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A B S T R A C T

As an important development direction of natural language processing, emotion recognition in conversation
(ERC) remains a challenge in sentiment analysis. Given the large-scale dialogue datasets and their wide
application in the fields of recommendation systems and human–machine dialogue systems, researchers have
begun to pay more attention to the issue of ERC. In recent research, the task of ERC has been largely based
on the graph structure to model the speaker level. However, most existing studies simply splice multimodal
features, and the heterogeneity of multimodal features tends to be overlooked. Hence, this paper proposes
a multivariate messaging framework to embed heterogeneous information into multimodal relational graphs.
In the process of aggregating graph node information, we take into account the homogeneity of nodes and
assign different weights to different nodes so as to better aggregate semantic information. In order to improve
the robustness of the model, we utilize the mechanism of sharing weights among neighbors to reduce the
number of network parameters and improve the generalization ability of the model. In so doing, the node
information is aggregated through the constructed graph network, and the final semantic vector representation
is obtained. Experiments over two benchmark datasets for ERC show that our proposed model achieves
improved performance in accuracy and F1 value.
1. Introduction

Although significant advances have been made in deep learning
research, ERC, an important branch of natural language processing,
remains a challenging task. Over the past decades, social networking
sites such as Twitter, Meta, YouTube, and Reddit have revolutionized
the way people communicate and become large social conversation
datasets. This has drawn more and more researchers to focus on the
ERC and relevant studies. Taking Fig. 1 as an example, each speaker
in ERC contains three modal features: video, audio, and text. Our
task is to use these three modal information to accurately identify the
speaker’s emotions. ERC can help machines understand the emotional
changes of human beings in the process of communication and produce
corresponding empathetic responses. Therefore, ERC has been widely
used in spam blocking, health care, advertising, recommendation sys-
tems, opinion mining, human–machine dialogue systems, and other
fields. However, the ability on the part of the models to accurately
understand the emotions behind an expression and respond accordingly
remains a significant challenge in sentiment analysis. For example,

∗ Corresponding author.
E-mail addresses: mengtao@hnu.edu.cn (T. Meng), yuntaoshou@csuft.edu.cn (Y. Shou), aiwei@hnu.edu.cn (W. Ai), dujiayi@csuft.edu.cn (J. Du),

liuhy_csmu@163.com (H. Liu), lik@newpaltz.edu (K. Li).

there is heterogeneity between different modal features, i.e., significant
differences between different modal features. We must eliminate the
differences between modalities in multi-modal feature fusion to exploit
the complementary semantic information between modalities fully.

In a recent study of ERC tasks, Ghosal et al. [1] employed graph
convolutional networks (GCN) to examine self and inter-speaker de-
pendency. Taichi et al. [2] used the relation-aware graph attention
network (RGAT) to assign different weight vectors to different relation-
ship nodes. They also introduced relational position-encoding vectors
to provide contextual information about the graph structure. Zheng
et al. [3] simulated human interaction in a conversational context
through GGCN and introduced a multi-head attention mechanism to
calculate the weightings of the context vectors. Although the appli-
cation of graph neural networks (GNNs) can effectively model the
speaker-level context, the aforementioned methods ignore both the
heterogeneous network nodes in relation graphs and the differences
between different relations. However, eigenvectors between different
modalities are heterogeneous, and so are graph structures formed by
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Fig. 1. An example of conversational emotion recognition from the IEMOCAP dataset. Each sentence contains three modal information, i.e., text, video, and audio. The task of
multimodal emotion recognition is to use multimodal information to identify the speaker’s emotional state.
Fig. 2. Illustration of a multimodal heterogeneous graph. (a) Speaker type nodes (i.e., Person A, Person B, Person C). (b) Three different types of modal nodes (i.e., Video, Audio,
Text). (c) A multimodal heterogeneous graph network includes four types of nodes and three types of relations. (d) A description of the relational pattern of the heterogeneous
graph network.
eigenvectors of different modalities [4]. Heterogeneous graphs, which
are used to represent composite relationships between objects, contain
rich semantic information. As shown in Fig. 2(c), the heterogeneous
graph illustrates the relationship between different modes and nodes.
Specifically, in a specific dialogue, the speaker expresses his emotions
by sending various modal information, and there is a dialogue relation-
ship between the speaker and the modal information. In addition, other
speakers may read the dialogue information and have an important
impact on their own emotions. Therefore, other speakers may have
reading relationships with modality information. Finally, the speaker
may send information (such as video) with modal features such as text,
voice, and image to strengthen his emotional expression, and there is
a feature pair relationship between multi-modal information. It can be
seen that there is rich semantic information between different types
of nodes in the dialogue heterogeneous graph. Currently, increasing
research [5,6] evidence shows that considering heterogeneity not only
improves the ability to capture semantic information, but also improves
the accuracy of node representation. In view of this, this paper argues
that taking into account the heterogeneity between different modes
will enhance the model’s ability to understand the conversation from
different perspectives.

Heterogeneous graphs generally refer to graphs with different types
of nodes or nodes of the same type with different properties, which
have been widely used in a variety of natural language processing tasks.
For instance, Yao et al. [5] used graph convolutional neural networks
2

to aggregate information from different domains. Sheng et al. [6]
modeled the contextual and phrase-level semantic features of the dis-
course through heterogeneous GNNs. Nonetheless, utilizing heteroge-
neous GNNs to obtain rich contextual and semantic information and
how to further deal with heterogeneous information is still a relatively
new field of ERC. At the same time, existing GNNs tend to perform
better in shallower neural networks, and as networks become deeper,
there will be serious over-smoothing. Also, GNNs show some invalidity
when dealing with heterogeneous nodes.

For the task of ERC, as most current models in existing studies
do not take into account the heterogeneous characteristics of network
nodes, this paper designs a multivariate message transmission model
for the emotion recognition task, which comprehensively examines the
different types and relationships of network nodes. Our model assigns
a weight to cope with the effects of different relations. In addition,
this study also proposes an algorithmic mechanism of sharing weights
among neighbor nodes in order to reduce model complexity and make
the model more robust. Specifically, we first extract and encode sen-
tence words, speech signals, and image regions simultaneously [7].
Secondly, the obtained text, speech and image coding features are input
into Bi-LSTM to model the context history information, and then use the
dialogue, reading and feature pair relationships to construct a multi-
modal heterogeneous graph. In this way, the speaker relationship and
semantic information in the dialogue can be well preserved. Further-

more, we design a Multivariate Message Passing Graph Convolutional
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Network (MMPGCN) to better fuse the multivariate information be-
tween relations and capture the correlation between different relations.
In MMPGCN, we define the concept of network node homogeneity rate,
which is used to measure the degree of homogeneity of each node in
the network, so as to determine the feature difference between different
nodes. Given the large differences between the nodes [8], this study
measures the influence of each edge in the nodes of a graph based
on the homogeneity rate between different modalities, and then the
learnable weight is multiplied by the homogeneity rate as the final edge
weight. Finally, the semantic information obtained by the MMPGCN
model is passed through the fully connected layer and the activation
function to obtain the classification result of the emotional label.

The main contributions of our work are as follows:

1. This paper proposes a new algorithmic model, called MMPGCN,
which comprehensively analyzes the semantic information of the
dialogue context, the relationship between speaker levels, and
the heterogeneity between multimodal nodes. Furthermore, the
model can be used to detect emotions in multiple rounds of
conversations.

2. This study defines the concept of node homogeneity based on
the different relationships between nodes, which is used to
measure the degree of homogeneity of each node within a net-
work structure to determine the difference in features between
different nodes. Based on the concept of node homogeneity, the
weights of each node are dynamically determined. To improve
the generalization ability of the model, based on the idea of
neighbors sharing weights, a mechanism to reduce the number
of parameters in the network is proposed.

3. To the best of our knowledge, this is the first study to apply
multimodal heterogeneous information to ERC, which builds a
GNN to simulate the interaction between speakers based on the
heterogeneity of different nodes.

4. Experiments on two publicly available benchmark datasets show
that the model proposed in this study has improved accuracy in
recognizing multiple emotion labels.

The remainder of this paper is organized as follows: Section 2 sum-
arizes relevant studies on emotion recognition; Section 3 describes
RC in mathematical language and elucidates the processing of multi-
odal datasets; Section 4 details our proposed model framework while

he experimental datasets and environment are presented in Section 5;
ection 6 presents the experimental results and Section 7 concludes the
aper with suggestions for future research.

. Related work

.1. Emotion recognition in conversations

Emotion recognition has been a hot research topic in recent decades.
ecause of the proliferation of conversational data and the potential
pplication of ERC in many systems fields, ERC has begun to be widely
sed in the fields of cognitive science, social psychology, and natural
anguage processing. In the existing ERC-related research, there are
our main modeling methods, which are context-free, discourse context,
peaker, and speaker-differentiated modeling. We present the existing
esearch work as follows.

The context-free modeling method does not consider the context
elationship between dialogues, and only uses the current dialogue
nformation for emotion recognition. For instance, Kim et al. [9] used
NN to obtain vector representations of discursive texts to classify sen-
iment labels. This model, however, does not fully utilize the semantic
nformation of the conversational context.

The discourse context modeling method mainly improves the accu-
acy of emotion recognition by capturing the contextual relationship of
3

he dialogue. Poria et al. [10] used LSTM, and extracted the semantic
vector representation of the discourse context, which was further used
for sentiment classification. Huang et al. [11] implemented the HRLCE
framework, which consists of two parts: a sentence encoder and a con-
text encoder. The sentence encoder utilizes ELMo [12], GLOVE [13],
and Deepmoji [14] to obtain vector representations of sentences, and
LSTM to obtain semantic information of the discourse context. Satt
et al. [15] implemented the CNN-LSTM method and applied it to
the spectral domain, which obtained better performance. However, all
of these methods ignore the influence of the speaker and his own
dependencies on mood changes.

The speaker modeling method introduces the speaker relationship
on the basis of the discourse context to further improve the accuracy of
emotion recognition, which is currently the mainstream method. Haz-
arika et al. [16] proposed a CMN model in a speaker-based approach
to modeling. The model extracts the characteristics of each speaker’s
discourse context separately, obtains its vector representation, and then
introduces an attention mechanism to fuse the historical information
of the speaker with the current discourse, thereby simulating the in-
teraction between different speakers and the influence of the speaker’s
state on the current semantic information. The final output result is
used to classify the emotions. However, a CMN can only simulate the
interaction between two speakers. Based on CMN, Hazarika et al. [17]
implemented the ICON model, which model uses GRU to connect the
outputs of individual speakers in the CMN, and examines the inter-
action between semantic information of different speakers’ historical
discourses. ICON clarifies speaker-level modeling which does not use
a multimodal dataset though. Lin et al. [18] modeled the historical
discourse of both the current speaker and another interlocutor, as
well as the discourse information of the current speaker through the
IANN model. These three feature vectors were fused together with
an attention mechanism to output the sentiment categories. Ghosal
et al. [1] used the DialogueGCN to model the dependencies of the
speaker and himself, taking into account the positional relationship
between the target discourse and other discourses. However, due to the
limitations of GCN, the network cannot become too deep. Otherwise,
there will be over-smoothing. Zheng et al. [3] proposed DECN, a model
which simulates the interaction between speakers through GGCN and
corrects errors in emotion recognition strategies. Sheng et al. [6] pro-
posed SumAggGIN, a two-stage summarization and aggregation graph
reasoning network which models sentiment phrases related to the topic
and dependencies on adjacent discourses in a global-to-local manner.

Although considerable progress has been made in research on ERC
regarding multimodal features, existing models tend to establish an
algorithmic model based on the semantic information of the conver-
sational context and the dependency between the speaker level while
ignoring the heterogeneity of the network nodes. It should be noted
that the importance of different nodes shall vary.

Among the modeling approaches based on distinguishing between
speakers, Majumder et al. [19] constructed the DialogueRNN model,
which highlights the importance of knowing which speaker presents
what information. Thus, DialogueRNN uses three different GRU net-
works to model speaker information, semantic information of the con-
versational context, and emotional information. Party GRU is used
to know the speaker’s status during a conversation, Global GRU is
used to establish dependency between the speaker and his utterances,
and Emotion GRU is used to obtain the emotion tags. These three
types of information are ultimately combined to get better emotion
classification. However, DialogueRNN does not incorporate speaker
features into the model, which we believe is important for establishing
long-term dependencies on textual contexts.

2.2. Heterogeneous graph neural network

In the past few years, Graph Neural Networks (GNN) have achieved
impressive performance in various tasks due to their ability to con-

vert graph-structured data into low-dimensional vector representations.
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However, most graph data in the real world are heterogeneous, and
traditional GCN models cannot handle them well. In view of this,
some researchers began to pay attention to heterogeneous graphs. For
example, Wang et al. [20] proposed a Heterogeneous graph Attention
Network (HAN), which used a heterogeneous graph neural network
with a hierarchical attention mechanism that included node-level in-
formation and semantic-level information. Based on the meta-path,
the node-level attention mechanism was mainly used to learn the
degree of importance between the central node and its neighbor nodes.
The semantic-level attention mechanism was mainly used to learn the
degree of importance between different meta-paths. HAN thoroughly
considered the semantic information between nodes and meta-paths,
which achieved good performance on multiple heterogeneous graph
benchmark datasets. However, designing meta-paths for heterogeneous
graphs with different properties requires researchers to possess certain
domain knowledge. Zhang et al. [21] proposed Heterogeneous Graph
Neural Network (HetGNN), which first used a random walk strategy to
sample heterogeneous neighbor nodes with strong correlations between
attributes for the central node and each node type grouped. Second,
HetGNN performed an encoding operation on the feature vector of each
group’s heterogeneous attributes to obtain the embedded representa-
tion of each node. Then, HetGNN performed information aggregation
on the node embedding representations of different groups to obtain
node embedding representations with rich semantic information. Fi-
nally, the obtained node embedding representation was used to perform
the graph node classification task. HetGNN had achieved good results
on many graph data mining tasks. However, HetGNN assumed that
different types of node features were in the same representation space.
Fu et al. [22] proposed the Metapath Aggregated Graph Neural Net-
work (MAGNN), which consisted of three modules: 1. Obtaining the
embedded representation of nodes by transforming node attributes; 2.
Performing semantic information between nodes within the meta-path
polymerization. 3. Feature fusion of multiple meta-paths was performed
between meta-paths. MAGNN comprehensively considered node in-
formation aggregation within meta-paths and feature fusion between
meta-paths. On a large number of real heterogeneous graph bench-
mark datasets, MAGNN achieved more accurate classification results.
However, MAGNN only used the attention mechanism to perform a
weighted sum operation on different meta-paths, ignoring the dynamic
interaction process of information between different meta-paths.

To tackle such problems, this paper proposes a Multivariate Mes-
sage Passing Graph Convolutional Network Model (MMPGCN). Unlike
current approaches based on heterogeneous graph neural networks,
MMPGCN is not based on meta-paths to aggregate the semantic in-
formation of surrounding neighboring nodes but adaptively assigns a
propagation weight to each node by defining the concept of homo-
geneity rate to achieve the aggregation of semantic information of
surrounding neighboring nodes.

3. Preliminary

3.1. Problem definition

This paper focuses on the emotional changes between speakers in
multiple dialogues, and 𝑛 speakers participating in the dialogue are
expressed as 𝑝1, 𝑝2, . . . , 𝑝𝑛. 𝑈 represents a set of contextual utterances
spoken by 𝑛 speakers in a conversation, 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑚}, and 𝑚
represents the number of utterances. 𝐿 = {𝑙1, 𝑙2,… , 𝑙𝑚} is the set of
entiment labels for each utterance. The set 𝑈 can be represented as
1

⋃

𝑈2
⋃

...
⋃

𝑈𝑛, where 𝑈𝑗 represents the dialogue of speaker
𝑝𝑗 , 𝑗 ∈ {1, 2,… , 𝑛}. To clarify the relationship between speakers and
tterances, we define a set 𝑆 =

{

𝑠𝑝𝑖1 , 𝑠
𝑝𝑗
2 ,… , 𝑠𝑝𝑘𝑚 |𝑖, 𝑗, 𝑘 ∈ {1, 2,… , 𝑛}

}

and arrange the utterances in chronological order. Here, 𝑠𝑝𝑗𝑖 ∈ 𝑆 is the
th utterance spoken by speaker 𝑝𝑗 .

The purpose of our research is to infer the emotional state of the
𝑝𝑗
4

peakers. For an utterance 𝑠𝑡 at time instant 𝑡, 𝑡 ∈ {1, 2,… , 𝑚}, we need
Table 1
Suppose there are three speakers 𝑈𝑎, 𝑈𝑏, 𝑈𝑐 , when the dialogue context window size
𝐾 = 6, the speaker’s conversation as follows:
𝑈 𝑢𝑎1 , 𝑢

𝑏
2 , 𝑢

𝑎
3 , 𝑢

𝑐
4 , 𝑢

𝑏
5 , 𝑢

𝑐
6

𝑈𝑎, 𝑈𝑏, 𝑈𝑐 𝑢𝑎1 , 𝑢
𝑎
3 , 𝑢

𝑏
2 , 𝑢

𝑏
5 , 𝑢

𝑐
4 , 𝑢

𝑐
6

Test discourse 𝑢𝑏7
𝐻𝑎, 𝐻𝑏, 𝐻𝑐 𝑢𝑎1 , 𝑢

𝑎
3 , 𝑢

𝑏
2 , 𝑢

𝑏
5 , 𝑢

𝑐
4 , 𝑢

𝑐
6

to detect the emotion of speaker 𝑝𝑗 at instant 𝑡. Since the relationship
between context and speaker needs to be modeled based on historical
utterances, the historical utterance sets of speakers 𝑝1, 𝑝2,… , 𝑝𝑛 are rep-
resented by 𝐻1,𝐻2,… ,𝐻𝑛 respectively. To limit the number of context
and speaker relations, we employ a sliding window size for splitting
historical utterances. Assuming that the size of the sliding window is
𝐾, the historical utterance formula of speaker 𝑝𝑗 is as follows:

𝐻𝑗 =
{

𝑢𝑖 ∣ 𝑖 ∈ [𝑡 −𝐾, 𝑡 − 1], 𝑢𝑖 ∈ 𝑈𝑗 , ∣ 𝐻𝑗 ∣≤ 𝐾
}

(1)

Among them, 𝑈𝑗 represents the contextual utterance set of the
speaker 𝑝𝑗 . To construct reading relations between speakers, we con-
struct a fully connected graph over the utterances belonging to the
context window 𝐾. Then, we use GCN to aggregate the dialogue con-
text information between speakers to complete the speaker’s emotion
prediction. Table 1 shows that when the dialogue context window 𝐾
= 6, the historical dialogue context represents the multiple dialogue
relations.

3.2. Text feature extraction

For the utterance text, this paper preprocesses the data first, uses
the Tokenizer method to segment the utterance text, and generates
the mapping relationship between words and the utterance text. Then
input the divided words into the Roberta [7] pre-training model for
fine-tuning to obtain a 100-dimensional word embedding vector, then
the feature vector of the 𝑖th discourse text can be expressed as 𝑓 𝑡

𝑖 =
{

𝑤1, 𝑤2,… , 𝑤𝑘
|

|

|

𝑤𝑗 ∈ 𝑅𝑑𝑤
}

, where 𝑘 is the number of word segmenta-

tion, 𝑤𝑘 is the feature vector of the 𝑘th word segmentation, and 𝑑𝑤 is
the word embedding dimension, 𝑑𝑤 = 100. The word embedding vector
contains rich semantic information, eliminates the ambiguity of words,
and enables the model to approach more contextual information.

3.3. Audio feature extraction

The frequency and pitch in audio features can correctly reflect the
emotional state of the speaker at the moment. In existing research on
audio feature extraction, there are two mainstream research methods,
which are respectively based on time-domain signals and frequency-
domain signals [23]. Follow previous research work [1,24,25], the
paper utilizes OpenSMILE to extract audio feature. Specifically, we
input 16-bit PCM WAV format audio to IS13_ComParE1 extractor1

for feature extraction and obtain a 6373-dimensional semantic vector.
Since the feature dimension of the audio vector is too high, we also use
the L2-based feature selection method to select low-dimensional feature
vectors, and the audio feature in the 𝑖th utterance can be represented
by 𝑓 𝑎

𝑖 ∈ 𝑅𝑑𝑎 , where 𝑑𝑎 is the dimension of audio feature, and 𝑑𝑎 = 100.

3.4. Visual feature extraction

For the extraction of video features, since changes in facial expres-
sions can best reflect a speaker’s emotional state, this paper proposes
to use a 3-dimensional convolutional neural network (3D-CNN) [26]
to perform on the speaker’s facial features to enhance the model’s

1 http://audeering.com/technology/opensmile.

http://audeering.com/technology/opensmile
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Fig. 3. MMPCGN is composed of the discourse context, video and audio features, which forms a heterogeneous graph. The information of neighbor nodes is aggregated through
heterogeneous graph convolutional neural network to obtain rich semantic information.
ability to understand the emotions of the discourse. 3D-CNN is capable
of extracting deep features of the human face and capturing subtle
changes in facial expressions. The network consists of a convolutional
layer, a pooling layer, and a fully connected layer, which inputs the
video frame vectors into the network. After a series of convolution and
pooling operations, the network is nonlinearly transformed by the ReLU
function. Finally, the resulting feature vector passes through the fully
connected layer and obtains a low-dimensional vector, which is used
as a visual feature. Specifically, the visual feature vector in the 𝑖th
utterance is denoted by 𝑓 𝑣

𝑖 ∈ 𝑅𝑑𝑣 , where 𝑑𝑣 is the dimension of visual
feature, and 𝑑𝑣 = 512.

4. Methodology

As existing models overlook the heterogeneity of dialogue nodes in
graph networks, this paper proposes a multivariate messaging frame-
work to aggregate video features, audio features, and discourse fea-
tures. The framework consists of feature extraction, heterogeneous
graph construction, multi-message passing, and sentiment classifica-
tion. In feature extraction, the text, audio, and visual information in
each utterance are encoded into feature vectors with rich semantics
through the Roberta pre-training model, OpenSMILE model, and 3D-
CNN model, and then the text feature vectors are input to the Bi-LSTM
model to obtain rich contextual semantic information. In heterogeneous
graph construction, speaker, text, audio, and video features are used
as nodes in the graph network, and dialogue, reading, and feature-
pair relations are used as edges. All this helps construct a speaker-level
dependency. In multi-message passing, considering the heterogeneity
of given different nodes, this paper defines the isomorphism rate of
network nodes based on the heterogeneous graph, and dynamically
assigns weights to each edge of the graph node according to the iso-
morphism rate. To improve the generalization ability of the model, this
paper allows all neighbors to share weights and reduces the number of
network parameters, and thus aggregates node information and obtains
node representations with rich semantic features. Finally, the obtained
semantic information is entered into the classifier to process sentiment
classification with the maximum probability. The model framework is
shown in Fig. 3.

4.1. Sequential context information modeling

Since the utterance is actually a list of words arranged in a cer-
tain order sequence, its context and semantic information will be
transmitted in this order accordingly. Bi-LSTM is obtained by splicing
LSTMs in forward order and reversed order, which can better capture
bidirectional contextual semantic information. Therefore, in this paper,
we use Bi-LSTM to model the discourse context, input 𝑓 𝑡

𝑖 into the Bi-
LSTM neural network, and extract the contextual feature representation
𝑓𝑤 with rich semantic information.
5

𝑖

4.2. Speaker interaction modeling with multiple message passing

This study builds a multivariate message-passing framework to
handle the heterogeneity of nodes in graph networks. As shown in
Fig. 4, we have constructed two message aggregation methods: one
is to aggregate node information with a feature pair relationship, and
the other is to aggregate node information with dialogue and reading
relationships. The graph convolution operation through our designed
multivariate message aggregation mechanism can enhance the feature
representation ability of nodes. Furthermore, based on this frame-
work, the speaker-level context is modeled to simulate the interaction
between speakers, generating highly abstract features containing the
speaker-level semantic context.

A graph 𝐺 = (𝑉 ,𝐸,𝑅,𝑊 ) is constructed, which has a set of nodes
𝑉 = (𝑣1, 𝑣2,… , 𝑣𝑁 ), a set of graphs of edges 𝐸, and the relationship
between nodes 𝑅. And the weight between edges 𝑊 , where 𝑁 is the
number of nodes in the graph network. The speaker’s video features,
audio features, and utterance features can be considered as nodes in
the graph. The graph is further used to model the speaker-level context
and simulate the interaction between speakers.

In order to solve the problem of node heterogeneity in the graph
network, this paper proposes the concept of node homogeneity, which
measures the difference of nodes by calculating the similarity be-
tween nodes with message-passing relationships and assigns weights
to each edge in the graph network based on the node homogeneity
rate. Through aggregating information about the neighbors around the
nodes, rich semantic information can be obtained in the end. The
calculation formula of the node homogeneity rate is as follows:

𝛼𝑣 =
𝑠𝑖𝑚 (𝑢, 𝑣)

∑

𝑢∈𝑃 (𝑣) 𝑠𝑖𝑚 (𝑣, 𝑥) +
∑

𝑥∈𝐷(𝑣) 𝑠𝑖𝑚 (𝑣, 𝑥) (2)

Among them, 𝛼𝑣 represents the homogeneity rate of node 𝑣, 𝑃 (𝑣)
is the set of neighbor nodes that have a feature pair relationship with
node 𝑣, 𝐷 (𝑣) is the set of neighbor nodes that have dialogue and reading
relationships with node 𝑣, and 𝑠𝑖𝑚() is a similarity function. In addition,
when the similarity between node 𝑣 and feature pair nodes is larger, the
homogeneity rate of node 𝑣 is higher, and vice versa.

For edge weights, in order to realize the difference between feature
vectors of different modes in the information aggregation, this paper
sets corresponding weights for each edge based on the homogeneity
rate, and the softmax function is used to ensure that the sum of the
weights of each edge is one. The edge weight between two nodes 𝑢 and
𝑣 is defined as:

𝛿𝑡𝑢,𝑣 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

exp
(

𝛼𝑣
)

∑

𝑘∈𝑢
exp

(

𝛼𝑘
)

)

(3)

Among them, 𝑡 represents the 𝑡th time in a period of time, 𝑢 is the
neighborhood nodes of node u in the graph.
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Fig. 4. The multivariate messaging schematic. We aggregate two kinds of information
round a node, one is to aggregate node information with feature pair relationship,
nd the other is to aggregate node information with dialogue and reading relationship.

To aggregate the information about surrounding neighbor nodes
nd further pass the information about discourse context in the net-
ork, we adopt the following formula:

𝑘
𝑣 = 𝜎

((

𝑐𝑘𝑣𝑣 ⊙ ℎ𝑘−1𝑣 +
∑

𝑢∈𝑁(𝑣)
𝛿𝑘−1𝑢,𝑣 𝑐𝑘𝑢𝑣 ⊙ ℎ𝑘−1𝑢

)

𝑊 𝑘

)

(4)

where 𝑊𝑘 is the parameter learned by the network itself, and 𝜎 is the
activation function. Here, the ReLU function is chosen as the activation
function, ⊙ represents the product of the corresponding elements, and
𝑁 (𝑣) = 𝑃 (𝑣) + 𝐷 (𝑣). 𝑐𝑢𝑣 denotes a weight, a self-attention mechanism
in the current study. The formula is as follows:

𝑐𝑘𝑢𝑣 = tanh
([

ℎ𝑘−1𝑣 ∥ ℎ𝑘−1𝑢
]

𝑊 𝑘) (5)

To reduce the number of network parameters and improve the
generalization ability of the model, this paper proposes an algorithm
mechanism that assumes that all neighbor nodes share weights and
transmit semantic information with the same weights. In other words,
the contribution of all nodes is equal. The formula can be presented as
follows:

ℎ𝑘𝑣 = 𝜎

((

𝑐𝑘𝑣 ⊙ ℎ𝑘−1𝑣 + 𝑐𝑘𝑣 ⊙
∑

𝑢∈𝑁(𝑣)
𝛿𝑘−1𝑓 ℎ𝑘−1𝑢

)

𝑊 𝑘

)

(6)

Meanwhile, Eq. (7) is as follows:

𝑐𝑘𝑣 = tanh
([

ℎ𝑘−1𝑣 ∥ ℎ̃𝑘−1𝑣
]

𝑊 𝑘
𝑐
)

(7)

4.2.1. Emotion classification
Once the multi-message transfer framework aggregates the rich

semantic information about the nodes in the graph network, the sen-
timent classifier splits the text, audio, and video features together.
Since different modalities have different effects on emotion classifi-
cation, this paper uses the self-attention mechanism to dynamically
fuse multi-modal features so as to improve the effect of feature fusion
and obtain new discourse features. Then, the obtained speech feature
representation is input into the fully connected layer, which is sub-
sequentially passed through the softmax activation function to obtain
the corresponding emotional label probability distribution. Finally, the
emotional label 𝑦𝑖 with the maximum probability is obtained using the
argmax function (see Fig. 4).

As shown in Eq. (8), the speech vector 𝑔𝑖, audio feature vector 𝑢𝑖,
and video feature vector 𝜏𝑖, which are rich in semantic information and
obtained through graph neural network aggregation are connected.

[ ]
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ℎ𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡 𝑔𝑖, 𝑢𝑖, 𝜏𝑖 (8)
Table 2
The division of training set, test set, and validation set on the IEMOCAP and MELD
datasets, as well as the number of emotional categories and evaluation metrics. Acc =
Accuracy.

Datasets Utterance count Dialogue count Classes Evaluation

Train Validation Test Train Validation Test metrics

IEMOCAP 5320 490 1623 108 12 31 6 Accuracy/f1
MELD 9989 1109 2610 1038 114 280 7 Accuracy/f1

Eqs. (9) and (10) show that the self-attention mechanism is adopted
to obtain the final speech representation ℎ̂𝑖 from the feature vectors
obtained by connection.

𝛽𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

[

ℎ1, ℎ2,… , ℎ𝑁
]𝑇 𝑊𝛽

[

ℎ1, ℎ2,… , ℎ𝑁
]

)

(9)

ℎ̃𝚤 = 𝛽𝑖
[

ℎ1, ℎ2,… , ℎ𝑁
]𝑇 (10)

The final speech feature representation ℎ̂𝑖 obtained by the self-
attention mechanism is input into the fully connected layer and then
nonlinearly activated through the ReLU activation function to obtain
feature information of the hidden layers 𝜌𝑖. The formula is defined as
follows:

𝜌𝑖 = 𝑅𝑒𝐿𝑈
(

𝑊𝑙ℎ̃𝑙 + 𝑏𝑙
)

(11)

Then, the utterance features are input into the softmax function to
obtain the probability distribution of the emotion 𝑃𝑖 corresponding to
the utterance feature. The formula is as follows:

𝑃𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑊 𝜌𝑖 + 𝑏
)

(12)

Finally, the probability distribution of emotional labels 𝑃𝑖 is passed
through the argmax function to obtain the emotional label �̂�𝑖 with
the maximum probability corresponding to the discourse feature. The
formula is specified as follows:

�̂�i = argmax
𝑡

(

𝑃𝑖[𝑡]
)

(13)

5. Experimental setting

5.1. Implementation details

All the research mentioned thus far is conducted on two NVIDIA
Tesla P4 servers with a total memory capacity of 16G. We use
Python3.7 as our programming language, and the deep learning frame-
work is Pytorch1.8.1. Adam [27] is adopted as our optimization al-
gorithm, wherein the batch size is set to 32, the number of iterations
is 60, the initial learning rate is 3e−4, and the L2 weight attenuation
coefficient is attenuated to 1e−5.

5.2. Datasets used

Experiments have been conducted on two benchmark datasets of
different sizes for ERC, IEMOCAP [28] and MELD [29] to test our
algorithmic model. The evaluation indicators for the validation set,
training set, and test set of the benchmark datasets, as well as for model
effectiveness, are shown in the Table 2:

IEMOCAP: The IEMOCAP dataset contains videos of binary con-
versations involving five men and five women. These videos comprise
five stages of the conversations, and during each stage, a binary con-
versation is assigned between a man and a woman. Each utterance
is annotated with an emotional label (happy, neutral, sad, angry,
frustrated, and excited). In our study, the dialogues during the first
four stages are chosen as training sets and validation sets, while the
dialogues in the last stage is adopted as test sets.

MELD: The MELD dataset is a multi-party conversation dataset that
contains more than 13,000 utterance texts. Each conversation stage
involves three or more speakers, and MELD is a multimodal dataset, and
each text is labeled with a particular emotion (anger, sadness, disgust,
joy, surprise, neutrality, and fear).
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5.3. Baselines and state of the art

We compare our model with the following baseline models:
CNN: The CNN proposed by Kim et al. [9] is a baseline model

for the classification of conversational texts. As it does not model the
utterance context or the dependencies between speakers. CNN cannot
use multimodal data.

Bc-LSTM: The bidirectional LSTM proposed by Poria et al. [10]
et al. captures the semantic information of the discourse context from
the speaker’s historical context discourse and its current discourse. It,
however, ignore the positional relationship between the speaker and
the conversational context, as well as the interaction between speakers.

CMN: CMN proposed by Hazarika et al. [12] uses GRU to obtain
rich contextual, semantic vector representations and inputs them into a
memory network, realizing modeling of long-term contextual informa-
tion. However, this model can only detect emotional changes between
two speakers.

DialogueRNN: Majumder et al. [10] proposed DialogueRNN, which
is a recurrent neural network using three different GRU networks to
model speaker information, semantic information in the context of the
conversation, and emotional information. Meanwhile, a self-attention
mechanism is introduced to the network to obtain attention scores from
rich semantic vectors, which fully considers the relationship between
the dialogue context and the speaker. The model can be extended to
multimodal datasets.

AGHMN: Jiao et al. [30] proposed AGHN, a gated hierarchical
memory network based on attention mechanisms. The model intro-
duces a self-attention mechanism into the GRU for determine the
weights of the recent conversation context vector and the conversa-
tion context vector from distant memory. It is capable of identifying
emotions in real time.

DialogueGCN: Ghosal et al. [1] proposed DialogGCN, which utilizes
GCN to assess the speaker’s ability to influence the model’s understand-
ing of contextual semantic information. The model combines discourse
context semantic encoding with speaker-level information encoded to
improve model performance, which can be applied to multivariate
conversations relationships.

SumAggGIN: This is the most advanced model for ERC tasks so
far. Proposed by Sheng et al. [6], SumAggGIN consists of a two-
stage summarization and aggregation graph inference network. The
network is able to detect subtle differences between with phrase-level
utterances.

DialogueCRN: DialogueCRN [31] proposes an emotional
cue-aware emotion recognition model, which extracts contextual emo-
tional cues by building a multi-round reasoning module.

DisGCN: DisGCN [32] proposes a discourse-aware graph neural
network to model the importance of discourse structure for context in-
formation and speaker information exploration. It uses GCN and gated
convolution to extract speaker information and discourse structure
information, respectively.

6. Results and discussion

6.1. Comparison with state-of-the-art and baseline methods

Our proposed model MMPGCN is compared with the listed base-
line models and the current state-of-the-art model SumAggGIN and
DisGCN. The experimental results show that our proposed model has
outperformed existing models on two benchmark datasets.

On the IEMOCAP dataset, the accuracy of our model is 68.9%, 1.9%
higher than SumAggGIN, and 4.5% higher than DisGCN; the f1 value is
68.0%, 1.3% higher than SumAggGIN, and 4.5% higher than DisGCN.
On the ME-LD dataset, the accuracy of our model is 60.7%, 2.2% higher
than SumAggGIN, and 1.6% higher than DisGCN; the f1 value is 59.3%,
2.7% higher than Sum-AggGIN, and 3.1% higher than DisGCN. The
accuracy and f1 value of each label in the IEMOCAP and MELD datasets
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obtained by our proposed model and other baseline models are shown
in Tables 3 and 4, respectively.

Compared with other baseline models, MMPGCN has better per-
formance improvement on the two chosen benchmark datasets. We
believe that the main reason lies in the difference of model. At present,
mainstream methods primarily include discourse context-based model-
ing and modeling based on speaker-levels. The current state-of-the-art
method, SunAggGIN, comprehensively examines the relationship be-
tween speaker-level features and phrase-level features and uses a two-
stage GNN to aggregate rich semantic information, which enhances the
performance to a certain extent. DisGCN uses GCN and gated convolu-
tion to extract speaker information and discourse structure information,
respectively. However, these baseline models ignore the heterogeneity
between multimodal nodes, which, we think, has an important impact
on the model’s understanding of the emotional changes in discourses.

6.2. Error analysis

We also analyze the labels predicted by the model. As shown in
Fig. 5(a), the confusion matrix used on the IEMOCAP dataset found
that our model incorrectly classified the ‘‘happy’’ emotion as ‘‘excited’’,
while the ‘‘frustrated’’ emotion is labeled as ‘‘neutral’’. This may be
caused by the slight differences between the two labels. By increasing
the dataset size, we think we can make the model note the subtle
differences between the two and obtain more accurate results.

As shown in Fig. 5(b), the confusion matrix for the MELD dataset
observed found that the model misclassified the ‘‘neutral’’ as ‘‘surprise’’,
‘‘sadness’’, ‘‘joy’’, and ‘‘anger’’, which are included in the IEMOCAP
dataset. Likewise, the difference between these labels and the ‘‘neutral’’
emotion is small, so the model fails to tell the difference. In the ‘‘fear’’
and ‘‘disgust’’ labels, the prediction accuracy of our model is 7.7% and
9.1%, respectively, and the f1 value is 3.2% and 2.6%, respectively.
Through analysis, it is found that the dataset sizes in these two labels
are 50 and 68, respectively. It is assumed that the two datasets are too
small, which cannot provide sufficient useful information for the model.
Instead, the model can only use the semantic information in other labels
to proceed with the classification, which results in very low accuracy
and f1 value. In future studies, we hope to improve the performance of
the model by increasing the dataset size.

6.3. Ablation study

Our proposed model MMPGCN is innovative in that it introduces the
Roberta pre-training model, uses Bi-LSTM to model contextual semantic
information, comprehensively considers the heterogeneity between dif-
ferent modalities, and proposes the concept of homogeneity rate. Based
on the concept, the model is able to distinguish between influences
from different modalities, thus dynamically assigning edge weights
to graph nodes. In addition, in order to ensure that the model can
converge effectively, we adopt the method of sharing parameters for
the edge weights of neighbor nodes in the graph structure. To verify
the effectiveness of our model, we perform ablation experiments on
the IEMOCAP dataset, removing one module at a time to determine
the respective contribution to the model.

The results are shown in Table 5. If MMPGCN is not considered in
the model to model the interaction between speakers, the f1 value of
the model will drop by 10.1%. It is believed that taking into account
the heterogeneity between different modalities could help the model
to give more weight to the more influential modal nodes, thereby im-
proving the performance of the model. In addition, it is also necessary
to model the interaction between speakers, which will help the model
understand how past utterances affect the emotional changes of future
utterances. While using MMPGCN to model the interaction between
speakers, without parameter sharing of the edge weights of surrounding
neighbor nodes, the f1 value of the model will drop by 5.7%. We believe
this is because the complexity of the model is too high, which prevents
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Table 3
Comparison with other baseline models on the IEMOCAP dataset, Acc. = Accuracy, Average(w) = Weighted average.

Methods IEMPCAP

Happy Sad Neutral Angry Excited Frustrated Average(w)

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

CNNa 27.7 29.8 57.1 53.8 34.3 40.1 61.1 52.4 46.1 50.0 62.9 55.7 48.9 48.1
CNN 24.4 32.3 55.9 57.9 51.8 44.0 29.2 43.4 68.0 34.1 57.4 40.0 42.6 42.2
bc-LSTM 29.1 34.4 57.1 60.8 54.1 51.8 57.0 56.7 51.1 57.9 67.1 58.9 55.2 54.9
CMN 25.0 30.3 55.9 62.4 52.8 52.3 61.7 59.8 55.5 60.2 71.1 60.6 56.5 56.1
DialogueRNN 25.6 33.1 75.1 78.8 58.5 59.2 64.7 65.2 80.2 71.8 61.1 58.9 63.4 62.7
DialogueGCN 40.6 42.7 89.1 84.4 61.9 63.5 67.5 64.1 65.4 63.0 64.1 66.9 65.2 64.1
DialogueCRN 71.4 51.9 75.8 78.2 66.1 59.8 78.5 64.1 68.9 77.7 54.9 60.l 66.4 65.7
SumAggGIN 56.7 54.2 86.8 79.1 62.9 65.3 64.6 62.2 76.2 78.4 63.4 61.6 66.8 66.7
DisGCN 71.1 56.9 68.6 76.4 66.6 57.4 74.2 54.3 74.5 76.4 51.1 59.2 64.4 63.8
MMPGCN 61.3 56.7 84.3 82.5 72.3 65.8 56.3 54.3 71.5 78.8 64.6 69.9 68.9. 68.0

a Indicates that only text modal data is used. Otherwise, it indicates that three modal data of text, video, and audio are used.
Table 4
Comparison with other baseline models on the MELD dataset, Acc. = Accuracy, Average(w) = Weighted average.

Methods MELD

Neutral Surprise Fear Sadness Joy Disgust Anger Average(w)

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

CNNa 76.2 74.9 43.3 45.5 4.6 3.7 18.2 21.1 46.1 49.4 8.9 8.3 35.3 34.5 56.3 55.0
CNN 77.7 76.0 48.3 42.4 2.5 4.1 19.2 20.4 48.2 49.3 5.4 5.9 36.0 31.8 57.2 55.4
bc-LSTM 78.4 73.8 46.8 47.7 3.8 5.4 22.4 25.1 51.6 51.3 4.3 5.2 36.7 38.4 57.5 55.9
DialogueRNN 72.1 73.5 54.4 49.4 1.6 1.2 23.9 23.8 52.0 50.7 1.5 1.7 41.0 41.5 56.1 55.9
DialogueCRN 70.9 75.7 47.3 47.1 0.0 0.0 34.0 13.2 41.9 49.7 0.0 0.0 41.6 35.6 58.3 54.9
SumAggGIN – – – – – – – – – – – – – – 58.5 56.6
DisGCN 70.8 76.6 42.7 46.1 1.1 1.5 32.0 16.9 50.3 50.1 2.3 1.9 38.2 39.9 59.1 56.2
MMPGCN 77.7 78.6 53.5 53.8 7.7 3.2 32.3 25.2 50.7 53.3 9.1 2.6 43.1 45.0 60.7 59.3

a Indicates that only text modal data is used. Otherwise, it indicates that three modal data of text, video, and audio are used.
Table 5
Ablation experiment of MMPGCN model on the IEMOCAP dataset.

Roberta Bi-LSTM Shared parameters MMPGCN F1

+ + − − 57.9
+ + − + 62.3
+ − + + 66.6
− + + + 62.1
+ + + + 68.0

the model from converging efficiently. Without considering the use of
Bi-LSTM to model sequential contextual semantic information, the f1
value of the model will be 1.4%. We speculate that this is because the
current utterance may be closely related to the contextual utterance.
If only the current utterance is used to judge the emotion contained
in a sentence, it would not be very objective. Obtaining rich semantic
information through the Roberta pre-training model benefits the model
proposed in this paper to enhance the ability to understand emotional
labels. If this part is removed, the effect of the model will drop by 2.9%.
We believe that word vectors with rich semantic information help the
model understand the subtle differences between labels.

In addition, to explore the scalability of the MMPGCN model pro-
posed in this paper, we conduct comparative experiments on the IEMO-
CAP benchmark dataset. As shown in Table 6, without using the
multivariate message passing mechanism proposed in this paper but
only using ordinary GCN and GCN+Att, the f1 values of the model
under the IEMOCAP benchmark dataset are 58.4% and 64.1%, re-
spectively. 2.2% and 3.9% lower than MMPGCN and MMPGCN+Att.
Therefore, it is believed that the message-passing mechanism proposed
in this paper can be transferred to other graph neural networks.

6.4. Importance of multimodal features

As shown in Table 7, when using only text features, our model
MMPGCN achieves an average F1 value of 64.3% and 55.1% on the
IEMOCAP and MELD datasets, respectively. When using text and video
8

Table 6
Exploring the scalability of MMPGCN on the IEMOCAP dataset. Att = Attention.

Method F1

GCN 58.4
MMPGCN 60.6
GCN+Att 64.1
MMPGCN+Att 68.0

Table 7
Experimental results of different modal features on IEMOCAP and MELD datasets. T,
A, and V represent text, audio, and video features, respectively.

Modality IEMOCAP MELD

F1 F1

T 64.3 55.1
T+V 64.8 56.0
T+A 66.4 56.6
T+A+V 67.2 57.2

features, the emotion recognition effect of the model can be improved,
with an average F1 value of 64.8% and 56.0%, respectively. When text
and audio features are used, the emotion recognition effect of the model
is better than using text and audio features. When text, video, and audio
features were used, the model performed best in emotion recognition,
with average F1 values of 67.2% and 57.2%, respectively. Experimental
results illustrate the necessity of multimodal emotion recognition.

7. Conclusion

This paper has proposed a heterogeneous multi-dimensional mes-
saging framework based on multimodality for detecting emotions in
discourse. Compared with current mainstream methods, our proposed
method considers the heterogeneity between different modes and pro-
vides richer feature information for graph networks. Compared to the
current research work, the model designed in this paper has achieved

some performance improvement on two different datasets for ERC. In
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Fig. 5. The MMPGCN model predicts the sentiment labels of the IEMOCAP dataset and
the MELD dataset.

the future, we plan to explore different types of nodes and edges in
multimodal graph networks at the node level and semantic level, which
will aid us in obtaining richer semantic information and optimizing the
model.
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