparse matrix multiplication accelerator based on row-wise
product,” in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microarchit.
(MICRO), Piscataway, NJ, USA: IEEE Press, 2020, pp. 766-780.

W. Sun, Z. Zou, D. Liu, W. Sun, S. Chen, and Y. Kang, “Bit-balance:
Model-hardware co-design for accelerating NNS by exploiting bit-level
sparsity,” IEEE Trans. Comput., vol. 73, no. 1, pp. 152-163, Jan. 2024.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

2415

S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, “Degree-
quant: Quantization-aware training for graph neural networks,” 2020,
arXiv:2008.05000.

P. Veli¢kovié¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.

S. Wang, B. Eravci, R. Guliyev, and H. Ferhatosmanoglu, “Low-bit
quantization for deep graph neural networks with smoothness-aware
message propagation,” in Proc. 32nd ACM Int. Conf. Inf. Knowl.
Manage., 2023, pp. 2626-2636.

T. Weng, X. Zhou, K. Li, K.-L. Tan, and K. Li, “Distributed ap-
proaches to butterfly analysis on large dynamic bipartite graphs,”
IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 2, pp. 431-445,
Feb. 2023.

M. Yan et al., “HYGCN: A GCN accelerator with hybrid architecture,”
in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Piscataway, NJ, USA: IEEE Press, 2020, pp. 15-29.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.
Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery & Data Mining, 2018, pp. 974-983.

M. Yoo, J. Song, J. Lee, N. Kim, Y. Kim, and J. Lee, “SGCN: Exploiting
compressed-sparse features in deep graph convolutional network acceler-
ators,” in Proc. IEEE Int. Symp. High-Perform. Comput. Archit. (HPCA),
Piscataway, NJ, USA: IEEE Press, 2023, pp. 1-14.

H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna,
“Graphsaint: Graph sampling based inductive learning method,” 2019,
arXiv:1907.04931.

A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless cnns with low-precision weights,” 2017,
arXiv:1702.03044.

Z. Zhu et al., “Mega: A memory-efficient GNN accelerator exploiting
degree-aware mixed-precision quantization,” in Proc. IEEE Int. Symp.
High-Perform. Comput. Archit. (HPCA), Piscataway, NJ, USA: IEEE
Press, 2024, pp. 124-138.

X. Zou, K. Li, Y. Li, W. Wei, and C. Chen, “Multi-task y-shaped
graph neural network for point cloud learning in autonomous driving,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 9568-9579,
Jul. 2022.

Yunzhen Luo received the B.E. degree in software
and engineering from Hefei University of Tech-
nology, in 2017, and the M.E. degree from the
Central South University, in 2021. He is currently
working toward the Ph.D. degree in computer sci-
ence and technology with Hunan University, China.
His research interests include edge computing and
computer architecture.

Yan Ding (Member, IEEE) received the Ph.D.
degree in computer science from Hunan Univer-
sity, China, in 2021. Currently, he is an Assis-
tant Professor with Hunan University. His research
interests include parallel computing, mobile edge
= computing, big data, artificial intelligence, and ar-
chitecture. He has published eight papers in jour-
nals and conferences, including Design Automation
Conference, IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS
ON SERVICES COMPUTING, IEEE TRANSACTIONS ON

INDUSTRIAL INFORMATICS, Journal of Parallel and Distributed Computing,
Computers & Security, and the 17th IEEE International Symposium on
Parallel and Distributed Processing with Applications (IEEE ISPA 2019). He
received the Outstanding Paper Award in the 17th IEEE ISPA.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.



2416

Zhuo Tang (Member, IEEE) received the Ph.D. de-
gree in computer science from Huazhong University
of Science and Technology, China, in 2008. Cur-
rently, he is a Professor with the College of Com-
puter Science and Electronic Engineering, Hunan
University. He is also the Chief Engineer with the
National Supercomputing Center in Changsha. He
has published almost 120 journal articles and book
chapters. His research interests include distributed
computing system, cloud computing, and parallel
processing for big data, including distributed ma-
chine learning, security model, parallel algorithms, and resources scheduling
and management in these areas. He is a member of ACM and CCF.

Keqin Li (Fellow, IEEE) received the B.S. de-
gree from Tsinghua University, in 1985, and the
Ph.D. degree from the University of Houston, in
1990, both in computer science. He is a SUNY
Distinguished Professor with the State University of
New York and a National Distinguished Professor
with Hunan University, China. He has authored or
co-authored more than 1110 journal articles, book
chapters, and refereed conference papers. He holds
nearly 75 patents announced or authorized by the
Chinese National Intellectual Property Administra-
tion. He is listed in ScholarGPS Highly Ranked Scholars (2022-2024) and
among the top 0.002% of over 30 million scholars worldwide based on
composite scores for research productivity, impact, and quality in the recent
five years. He is an AAAS Fellow, an AAIA Fellow, and an ACIS Founding
Fellow. He is a member of Academia Europaea.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 7, JULY 2025

Kenli Li (Senior Member, IEEE) received the
M.S. degree in mathematics from the Central South
University, China, in 2000, and the Ph.D. degree
in computer science from Huazhong University of
Science and Technology, China, in 2003. He was
a Visiting Scholar with the University of Illinois at
Urbana-Champaign, from 2004 to 2005. He is a Full
Professor of computer science and technology with
Hunan University. He has published more than 300
papers in international conferences and journals. His
research interests include parallel and distributed
processing, supercomputing and cloud computing, high-performance com-
puting for Big Data and artificial intelligence, etc. He is currently served
on the Editorial Boards of IEEE TRANSACTIONS ON COMPUTERS. He is an
Outstanding Member of CCFE.

Chubo Liu (Member, IEEE) received the B.S.
and Ph.D. degrees in computer science and
technology from Hunan University, China, in
2011 and 2016, respectively. Currently, he is a
Full Professor of computer science and tech-
nology with Hunan University. He has pub-
lished over 40 papers in journals and confer-
ences such as IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, IEEE TRANSACTIONS
ON CLOUD COMPUTING, IEEE TRANSACTIONS ON
MOBILE COMPUTING, IEEE TRANSACTIONS ON
INDUSTRIAL INFORMATICS, IEEE INTERNET OF THINGS JOURNAL, ACM
Transactions on Modeling and Performance Evaluation of Computing Systems,
Theoretical Computer Science, ISCA, DAC, and NPC. He won the IEEE
TCSC Early Career Researcher (ECR) Award in 2019. He is a member of
ACM.

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on August 19,2025 at 16:13:00 UTC from IEEE Xplore. Restrictions apply.




<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
			]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
			]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
			]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
			]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
			]
			/Downsample16BitImages true
		>>
	]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
	]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
	]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
	]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
	]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
	]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
		]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
		]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
	]
	/HWResolution [
		600
		600
	]
>>
setpagedevice


