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Multimodal Emotion Recognition for Conversation (ERC) is a challenging multi-class classification task
that requires recognizing multiple speakers’ emotions in text, audio, video, and other modalities. ERC
has received considerable attention from researchers due to its potential applications in opinion mining,
advertising, and healthcare. However, the syntactic structure characteristics of the text itself have not
been considered in this study. Taking into account this, this paper proposes a conversational affective
analysis model (DSAGCN) combining dependent syntactic analysis and graph convolutional neural net-
works. Since words that reflect emotional polarity are usually concentrated exclusively in limited regions,
the DSAGCN model first employs a self-attention mechanism to capture the most effective words in the
dialogue context and obtain a more accurate vector representation of the emotional semantics. Then,
based on speaker relationships and dependent syntactic relationships, the multimodal sentiment rela-
tionship graphs are constructed. Finally, a graph convolutional neural network is used to complete the
recognition of multimodal emotion. In extensive experiments on two real datasets, IEMOCAP and
MELD, the DSAGCN model outperforms the existing models in terms of average accuracy and f1 values
for multimodal emotion recognition, especially for emotions such as ‘‘happiness” and ‘‘anger”. Thus,
dependent syntactic analysis and self-attention mechanism can enhance the model’s ability to under-
stand emotions.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

In recent decades, emotional recognition has had potential
applications in developing compassionate robots [1]. With the
rapid increase of open dialogue data on social media platforms like
Facebook, Twitter, Youtube, and Reddit, more researchers have
begun to pay attention to emotional recognition in dialogue [2],
and human–computer dialogue systems and diagnose to brain-
computer-interfaces have attracted much attention and gradually
become a research hotspot in academia and industry. Research
on emotion recognition in brain-computer-interfaces and EEG
analysis is currently the main way to achieve emotional intelli-
gence [3]. Brain-computer interfaces are mainly used to achieve
emotional interaction functions by combining disciplines such as
cognitive science and psychology. In a human–computer dialogue
system, expressive communication is an important research
direction for scholars in relevant fields. Humans can have passion-
ate communication through language and gain emotional comfort
[4]. If the human–computer dialogue system wants effective,
responsive communication with human beings, it must have
enough emotional analysis and judgment ability. Specifically, on
the one hand, computers need to identify and judge user emotions,
and on the other hand, it needs to incorporate appropriate emo-
tions into the answered messages. Therefore, how to give the
machine the ability to understand and express emotion in dialogue
is a new challenge in the field of emotional analysis [5].

The key to the breakthrough of ERC includes three significant
factors: emotional stimulus (acoustic, visual, audiovisual, text
reading, etc. . .), data collection (EEG recordings, MRI scans, f-
NIRS, facial expressions, speech), and the ability of the model to
extract data with rich semantic information [6]. We investigate
text, video, and audio data collected from individuals in video con-
versations to identify the speaker’s emotion.

In existing ERC task studies, Ghosal et al. [2] processed the
sequence contexts composed of dialogue sequentially and mod-
eled the dependencies between speakers by constructing a
graph convolutional neural network. Poria et al. [7] used

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2022.06.072&domain=pdf
https://doi.org/10.1016/j.neucom.2022.06.072
mailto:yuntaoshou@csuft.edu.cn
mailto:mengtao@hnu.edu.cn
mailto:aiwei@hnu.edu.cn
mailto:sihanyang@csuft.edu.cn
mailto:lik@newpaltz.edu
mailto:lik@newpaltz.edu
https://doi.org/10.1016/j.neucom.2022.06.072
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Y. Shou, T. Meng, W. Ai et al. Neurocomputing 501 (2022) 629–639
recurrent neural networks to gather contextual information of
the dialogue text. Although the deep learning model is used
to extract semantic information in the dialogue context, the
syntactic structural features of discourse are ignored. As the
basis for understanding the language, the syntactic structure
can effectively represent the grammatical structure of the sen-
tences, reveal the relationship between the components of the
text, and enhance the ability of the model to understand the
emotion of the discourse [8].

Syntactic analysis methods usually contain two classes, syntac-
tic structure analysis, and dependent syntactic analysis. Syntactic
structure analysis is mainly used to analyze the phrase structure
of sentences, while helpless syntactic analysis focuses on the
dependencies between the various components of the sentence.
Spatially, dependent syntax trees generated by dependent syntax
analysis are a kind of graph data, with words in sentences serving
as graph nodes and dependency between words and words as
edges. Graph convolutional neural networks are often processed
graph structures [9] that capture word-word dependence by GCN
by Zhao et al. Lai et al. [10] used the Bi-LSTM and GCN models to
extract semantic information on the text and classify emotions in
combination with conditional syntactic structure analysis. How-
ever, the degree of importance between words is different, reflect-
ing the importance of different emotional feature vectors in the
dialogue text. This paper gives different weights between word
vectors by introducing attention mechanisms.

In view of this, this paper proposes the multimodal dialogue
emotion recognition model combining the dependent syntactic
analysis and GCN in accordance with the perspective of the insuf-
ficient discourse syntactic structure analysis and weak ability to
capture semantic information. First, this paper inputs feature vec-
tors from text, video, and audio modalities into the Bi-LSTM model
to obtain feature information of historical contexts, and then
adopts a self-attention mechanism to capture the most effective
words in dialogue contexts to obtain a more accurate vector repre-
sentation of emotional semantics. Then multimodal sentiment
relation graphs are constructed based on speaker relations and
dependent syntactic relations, respectively. Finally, a graph convo-
lutional neural network is used to complete the recognition of mul-
timodal emotions. The DSAGCN proposed in this paper introduces
a self-attention mechanism to obtain a more accurate vector repre-
sentation of emotional semantics. Then, through the dependent
syntactic structure, we focus on analyzing the relationship
between the components of the sentences, facilitating improving
the understanding of the model. The experimental results show
that the DSAGCN model is superior to the existing models regard-
ing accuracy and f1 values on two real datasets, IEMOCAP and
MELD, especially on emotions such as ‘‘happiness” and ‘‘anger”.
Therefore, we believe that DSAGCN can be widely used in emotion
analysis, such as human–computer dialogue systems and opinion
mining.

The contributions of this paper are as follows:

1. This research proposes a new model called DSAGCN, which
combines the adjacency matrix constructed by graph convolu-
tional neural network and dependency syntax analysis, fully
considering the dialogue context history of multi-speakers,
the dependence relationship between speakers. In addition,
the syntactic structure of the dialogue context can be used for
emotion recognition in multimodal datasets.

2. Using a multimodal dataset to extract different features of dia-
logue text, enable the model to learn richer feature information,
improve the robustness and introduce a self-attention mecha-
nism to weigh the most emotional feature vectors, reduce the
number of network parameters and obtain a more accurate
semantic vector representation.
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3. In extensive experiments on two real datasets, IEMOCAP and
MELD, the DSAGCN model outperforms the existing models in
terms of average accuracy and f1 values for multimodal emo-
tion recognition.

The rest of this paper is organized as follows: Section 2 briefly
introduces the emotion recognition task; Section 3 defines the
problem in mathematical language and describes the data prepro-
cessing; Section 4 describes the research model; Section 5 records
the experimental environment and experimental datasets; and
finally, Section 2 shows the experimental results and related
analysis.
2. Related work

Emotional recognition is an interdisciplinary, multi-domain
research task, consisting of psychology, cognitive science, machine
learning, and natural language processing [11]. It has many poten-
tial applications in a wide range of systems areas, including opin-
ion mining, analyzing the emotional value of customers in
business aspects, health care, recommendation systems, education,
advertising, an-d more.

In recent years, the problem of emotion recognition in dialogue
has attracted much attention in academia and industry due to the
rapid increase of open-source dialogue datasets. At present, the
study of dialogue emotion recognition is based primarily on the
multimodal dataset, which includes three modes: text, audio, and
video. In this article, we have likewise adopted these three models.

The emotion recognition problem was initially present-ed with
a Convolutional Neural Network (CNN) [12] for text feature extrac-
tion, a model independent of context, as it does not use informa-
tion from contextual utterances. Sukhbaatar et al. [13] proposed
that Memnet is an end-to-end memory network where each utter-
ance is input to the network as an input layer, while the memory
corresponding to previous utterances is constantly iteratively
updated in a multi-hop manner. Finally, the output of the memory
network is used for emotion classification. Satt et al. [14] achieved
the CNN-LSTM combination model, applied directly to spectral-
domain maps, achieving high accuracy.

As the field progresses, the results of scholars in relevant fields
on dialogue emotion recognition are mainly based on the con-
stituent sequential discourse of dialogue by recurrent neural net-
works. Recursive neural networks (RNN) [15] were applied by
Poria et al. It relies on spreading contextual and sequential informa-
tion to the discourse. Tang et al. [16] provided the utterance to the
bidirectional gated cycle unit (BiGRU). However, like most current
models, they ignored intention modeling, motifs, and personality
because of the lack of labels for these aspects of the real datasets.
Theoretically, neural networks like long, short-termmemory neural
networks (LSTM) and gated cycle units (GRU) should propagate
long-term contextual information. However, this has not always
been the case. Poria et al. [7] used bidirectional LSTM to model
the speaker-based context to capture contextual content from the
surrounding utterances. However, these contexts cannot perform
long-term summary and unweighted effects from context, resulting
in huge model bias. This affects the feasibility of the RNN-based
model in conversational emotion recognition. Hazarika et al. [17]
constructed that CMN, this model utilizes two different GRU to
model the discourse context in a historical conversation. Finally,
the utterance representation is obtained by providing the current
utterance as a query to two separate memory networks. However,
this model can only simulate the conversation with the two speak-
ers. ICON [18] is a continuation of CMN, which uses another GRU to
connect the output of the individual speaker GRU in CMN to make
explicit inter-speaker modeling. The GRU is seen as the memory for



Y. Shou, T. Meng, W. Ai et al. Neurocomputing 501 (2022) 629–639
tracking the entire session process. Analogous to CMN, ICON cannot
be applied tomultimodal datasets. Jiao et al. [19] proposed AGHMN,
which first used Bi-GRU to extract features from contextual infor-
mation, then used Bi-GRU fusion layer to perform feature fusion
on historical contextual information, and finally used attention
mechanism to update Bi-GRU internal state. AGHMN can balance
the importance of historical discourse information and current dis-
course information. However, AGHMN ignored speaker informa-
tion. Majumder et al. [20] created that DialogueRNN employs a
self-attention mechanism to pool information on all or part of the
dialogue with each target utterance. However, the model does not
account for the relative positions between the speaker information.
We believe that the speaker’s information is necessary for contex-
tual information in a distant discourse.

Graph convolutional neural network (GCN) [21,22] is also
increasingly popular in solving various graph-based problems,
including semi-supervised node classification [21], link prediction
[23], recommendation system [24], and others. Ghosal et al. [2]
proposed DialogueGCN. To fully model the interactive information
between speakers, DialogueGCN detailed the dependencies
between speakers using relational GCN. Despite structural
improvements in DialogueGCN, examining the relative location of
speaker information and other utterances from the target utter-
ances, there are limitations. Entering conversations directly into a
two-way recursive module with a pre-trained model offers the
opportunity to lose unique features of individual utterances. To
alleviate this problem, Choi et al. [25] designed the residual graph
Convolutional Neural Network (RGCN), which will generate com-
plex context features for each independent utterance in a
ResNet-based internal feature extractor.

Although some progress has been achieved in dialogue emotion
recognition research, the above studies have all focused on the
semantic and sequential context feature extraction level of dia-
logue text, ignoring the syntactic structure information of dis-
course text. However, the syntactic structural information of the
text has equally important implications for understanding its emo-
tional polarity with the model. Lai et al. [10] used Bi-LSTM and GCN
models, combining semantic information in the text and depen-
dent syntactic trees. However, this way considers the full feature
information of the sentence, while the words about emotional
polarity are mostly concentrated in confined locations, which will
introduce much redundant information that affects the evaluation
efficiency of the model.

Therefore, we will introduce a self-attention mechanism, which
will effectively alleviate the information redundancy and improve
the model’s performance.

For the above problems, this paper proposes dialogue textual
emotion analysis combining Bi-LSTM, GCN mode-l, syntactic
dependency analysis, and self-attention mechanism. The context
representation of the dialogue text is obtained through the Bi-
LSTM model, and then the self-attention mechanism is introduced
to obtain richer emotional features, take the words of the feature as
the graph of the initial node, the relationship between words as
edges, build the initial state diagram, build the convolutional
map based on the syntactic structure, then input the convolutional
map together with the initial state map to get the emotional fea-
tures of the dialogue text in GCN, and finally input the feature into
the full connection layer to identify the emotion classification.
1 http://audeering.com/technology/opensmile
3. Preliminary

3.1. Problem definition

The task of this paper is to infer emotional changes in the
speaker in a multi-party dialogue system. Suppose that there are
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M participant p1; p2,..,pM in one conversation, M speakers speak a
series of discourse u1,..,uM with emotional labels (happy, sad, neu-

tral, angry, excited, and depressed). uk ¼ S1k ; S
2
k ; ::; S

lk
k

� �
in chrono-

logical order. Among them, Sik is the first i sentence, and lk is the
total number of words of the speaker uk; k 2 1; ::;Mf g. The dis-
course of the M speakers can be sorted in chronological order as

d1; ::; dl1þ::þdlM

� �
, where dj 2 u1;u2; ::;uMf g.

The model constructed in this paper takes emotion labels
requiring classified utterances di as input to the network, to obtain
historical information about the dialogue context, set a context
window of size K to record everyone’s historical utterances. Among
them, the Hk 2 p1; p2; ::; pMf g. The definition of Hk is as follows:

Hk ¼ di i 2 t � K; t � 1½ �; di 2 uk;j jHkj 6 Kf g ð1Þ
3.2. Multimodal feature extraction

The first step of our algorithm is tantamount to extracting the
multimodal features of all utterances in the conversational dataset.
For each discourse, we extract the features of these discourses from
three different modes of text, audio, and video. The feature extrac-
tion procedure for each mode is characterized below.
3.2.1. Textual features extraction
Text features of the dialogue context are significant grounds for

identifying the emotional changes of the speak-er. Convolutional
neural network (CNN) proposed by Kim et al. [12] was utilized to
perform feature extraction of conversational discourse text. Convo-
lutional neural networks can effectively learn highly abstract
semantic features from the words that constitute sentences. This
paper requires a convolutional layer, a maximum pooling layer,
and a fully connected layer to obtain a characteristic representa-
tion of the dialogue discourse text. The input to the network is
comprised of 300-dimensional pre-trained word embeddings. The
convolutional layer is separately composed of three convolutional
filters of sizes 3,4,5. Each with 50 feature maps and the complex
features of the dialogue discourse text will be maximized together.
We use these three filters to perform one-dimensional convolu-
tional kernel operations, and then output them to the maximum
pooling layer at its maximum pooling operations. It is then fed into
a 100-dimensional fully-connected layer by a nonlinear transfor-
mation using the activation Relu function, and the final output
forms a characteristic representation of text utterance. This net-
work is trained with effective labels.
3.2.2. Audio feature extraction
Audio plays a significant role in identifying the speak-er’s emo-

tions. To extract audio context features, this paper first stores the
speaker’s audio in the video as a 16-bit PCM WAV file and then
uses the openSMILE [26] open-source toolkit for audio contextual
feature extraction. An openSMILE enables high-dimensional audio
vectors composed of MFCC, Mel-spectra, pitch, loudness, et al. In
particular, we will use the IS13_ComParE1 extractor1 from open-
SMILE to obtain a 6373-dimensional feature vector for each sen-
tence. Furthermore, to constrain the feature vectors in the range
[0, 1], we use Min–Max normalization to scale the feature vectors.
Since the dimension of the obtained audio vectors is too high, it is
easy to cause the model to overfit, so we use the fully connected
layer to map the audio vectors to the 100-dimensional feature vector
au. The low-dimensional feature vector au 2 Rda is the final audio
vector.
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3.2.3. Visual feature extraction
Visual features, such as movements, also reflect changes in a

person’s emotional characteristics. Therefore, we capture visual
features from the conversational video using the 3D-CNN algo-
rithm [27]. 3D-CNN serves to understand human facial expres-
sions, such as frowning or smiling. It needs to be able to extract
relevant features from each frame of the image. The input to the
network is a vector of size c;h;w; fð Þ. Among these, c represents
the number of channels of the image, the video used in this paper
has three channels of RGB. h and w represent the height and width
of the image per frame, and f represents the total number of frames
in the video. The 3D-CNN network consists of three convolutional
blocks. Each convolutional block contains two convolutional layers
of size 5 � 5 and a maximum pooling layer of size 3 � 3. For the
convolution operation, a 3D filter of dimension f o; f i; f h; f w; f dð Þ is
used. Among them, f o; f i; f h; f w; f d represent the feature map, the
number of input channels, the image width, the image height
and the depth of the 3D filter, respectively. A max pooling opera-
tion is used after the output of the convolutional layer. After con-
volution and max pooling operations, it is input into the ReLU
activation function for nonlinear transformation. Finally, the
resulting final feature is mapped to a dense fully connected layer
dimension dv , whose activation acts as a visual feature vu 2 Rdv .
Among them, dv ¼ 512.
4. Methodology

4.1. Our model

In the multimodal dialogue emotion recognition problem, this
paper presents the conversational-dependent syntactic analysis
and the graph convolutional Neural Network (DSA-GCN) frame-
work, with models specifically consisting of Bi-LSTM, self-
attention mechanisms, dependent syntactic structure, and GCN.
Fig. 1. DSAGCN architecture consists of sequential contextal features extraction, self-atte
emotion classification.
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First, the dialogue text is coded into a word vector through the
Word2Vec model, input the video features, audio features, and
the word vectors corresponding to the dialogue text into Bi-LSTM
to get the historical context information features of the speaker.
In order to reflect the importance of different emotional feature
vectors in the conversation text, a self-attention mechanism is
introduced to capture the most effective words in the dialogue
context, so as to obtain a more accurate vector representation of
emotional semantics. Then, based on speaker relations and depen-
dent syntactic relations, respectively, the multimodal sentiment
relation graphs are constructed and input to the GCN layer to
aggregate emotional semantic information. Finally, video features,
audio features, and word vectors that pass through the GCN layers
are input to the emotion classifier consisting of softmax layers to
obtain discrete sentiment categories. The overall architecture dia-
gram of the DSAGCN model proposed in this paper is shown in
Fig. 1.
4.1.1. Sequential contextual features extracted
The quality of the text feature representation has important

effects on downstream tasks, and the Word2Vec model [28] is in
a position to learn rich semantic knowledge in an unsupervised
manner from a large number of corpora. This paper uses the
Word2Vec model to generate word vectors with rich languages.
Text ‘i is prearranged using a pretrained word vector model to

get. ‘i ¼ ‘1i ; ‘
2
i ; . . . ; ‘

j
i; . . . ; ‘

n
i

n o
, Among them, ‘ji 2 Rdw , The n indi-

cates the sentence length, and the dw word vector indicates dimen-
sion. We set dw ¼ 100. Since the conversation is held in order, the
context information passes it in that order. Bi-LSTM is comprised of
forwarding and reverse LSTM that can better learn the contextual
information of the sentence. We, therefore, input ‘i into Bi-LSTM
for feature extraction, and the resulting hidden layer feature hi is
spliced from features extracted from forward and reverse LSTM.
The specific formula is as follows:
ntion mechanisms, speaker relationship modeling, dependent syntactic analysis, and
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ht�1
i
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ð2Þ

Ct ¼ Ct � jt þ Ct�1 � f t ð3Þ

ht
i ¼ Ot � tanh Ctð Þ ð4Þ

where, hi ¼ hj
ijhj

i 2 Rdl ; j ¼ 1;2; . . . ; n
n o

; dl represents the number of

hidden layer cells. We set the number of hidden layer units of LSTM
to 400 in our experiments. Since Bi-LSTM is composed of forward
and reverse LSTMs, the final hi is an 800-dimensional feature vector.
lti represents input at t moment, WT the weight matrix, r the sig-
moid activation function and f t; jt ;Ot represents the forgetting,
input and output gates at t moment, respectively, � represents
the point multiplication operation, and the tanh function indicates
the hyperbolic tangent activation function.

4.1.2. Self-attention mechanism
To reflect the differences in the importance of the emotional dif-

ferent feature vectors in the dialogue text, enhance the emotional
semantic representation of the context, and reduce the computa-
tion of the network, this study introduces a self-attention mecha-
nism [29]. In conversational texts, words that embody emotional
characteristics are usually limited to the local location of the sen-
tence, and using self-attention mechanisms can capture the most
emotional words in the text and give it a high attention weight.
Although Bi-LSTM can catch certain long-distance text contextual
features, it also causes information loss as recursive networks dee-
pen, and its ability to capture long-distance text contextual fea-
tures weakens. The attention mechanism is essentially the
mapping of the input Query (Q) to a series of key-value pairs
(Key (K)). Values (V)), and the addition of the attention mechanism
reduces the loss of information in the recursive process.

In order to realize the important difference of different emo-
tional feature vectors in the dialogue text, this study designed
the following attention mechanism to obtain the semantic vector
representation Si:

Si ¼
XT
t¼1

at;iS
t
i ð5Þ

at;i ¼ softmax
exp et;i

� �
Xk
k¼1

exp et;k
� �

0BBBB@
1CCCCA ð6Þ

et;i ¼ ZkS
t
iffiffiffiffiffiffiffiffi

Zkj jp ð7Þ

where, t represents moment t in T moments, and i represents the
semantic vector sequence number of the text sequence in the net-
work. Therefore, at;i is the importance weight to the semantic vector
Sti at t; S

t
i is the semantic vector at t; Zk is the attention vector of the

network pattern at t, and et;i is the similarity between the semantic
vector Sti and the attention vector of the network pattern at t.The
architecture of the self-attention mechanism proposed in this paper
is shown in Fig. 2. The three modal features of text, audio and video
are first input to the Bi-LSTM for semantic information extraction,
then the obtained feature vectors are passed through the softmax
function to obtain the attention scores, and finally the attention
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scores are weighted and summed with the obtained feature vectors
to obtain the final semantic vector representation Si.

4.1.3. Speaker relationship modeling
Wemodel the dependencies between speakers and the-mselves

to capture speaker-level dependent context information in a con-
versation. We construct a directed graph to characterize the emo-
tional interaction between the speaker and itself, and input it into
the graph convolutional neural network to obtain a feature repre-
sentation containing speaker-level context information.

This study was used to represent relationships between inter-
locutors by constructing a graph G ¼ V ; E;R;Wf g. V represents
the set of nodes, and E represents the set of edges. Each discourse
is represented as a node Vi 2 V ; i ¼ 1;2; . . .N, Each vertex Vi is rep-
resented by the sequential context-encoded feature vector gi, and
the edge Vij 2 E; r 2 R between node Vi and node Vj represents
the relationship type between nodes.

For edge weights, assuming Y edges, and a self-attenti-on mech-
anism based on text similarity is used to set the edge weights so
that the sum of the input edges is one, considering the past m sen-
tences Vt�1, . . .,Vt�m of node t and the later n sentence Vtþ1, . . .,Vtþn.
The weight calculation formula is as follows:

wts ¼ softmax gT
t W gt�m; . . . ; gtþn

� �� �
;

s ¼ t �m; . . . ; t þ n
ð8Þ

Graph convolutional neural network aggregates the local neigh-
bor feature information about each node, and converts the context
feature vector irrelevant to the speaker gi into a vector representa-
tion related to the speaker ui through a two-step convolution oper-
ation. The calculation formula is as follows:

u 1ð Þ
i ¼ r

X
r2Rs2Yr

i

Xwts

ct;r

W 1ð Þ
r gs þwutW

1ð Þ
0 gt

0@ 1A;

i ¼ 1;2; . . . ;Y

ð9Þ

u 2ð Þ
i ¼ r

X
s2Yi

W 2ð Þu 1ð Þ
i þW 2ð Þ

0 u 1ð Þ
i

 !
;

t ¼ 1;2; . . . ;Y

ð10Þ

where, r is set to the ReLU activation function W 1ð Þ
0 ;W 2ð Þ

r ;W 2ð Þ
0 ;W2

as the transformation parameter, and Wut;Wts 2 W;Yr
i represents

the adjacency index of the node Vt in the relational r 2 R;Ct;r 2 Yr
i .

Eqs. (9) and (10) effectively aggregate the local neighborhood
speaker information of each sentence node.

4.1.4. Modeling by dependent syntactic structure
We not only consider the dependencies between sequential

context information and discourse level, but also combine the
dependent syntactic structure of sentences and introduce GCN to
study the conversational emotion recognition problem. A dialogue
emotional text graph based on the dependent syntax tree was con-
structed using G ¼ V ; Ef g. V represents the set of nodes, the set of
words. E represents the set of edges, the set of dependency
between words and words. For example, ‘‘I am very happy,” the
adjacency matrix constructed based on a dependent syntactic tree
is shown in Fig. 3. Each word in the sentence is adjacent to itself,
namely, the diagonal elements in the adjacency matrix are all 1,
based on the dependency in the dependent syntax tree, if a word
in the sentence and other words have the dependency, the corre-
sponding position in the adjacency matrix is 1, otherwise 0. There-
fore, we obtain a node position in a sparse adjacency matrix A,
graph in one-to-one correspondence to the positions of elements
in Si obtained based on the self-attention mechanism. Then,
through the graph based on the adjacency matrix A, the graph con-



Fig. 2. Multimodal self-attention mechanism architecture.

Fig. 3. Depdependent syntactic structure analysis and its corresponding adjacency matrix. HED stands for a core relationship, SBV stands for a subject-predicate relationship,
and ADV stands for an adverbial relationship.
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volutional neural network operates the convolution features, and
finally obtains the feature Vi. The specific formula is as follows:

Vi ¼ ReLU eD�1
2AeD�1

2SiWC

� �
ð11Þ

among these, eD is the moment of the adjacency matrix A; eD ¼PjAij,
ReLU function represents the activation function, and WC is the
weights of neurons in the layers in the graph convolutional neural
network.

4.1.5. Emotion classification
The emotion classifier first connects the feature vector gi con-

taining sequence context information, the feature vector ui from
the speaker relationship modeling and the feature vector Vi based
on the dependent syntactic structure modeling, then obtains the
new dialogue text feature representation through the similarity-
based attention mechanism, and finally classifies the discourse
using the full connection layer to obtain the corresponding emo-
tion category label Pi. In practical applications, different real data-
sets usually have different sentiment class labels. For example, in
the IEMOCAP real dataset, the sentiment class label Pi ¼ 7 obtained
after going through the sentiment classifier is 6, and in the MELD
real dataset, the sentiment class label Pi ¼ 7 obtained after going
through the emotion classifier.

As shown in Eq. (12), the extracted context feature vector gi is
connected to the feature vector ui from the speaker relationship
modeling and the feature vector Vi from the dependent syntactic
structure modeling, and the vector of hi is expressed as follows:

hi ¼ gi;ui;Vi½ � ð12Þ
As shown in Eqs. (13) and (14), obtaining the final discourse

representation ehi from the connection using the similarity-based

attention mechanism. The ehi is defined as follows:

bi ¼ softmax hT
i Wb h1; h2; . . . ; hN½ �

� �
ð13Þ
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~hi ¼ bi h1;h2; . . . ;hN½ �T ð14Þ

Finally, the resulting sentence feature representation ehi after
graph convolution operation was input into a layer of the fully-
connected neural network, after a nonlinear transformation of
the Relu function, and then input into the softmax layer to obtain
the emotional tag ŷi with maximum probability, where yi is a num-
ber in the range [0,1]. The representation of ŷi is as follows:

li ¼ ReLU Wl
~hi þ bl

� �
ð15Þ

Pi ¼ softmax Wli þ bð Þ ð16Þ

ŷi ¼ argmax
t

Pi t½ �ð Þ ð17Þ
4.1.6. Model training
The DSAGCN model uses a cross-entropy loss function to opti-

mize the learning effect for each emotion. The function is defined
as follows:

Li
m hð Þ ¼ yim log ŷim

� �þ 1� yim
� �

1� log ŷim
� �� �� � ð18Þ

where h is a learnable parameter in the network, ŷim denotes the
prediction probability of the i-th emotional label, and yim denotes
the true class of the i-th emotional label. Generally, the smaller

Lim hð Þ, the closer the probability distribution between the predicted
emotional value of the model and the real emotion, the better the
effect of emotion recognition.

Based on the above-mentioned loss function, the learning goal
of the DSAGCN model is to obtain the minimum loss for various
emotion recognition in the training sample data. The learning
objective function is defined as follows:

min
h

XN1

m¼1

XN2

i¼1

Li
m hð Þ ð19Þ



Y. Shou, T. Meng, W. Ai et al. Neurocomputing 501 (2022) 629–639
where, N1 and N2 represent the number of training samples and
emotion label categories, respectively. The optimal network param-
eters are obtained when the DSAGCN model obtains the minimum
loss value for various emotion recognition training data.
5. Experimental setting

The research environment is based on the Ubuntu 18.04 operat-
ing system, using the programming language Python 3.8, deep
learning framework Pytorch 1.9.1, hardware for two servers with
Tesla P4, the memory of 16G for algorithm comparison
experiments.

5.1. Datasets used

We used two conversational emotion datasets, IEMOCAP [30]
and MELD [31], to evaluate the effect of the DSAGCN algorithm.
We divided these two datasets into training and test sets, with
an approximate ratio of 80:20. In the IEMOCAP dataset, the train-
ing and validation sets contain 120 dialogues and 5,810 dialogue
texts, and the testing sets have 31 dialogues and 1,623 dialogue
texts. In the MELD dataset, the training and validation sets contain
1,153 dialogues and 11,098 dialogues, and the testing sets contain
210 dialogues and 2,610 dialogues. Table 1 displays the distribu-
tion of samples for both the training and testing sets.

1. The IEMOCCAP datasets contain ten speakers communicating in
a two-way conversation, providing thr-ee modalities: text,
audio, and video, with 7,433 text utterances and approximately
12 h of audio and video. Each video includes two dialogues with
each other which are divided into discourse. Each discourse has
six different emotional labels, namely, happiness, sadness, neu-
trality, anger, excitement, an-d frustration. The final emotion
category for each utterance was determined jointly by six
evaluators.

2. The MELD dataset, from the Friends series, unlike the IEMOCAP
dataset, has multiple speakers involved in conversations and is
owned by the multi-conversation dataset. Its training, valida-
tion, and test sets have 1,039, 114, and 280 conversations,
respectively. Each discourse comes with one of the seven emo-
tional labels, namely anger, disgust, sadness, joy, neutrality,
surprise, and fear. The final emotion category for each utterance
was determined jointly by five evaluators.

5.2. Comparison algorithm

We compare our model with the following baselines:
CNN: CNN proposed by Kim et al. [12] represents the criteria of

text classification that does not consider text context, the context
of the speech, or multimodal data.

bc-LSTM: The characteristic representation of the bidirectional
LSTM capturing the discourse context from the surrounding dis-
course, proposed by Poria et al. [7], does not consider the inter-
speaker relationship as it does not model the inter-speaker
dependence.

CMN: CMN proposed by Hazarika et al. [17] used for GRU to
model the historical context of dialogue discourse and input the
Table 1
Division of training set and test set in two conversational emotion datasets.

Dataset Partition Utterance Count Dialogue Count

IEMOCAP train + val 5810 120
test 1623 31

MELD train_val 11098 1153
test 2610 280
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current discourse into the memory network to obtain a character-
istic representation of the discourse context. However, the modifi-
cation model can only be used to model binary dialogue
relationships.

DialogueRNN: DialogueRNN, proposed by Majumd-er et al.
[20], is a recurrent network that uses GRU to track individual
speaker states during a conversation while introducing self-
attention mechanisms that capture attention scores from the tex-
tual context, taking into account the relevance of emotional con-
text discourse, and performing emotion classification based on
this information. The model can be applied to a multimodal
dataset.

DialogueGCN: DialogueGCN proposed by Ghosal et al. [2]
details the relationship between speaker dependence and self-
dependence that can be applied to multi-party datasets. Combine
sentence-as-sentence encoding with speaker coding to enhance
the representation of the dialogue context.

AGHMN: The AGHMN proposed by Jiao et al. [19] adopted an
attention-gated hierarchical memory network. AGHMN first used
Bi-GRU to extract bidirectional contextual history information
and then used the attention mechanism to calculate the attention
score of the contextual information. Finally, the internal state of
BiGRU was updated with the obtained attention score. AGHMN
can balance contextual semantic information from recent memory
and distant memory.

5.3. Evaluation metrics

To verify the validity of the DSAGCNmodel on the IEMOCAP and
MELD datasets, we use accuracy and F-score metrics for evaluation,
respectively.

The accuracy was defined as follows:

Accuracy ¼
X#1

j
AT
jX#2

i¼1
xi

ð20Þ

where #1; #2 are the number of samples in the testing datasets and
samples whose emotion is correctly predicted by the model, respec-

tively. xi is the i-th sample in the testing datasets, and AT
j represents

the correct sentiment prediction value for the j-th sample. Gener-
ally, a larger accuracy indicates a better prediction of the model.

The F-score integrates precision and recall. Therefore, in this
paper, the F-score is also chosen as another metric to evaluate
the model’s validity. The F-score is defined as follows:

F � score ¼ 2 � precision Ep; Et
� �� recall Ep; Et

� �
precision Ep; Et

� �þ recall Ep; Et
� � ð21Þ

and

precision Ep; Et
� � ¼ jEp

T
Etj

jEP j ð22Þ

recall Ep; Et
� � ¼ jEp

T
Etj

jEP j ð23Þ

where EP represents the predicted emotion label category, Et repre-
sents the real emotion label category, precision (Ep; Et) denotes pre-
cision, recall(Ep; Et) denotes recall. Generally, the higher the F-score
of the model, the better the effect of emotion recognition.

6. Results

To avoid experimental coincidence, we randomly performed 10
training and testing sessions according to the data set division ratio
in Table 1, and then took the average value as the final accuracy
and f1 value for each emotion. Finally, the accuracy and f1 value
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for each emotion are averaged to obtain the average accuracy and
f1 value for each algorithm.

By comparing the classification accuracy and f1 values of each
discrete emotion label in Tables 2 and 3, we find that the classifi-
cation accuracy of DSAGCN for ‘‘happy” and ‘‘anger” emotion labels
are 60.1% and 52.2%, respectively, and the f1 values are 62.6% and
46.9% respectively. And the accuracy and f1 values are both about
20% to 30% higher than other models, significantly outperforming
existing models. We believe this is because the self-attention
mechanism serves is used to capture the semantic information,
while the dependent syntactic analysis enhances the model’s abil-
ity to understand emotions. Meanwhile, in the classification accu-
racy and f1 values of ‘‘happy” discrete emotion, the effect of the
DialogueGCN model and AGHMN model is second, the classifica-
tion accuracy is 45.7% and 42.7%, and the f1 value is 47.7% and
51.1%, respectively, which is about 15% lower than DSAGCN. The
classification accuracy and f1 values of the other models are close,
between 27% and 35%. In the classification of ‘‘happy” discrete
emotions, their performance is much worse than DSAGCN, Dia-
logueGCN, and AGHMN. In terms of classification accuracy and f1
value for the ”anger” discrete emotion, the DialogueRNN model is
slightly less effective than DSAGCN, with the classification accu-
racy and f1 value of 41.0% and 41.5% respectively. The classification
accuracy and f1 values of the other models are close to but lower
than the DialogueRNN model. On the ‘‘fear” and ‘‘disgust” senti-
ment labels, AGHMN achieves the best results among all models
with classification accuracies of 9.8% and 14.0%, and f1 values of
10.6% and 16.4%, respectively. The classification accuracy and f1
value of DSAGCN and other models do not exceed 10%. All models,
including AGHMN, performed poorly on the ‘‘fear” and ‘‘disgust”
sentiment labels, and the classification results were unreliable.
However, on the ‘‘fear” and ‘‘disgust” emotion labels, the classifica-
Table 2
Compare various baseline methods on the IEMOCAP dataset; bold font indicates the best

Methods

Happy Sad Neutral

Acc F1 Acc F1 Acc F1

CNN 27.7 29.8 57.1 53.9 34.3 40.1
bc-LSTM 29.1 34.4 57.1 60.8 54.1 51.8
CMN 25.0 30.3 55.9 62.4 52.8 52.3
DialogueRNN 33.5 35.4 69.0 68.8 54.1 54.7
DialogueGCN 45.7 47.7 86.9 84.4 41.9 48.5
AGHMN 42.7 51.1 63.4 68.0 61.3 57.4
DSAGCN 60.1 62.6 84.8 82.3 44.5 47.5

Table 3
Compare various baseline methods on the MELD dataset; bold font indicates the best per

Methods

Neutral Surprise Fear Sadnes

Acc F1 Acc F1 Acc F1 Acc F1

CNN 76.2 74.9 43.3 45.5 4.6 3.7 18.2 21
bc-LSTM 78.4 73.8 46.8 47.7 3.8 5.4 22.4 25
DialogueRNN 72.1 73.5 54.4 49.4 1.6 1.2 23.9 23
DialogueGCN 70.3 72.1 42.4 41.7 3.0 2.8 20.9 21
AGHMN 80.3 75.1 53.7 49.1 9.8 10.6 19.7 25
DSAGCN 76.7 74.4 48.6 45.5 5.2 4.8 24.4 22

Table 4
The distribution of each label category in the MELD dataset.

Dataset Neutral Surprise Fear

MELD 1256 281 50
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tion accuracy and f1 values of DSAGCN and existing models are not
more than 10%, showing poor performance. We believe this is
because the MELD dataset used in this paper comprises video clips
from the Web. In the video clips, the speakers rarely show ‘‘fear” or
‘‘disgust” emotions. As shown in Table 4, the number of ‘‘fear” and
‘‘disgust” sentiment labels are 50 and 68, respectively, which are
far less than the number of other sentiment labels, which will lead
to severe data imbalance problem. In the vast majority of cases, the
model is usually biased towards learning an unbiased representa-
tion of the majority class samples and treats the minority class
samples as outliers in the data. It will result in the model not being
adequately trained on the minority class sentiment, showing an
underfitting state. Furthermore, the speaker is always subtle in
expressing such emotions, and the model can easily identify them
as ‘‘neutral” or ‘‘sadness.” Since the model proposed in this paper
and other models did not consider the problem of imbalanced data
distribution, the model’s classification accuracy on the ‘‘fear” and
‘‘disgust” sentiment labels is relatively poor.

As shown in Table 2, the DSAGCN model has the best results on
the IEMOCAP dataset, with an average accuracy of 63.5% and an
average f1 value of 61.7%, which is 4% to 13% higher than the other
models. The effect of the AGHMN model is second, with the aver-
age accuracy and f1 value of 61.9% and 61.8%, respectively. Dia-
logueGCN, bc-LSTM, CMN, and DialogueRNN models have similar
effects but are slightly worse than the AGHMN model. CNN model
has the worst effect, and the average accuracy and f1 value are only
48.0% and 48.1%, respectively. As shown in Table 3, the DSAGCN
model has the best results on the MELD dataset, with an average
accuracy of 60.9% and an average f1 value of 58.7%, which is 2%
to 6% higher than the other models. The effect of AGHMN is second,
the average accuracy and f1 values are 58.8% and 57.0%, respec-
tively, which is slightly worse than the DSAGCN model. The other
performance; Acc = Accuracy; Average(w) = Weighted average.

IEMOCAP

Angry Excited Frustrated Average(w)

Acc F1 Acc F1 Acc F1 Acc F1

61.1 52.4 46.1 50.0 62.9 55.7 48.0 48.1
57.1 56.7 51.1 57.9 67.1 58.9 55.2 54.9
61.7 59.8 55.5 60.2 71.1 60.6 56.5 56.1
67.1 61.1 55.9 60.4 62.9 60.3 58.3 58.1
61.5 62.2 72.4 69.3 51.5 56.6 59.0 56.1
61.9 61.8 67.5 70.5 64.1 60.5 61.9 61.8
63.7 59.6 69.3 71.5 54.8 62.1 63.5 61.7

formance; Acc = Accuracy; Average(w) = Weighted average.

MELD

s Joy Disgust Anger Average(w)

Acc F1 Acc F1 Acc F1 Acc F1

.1 46.1 49.4 8.9 8.3 35.3 34.5 54.3 55.0

.1 51.6 51.3 4.3 5.2 36.7 38.4 57.5 55.9

.8 52.0 50.7 1.5 1.7 41.0 41.5 56.1 55.9

.8 44.7 44.2 6.5 6.7 39.0 36.5 54.9 54.7

.5 50.5 51.1 14.0 16.4 33.9 38.2 58.8 57.0

.1 52.5 49.6 7.4 8.7 52.2 46.9 60.9 58.7

Sadness Joy Disgust Anger

208 402 68 345



Table 5
Results of the ablation studies on the IEMOCAP dataset.

Dependency parsing Self-attention mechanism F1

� + 58.0
+ � 59.3
+ + 61.7
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models’ average accuracy and f1 values are closer to each other and
lower than the DSAGCN and AGHMN models.

There are significant differences in performance between
DSAGCN and other comparison algorithms, and we believe that
the most important reason is the different nature of the model.
Both DSAGCN and DialogueGCN attempted to model the depen-
dencies between speakers, while other comparison algorithms
considered only feature-encoding of the sequential context. This
is a major problem with the comparison algorithms because what
the spe-aker says has an essential impact on the listener. In addi-
tion, DSAGCN and DialogueGCN used graph convolution operations
to simulate the interaction process between speakers, which fur-
ther obtained the position-encoding information of the utterance
context. At the same time, AGHMN utilized the attention mecha-
nism to update the internal state of Bi-GRU to obtain the
position-encoding information of the utterance context. However,
other comparison models ignored the above problems, which is
an important reason for the poor performance of the comparison
models because the semantic information of the same word in dif-
ferent positions may vary significantly.

As for the performance difference between DSAGCN and Dia-
logueGCN, it is considered that part of the dependent syntactic
structure modeling causes it.DialogueGCN does not consider the
syntactic structural features of the sentence. However, the syntac-
tic structure can reveal dependencies between each sentence com-
ponent, benefiting the model to learn richer feature information.
And, words that highlight emotion often appear only locally in
the dialogue context, while Dialogue considers the detailed loca-
tion of the dialogue context, adding too much redundant informa-
tion. In contrast, DSAGCN models the sentence structure by
introducing a syntactic dependent analysis, which helps to
enhance the model’s ability to understand emotions. The self
attention mechanism is introduced to capture the most expressive
words in the dialogue context and obtain richer semantic
information.

As for the difference in performance between DSAGCN and
AGHMN, we believe that AGHMN ignored speaker information
and relied on syntactic structure modeling. Identifying which
speaker the context belongs to can provide the model with seman-
tic information about the speak-er’s emotional changes during the
interaction process to better classify the emotional labels.

The above experimental results show that the DSAGCN model
proposed in this paper outperforms the existing models on both
IEMOCAP and MELD datasets, syntactic dependency relationship,
attention mechanism, and the use of graph convolutional neural
network to model the dependencies between speakers can effec-
tively improve the emotion recognition ability of the model.
7. Discussion and conclusion

This paper presents the analysis of the predicted labels and
finds the model indistinguishable for similar emotion category
labels. In the confusion matrix, we found that our model misclassi-
fied some with ‘‘frustrated” or ‘‘happy” labels into ‘‘neutral” labels,
possibly due to the small differences between these emotional
labels. We believe that this ambiguity can be disambiguated by
increasing the dataset.

The innovation of our model is to introduce dependent syntactic
analysis and self-attention mechanisms, and investigate the effect
of these two parts on the model effect. We evaluate their impact on
the model performance by removing both parts.

As shown in Table 5, dependent syntactic structure modeling
has a significant improvement in the model understanding emo-
tional ability, and without this part, the model performance will
decrease by 3.7%. We believe that a full understanding of the
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dependencies between the various components contributes to bet-
ter semantic information.

Self-attention mechanisms also have effects on model perfor-
mance, but less than context-dependent syntactic analysis. Its
absence causes a 2.4% drop in performance. We argue that because
the self-attention mechanism can capture the most expressive
words in a sentence.

In conclusion, in this paper, a network structure based on a
graph convolutional neural network and dependent syntactic anal-
ysis for categorical recognition of emotions. Compared with other
comparison algorithms, the method presented here considers each
input discourse for the degree of similarity between word-to-word,
which provides better semantic vector representation and intro-
duces dependent syntactic structure analysis that enhances the
mo-del’s ability to comprehend discourse emotion. On the IEMO-
CAP and MELD data sets, the average accuracy of DSAGCN is
63.5% and 60.9%, respectively, and the f1 values are 61.7% and
58.7%, respectively. The average accuracy and f1 values of DSAGCN
outperform existing models, especially for emotions such as ‘‘hap-
piness” and ‘‘anger”. Therefore, we believe that DSAGCN can be
widely used in emotion analysis, such as human–computer dia-
logue systems and opinion mining. In future research work, we
consider extracting to obtain a better utterance feature representa-
tion by transformer, and we also think of introducing self-attention
mechanisms within the GCN to improve model performance. In
addition, due to the serious problem of class imbalance in the
MELD dataset, we will also make full use of the data imbalance
solution in future research work to improve the classification accu-
racy of the model on the minority class.
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