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ARTICLE INFO ABSTRACT

Keywords: The age estimation task aims to predict the age of an individual by analyzing facial features in an image. The

Age estimation development of age estimation can improve the efficiency and accuracy of various applications (e.g., age verifi-

gLIP . cation and secure access control, etc.). In recent years, contrastive language-image pre-training (CLIP) has been
ransiormer

widely used in various multimodal tasks and has made some progress in the field of computer vision. However,
the promotion of CLIP and error feedback mechanisms for age estimation has not been investigated, and existing
Transformer-based methods require high memory usage (quadratic complexity) when globally modeling images.
To tackle the above issues, we propose a novel CLIP-driven Image-Language Fusion for Correcting Inverse Age
Estimation (CILF-CIAE). Specifically, we first introduce the CLIP model to extract image features and text seman-
tic information respectively, and map them into a highly semantically aligned high-dimensional feature space.
Next, we designed a new Transformer architecture (i.e., FourierFormer) to achieve channel evolution and spatial
interaction of images, and to fuse image and text semantic information. Compared with the quadratic complex-
ity of the attention mechanism, the proposed FourierFormer is of linear log complexity. To further narrow the
semantic gap between image and text features, we utilize an efficient contrastive multimodal learning module
that supervises the multimodal fusion process of FourierFormer through contrastive loss for image-text match-
ing, thereby improving the interaction effect between different modalities. Finally, we introduce reversible age
estimation, which uses end-to-end error feedback to reduce the error rate of age predictions. Extensive experi-
ments on six benchmark datasets demonstrate that CILF-CIAE consistently outperforms advanced methods such
as LRA-GNN and MCGRL. For example, our method achieves an MAE of 1.68 on MORPH-S2, significantly lower
than 2.21 (LRA-GNN) and 1.77 (MCGRL), highlighting its superior accuracy and robustness in real-world age
estimation scenarios.

Image-language fusion
Fourier transform
Error correction

1. Introduction The current mainstream age estimation methods are divided into
three categories: CNN (Niu et al., 2016), (Duan et al., 2017), attention
network (Wang et al., 2022), (Zhang et al., 2019), and GCN (Shou et al.,

2023). To extract global information and multi-scale information in

1.1. Motivation

The task of age estimation aims to determine the age based on the
facial features in the image. In recent years, due to the massive increase
in image data sets and the widespread application of deep learning (DL),
age estimation methods have also achieved important achievements and
attracted widespread research attention (Shen et al., 2019), (Liu et al.,
2020), (Yin et al., 2023b). Furthermore, age estimation is also widely
used in many scenarios. For example, age estimation in finance and in-
surance can help detect fraud where age is falsely stated to obtain im-
proper benefits (Rothe et al., 2018), (Bao et al., 2023), (Yin et al., n.d.).

* Corresponding author.

images, a CNN-based age estimation algorithm is applied. For exam-
ple, Rothe et al. (2018) estimated an individual’s true age and apparent
age from a single face image based on a CNN method. Unlike many tra-
ditional machine learning methods (Cao et al., 2012), this method does
not require the use of facial feature point markers and only requires the
input of face images for age estimation. However, CNN-based methods
cannot capture the semantic features in images that are most relevant to
age features. To give higher weight to the semantic features in the image
that are most relevant to the age feature, attention networks began to be
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Fig. 1. We compare the differences between existing image learning paradigms
and the paradigm proposed in this paper. As shown in Fig. 1(a), most image
learning methods perform supervised learning by inputting images and then
using manually annotated labels as supervision signals. As shown in Fig. 1(b),
since manual annotation requires a large amount of resources, existing methods
begin to build self-supervised learning models by contrasting input images. As
shown in Fig. 1(c), we perform text-image contrastive learning by using the CLIP
pre-trained model and transfer the learned knowledge to the age estimation
prediction task.

applied. For instance, Shen et al. (2022) introduced an attention mecha-
nism so that the model can automatically focus on regions in the image
that are relevant for age estimation, which helps improve the model’s
perception of important features related to age. In addition to the atten-
tion structure for age estimation tasks, many task-specific Transformer
variants have been proposed to address challenges in specific domains.
For instance, the Top-k Token Selective Transformer (Xiao et al., 2024b)
introduces a token selection strategy that retains only the most infor-
mative patches for remote sensing image super-resolution, effectively
reducing computational overhead while preserving global context. Sim-
ilarly, the Medical Transformer (Valanarasu et al., 2021) employs gated
axial-attention to enhance spatial dependency modeling in medical im-
age segmentation, showcasing the adaptability of Transformer-based de-
signs in complex structural domains. However, attention network-based
methods cannot flexibly model irregular objects. To overcome the above
problems, Shou et al. (2023) proposed a contrastive multi-view GCN for
age estimation (CMGCN). CMGCN improves the feature representation
capabilities of images by extending image representation into topologi-
cal semantic space. However, the methods mentioned above are all su-
pervised learning methods and ignore the CLIP-based multimodal learn-
ing paradigm. Taking Fig. 1(a) and (b) as an example, existing age esti-
mation algorithms mainly focus on supervised, or self-supervised algo-
rithm design (Bao et al., 2022), (Deng et al., 2021), ignoring the con-
trastive image-language pre-training (CLIP) paradigm. CLIP can learn
the prior information of faces from a large number of text-image pairs
and provide better generalization for downstream tasks. Specifically,
CLIP learns the correlation between images and text from a large number
of image-text pairs through contrastive learning. Furthermore, existing
algorithms directly predict age and lack an error information feedback
mechanism, which may lead to a large error between the model’s pre-
dicted age and the true label. Therefore, it is necessary to take CLIP
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Fig. 2. We compare the differences between existing image architectures and
the architectures proposed in this paper. As shown in Fig. 2(a) and (b), exist-
ing methods are mainly based on CNN architecture and Transformer architec-
ture based on attention mechanism to extract feature information of images. As
shown in Fig. 2(c), we replace the attention module in the Transformer archi-
tecture with a Fourier prior module.

multimodal learning paradigm and error-controllable generation as the
starting point for model design.

To tackle the above problem, we propose a novel CLIP-driven Image-
Language Fusion for Correcting Inverse Age Estimation (CILF-CIAE) to
perform age estimation. CILF-CIAE mainly includes four modules: CLIP-
based visual and language feature encoder, FourierFormer-based fea-
ture fusion, age prediction and error-controllable generation module.
Firstly, we use Image Encoder and Text Encoder in CLIP to encode
image and text features respectively and obtain corresponding feature
representations. After obtaining the image and text feature representa-
tions, we jointly input them into the N-dimensional feature space for
contrastive learning to obtain aligned text and image semantic vectors,
and utilize obtained image semantic vectors to perform age estimation.
Secondly, as shown in Fig. 2(a) and (b), unlike previous CNN-based
and attention-based Transformer architectures, CNN-based methods can
only extract local information of the image and it is difficult to use con-
textual prompts modules to enhance age estimation, while attention-
based methods require large memory usage (quadratic complexity). We
introduce the Transformer architecture based on Fourier transform to
realize the spatial interaction and channel evolution of image features,
so as to fuse text and image feature information to improve the age es-
timation performance. Specifically, we replace the attention module in
Transformer with Fourier transform and input image features into Fouri-
erFormer to achieve spatial interaction and channel evolution. To fur-
ther narrow the semantic gap between image and text features, we uti-
lize an efficient contrastive multimodal learning module that supervises
the multimodal fusion process of FourierFormer through contrastive loss
for image-text matching, thereby improving the interaction effect be-
tween different modalities. Thirdly, we construct age estimation predic-
tion loss and text and image matching loss to complete the parameter op-
timization of the model. Finally, we build an error-correcting reversible
age estimation module to ensure that the predicted age is within a high-
confidence interval in an end-to-end learning manner.
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1.2. Our contributions

Therefore, CLIP multimodal learning, spatial interaction of images,
and channel evolution should be the core of age estimation algorithm
design. Inspired by the above analysis, we propose a novel CLIP-driven
Image-Language Fusion for Correcting Inverse Age Estimation (CILF-
CIAE) to perform age estimation. The main contributions of this paper
are summarized as follows:

1. We propose a novel CLIP-driven Image-Language Fusion framework
(CILF-CIAE) tailored for age estimation, which goes beyond simple
CLIP fine-tuning by integrating a vision-guided semantic alignment
pipeline and a dedicated correction mechanism.

2. We design a new lightweight Transformer variant called Fourier-
Former, which replaces the self-attention mechanism with a learn-
able frequency-based spatial and channel interaction module. Un-
like FNet or frequency-assisted Mamba, our design is optimized
for image-language fusion and incorporates nonlinear filtering and
residual pathways to enhance representational expressiveness.

3. We introduce a contrastive multimodal learning module with
context-aware prompt enhancement, which strengthens image-text
alignment through Fourier-enhanced visual context. This differs
from prior CLIP-based works (e.g., CoOp, CoCoOp) by utilizing dy-
namic, vision-driven text guidance.

4. We develop an end-to-end reversible error feedback mechanism,
which combines explicit and implicit error modeling using an en-
semble of lightweight regressors. Unlike standard post-processing
methods, our mechanism is integrated into the training loop and it-
eratively refines predictions until the estimated error falls below a
learned threshold.

2. Related work
2.1. Age estimation

Traditional age estimation methods usually rely on hand-designed
feature extraction and machine learning algorithms, which are limited
by feature selection and age estimation performance (Cao et al., 2012),
(Yin et al., 2023a), (Yin et al., 2022). With the popularity of the Inter-
net and social media (e.g., meta, twitter, and Youtube, etc.), large-scale
face image datasets have also been widely grown. The rapid growth
of data sets provides rich training data for deep learning (DL), making
DL’s learning capabilities more powerful. Age estimation has potential
applications in social media analysis, ad targeting, security monitoring,
medical image analysis, etc. For example, in security and legal appli-
cations, image age estimation can assist police in identifying possible
underage criminal suspects.

Existing age estimation algorithms are mainly divided into two cat-
egories, i.e., age estimation algorithms based on machine learning and
algorithms based on deep learning. Machine learning-based age esti-
mation algorithms mainly rely on hand-designed rules to extract age-
related features of images. Age estimation algorithms based on deep
learning mainly use some deep learning models (e.g., CNN, Transformer,
and GCN, etc) with powerful adaptive learning capabilities and massive
data sets to estimate age in an end-to-end manner.

Machine learning methods: In the age estimation algorithms based
on traditional machine learning algorithms, Shin et al. (2022) proposed
an ordinal regression algorithm (MWR) based on moving window re-
gression, which first ranks the input and reference labels and designs
global and local regressors to achieve prediction of global ranking and
local ranking. MWR achieves fine-grained age estimation by continu-
ously iteratively optimizing the ranking order. However, the computa-
tional complexity of MWR is relatively high. Cao et al. (2020) proposed
a consistent ranking logic algorithm to solve the inconsistency problem
of multiple binary ordinal regression algorithms. CORAL ensures rank-
ing consistency by introducing confidence scores. Cao et al. (2012) pro-
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posed the Ranking SVM algorithm to achieve age estimation of images.
This algorithm estimates age by first grouping ages and then sorting
ages. RSVM can reduce the hypothesis space of model learning. Zhang
et al. (2017) achieved age estimation by learning the probability dis-
tribution of label information. This algorithm achieves age prediction
by calculating the posterior probability of the image. There are some
other typical traditional machine learning algorithms (Li et al., 2019),
(Shen et al., 2018).

Deep learning methods: In the age estimation algorithms based on
deep learning algorithms, CNN (Levi & Hassner, 2015), attention net-
work (Wang et al., 2022), and hybrid neural network systems (Xie et al.,
2015) are currently common age estimation algorithms. For example,
Levi and Hassner (2015) proposed an age estimation algorithm based
on deep CNN to solve the problem of insufficient performance of tradi-
tional machine learning algorithms. DeepCNN can achieve better pre-
diction results even on a small amount of data sets. Duan et al. (2017)
proposed the CNN2ELM algorithm to combine the advantages of CNN
and regression algorithms. CNN2ELM constructed three feature extrac-
tion networks of age, gender, and race, and used a fusion mechanism
to fuse the complementary information of the three networks, and used
ELM for regression prediction of age. Wang et al. (2022) proposed the
Attention-based Dynamic Patch Fusion algorithm to solve the problem
that CNN cannot extract the most beneficial semantic information in the
image for the age estimation task. ADPF introduces attention network
and fusion network to dynamically extract image patches with rich se-
mantic features and adaptively fuse the extracted feature information.
Zhang et al. (2019) proposed a fine-grained attention LSTM algorithm to
solve the problem that existing methods only focus on the global infor-
mation of the image and ignore the fine-grained features of the image.
This method first uses the residual network to extract the global infor-
mation of the image, and then uses the attention LSTM to capture the
sensitive area information of the image to obtain local important se-
mantic features in the image. Xie et al. (2015) integrated CNN’s feature
extraction capabilities, domain generalization capabilities, and local in-
formation discrimination capabilities based on dictionary algorithms.
This method first uses a pre-trained CNN to extract the feature repre-
sentation of the image, and then builds a dictionary representation to
extract the local feature information and Fisher vector representation of
the image.

2.2. Contrastive image-language pre-training

The recent success of contrastive vision-language pre-training (e.g.,
CLIP (Lee et al., 2022)) has paved the way for a new generation of mod-
els that learn joint image-text representations by aligning large-scale
image-text pairs. These models have achieved remarkable performance
on downstream tasks such as zero-shot classification, image retrieval,
and captioning. Building on CLIP, many extensions have been proposed
to enhance its adaptability. CoOp (Zhou et al., 2022b) and CoCoOp
(Zhou et al., 2022a) use learnable and conditional prompts to fine-tune
CLIP on new categories with limited supervision. DenseCLIP (Rao et al.,
2022) improves regional alignment by integrating patch-wise visual fea-
tures. Flamingo (Alayrac et al., 2022) combines frozen visual backbones
with pretrained LLMs to support multimodal reasoning. Beyond CLIP-
style models, BLIP (Li et al., 2022) and BLIP-2 (Li et al., 2023) introduce
bootstrapped training pipelines that unify image-text understanding and
generation, achieving strong performance in both captioning and VQA
tasks. Similarly, MiniGPT-4 (Zhu et al., 2024), LLaVA (Liu et al., 2023),
and mPLUG-OwI (Ye et al., 2023) bridge vision encoders with large lan-
guage models for instruction-following and multimodal dialogue. How-
ever, these models primarily focus on open-ended generation, not con-
tinuous regression, and they typically require large-scale GPU resources
for training and inference. On the other hand, SigLIP (Zhai et al., 2023)
introduces a sigmoid-based contrastive loss to replace softmax, enabling
more stable multi-label training. GRILL (Jin et al., 2023) focuses on
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perform error optimization on the predicted age.

region-phrase alignment, improving grounding accuracy in fine-grained
image-language matching.

Despite these advancements, most existing vision-language meth-
ods lack components for regression refinement, feedback correction, or
frequency-based context modeling. In contrast, our proposed method in-
troduces a lightweight Fourier-enhanced Transformer (FourierFormer),
a vision-guided prompt module, and a two-stage error feedback
mechanism-making it the first to bring frequency-domain priors and
end-to-end correction into multimodal age estimation.

2.3. Frequency-domain representation and fourier transformers

Recent advances in vision models have increasingly explored
frequency-domain representations to enhance global context modeling
and structural sensitivity, especially for high-resolution or multi-channel
imagery. Compared to conventional spatial-domain convolutions or at-
tention mechanisms, Fourier transforms enable compact and efficient
global operations by projecting inputs into the frequency spectrum,
where both spatial structure and semantic patterns can be more eas-
ily disentangled. For example, the Frequency-assisted Mamba network
(Xiao et al., 2024a) applies Fourier encoding to enhance Mamba’s tem-
poral aggregation capability in remote sensing image super-resolution,
revealing the potential of frequency priors for improving detail preser-
vation. In hyperspectral video understanding, ProFiT (Chen et al.,
2025a) leverages prompt-guided frequency-aware filtering to enhance
template-matching through global signal manipulation. Similarly, SST-
track and Spectral-Spatial Fusion with Memory Enhancement (Chen
et al., 2025b) propose spatiotemporal fusion pipelines in the frequency
domain to improve tracking robustness in dynamic hyperspectral se-
quences. These works demonstrate that Fourier-domain modeling is
increasingly effective for domains requiring high-dimensional, multi-
modal, or globally-aware representations. However, most of these mod-
els are not designed for image-language fusion or continuous regression
tasks, and often rely on fixed or non-learnable transforms. In contrast,
our proposed FourierFormer module adopts a learnable frequency mod-
eling design, introducing both spatial-frequency interaction and channel
evolution, combined with residual pathways and contrastive supervision
for semantic alignment. This makes it particularly suitable for multi-
modal alignment tasks such as age estimation, where preserving both
visual granularity and global semantic alignment is crucial.

3. Methodology
3.1. The design of the CILF-CIAE structure

The CILF-CIAE architecture proposed in this paper is shown in Fig. 3,
which contains age prediction stages and age error optimization. Specif-
ically, we first use age estimation models based CLIP with a Fourier prior
module to predict the age of images. To further narrow the semantic
gap between image and text features, we utilize an efficient contrastive
multimodal learning module that supervises the multimodal fusion pro-
cess of FourierFormer through contrastive loss for image-text match-
ing, thereby improving the interaction effect between different modal-
ities. Furthermore, if the predicted and actual values exceed a given
threshold, the optimization branch is activated. The age errors are then
used in the training of an ensemble error correction model to update the
predicted age x*. This training process continues until e(x*) < e termi-
nates. The details of the CILF-CIAE architecture proposed in this paper
will be described.

3.1.1. Language-guided visual age prediction

As shown in Fig. 3, we briefly introduce the CLIP-based visual lan-
guage pre-training model for age estimation. CLIP consists of an image
encoder and a text encoder (Zhang et al., 2022b). Image encoders aim
to extract the underlying features of an image and map them into a
low-dimensional embedding space. The architecture of image encoders
usually uses ViT (Han et al., 2022) with superior performance. The text
encoder often use Transformers (Khan et al., 2022) to generate text rep-
resentations with rich semantic information. Given a text prompt, such
as “A photo of a 12 year old person," the text encoder first converts
each character into a lowercase byte-pair encoded representation, which
uniquely identifies each character. The beginning and end of each text
sequence are marked by [SOS] and [EOS]. Afterwards, the text repre-
sentation is mapped into a 512-dimensional feature space, and then text
Transformer is used for sequence modeling. Then, given an image fea-
ture obtained by the image encoder, the cosine similarity function is
used to calculate the similarity between the image and the text prompt.
The similarity formula is defined as follows:
= exp(sim(T;, I;)/7) o

Zf{:l exp(sim(T}, I;)/7)

where S is the similarity matrix, T; is the feature vector of the ith text
sequence obtained by the text encoder, I; is the feature vector of the ith
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image obtained by the image encoder, N represents the total number
of training samples, sim(-) represents cosine similarity, and = represents
temperature attenuation coefficient.

To further narrow the semantic gap between image and text features,
we design an efficient contrastive multimodal learning module to su-
pervise the fusion process of FourierFormer. Specifically, we introduce
an image-text contrastive loss, denoted as L ex.image> Which encourages
matched image-text pairs to be close in the embedding space and non-
matching pairs to be distant. Formally, let 7; and I; represent the ith
text and image embeddings respectively, both normalized and extracted
by the CLIP encoders. We define the cosine similarity between them as
sim(T;, I;), and use a temperature parameter 7 to control sharpness. The
1088 L ext.image 1S composed of two symmetric components: (1) image-to-
text matching and (2) text-to-image matching. The final contrastive loss
is computed as:

=z

1 exp(sim(T}, I,)/7)
— ) log ~
N & Z/:I exp(sim(T;, I;)/7)

N N
| exp(S(T;, 1,)/7)
+ — log
N(N - 1) ; ,; SN exp(S(T;, I)/7)

['text-image =

(2)

where N is the number of the training samples.

3.1.2. Context-aware prompting

Previous work has demonstrated that feature alignment of visual and
language modalities can significantly improve the performance of CLIP
models on downstream tasks (Zhang et al., 2022a), (Zhou et al., 2022a).
Therefore, we consider whether we can design a customized context-
aware prompting method to improve text features.

Vision-to-language prompting. The textual features that fuse vi-
sual global context information can make age estimation predictions
more accurate. For example, “a photo of a 68-year-old man with gray
hair" is a more accurate prediction than “a photo of a 68-year-old man."
Therefore, we design a customized Fourier prior module to utilize visual
global context information to improve text features in fine granularity.
Specifically, we use the FourierFormer decoder to realize image spatial
information interaction and channel evolution, and model the interac-
tion between vision and language.

3.1.3. Fourier prior embedded block

In contrast to traditional self-attention mechanisms used in Trans-
former architectures, which enable powerful global feature interaction
but incur quadratic computational complexity with respect to the input
sequence length, we adopt a more efficient frequency-domain model-
ing approach using the discrete Fourier transform (DFT) (Zhou et al.,
2023). Self-attention computes pairwise similarity between all token
pairs, which becomes computationally intensive for high-resolution vi-
sual inputs. By transforming image features into the frequency domain,
the Fourier transform provides a global receptive field with significantly
lower complexity, typically linear or log-linear, depending on imple-
mentation. This property allows the model to retain essential structural
and spatial information while being more scalable. In multimodal set-
tings, such as age estimation from image-text pairs, this efficiency is
particularly beneficial for fusing visual and linguistic semantics with-
out incurring the memory overhead of attention-based fusion. In our
work, we apply the Fourier transform not directly to raw images but
to the intermediate visual feature maps extracted by the image encoder
(e.g., CLIP). This enables the model to capture global spatial patterns
within high-level semantic features in a computationally efficient way.
Formally, let X € R¥*XWXC denote the input feature map produced by
the image encoder, where H and W are spatial dimensions and C is the
number of channels. The Fourier transform is applied channel-wise to
convert each 2D feature map into the frequency domain. The resulting
complex-valued representation is denoted by 7(X). The transformation
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Fig. 4. The overall framework of the proposed FourierFormer. FourierFormer
includes a spatial interaction module, a channel evolution module, a discrete
Fourier transform (DFT) and an inverse discrete Fourier (IDFT) module, which
can effectively extract information from the global context of an image.

for a single channel is defined as:
| H-1W-1 W
FOW,0) = ——— Y 3 x(h,w)e > ww? 3
\/I—W h=0 w=0
where u and v represent the horizontal and vertical coordinates of the
Fourier domain. The phase component P(x)(u, v) and the amplitude com-
ponent A(x)(u, v) are obtained as follows:

A, ) = VR2(x)(u, 1)) + T(x)(u, 1)),

I(x)(u,v)) ]

4
R(x)(u,v)) @

P(x)(u,v)) = arctan [

where I(x)(u,v) and R(x)(u,v) represent imaginary numbers and real
numbers, respectively. These components are further processed through
spatial interaction and channel evolution modules inside the Fourier-
Former block to enhance cross-channel contextual modeling.

Structure Flow. The main goal of designing the Fourier prior mod-
ule in this paper is to achieve an effective and efficient global con-
text image information modeling paradigm and improve the represen-
tation ability of text features, as shown in Fig. 4. For a given image
x € REXWXCiy ' we first use a text encoder based CLIP to extract the shal-
low features of the image X, € R®>WXC_ Shallow features are encoded
by using N stacked image encoders. The Fuoriformer module designed
in this paper consists of a stack of spatial interaction module, channel
evolution module, residual and layer normalization module and Fourier
prior module. Similarly, for the image decoder, we use a stack of the
proposed core modules for image feature decoding.

As shown in Fig. 5, the core module of FourierFormer consists of
two parts: spatial interaction and channel evolution, which are imple-
mented by depth convolution and 1 x 1 convolution with DFT and IDFT
respectively.

Fourier Spatial Interaction. Fourier spatial interaction first takes
the image feature maps obtained by the image encoder as the input
of FourierFormer, and then applies DFT to convert them into a spatial
feature representation. Assuming that the features are expressed as X €
RHXWXC “the corresponding DFT formula is defined as:

(©) x(©) _ (c)
X, XE = F(X©) (5)

where ¢ =1,..,C, X; and X represent the real and imaginary parts
in the Fourier space. We then perform Fourier spatial interaction to fil-
ter and compress the frequency domain signal of the image through a
deep-wise convolution (DWconv) operation with LeakyReLU activation
function. The spatial interaction process of images can be defined as:

s = LeakyReLU(DWconv(b)(X(Ib)))
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Fig. 5. Details of the Fourier Prior Embedding module (FPE). FPE follows the global context information modeling idea of spatial interaction and channel evolution.
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Fig. 6. The flowchart of the correcting inverse age estimation. Existing age estimation models give a first age estimate, which is assessed by evaluations E . If failed,
the optimization branch will be activated. The age estimation error estimated by the ensemble error model is used for training to update the predicted age x*. The

process terminates until e(x*) < e.

5(72’) = LeakyRelLU (DWCOV!U“”(X;?)) (©)

Then we apply inverse DFT to the learned S; and S; with low-

frequency signals to transform them back into the spatial domain. The
formula for S; and Sy to achieve time-frequency conversion is defined
as follows:
Xg =771, s) @
The spectral convolution theorem in Fourier theory states that the con-
volution operation of signals in the frequency domain is equivalent to
their product operation in the time domain, which reveals the overall
frequency composition. The spectral convolution theorem provides an
efficient way to process signals in the frequency domain because convo-
lution operations in the frequency domain are generally easier to pro-
cess than multiplication operations in the time domain. Therefore, we
concatenate the X'S’ obtained by Fourier transform and normalize it to
obtain the output Sy of the Fourier spatial interaction.

Fourier Channel Evolution. Fourier channel evolution performs
channel-by-channel evolution by applying a 1 x 1 convolution operator
to decompose the output Sy of the Fourier space interaction into real
and imaginary parts C; and Cy. The Fourier channel evolution formula
can be defined as:

CX; = LeakyReLU (conv(cat[C}, ..., C5]))
CXy, = LeakyReLU (conv(cat[CL,, ..., C5 1)) (8)

where cat(-) is the concatenation operation. Then we perform IDFT to
convert CXy and CX; to time domain space as follows:

cs=rFexP. cxP) ©)

3.1.4. Two-stage error selection

To enhance prediction reliability, we design a two-stage error cor-
rection mechanism that refines the age estimation results based on the
magnitude and nature of prediction errors. In the first stage, we compute

the explicit error, which is the directly observable difference between
the initial age prediction and the ground-truth age label. If this error
exceeds a threshold ¢, adaptively set based on the validation set MAE,
we consider the prediction unreliable and activate the second-stage cor-
rection process. This threshold-based decision acts as a lightweight fil-
ter to determine whether further refinement is necessary. In the sec-
ond stage, we introduce an ensemble error correction module that esti-
mates the implicit error-that is, the model’s internal estimate of resid-
ual error without reference to ground truth. This module operates on
the fused multimodal features produced by the FourierFormer encoder
and consists of an ensemble of five lightweight regressors. Each regres-
sor is implemented as a two-layer MLP with independent parameters
but identical architecture, encouraging diversity in correction strategies
while maintaining computational efficiency. To integrate the ensemble
outputs, we adopt a learnable voting mechanism. Each regressor con-
tributes to the final correction through a weight that is learned during
training. These weights are normalized to ensure stability and allow the
model to automatically prioritize more reliable regressors. The refined
age prediction is then obtained by applying the aggregated correction
to the original prediction. The entire correction process is fully differ-
entiable and end-to-end trainable. It operates during both training and
inference, requiring no additional post-processing. This unified design
ensures that the model not only predicts age but also self-corrects when
confidence is low, improving robustness in the presence of noise or out-
of-distribution samples.

As shown in Fig. 6, we first use a CLIP-based learning model to pre-
dict age. If the error exceeds the threshold, an optimization branch is
used to optimize the error and give a predicted age with high confidence.

For a given observation y, we use multiple models and metrics to
evaluate the predicted age, resulting in an h-dimensional error vectors,
expressed as:

ex,y) = [E|(%,¥), (%), ..., E;(x,y)| (10)
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where E;(,) represents the error estimate calculated by the ith model, x
is the input image.

Each associated age estimate obtained from an observation y follows
the i.i.d. criterion, so y is treated as a constant. Therefore, we can sim-
plify Eq. (10) and obtain optimal model parameters by minimizing the
error e(x):

h
min e(x) = Z:‘ w; E;(x) 1D
where w; is determined using a voting mechanism, which is learnable.

Leveraging ensemble learning (Kang et al., 2023) enables a more ro-
bust representation of the hypothesis space, we integrate multiple neural
networks to estimate implicit errors. Each neural network uses a map-
ping function ¢(x, w), RP x RM — R* for error. We train L regressors
with the same network architecture and use a voting algorithm to ob-
tain the final prediction. Therefore, for a given input state x, the implicit
error & is estimated by the ensemble network as follows:

e(x.wl,) =

¢(x, wl-) (12)

L
=1

1
L3
where w; is the learnable network parameters.
According to Eq. (12), we can obtain the cumulative age estimation
error as follows:
k

L
é(x’{wi}[Ll)=Zw,<%;¢j()<,wi)> 13)

j=1 i=
J/

approximated implicit error

+ 2 w; E;(x) (14)

|

true explicit error

We divide the error of Eq. (14) into two parts, one is the estimated
implicit error, and the other is the true explicit error. The estimated
implicit error is obtained by learning the feature representation of the
image encoder by the ensemble regressor we built, and the real explicit
error is obtained by the age estimation model based on CLIP we built.
At the same time, we optimize the network parameters of the ensemble
regressor by minimizing the distance between the estimated implicit
error and the true explicit error. The optimization goal is defined as
follows:

min Exepop [dist(d(x. W), €;.4)] (15)

where dist (¢ (x,w;),e;.;) = ||¢(x,w,-),e1:k||§

To achieve controllable generation of predicted states, we use the
feature representation decoded by the image encoder as the input of the
ensemble regressor to learn and sample candidate predicted ages. There-
fore, the update target of network parameters is defined as follows:

L
6" = arg min E, [é((z, 0), {wg"”}i:l)] (16)

where z is the latent vectors. Finally, among the candidate age estima-
tion states generated by the ensemble regressor with the trained network
parameters ', we select the final prediction result as follows:

L
X;_’[)zarg min )é(x,{wl(_t—l)} > an

x~p(x|0(” i=1

The age estimation error is calculated via Eq. (10). If the calculated error
is less than the feasibility threshold, i.e. &(7) < ¢, the selected age estima-
tion state is considered acceptable and the predicted value is returned.
Otherwise, the error is used to optimize the ensemble regressor model
in the next iteration of parameter updates. The implementation details
of our proposed end-to-end age estimation error feedback mechanism
are shown in Algorithm 1.
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Algorithm 1 End-to-end reversible error feedback mechanism for age
estimation..

Require: CLIP-driven fusion model M, ensemble regressors {¢; },f;l , fea-
sibility threshold ¢ > 0, validation MAE eé,,;, maximum iterations 7},,,
input image-text pair (/,T)

Ensure: Final age prediction j* with [§* — veel <e

: Initialize iteration ¢ < 0, ensemble size h = 5

: Predict initial age 5© = M(I,T)

Af 9O -yl <€ =1, then
return j* = O

end if

: whiler < T, do

te—t+1

Compute implicit error: é® = % IR Sl G

Update prediction: @ = $(—1 — ¢®

Recompute age: 3 = M(I,T)

Update model and regressors M, {¢,} by joint backpropagation
if |50 — Vgl < € then
return j* = ®

14: end if
15: end while
16: return j* = j©

> No correction needed

—-
H O W N TR WN

_

> Return last iteration output

3.2. Model training

Mean Absolute Error (MAE) is a commonly used performance evalu-
ation metric in regression problems, which measures the mean absolute
difference between model predictions and actual observations. The Loss
is defined as follows:

LK) = |y* - 5" 1s)

where 0 is the parameter of network learning, and k represents the kth
training sample.
The optimization goals of the model are as follows:

N
: k
min z L) 19
k=1
Where N represents the total number of samples.
4. Experiments
4.1. Benchmark dataset used

In this paper, we use six benchmark datasets, MORPH-II', FG-Net?
CACD?®, Adience?, FACES®, and SC-FACE®, to conduct our age estima-
tion experiments and verify the effectiveness of our CILF-CIAE method.

MORPH-II. The MORPH-II dataset is widely used in facial image
research (e.g., age estimation and facial recognition). The MORPH-II
dataset contains 55,000 facial photos of 13,000 volunteers over a pe-
riod of time. The MORPH-II dataset covers facial images of volunteers
from different ethnicities, different genders, and different geographical
regions from 1 to 80 years old.

Existing methods employ three different experimental settings on the
MORPH-II dataset. The first setting (S1) selects 5492 white images from
the original dataset (80% images for training, 20% images for testing)
and performs 5-fold cross-validation to reduce cross-race effects (Rothe
et al., 2018), (Agustsson et al., 2017). The second setting (S2) randomly

1 http://www.faceaginggroup.com/morph/

2 http://yanweifu.github.io/FG_NET_data/FGNET.zip

3 http://besiriuschen.github.io/CARC/

4 http://www.openu.ac.il/home/hassner/Adience/data. HTML
5 http://faces.mpib-berlin.mpg.de

6 https://www.scface.org/
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splits all images into training/test sets (80/20%) and performs 5-fold
cross-validation (Gao et al., 2017). The third setting (S3) randomly se-
lects 21,000 images from MORPH and restricts the black-white race ratio
to 1:1 and the female to male ratio to 1:3 (Bao et al., 2023).

FGNET. The FGNET dataset is composed of facial photos provided by
volunteers from the age range of 0 to 69 years old. The FGNET dataset
contains facial images of volunteers from different genders, different
races, and different geographical areas. The FGNET dataset is mainly
used to evaluate and improve the performance of facial age estimation
algorithms.

CACD. CACD is also a dataset for facial age estimation, which mainly
contains publicly available facial images of famous celebrities from so-
cial media (e.g., movies, TV, music). The CACD dataset contains more
than 163,000 facial images of people from teenagers to older adults. The
CACD dataset includes images of celebrities from different countries and
different professions.

Adience. The Adience benchmark is an unconstrained dataset, i.e.,
there are no restrictions on gestures and photo poses. The face images
in the Adience dataset are captured by mobile phone devices. Because
these images are not subject to artificial data preprocessing and noisy
image filtering, they can greatly reflect real-world challenges. The Adi-
ence dataset consists of 19,487 images, in which the numbers of males
and females are 8192 and 11,295 respectively.

FACES. The FACES face image dataset is a dataset used in psychology
and neuroscience research, especially in studying age. This dataset was
created by Ebner et al. in 2010 to provide a high-quality, diverse set of
face images. The FACES dataset contains face photos of men and women
ranging in age from 20 to 80 years old. The images show different emo-
tional expressions such as happy, sad, angry and neutral expressions.

SC-FACE. SC-FACE (Surveillance Cameras Face Database) is a face
image data set specially used for facial recognition research, especially
facial recognition in surveillance environments. The dataset includes
hundreds of images of subjects with facial expressions under different
lighting conditions and backgrounds.

4.2. Evaluation metrics

1) Mean Absolute Error (MAE): The MAE value reflects the absolute
error between the true value of the sample and the predicted value of the
model. In age estimation, MAE is more suitable as a model evaluation
metric than MSE. The formula of MAE is defined as follows:

N
1 A
MAE = — ; 19, — ] (20)

where j represents the predicted value of the model, y; represents the
true value, and N represents the number of the samples.

2) Cumulative Score (CS): CS is used to measure the accuracy of
the model’s prediction error for face images not exceeding L years. The
formula for CS is defined as follows:

CS(L) = (ey<y /N) % 100% @1

where e,; represents the number of samples where the absolute error
¢ of the model does not exceed L.

4.3. Baseline models

PML (Deng et al., 2021): Deng et al. proposed a progressive margin
loss (PML) method to adaptively learn the distribution pattern of age
labels. The PML method fully considers the inter-class and intra-class
age distribution differences, and can effectively alleviate the long-tail
distribution problem of data.

Ranking-CNN (Chen et al., 2017): Chen et al. designed a novel
Ranking-CNN architecture for age estimation. Ranking-CNN uses CNN to
rank age labels and then perform high-level feature extraction. Ranking-
CNN theoretically proves that the error comes from the maximum error
in the ranked labels.
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DLDL (Gao et al., 2017): The deep label distribution learning (DLDL)
method proposed by Gao et al. can adaptively learn the characteristics
of label ambiguity. DLDL discretizes the age labels and uses CNN to
minimize the KL divergence between the predicted distribution and the
true distribution to optimize the model parameters.

CSOHR (Chang & Chen, 2015): Chang et al. proposed a method com-
bining hyperplane ranking algorithm and cost-sensitive loss for age es-
timation. CHOSR performs feature extraction on images with relative
order information and introduces cost-sensitive losses to improve pre-
diction accuracy.

DEX (Rothe et al., 2018): The DEX proposed by Rothe et al. uses the
VGG-16 architecture pre-trained on ImageNet for age estimation. DEX
uses a deep CNN to align faces and age expectations to optimize model
parameters.

CNN + ELM (Duan et al., 2017): Duan et al. proposed a CNN and ex-
treme learning machine (ELM) algorithm CNN2ELM for age estimation.
CNN2ELM built three CNN networks to extract features and perform in-
formation fusion for Age, Gender and Race respectively, and then used
ELM for the final age regression prediction.

DRF (Shen et al., 2019): Shen et al. designed deep regression for-
est (DRF) for age estimation, which is continuously differentiable. DRF
adaptively learns non-uniform age distribution data through the joint
learning method of CNNC’s random forest.

VDAL (Liu et al., 2020): Liu et al. proposed a similarity-aware deep
adversarial learning (SADAL) method for age estimation. SADAL en-
hances the model’s ability to learn facial age features through adver-
sarial learning of positive and negative samples. In addition, SADAL
designed a similarity-aware function to measure the distance between
positive and negative samples to guide the optimization direction of the
model.

DHR (Tan et al.,, 2019): Tan et al. proposed a deep hybrid align-
ment architecture for age estimation, which captures image age fea-
tures with complementary semantic information through joint learn-
ing of global and local branches. Furthermore, in each branch net-
work, a fusion mechanism is used to explore the correlation between
sub-networks.

DCT (Bao et al., 2022): Bao et al. designed a divergence-driven con-
sistency training mechanism to improve the quasi-efficiency of age es-
timation. DCT introduces an efficient sample selection strategy to se-
lect valid samples from unlabeled samples. Furthermore, DCT also in-
troduces an identity consistency criterion to optimize the dependence
between image features and age.

L2RCLIP (Wang et al., 2023): Wang et al. combined the learning-
to-rank idea with the large-scale visual-language model CLIP, which is
specifically designed for age estimation.

4.4. Implementation details

In all experiments, we use a unified training configuration to en-
sure the fairness of the comparison results and the reproducibility of
the experiments. Specifically, we use the AdamW optimizer with weight
decay set to 0.00005, the initial learning rate is set to le-4, and the
cosine learning rate decay strategy is used for dynamic adjustment.
The batch size used for each training is 128, the maximum number
of iterations is 100, and the training is stopped early when the val-
idation set MAE has not improved for 10 consecutive rounds. In or-
der to improve the consistency of multimodal representation, we uni-
formly project image and text features into a 512-dimensional shared
embedding space. In terms of parameter settings related to the error
feedback module, we fix the number of integrated regressors to h=5 to
strike a balance between model performance and computational cost,
and set the threshold e for triggering the error optimization branch to
1.2 times the baseline model validation set MAE based on the prior val-
idation set results. For example, on the MORPH-II dataset, if the base-
line MAE is 2.0, ¢ is set to 2.4. All experiments were performed on
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Fig. 7. We tested the performance of our proposed method CILF-CIAE and some comparative methods on two evaluation metrics (i.e., MAE and CS) on six data sets

and obtained corresponding experimental results.

Table 1

We tested the performance of our proposed method CILF-CIAE and some latest state-of-the-art (SOTA) age estimation methods.
We use six datasets to compare experimental results, and the MAE value is chosen as our evaluation metric.

Methods MORPH-S1 MORPH-S2 MORPH-S3 FGNET CACD Adience FACES SC-FACES
LRA-GNN (Zhang et al., 2025) 2.02 2.21 2.07 2.14 4.08 0.77 3.36 3.01
MCGRL (Shou et al., 2025) 1.89 1.77 1.94 2.10 4.03 0.62 3.03 2.86
CILF-CIAE (Ours) 1.74 1.68 1.81 1.78 2.83 0.39 2.13 2.27

an A100 GPU with 80 GB of video memory, using PyTorch 1.8.1 and
CUDA 12.1.

5. Results and discussion

In this section, we discuss the experimental results of our method
CILF-CIAE and other comparative methods on six data sets.

5.1. Comparison with baseline methods

To verify the superior performance of our proposed method CILF-
CIAE, we conducted performance tests on six real data sets and com-
pared it with other comparison methods. The experimental results are
shown in Fig. 7. The method CILF-CIAE proposed in this paper has bet-
ter MAE values and CS values on six data sets than other comparative
methods. Specifically, the MAE values of CILF-CIAE under the three
data set evaluation criteria of MORPH-S1, MORPH-S2 and MORPH-S3
are 1.74, 1.68 and 1.81 respectively, and the CS are 95.1%, 95.7%
and 94.3% respectively. Other comparison algorithms are worse than
the CILF-CIAE algorithm in MAE value and CS value. Experimental re-
sults demonstrate that our method CILF-CIAE significantly outperforms
other baseline algorithms. Similarly, on other data sets, our method
CILF-CIAE method is also significantly better than other comparison al-
gorithms. Experimental results show the robustness of the CILF-CIAE
algorithm.

Overall, the feature learning ability of our method CILF-CIAE is
better than other comparison algorithms in any case. Specifically, the
performance improvement can be attributed to the high-quality text
and image alignment capabilities based on the CLIP large model. Im-
age representation based on language prompt guidance can greatly im-
prove the ability to represent image features. At the same time, we in-
troduce a context awareness module (i.e., FourierFormer) to react on
language prompts to improve the expression of text semantic infor-
mation. Unlike the traditional Vision Transformer architecture, Fouri-
erFormer models the global information of the image by introducing
Fourier transform operations to achieve spatial interaction and chan-

nel evolution of image features. In addition, we also introduce an er-
ror correction mechanism. When the age predicted by the CLIP-based
age estimation model differs greatly from the actual age, the model
will start the optimization branch to optimize the error until e(x) < e
is reached.

5.2. Extended comparison with recent SOTA methods

To further validate the superiority of our proposed CILF-CIAE frame-
work, we additionally compared our method against two recent state-
of-the-art approaches: LRA-GINN and MCGRL, both of which repre-
sent the latest advances in age estimation using graph neural net-
works and contrastive learning paradigms. As shown in Table 1, CILF-
CIAE consistently outperforms both baselines across all benchmark
datasets. Specifically, our method achieves the lowest MAE on MORPH-
S1, CACD, and SC-FACE, demonstrating superior robustness in both con-
trolled and in-the-wild scenarios. These results confirm that the Fourier-
enhanced multimodal fusion strategy and the proposed reversible er-
ror correction module significantly improve semantic alignment and re-
gression accuracy, even compared to graph-based or contrastive GNN
approaches.

5.3. Performance comparison with image-text methods

To further validate the effectiveness of our proposed method CILF-
CIAE, we conducted comparative experiments with several state-of-the-
art image-text models, including CLIP (Radford et al., 2021), CoOp
(Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), DenseCLIP (Rao
et al, 2022), Flamingo (Alayrac et al.,, 2022), and NumCLIP (Du
et al.,, 2024). As shown in Table 2, we evaluated all methods on
six benchmark datasets (MORPH-II S1, S2, S3, FGNET, CACD, Adi-
ence, FACES, and SC-FACES), using Mean Absolute Error (MAE) as
the evaluation metric. The results clearly demonstrate that CILF-CIAE
achieves the best performance across all datasets, significantly outper-
forming existing CLIP-based and prompt-tuning approaches. For exam-
ple, on the MORPH-S2 dataset, CILF-CIAE achieves an MAE of 1.68,
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Fig. 8. To explore the sensitivity of different models to parameters, we tested the impact of different feature embedding dimensions on CS on six data sets.
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Table 2

We tested the performance of our proposed method CILF-CIAE and some image-text methods. We use six datasets to compare
experimental results, and the MAE value is chosen as our evaluation metric.

Methods MORPH-S1 MORPH-S2 MORPH-S3 FGNET CACD  Adience FACES SC-FACES
CLIP (Radford et al., 2021) 2.83 2.67 2.90 2.82 3.55 0.74 3.48 3.52
CoOp (Zhou et al., 2022b) 2.74 2.52 2.85 2.77 3.43 0.63 3.25 3.43
CoCoOp (Zhou et al., 2022a) 2.65 2.41 2.73 2.72 3.35 0.56 3.14 3.36
DenseCLIP (Rao et al., 2022) 2.53 2.36 2.62 2.49 3.17 0.51 2.95 3.16
Flamingo (Alayrac et al., 2022) 2.45 2.40 2.59 2.44 3.05 0.55 2.84 3.03
NumCLIP (Du et al., 2024) 2.28 215 2.39 2.31 2.96 0.51 2.67 2.84
CILF-CIAE (Ours) 1.74 1.68 1.81 1.78 2.83 0.39 2.13 2.27

compared to 2.67 by CLIP and 2.41 by CoCoOp. On the challeng-
ing CACD and SC-FACES datasets, our method also achieves lead-

5.4. Effectiveness of low-dimensional representation

ing performance with MAEs of 2.83 and 2.27, respectively. These
improvements can be attributed to our proposed Fourier-enhanced
multimodal fusion module and reversible error feedback mechanism,
which enable more accurate semantic alignment and robust prediction
correction.

To explore the impact of the number of parameters of the model and
the latent feature representation of the image on the model performance,
we use different image feature dimensions (i.e., [512, 256, 128, 64, 32,
16]) to explore the effectiveness of low-dimensional representation. As
shown in Fig. 8, we tested the experimental effects of CILF-CIAE and
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Table 3
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We compare the proposed transformer module with other similar transformer modules. We use six datasets to compare experimental results, and

the MAE value is chosen as our evaluation metric.

Methods Params (M) MORPH-S1 MORPH-S2 MORPH-S3 FGNET CACD Adience FACES SC-FACES
Linformer (Choromanski et al., 2021) 127M 2.18 2.05 2.30 2.23 3.54 0.69 2.84 2.70
FNet (Lee-Thorp et al., 2022) 102M 2.09 2.01 2.13 2.06 3.27 0.59 2.66 2.62
FourierFormer (Ours) 108M 1.74 1.68 1.81 1.78 2.83 0.39 2.13 2.27

Table 4
We compare the total parameters of the proposed model with those of the base-
line models.

Methods PML CNN+ELM DEX DLDL DRF VDAL DCT L2RCLIP Proposed

Params (M) 21M 87M 138M 138M 138M 140M 145M 102M 108M

Table 5

We tested the training time (s) of our proposed method CILF-CIAE and
some other comparison methods. We use six datasets to compare experi-
mental results.

Methods MORPH FGNET CACD Adience FACES SC-FACES

PML 267 4 517 133 6 15

CNN +ELM 371 21 708 192 33 75

DEX 415 43 814 241 65 142

DLDL 434 57 871 278 74 193

DRF 423 53 858 254 68 180

VDAL 460 72 894 305 82 212

DCT 473 78 899 327 87 231

L2RCLIP 312 16 639 164 29 41

CILF-CIAE (Ours) 284 14 561 149 23 33
Age 20 @ Age20
Age 24 @ Age24
Age 28 @ Age28
Age32 ® Age32
Age 36 ® Age36
Age 40 Age 40

(a) Train ’ (b) Test

Fig. 10. We visualize the learned features using t-SNE on the Morph II (S1)
training and test sets. We visualize the distribution of the six age categories in
the two-dimensional feature space.
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Fig. 11. An example of age estimation results of our CILF-CIAE on the MORPH-
II face dataset. The true labels are on the left and the estimated results are on
the right. Poor estimation results are shown as red numbers.

other comparative methods on 6 data sets in different dimensions. We
report the MAE values of the model. Specifically, the MAE value of CILF-
CIAE increases slightly as the feature embedding dimension decreases
on the six datasets, while the performance of other comparison methods
drops sharply. Experimental results demonstrate the robustness of our
method. The stable performance of CILF-CIAE may be attributed to the
fact that the estimation algorithm based on CLIP contains rich image

11

prior knowledge, which can improve the induction ability of the model.
In addition, the Transformer architecture designed based on the Fourier
change module to implement contextual prompts is a parameter-free
estimation function and is insensitive to parameter changes.

As shown in Fig. 9, we tested the experimental effects of CILF-CIAE
and other comparative methods on six data sets in different dimensions.
We report the CS values of the model. In tests on the MORPH-S1 and
MORPH-S2 data sets, the CS value of CILF-CIAE decreased slightly as
the image feature embedding dimension decreased. On other datasets,
the CS value decreases rapidly with the decrease of image feature em-
bedding dimension. However, the performance of CILF-CIAE is always
higher than other comparison algorithms. The superior performance
may be attributed to the optimization branch’s ability to ensure that
the prediction results are at a relatively high confidence level.

5.5. Comparison with transformer variants

To demonstrate the effectiveness of our proposed FourierFormer
architecture, we conducted a detailed comparison with two represen-
tative lightweight Transformer variants: Linformer and FNet, both of
which aim to reduce the complexity of self-attention while preserv-
ing performance. As shown in Table 3, FourierFormer achieves the
best overall MAE performance across all eight benchmark datasets, de-
spite having a similar parameter scale. Notably, FourierFormer out-
performs Linformer and FNet by significant margins, e.g., on MORPH-
S2, CACD, and Adience. This indicates that our Fourier-based fre-
quency modeling paradigm is more effective than attention projec-
tion (Linformer) or direct frequency replacement (FNet) in capturing
global semantic context and enhancing multimodal fusion. These re-
sults highlight that FourierFormer strikes a better balance between ef-
ficiency and representational capacity, validating its superiority as a
backbone for image-language fusion in regression-based tasks like age
estimation.

5.6. Model complexity and parameter comparison

To further demonstrate that the performance improvement of our
proposed method is not merely due to an increase in model size, we con-
duct a detailed comparison of the total number of trainable parameters
against several representative baseline methods. As shown in Table 4,
our CILF-CIAE model contains approximately 108M parameters, which
is significantly fewer than DCT (145M), VDAL (140M), and DEX/DLDL
(138M), and is also comparable to L2RCLIP (102M). Despite its rela-
tively compact architecture, our model achieves the best performance
across all datasets, indicating that the performance gain is primarily at-
tributable to architectural innovations rather than parameter scaling.
Unlike existing vision-language models that rely heavily on attention-
based fusion or deep multi-branch regression heads, our method inte-
grates frequency-domain modeling and multimodal semantic alignment
in a lightweight manner. The FourierFormer module enables global con-
text modeling with reduced complexity by replacing traditional self-
attention with discrete Fourier transforms and inverse transforms. The
multimodal fusion process is further enhanced by a contrastive learning
strategy that utilizes CLIP embeddings and vision-guided prompts, facil-
itating more accurate and compact feature representation. Additionally,
the reversible error feedback mechanism allows the model to iteratively
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Table 6
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We perform ablation experiments to explore the impact of the three modules of spatial interaction, channel evolution, and error correction on age
estimation performance respectively. We use six datasets to compare experimental results, and the MAE value is chosen as our evaluation metric.

Spatial interaction ~ Channel evolution  Error correction =~ MORPH-S1 MORPH-S2  MORPH-S3  FGNET CACD  Adience = FACES  SC-FACES
X X X 2.71 2.46 2.84 2.69 3.31 0.52 3.01 3.43
v X X 2.63 2.31 2.69 2.62 3.24 0.47 2.86 3.35
X 4 X 2.65 2.34 2.69 2.67 3.26 0.48 2.83 3.36
X X v 2.44 2.17 2.48 2.41 3.13 0.44 2.67 3.14
X 4 v 2.05 1.93 2.26 2.19 3.05 0.41 2.43 2.53
v X v 1.91 1.85 2.14 2.06 2.94 0.39 2.38 2.40
v v X 2.37 2.08 2.34 2.29 3.08 0.47 2.55 2.82
v v v 1.74 1.68 1.81 1.78 2.83 0.39 2.13 2.27
Table 7

Accuracy comparison of different methods on RAF-DB and AffectNet datasets.

Method RAF-DB AffectNet (7 cls) AffectNet (8 cls)
SCN (Wang et al., 2020a) 87.03 60.23 -
PSR (Vo et al., 2020) 88.98 63.77 60.68
LDL-ALSG (Chen et al., 2020) 85.53 59.35 -
RAN (Wang et al., 2020b) 86.90 - -
DACL (Farzaneh & Qi, 2021) 87.78 65.20 -
KTN (Li et al., 2021) 88.07 63.97 -
DMUE (She et al., 2021) 89.42 63.11 -
FDRL (Ruan et al., 2021) 89.47 - -
VTFF (Ma et al., 2021) 88.14 61.85 -
Face2Exp (Zeng et al., 2022) 88.54 64.23 -
EAC (Zhang et al., 2022c) 90.35 65.32 -
POSTER (Zheng et al., 2023) 92.05 67.31 63.34
POSTER+ + (Mao et al., 2025) 92.21 67.49 63.77
CILF-CIAE (Ours) 93.57 68.24 65.33

refine age predictions through a small ensemble of regressors without in-
troducing excessive computational overhead. These designs collectively
contribute to a more efficient model that balances accuracy and com-
plexity, making CILF-CIAE suitable for real-world deployment in age
estimation tasks.

5.7. Computational cost analysis

To further evaluate the efficiency of our proposed method CILF-
CIAE, we compared its training time with a series of baseline models
across six benchmark datasets, as shown in Table 5. Although CILF-
CIAE integrates a fixed CLIP encoder to enhance semantic alignment
and representation quality, which introduces additional pre-trained pa-
rameters, the CLIP encoder is frozen during training and does not incur
extra gradient computation. As a result, CILF-CIAE achieves a favorable
trade-off between computational efficiency and performance. In terms
of training time, CILF-CIAE outperforms all deep learning-based meth-
ods (e.g., DEX, DRF, DCT, VDAL) and is second only to PML, a shallow
model with fewer learnable parameters and a simpler structure. For in-
stance, on the MORPH and CACD datasets, CILF-CIAE achieves training
times of 284s and 561s, significantly faster than DCT (473s and 899s),
and competitive with L2RCLIP (312s and 639s). Despite the moderate
overhead introduced by the CLIP encoder, our method consistently
achieves the best results in terms of MAE and CS metrics across all
datasets, as previously demonstrated. This confirms that CILF-CIAE of-
fers a strong balance between training efficiency and predictive perfor-
mance, making it a practical and scalable solution for real-world age
estimation tasks.

5.8. Ablation study

As shown in Tables 6, we perform ablation experiments on all test
data respectively. We separately explored the effectiveness of the three
modules proposed in this paper, i.e., spatial interaction module, chan-
nel evolution module and error correction module. If none of the three
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modules proposed in this paper are used, it means that the CLIP model is
used directly to estimate the age of the image. The model has the worst
experimental results on the six data sets if any of the modules proposed
in this paper are not applied for age estimation. If one module is used
for age estimation, the age estimation effect with the error estimation
module is the best, the age estimation effect with the spatial interaction
module is second, and the age estimation effect with the channel evolu-
tion module is the worst. When using two modules, the age estimation
effect with the spatial interaction module and the error estimation mod-
ule is the best, and the age estimation effect with the spatial interaction
module and the channel evolution module is the worst. When three mod-
ules are used, the age estimation results are best in all cases. Ablation
experiments demonstrate the effectiveness of each module proposed in
this paper.

5.9. Qualitative results analysis

To more intuitively demonstrate the effectiveness of CILF-CIAE, we
conducted qualitative experiments on the Morph-II benchmark dataset.
As illustrated in Fig. 11, the predicted results and ground-truth age la-
bels are shown side-by-side. Overall, CILF-CIAE achieves highly accurate
predictions on the majority of test images, confirming its robustness in
modeling age-related facial features. However, we also observe a small
number of failure cases with noticeable prediction errors. Upon closer
inspection, these failure cases primarily fall into two categories: (1)
synthetic-looking or low-quality face images, where texture and wrin-
kle cues are overly smooth or missing; and (2) extreme head pose or
occlusion, where side profiles, tilted heads, or accessories (e.g., glasses
or hats) partially obscure key age-indicative regions. In such cases, the
multimodal alignment between text prompts and image features be-
comes less reliable, and the Fourier-based fusion is affected by the lack
of spatial regularity. These findings highlight potential directions for im-
provement, such as integrating pose normalization or uncertainty-aware
prediction modules.

We further visualize the distribution of features learned in the train-
ing and testing phases on the Morph-II (S1) dataset using t-SNE. As can
be seen from Fig. 10, the feature class boundaries learned in the training
and testing phases are relatively clear, and different age categories have
more compact feature distributions.

5.10. Generalization of CILF-CIAE to facial expression recognition tasks

To evaluate the generalization capability of the proposed CILF-CIAE
framework beyond age estimation, we further conducted experiments
on two widely-used facial expression recognition datasets: RAF-DB and
AffectNet. As shown in Table 7, CILF-CIAE achieved state-of-the-art
performance, with an accuracy of 93.57% on RAF-DB, 68.24% on Af-
fectNet (7-class), and 65.33% on AffectNet (8-class). These results con-
sistently outperform a wide range of representative baselines, includ-
ing PSR (88.98%), DACL (87.78%), DMUE (89.42%), and even recent
strong models such as POSTER + + (92.21%) and EAC (90.35%). No-
tably, our method achieved the best performance across all three bench-
marks, demonstrating superior feature modeling and semantic represen-
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tation capabilities. The performance advantage of CILF-CIAE in facial
expression recognition highlights its strong transferability and robust-
ness across tasks. The high accuracy stems from its CLIP-driven image-
language alignment mechanism, the lightweight and efficient Fourier-
Former architecture for frequency-domain feature fusion, and the end-
to-end reversible error correction module. These components enable
CILF-CIAE to capture rich multimodal representations and adapt effec-
tively to emotion classification, a task distinct from the original age re-
gression setting. These findings suggest that CILF-CIAE holds significant
potential for broader application in general-purpose visual understand-
ing tasks, especially in multimodal human-centric scenarios.

6. Bias analysis and demographic disparity evaluation

To investigate potential biases in our model, we conducted an ad-
ditional analysis on the MORPH-II dataset, which includes metadata
annotations for age group, gender, and ethnicity. We partitioned the
dataset into demographic subgroups and evaluated the Mean Absolute
Error (MAE) for each group. The results indicate that the model per-
forms well across most age segments, but we observe slightly higher
MAE in older age groups (above 60 years), likely due to reduced train-
ing samples and increased intra-group variance (e.g., facial aging varies
more in later life). In terms of gender, the average prediction error is
comparable between male and female subjects, with a marginal differ-
ence (e.g., MAE: 1.73 for males vs. 1.78 for females). Ethnicity-wise,
the model shows slightly higher errors for underrepresented groups,
such as Asian and Hispanic subjects, which may be attributed to im-
balanced training data distribution. These findings highlight the impor-
tance of dataset diversity and fairness-aware training strategies. Future
work will explore demographic rebalancing, group-specific calibration,
and adversarial debiasing techniques to further reduce disparities in age
estimation performance across sensitive attributes.

7. Conclusion and future work

The paper proposes a novel CLIP-driven Image-Language Fusion for
Correcting Inverse Age Estimation (CILF-CIAE) to perform age estima-
tion. Firstly, we use Image Encoder and Text Encoder in CLIP to ob-
tain corresponding feature representations and achieve age estimation.
Secondly, we introduce a Transformer architecture based on Fourier
transform to achieve spatial interaction and channel evolution of image
features. Specifically, we replace the attention module in Transformer
with Fourier transform and input image features into Fuorierformer to
achieve spatial interaction and channel evolution. Finally, we build an
error-correcting reversible age estimation module to ensure that the pre-
dicted age is within a high-confidence interval in an end-to-end learning
manner. The method CILF-CIAE proposed in this paper achieves optimal
age estimation on multiple age estimation datasets. In future research
work, we will consider investigating estimation across data sets, which
can improve the generalization ability of the model.
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