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 A B S T R A C T

Diffusion models have rapidly emerged as a new paradigm in generative modeling. Therefore, we aim to 
provide a comprehensive review of graph diffusion models. We introduce various forms of diffusion models 
(i.e., DDPMs, SDEs, and SGMs), their working mechanisms, and how they can be extended to graph data. 
Specifically, graph diffusion models follow the modeling process of diffusion models, implement the diffusion 
process in graph data, and gradually denoise and generate new graph structures through reverse steps. The 
application of graph diffusion models is mainly focused on the application scenarios of generating molecules 
and proteins, but graph diffusion models also show potential in recommendation systems and other fields. 
We explore the performance and advantages of graph diffusion models in these specific applications, such as 
using them to discover new drugs and predict protein structures. Furthermore, we also discuss the problem 
of evaluating graph diffusion models and their existing challenges. Due to the complexity and diversity of 
graph data, the authenticity of generated samples is an important and challenging task. We analyze their 
limitations and propose potential improvement directions to better measure the effectiveness of graph diffusion 
models. The summary of existing methods mentioned is in our Github: https://github.com/yuntaoshou/Graph-
Diffusion-Models.
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1. Introduction

In the past two years, diffusion methods [1–3] in image generation 
have received widespread attention in graph generation, resulting in 
a significant increase in research activities on graph diffusion models 
and the emergence of more and more new methods and technolo-
gies [4–18]. As shown in Fig.  1(a), Diffusion models in the image 
generation generate data by gradually applying noise and denoising 
processes [19]. The basic idea is to gradually transform data into 
pure noise through multiple steps of noise, and then gradually denoise 
through the reverse process to restore meaningful data. As shown 
in Fig.  1(b), Diffusion models [20–23] for graph generation follow a 
similar paradigm. The process involves adding noise to a graph’s struc-
ture and features over several steps (forward process) and learning to 
denoise noisy graphs back to their original form (reverse process) [24]. 
Although graph diffusion models have developed rapidly, they have 
also caused researchers, especially new entrants, to face the problem 
of information overload. New researchers may find it difficult to screen 
out the most influential work and face challenges in understanding and 
applying new methods. To help researchers understand and distinguish 
different methods, there are several survey papers for graph diffusion 
generation [25,26]. However, most of them focus on the description of 
the current research status and lack mathematical theoretical analysis 
of subsequent research progress.

Therefore, based on the above analysis, our review is the first to 
comprehensively review the current status of graph diffusion model 
research, covering the current main research directions and the latest 
developments. As shown in Table  1, our review divides the graph gen-
eration methods into four categories, i.e., traditional graph generation 
methods, which include four subcategories, i.e., autoregressive models 
(AR) [27], normalizing flows [28], VAE [29], and GAN [30], and graph 
diffusion methods, which include three subcategories, i.e., DDPMs [20], 
SGMs [19,31], and SDEs [32,33]. We discuss the theoretical basis, prac-
tical applications, advantages, and disadvantages of different methods 
so that readers can better understand the applicable scenarios and lim-
itations of each method. We will focus on highlighting the key progress 
and breakthroughs in the field of graph diffusion models including 
theoretical innovations, improvements in empirical performance, and 
important results in practical applications. We hope that this review can 
provide a useful point for researchers in the field of graph generation, 
allowing them to quickly understand the basic concepts, latest progress, 
and research trends of graph diffusion models. Meanwhile, we also 
hope to provide experienced researchers with a broader perspective to 
help them identify potential challenges.

The contributions of this paper are summarized as follows:

• Comprehensive Review: We provide the most comprehensive 
review of traditional models (i.e., AR, normalizing flows, VAEs, 
2 
and GANs) and graph diffusion models (i.e., DDPMs, SGMs, and 
SDEs) for graph generation.
Insightful Analysis. For each modeling approach, we provide a 
representative model and give a mathematical theoretical deriva-
tion, which can guide readers to choose an appropriate baseline 
model for their research.

• Abundant Resources: We have collected relevant resources on 
graph generation, including SOTA models and publicly available 
datasets on Github.1 This paper can serve as a practical guide for 
learning and developing different graph generation algorithms.

• Future Directions: We analyze the limitations of existing graph 
diffusion methods and propose possible future research directions 
from multiple aspects, including training objectives, scalability 
from 2D to 3D graph generation, and data distribution.

The paper is organized as follows: Section 2 summarizes traditional 
graph generation methods. Section 3 illustrates the background, def-
initions for graph diffusion generation, and divides graph diffusion 
generation methods into three categories, and gives the mathemati-
cal theory. Section 4 summarizes some of the publicly available and 
popular datasets for graph generation tasks, and Section 5 gives the 
performance of different algorithms. Section 6 discusses the great value 
and broad prospects of graph diffusion models in practical applications. 
Section 7 illustrates the future research directions and challenges of 
graph diffusion models. Finally, we conclude the work.

2. Traditional graph generation methods

In this section, we briefly review traditional graph generation meth-
ods. We roughly divide the existing traditional graph generation meth-
ods into four categories, i.e., autoregressive models (AR) [27], normal-
izing flows [28], variational autoencoders (VAE) [29], and generative 
adversarial networks (GAN) [30].

2.1. Autoregressive models

The basic idea of AR [27] is to decompose the graph generation 
process into a series of decisions, each step is based on the previous 
decision. First, AR needs to determine the order of generating nodes, 
which can be a random order, the order of node degrees, or other 
heuristic methods. Then generate nodes one by one in the determined 
order. The generation of each node can be based on the information 
of the previously generated nodes. For each generated node, decide in 
turn whether there is an edge between it and all previous nodes. This 

1 https://github.com/yuntaoshou/Graph-Diffusion-Models-A-
Comprehensive-Survey-of-Methods-and-Applications

https://github.com/yuntaoshou/Graph-Diffusion-Models-A-Comprehensive-Survey-of-Methods-and-Applications
https://github.com/yuntaoshou/Graph-Diffusion-Models-A-Comprehensive-Survey-of-Methods-and-Applications
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Table 1
We summarize variants of traditional graph generation methods and variants of diffusion models.
 Categories Year Methods

 

Traditional Methods

Auto-regressive

2018 GraphRNN [34]  
 2019 MolecularRNN [35]  
 2020 ES-GraphRNN [36], GraphGen [37]  
 2021 GraphGen-Redux [38]  
 

VAE

2018 DCRM [39], JT-VAE [40]  
 2019 ConGen [41], D-VAE [42]  
 2020 IMGDL [43], PCVAE [44], NECD [45], CBO-VAE [46], NeVAE [47], DGVAR [48]  
 2021 DLM [49], COVAE [50], DDGSN [51]  
 2022 IMGMC [52], DSG [53]  
 

Normalizing Flows
2019 GraphNVP [54]  

 2020 MoFlow [55]  
 2021 GraphDF [56]  
 

GAN

2018 LMGT [57]  
 2019 CLGAN [58]  
 2020 Mol-CycleGAN [59], TSGG-GAN [60]  
 2021 ALMGIG [61]  
 

Diffusion Models

DDPMs

2022 EDM [4], GeoDiff [5], DiffBP [62], DiffSBDD [63], DiffAb [64], Anand [65], PROTSEED [66]  
 2023 MDM [67], Digress [68], TargetDiff [69], DIFFDOCK [70], SILVR [71], SMCDiff [72], HierDiff [73] 
 2023 RINGER [74], GeoLDM [75], Diffmol [76], DecompDiff [77], HouseDiffusion [78], DiffSTG [79]  
 2023 EDGE [24], EDGE++ [80], MCRDiff [81], SaGess [82], DIFUSCO [83]  
 2024 MDM, MiDi [84], GCDM [85], PMDM [86], TSDiff [87]  
 2024 DiffLinker [6], D3FG [88], GradeIF [89], GFMDiff [90], MUDiff [91], Pard [92]  
 2024 AbDiffuser [93], SPDiff [94], LatentDiff [95], DiffCSP [96], DiffCSP++ [97], HypDiff [98]  
 2024 GemsDiff [99], CrysDiff [100], CHP-MOFassemble [101], NAP [102], DDM [103], ILE [104]  
 2025 GBD [105], DiffGraph [106]  
 

SGMs

2020 EDP-GNN [107]  
 2021 ConfGF [108], ColfNet [109], DGSM [110], ProteinSGM [111]  
 2022 DiffPB [112], SLD [113]  
 2023 DiffusionCG [114], DruM [115]  
 2024 VoxMol [116]  
 

SDEs

2022 EEDSDE [117], GraphGDP [118], NVDiff [119]  
 2023 CDGS [120], DiffMD [121], EigenFold [122], JODO [123], MuDM [124]  
 2023 GSDM [125], DiffusionNAG [126], Diff-POI [127]  
 2024 NeuralPLexer [128], SD [129], DiffBindFR [130], HGDM [131], Graphhusion [9], ProGDM [132]  
Fig. 1. The workflow of the diffusion model on images and graphs. The 
arrows on the right indicate the direction of the diffusion process, showing 
how noise is gradually injected into the real data to simulate the transition 
from order to disorder. In this stage, the real data is gradually added with 
noise through multiple iterations and finally becomes a pure noise distribution. 
Guided by the arrows on the left, the sampling stage of generating samples is 
shown. This stage reverses the previous diffusion process, starting from pure 
noise, gradually removing noise through multiple iterations and regenerating 
samples. This process can be seen as a transition from disorder to order, 
gradually recovering the generated samples close to the real data through 
multiple iterations and calculations.
3 
decision can be made through conditional probability which is calcu-
lated based on the part of the graph that has been generated. In existing 
work, GraphRNN [34] is an autoregressive model based on RNN, which 
models the graph generation process as a sequence generation process 
of nodes and edges, and uses RNN to capture the structural information. 
ESGraphRNN [36] models the graph generation process as an edge-
by-edge prediction process. ESGraphRNN is trained by maximizing the 
likelihood estimate, and the model learns to maximize the probability 
of generating the graph. The teacher forcing strategy is used in the 
training process, that is, the real previous edge information is used at 
each step of generation. Autoregressive methods are usually suitable 
for generating graph structures with fixed order and dependencies. 
For graphs without obvious order or irregular structure, the effect of 
autoregressive methods may not be ideal [133].

2.2. Normalizing flows

Normalizing Flows [28] is a technique that gradually transforms 
a simple distribution (usually a standard normal distribution) into a 
complex distribution. It maps simple distribution samples into complex 
distributions through a series of reversible transformations. In graph 
generation tasks, Normalizing Flows maps simple prior distributions 
(such as Gaussian distributions) into graph structure distributions th-
rough a series of reversible transformations, thereby achieving graph 
generation. For example, GraphNVP [54] is a model that applies Nor-
malizing Flows to molecular graph generation. Through a series of re-
versible transformations, simple distributions are mapped into complex 
distributions of molecular graphs, thereby achieving efficient molec-
ular graph generation. MoFlow [55] proposes a new reversible flow 
model for graph generation and optimization. Molecular generation is 
achieved by mapping the attributes of molecular graphs into latent 
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space and modeling them through flow models. The training of Nor-
malizing Flows involves the optimization of log-likelihood estimation, 
and the training process may be unstable, especially when dealing with 
high-dimensional data, which may cause problems such as numerical 
instability and gradient vanishing [56,134].

2.3. Variational autoencoders

In graph generation tasks, VAE [29,135] encodes the structural 
information of the graph into the latent space and then decodes it 
to generate a new graph structure. For example, GraphVAE [136] 
uses the variational autoencoder framework to combine the node and 
edge attribute information of the graph to achieve small-scale graph 
generation. MolVAE [137] is a variational autoencoder model which 
encodes the structural information of the molecular graph into the 
latent space and generates a new molecular graph through the decoder, 
the molecular structure is effectively generated. To achieve sampling 
from the latent space and gradient transfer, MolVAE uses the repa-
rameterization technique. By decomposing the sampling process of the 
latent variables into deterministic variables and random noise, effective 
gradient transfer can be achieved. The reconstruction quality of VAE 
is usually lower than that of other generative models, e.g., GAN [30]. 
This is because VAE needs to balance the reconstruction loss and KL 
divergence regularization during training, resulting in the generated 
graph quality may not be high [42,47].

2.4. Generative adversarial networks

GAN [30] is consisting of a generator and a discriminator. The 
generator samples from a noise vector (e.g., Gaussian distribution or 
uniform distribution) to generate the node and edge structures of the 
graph. The discriminator takes the real graph and the generated graph 
as input and outputs a probability, indicating the probability that 
the input graph is the real graph. For example, NetGAN [138] uses 
random walks to generate sequences, which are then used to generate 
graphs. The generator generates the local structure of the graph through 
random walks, and the discriminator distinguishes between the real and 
generated random walk sequences. MolGAN [139] is a GAN model for 
molecular graph generation. The generator generates the node and edge 
properties of the molecular graph, and the discriminator determines 
whether the generated molecular graph is similar to the real molecular 
graph. In addition, MolGAN also uses a reward network to optimize the 
generator for specific goals (e.g., drug activity). The training process of 
GAN is prone to instability. Imbalanced training of the generator and 
the discriminator may lead to poor generation quality or mode collapse, 
i.e., the graphs generated by the generator lack diversity [41].

3. Background on diffusion models

Diffusion models are a type of generative model that destroys the 
data distribution by gradually adding noise, and then restores the data 
distribution through a reverse denoising process. Diffusion models have 
received widespread attention in areas such as image generation and 
text generation. There are three main subtypes of diffusion models: 
DDPM, SGMs, and SDEs.

3.1. Denoising diffusion probabilistic models (DDPMs)

DDPM [20] is a type of generative model that corrupts data by 
gradually adding noise, and then reconstructs the data by gradually 
denoising it through a learning reverse process. In DDPM, the forward 
process is a fixed Markov chain that starts with the original data and 
gradually adds Gaussian noise until it becomes pure noise.

Forward process. The forward process aims to transform the input 
data into a standard Gaussian distribution by gradually adding Gaus-
sian noise [67,84]. Specifically, for a data distribution 𝑚 ∼ 𝑞(𝑚 ), the 
0 0

4 
forward process is a Markov chain defined between data 𝑚0 and 𝑚𝑇 , 
which can be formally defined as: 

𝑞(𝑚1∶𝑇 |𝑚0) ∶=
𝑇
∏

𝑡=1
𝑞(𝑚𝑡|𝑚𝑡−1),

𝑞(𝑚𝑡|𝑚𝑡−1) ∶=  (𝑚𝑡;
√

1 − 𝛽𝑡𝑚𝑡−1, 𝛽𝑡𝐼)

(1)

where 𝛽 is the variance of the noise added at each time step. Assume 
𝛼𝑡 ∶= 1 − 𝛽𝑡 and 𝛼̄𝑡 ∶=

∏𝑡
𝑠=0 𝛼𝑠, we can get: 

𝑞(𝑚𝑡|𝑚0) ∶=  (𝑚𝑡;
√

𝛼̄𝑡𝑚0, (1 − 𝛼̄𝑡)𝐼) (2)

Reverse process. The reverse process uses the trained network to 
predict the noise added in the forward process [62,85]. Specifically, 
first, an initial noise sample 𝑚𝑇  is sampled from the distribution 𝑝(𝑇 ). 
Next, the noise added is gradually removed using the trained neural 
network. Through the above steps, the network is trained to restore 
the sample 𝑚𝑡 to 𝑚𝑡−1. 
𝑝𝜃(𝑚𝑡−1|𝑚𝑡) =  (𝑚𝑡−1;𝜇𝜃(𝑚𝑡, 𝑡), 𝛴𝜃(𝑚𝑡, 𝑡)) (3)

where 𝜇𝜃(𝑚𝑡, 𝑡) is the mean function, which calculates the mean from 
𝑚𝑡 recovered to 𝑚𝑡−1. 𝛴𝜃(𝑚𝑡, 𝑡) is the variance function of the neural 
network output, which is used to calculate the variance from 𝑚𝑡 to 𝑚𝑡−1. 
By minimizing the reconstruction error from 𝑚𝑇  to 𝑚0, we can optimize 
the neural network to generate new samples consistent with the true 
data distribution 𝑞(𝑚0).

The training objective is to maximize 𝑝𝜃(𝑚0), which can be achieved 
by minimizing its negative log-likelihood [63,70]. The variational 
lower bound can be decomposed into a series of KL divergence terms: 
(𝜃) = E𝑞

[

− log 𝑝𝜃(𝑚0|𝑚1)

+
𝑇
∑

𝑡=2
KL(𝑞(𝑚𝑡−1|𝑚𝑡, 𝑚0) ∥ 𝑝𝜃(𝑚𝑡−1|𝑚𝑡))

+KL(𝑞(𝑚𝑇 |𝑚0) ∥ 𝑝(𝑚𝑇 ))
]

(4)

In practice, the above objectives are often simplified. A common 
simplified objective is to directly optimize the reconstruction error 
(i.e., the prediction error of the denoising process), which can be 
achieved by rewriting the KL divergence term and simplifying the 
variance assumption [1,80]. Therefore, the final optimization objective 
can be formally defined as follows:
(𝜃) = E𝑞(𝑚𝑡|𝑚0)

[

∥ 𝜖 − 𝜖𝜃(𝑚𝑡, 𝑡) ∥2
]

(5)

where 𝜖 is the added Gaussian noise and 𝜖𝜃 is the noise predicted by 
the neural network.

DDPMs [20] for graph generation follow a similar paradigm. The 
process involves adding noise to a graph’s structure and features over 
several steps (forward process) and learning to denoise noisy graphs 
back to their original form (reverse process). This probabilistic frame-
work allows for the generation of complex graph structures with high 
fidelity. Next we summarize several representative works on graph 
generation using DDPMs.

3.1.1. Equivariant diffusion model (EDM)
As shown in Fig.  2, EDM [4] is a generative model specifically 

designed to preserve symmetries or invariants in the data (e.g., rota-
tional or translational invariance). EDM is particularly useful in the 
molecular graph generation, where the properties of the generated 
structures must remain invariant under symmetry transformations. We 
define the coordinate 𝑚𝑖 with atomic features ℎ𝑖 as an equivariant 
diffusion process that adds noise to the data and preserves symmetry. 
Assume a set of points (𝑚𝑖, ℎ𝑖) with spatial location information and 
feature information, where each node is associated with its coordinate 
representation 𝑚𝑖 ∈ R3 and attribute vector ℎ𝑖 ∈ R𝑑 . The forward 
equivariant noise process for the latent feature vectors 𝑧𝑡 = [𝑧𝑚𝑡 , 𝑧

ℎ
𝑡 ] is 

defined as follows: 
𝑞(𝒛 |𝒎,𝒉) =  (𝒛 |𝛼 [𝒎,𝒉], 𝜎2𝑰) (6)
𝑡 𝑚ℎ 𝑡 𝑡 𝑡
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Fig. 2. An example of the overall process of EDM [4]. Through a step-by-
step denoising process, EDM transforms a normally distributed random point 
set into a molecular structure with specific 3D coordinates and atomic types. 
The rotational isovariance ensures the direction independence of the generated 
molecules, so that the generated molecules still maintain the stability of their 
structure and generation probability when rotating in space.

where 𝑚ℎ is the product of the noise coordinate distribution 𝑚 and 
the noise feature distribution ℎ. ℎ is defined as follows: 
𝑚(𝒛

(𝑚)
𝑡 |𝛼𝑡𝒎, 𝜎2𝑡 𝑰) ⋅ (𝒛(ℎ)𝑡 |𝛼𝑡𝒉, 𝜎2𝑡 𝑰) (7)

To denoise during the generation process, we define a denoising 
process based on the noise posterior distribution 𝑞(𝑧𝑠|𝑚, ℎ, 𝑧𝑡), where 
the data variables 𝑚, ℎ are replaced by the approximation 𝑚̂, ℎ̂ of the 
neural network. The core idea of the denoising process is to estimate 
the parameters in the noise posterior distribution, thereby effectively 
removing the noise and restoring the original data [1,2]. Specifically, 
the denoising process is defined as follows: 
𝑝(𝒛𝑠|𝒛𝑡) = 𝑚ℎ(𝒛𝑠|𝝁𝑡→𝑠([𝒎̂, 𝒉̂], 𝒛𝑡), 𝜎2𝑡→𝑠𝑰) (8)

The generative denoising process relies on the intermediate variable 
𝑧𝑡, and the output predictions of the neural network 𝜙 to gradually 
remove the noise. In existing diffusion models [62,85,86], it is common 
to use noise parameterization to obtain the final predictions 𝑚̂ and ℎ̂. 
Specifically, the model does not directly output these predictions, but 
outputs parameter estimates related to the noise. From the parameter 
estimates, we can infer the actual predictions. In other words, the 
network 𝜙 does not directly predict the final form of the data, but 
outputs noise estimates 𝜖 = [𝜖(𝑚), 𝜖(ℎ)]. This includes an estimate of the 
noise of the input data at the current time step 𝑡. The calculation process 
of 𝑚̂, ℎ̂ is as follows: 
[𝒎̂, 𝒉̂] = 𝒛𝑡∕𝛼𝑡 − 𝝐̂𝑡 ⋅ 𝜎𝑡∕𝛼𝑡 (9)

The final optimization objective can be formally defined as follows:

𝑡 = E𝝐𝑡∼𝑚ℎ(0,𝑰)
[1
2
𝑤(𝑡) ∥ 𝝐𝑡 − 𝝐̂𝑡 ∥2

]

(10)

where 𝑤(𝑡) = (1 − 𝛼𝑡−1
1−𝛼𝑡−1

)∕ 𝛼𝑡
1−𝛼𝑡

 and 𝝐̂𝑡 = 𝜙(𝒛𝑡, 𝑡).

3.1.2. Discrete denoising diffusion (DiGress)
DiGress [68] is mainly used to generate discrete structured data 

(e.g., molecular graphs, social networks, etc.) The main idea of Di-
Gress is to use the diffusion process to decompose the complex graph 
generation task into multiple simple step-by-step generation steps. By 
gradually removing noise during the graph generation process, the 
generated graph structure is ensured to be valid and have the target 
5 
attributes [64]. Similar to the diffusion model for images, DiGress 
performs diffusion on each node and edge feature separately. For node 
type  and edge type  , the transition probabilities are defined as 
[𝑷 𝑡 ]𝑖𝑗 = 𝑞(𝑚𝑡 = 𝑗|𝑚𝑡−1 = 𝑖) and [𝑷 𝑡 ]𝑖𝑗 = 𝑞(𝑒𝑡 = 𝑗|𝑒𝑡−1 = 𝑖). At each 
time step 𝑡, we form 𝐺𝑡 = ( 𝑡,𝑡) by adding noise to the nodes and 
edges. DiGress samples from the categorical distribution defined as: 
𝑞(𝑡|𝑡−1) = ( 𝑡−1𝑷 𝑡 ,

𝑡−1𝑷 𝑡 )

𝑞(𝑡|) = ( 𝑷̄ 𝑡 ,𝑷̄
𝑡
 )

(11)

where 𝑷 𝑡 = {𝑷 1
 ...𝑷

𝑡
} and 𝑷̄

𝑡
 = {𝑷 1

 ...𝑷
𝑡
}. Then DiGress inputs 

the noisy graph 𝑡 = ( 𝑡,𝑡) into the denoising neural network 𝜙𝜃 , 
where  𝑡 represents the noise node feature, and 𝑡 represents the 
noise edge feature. The neural network 𝜙𝜃 predicts the clean node and 
edge features (𝑝 , 𝑝 ) through calculation. To make the predicted value 
(𝑝 , 𝑝 ) closer to the true value ( ,), DiGress uses the cross-entropy 
(CE) loss to measure the difference as follows: 
𝑙(𝑝̂,) =

∑

1≤𝑖≤𝑛
CE(𝑚𝑖, 𝑝̂𝑖 ) + 𝜆

∑

1≤𝑖,𝑗≤𝑛
CE(𝑒𝑖𝑗 , 𝑝̂𝐸𝑖𝑗 ) (12)

where 𝜆 ∈ R+ is a hyperparameters. When the denoising network 𝜙𝜃
is trained, DiGress uses it to sample new graphs. Specifically, DiGress 
models the distribution of nodes and edges as follows: 
𝑝𝜃(𝑡−1|𝑡) =

∏

1≤𝑖≤𝑛
𝑝𝜃(𝑚𝑡−1𝑖 |𝑡)

∏

1≤𝑖,𝑗≤𝑛
𝑝𝜃(𝑒𝑡−1𝑖𝑗 |𝑡) (13)

To calculate each term, DiGress marginalizes these probability dis-
tributions. Specifically, for each node and edge feature, DiGress calcu-
lates the edge probability under all possible states as follows: 
𝑝𝜃(𝑚𝑡−1𝑖 |𝑡) =

∑

𝑚∈
𝑝𝜃(𝑥𝑡−1𝑖 ∣ 𝑚𝑖 = 𝑚,𝑡)𝑝̂𝑖 (𝑚) (14)

where all possible states of 𝑡−1 are combined with the current pre-
dicted probability 𝑝̂ and summed to obtain the marginalized probabil-
ity distribution, and 

𝑝𝜃(𝑚𝑡−1𝑖 ∣ 𝑡) =

{

𝑞(𝑚𝑡−1𝑖 ∣ 𝑚𝑖 = 𝑚,𝑚𝑡𝑖) if 𝑞(𝑚𝑡𝑖|𝑚𝑖 = 𝑚) > 0
0 otherwise.

(15)

 Similarly, 𝑝𝜃(𝑒𝑡−1𝑖𝑗 |𝑒𝑡𝑖𝑗 ) =
∑

𝑒∈ 𝑝𝜃(𝑒
𝑡−1
𝑖𝑗 ∣ 𝑒𝑖𝑗 = 𝑒, 𝑒𝑡𝑖𝑗 )𝑝̂


𝑖𝑗 (𝑒).

3.1.3. Diffusion with discrete state spaces (DDSS)
DDSS [140] focuses on the generation process of simple graphs. 

Through the diffusion model represented by discrete processes, it can 
effectively simulate the generation process of graph structures and 
provide high-quality generated samples in various applications [65,
87]. The core of DDSS lies in the effective combination of forward 
and reverse processes, which enables the generation model to not 
only add noise, but also effectively remove noise, thereby generating 
high-quality samples that meet the target distribution.

In the graph generation model, DDSS first defines a one-hot en-
coded row vector 𝑎𝑡𝑖𝑗 for element (𝑖, 𝑗) in the adjacency matrix 𝛩𝑡. 
This vector belongs to the set {0, 1}2. The initial adjacency matrix 
𝛩0 is a sample directly sampled, and 𝛩𝑇  represents an Erdős–Rényi 
random graph [141]. The forward process implements the stepwise 
noise addition process from 𝐴0 to 𝐴𝑇  by repeatedly multiplying the type 
row vector 𝑞(𝒂𝑖𝑗𝑡 |𝒂𝑖𝑗𝑡 ) = Cat(𝒂𝑖𝑗𝑡 |𝑝 = 𝒂𝑖𝑗𝑡−1𝑸𝑡) of each adjacency matrix 
element with the doubly random matrix 𝑄𝑡. 𝐶𝑎𝑡 represents a categorical 
distribution, and its parameter 𝑝 is determined by the product of the 
one-hot encoded row vector 𝑎𝑡−1𝑖𝑗  of the previous time step and the 
matrix 𝑄𝑡. In the forward process, the operation of each edge or non-
edge 𝑖 ≠ 𝑗 is independent, which means that we can process these 
elements in parallel, thereby improving computational efficiency. The 
matrix 𝑄𝑡 is a doubly random matrix with a dimension of R2×2, which 
is used to model the transition probability of adjacency matrix elements 
between different time steps. Specifically, 𝑄𝑡 is defined as: 

𝑸𝑡 =
[

1 − 𝛿𝑡 𝛿𝑡
]

(16)

𝛿𝑡 1 − 𝛿𝑡
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where 𝛿𝑡 represents the invariant probability of the edge state. An 
important advantage of Eq. (16) is that it can be sampled directly of 
the diffusion process without relying on the calculation of any previous 
time step. Formally, 𝛿 can be replaced by 𝛿𝑡 = 1

2 −
1
2
∏

𝑖<𝑡(1−2𝛿𝑖). DDSS 
limits the probability of 𝛿𝑡 to vary from 0 (undisturbed samples) to 
0.5 (noise), ensuring that the diffusion process retains more original 
information in the initial stage and tends to complete randomness in 
the final stage. In particular, the noise is sampled in i.i.d. manner on 
all edges.

Since the forward process is a Markov chain [20], the current state 
𝜣𝑡 depends only on the previous state 𝜣𝑡−1 and has nothing to do with 
earlier states. Therefore, we can denote the transition probability of 
the forward process as 𝑞(𝜣𝑡|𝜣𝑡−1). According to Bayes’ formula, we can 
derive 𝑞(𝜣𝑡−1|𝜣𝑡,𝜣0) as follows: 

𝑞(𝜣𝑡−1|𝜣𝑡,𝜣0) = 𝑞(𝜣𝑡|𝜣𝑡−1)
𝑞(𝜣𝑡−1|𝜣0)
𝑞(𝜣𝑡|𝜣0)

(17)

Diffusion models often learn data distributions efficiently by min-
imizing a variational upper bound. Specifically, the variational upper 
bound is formally defined as follows: 

vb(𝜣0) ∶= E𝑞(𝜣0)

⎡

⎢

⎢

⎢

⎣

𝐷𝐾𝐿(𝑞(𝜣𝑇 |𝜣0) ∥ 𝑝𝜃(𝜣𝑇 ))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑇

⎤

⎥

⎥

⎥

⎦

+
𝑇
∑

𝑡=1
E𝑞(𝜣 𝑡 |𝜣0)𝐷𝐾𝐿(𝑞(𝜣 𝑡−1|𝜣 𝑡,𝜣0) ∥ 𝑝𝜃(𝜣 𝑡−1|𝜣 𝑡))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑡

−E𝑞(𝜣1 |𝜣0) log(𝑝𝜃(𝜣0|𝜣1))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

0

(18)

Many DDPMs implementations have found that using alternative 
loss functions can bring significant benefits. For example, [20] derived 
a simplified loss function that simplifies loss calculation by reweighting 
the terms of ELBO, which can effectively reduce the complexity of 
the training process while maintaining the generation quality of the 
model. [1,2] proposed the use of hybrid loss methods, which bal-
ances the performance of the model in different tasks by combining 
different types of loss functions. DDSS replaces the original 𝐾𝐿 term 
𝑡 by parameterizing 𝑝𝜃(𝛩0|𝛩𝑡). Specifically, 𝑡 is replaced by 𝑡 =
− log(𝑝𝜃(𝛩0|𝛩𝑡)). In addition, the reweighting term 1− 2 ⋅ 𝛽𝑡 +

1
𝑇  assigns 

more linear importance to samples with less noise, which can learn the 
essential characteristics when processing samples with less noise. The 
simplified loss definition is as follows: 

s = −E𝑞(𝜣0)

𝑇
∑

𝑡=1

(

1 − 2 ⋅ 𝛽𝑡 +
1
𝑇

)

⋅ E𝑞(𝜣 𝑡 |𝜣0) log 𝑝𝜃
(

𝜣0 ∣ 𝜣 𝑡
)

(19)

3.2. Score-based generative models (SGMs)

SGMs [19,31] use score matching techniques to generate high-
quality data. The core idea of SGM is to estimate the score function 
of data distribution through score matching techniques. The score 
function can reveal the trend and direction of data changes at specific 
points, effectively guiding the generation process and gradually gener-
ating samples that conform to the data distribution from noise [113].

First, SGMs considers the forward direction of the diffusion process, 
i.e., starting from the initial state 𝑚(0) ∼ 𝑝0, the system gradually 
evolves to 𝑚(𝑇 ) ∼ 𝑝𝑇  over time [142]. However, according to Ander-
son’s research, if we start from the final state 𝑚(𝑇 ) ∼ 𝑝𝑇  and evolve 
through the reverse time process, we can successfully trace back to 
the initial state 𝑚(0) ∼ 𝑝0 of the system. This means that its time is 
backward. Specifically, this reverse diffusion process can be described 
by a reverse-time SDE, which enables us to describe how the system 
evolves from 𝑚(𝑇 ) ∼ 𝑝𝑇  to 𝑚(0) ∼ 𝑝0 in reverse: 

d𝒎 = [𝒇 (𝒎, 𝑡) − 𝑔(𝑡)2∇ log 𝑝 (𝒎)]d𝑡 + 𝑔(𝑡)d𝒘̄ (20)
𝒎 𝑡

6 
In the reverse time process, the Wiener process 𝑤 describes the random 
behavior of the system in the reverse time direction, which is similar to 
the standard Brownian motion, except that time flows backwards. The 
negative time step 𝑑𝑡 represents the small step forward in time, thus 
ensuring that we can gradually reverse the evolution of the system. 
After knowing the score function ∇𝑚 log 𝑝𝑡(𝑚) at each time point 𝑡, 
we can reconstruct the early state of the system through the inverse 
diffusion equation. The score function provides us with information 
on how to adjust 𝑚 at each time point, making the reverse simulation 
feasible.

The core idea of score matching is to approximate the gradient 
of the data distribution through a network [32,107]. To estimate 
∇𝑚 log 𝑝𝑡(𝑚), SGMs generalize the score matching method to the time 
domain and introduce a time-dependent score-based network, which 
can capture the dynamic changes of data distribution in time. Specifi-
cally, the optimization objective is defined as follows: 
𝝓∗ = argmin

𝝓
E𝑡

{

𝛾(𝑡)E𝒎(0)E𝒎(𝑡)|𝒎(0)
[

∥ 𝒔𝝓(𝒎(𝑡), 𝑡)

−∇𝒎(𝑡) log 𝑝0𝑡(𝒎(𝑡) ∣ 𝒎(0)) ∥22
]}

(21)

where 𝛾 ∶ [0, 𝑇 ] ↦ R>0 is a positive weight function, which can balance 
the score functions at different time steps during training, allowing to 
learn the dynamic changes of data distribution more stably. The data 
point 𝑚(𝑡) at time 𝑡 comes from the conditional distribution 𝑝0𝑡(𝒎(𝑡) ∣
𝒎(0)).

SGMs follows the same paradigm as image generation in graph 
generation tasks. First, the distribution of the graph data to be gen-
erated is clarified, and the goal is to generate new graphs from this 
data distribution [19,32,107]. To utilize the score matching method, 
the original graph data is added with different degrees of noise to 
construct a series of noisy graphs. Next, a scoring network is trained 
to estimate the gradient of the graph data at each noise level. The goal 
of the scoring function is to guide how to restore the original graph 
from the noisy graph. Once the scoring network is trained, it can be 
restored to the form of the original graph by gradually denoising. Next 
we summarize several representative works on graph generation using 
SGMs.

3.2.1. Graph diffusion via SDE systems (GDSS)
GDSS [32] proposes a new score-based graph generation model 

with a continuous time framework, which successfully models the 
joint distribution of graph via the graph diffusion process and SDE 
system. The customized score matching target and the new SDE solver 
enable the model to effectively sample and generate new graphs during 
the reverse diffusion process. The results show that GDSS not only 
generates graphs close to the training distribution, but also maintains 
the chemical valence rules in the chemical molecule generation task, 
demonstrating its potential and effectiveness in modeling complex 
graph data. As shown in Fig.  3, GDSS (green) can effectively capture 
the potential relationship between features and structures through 
its diffusion process by modeling dependencies between components, 
thereby generating new samples. GDSS-seq (red) adopts a step-by-step 
generation method, that is, generating features  and adjacency matrix 
𝜣 in sequence. The EDP-GNN [107] framework only generates the 
adjacency matrix 𝛩, and the node features  are directly sampled from 
the training data. Different from the continuous-time diffusion process 
of GDSS and GDSS-seq, the node features in EDP-GNN are statically 
sampled.

Forward Graph Diffusion. Forward Graph Diffusion is a process of 
describing the propagation of information in a graph by using a SDE 
system defined on the graph structure [117]. The diffusion process can 
capture the complex relationships and topological structures. Specifi-
cally, forward graph diffusion can be represented by the following SDE 
system: 
d 𝑡 = 𝒇 ( 𝑡, 𝑡)d𝑡 + 𝜎 ,𝑡d


𝑡

𝐴 𝛩 (22)

d𝜣𝑡 = 𝒇 (𝜣𝑡, 𝑡)d𝑡 + 𝜎𝛩,𝑡d𝑡
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Fig. 3. Schematic diagram of the overall process of GDSS. The forward 
diffusion process involves adding noise to the graph data in continuous time, 
effectively perturbing the structure and node features of the graph. The 
reverse process reconstructs the original graph data by gradually removing 
the noise [32].

where  𝑡 is the feature representation at time 𝑡. 𝒇 ( 𝑡, 𝑡) ∶ R𝑛×𝑛 ↦

R𝑛×𝑛 is the drift term, describing the change of the nodes features and 
adjacency matrix. The drift term can include the feature update of 
the node itself and the interaction with neighboring nodes. 𝜎 ,𝑡, 𝜎𝛩,𝑡
is the diffusion coefficient, describing the random fluctuation of the 
feature. 

𝑡 ,
𝛩
𝑡  is a standard Brownian motion, representing a random 

perturbation.
Reversed Graph Diffusion. The stochastic differential equations 

for reverse time graph diffusion are used to describe the diffusion pro-
cess of information in graph data in the reverse time direction [32]. The 
diffusion process usually involves deterministic changes and random 
perturbations of node features to capture the complex relationships. 
Specifically, the stochastic differential equations for reverse time graph 
diffusion can be expressed as: 

d̄ 𝑡 =
(

𝒇 (̄ 𝑡, 𝑡) − 𝜎2 ,𝑡∇ log 𝑝𝑡(̄ 𝑡, 𝜣̄𝑡)
)

d𝑡 + 𝜎 ,𝑡d̄

𝑡

d𝜣̄𝑡 =
(

𝒇𝜣 (𝜣̄𝑡, 𝑡) − 𝜎2𝛩,𝑡∇𝜣 log 𝑝𝑡(̄ 𝑡, 𝜣̄𝑡)
)

d𝑡 + 𝜎𝛩,𝑡d̄
𝜣
𝑡

(23)

 𝑡 ⟂ 𝜣𝑡|0 means that given the initial condition 0, the state 
variables  𝑡 and 𝜣𝑡 are independent of each other. Therefore, the joint 
probability density function 𝑝𝑡|0(̂ 𝑡, 𝜣̂𝑡) can be decomposed into two 
independent parts: one is the part 𝑝𝑡|0( 𝑡|0) related to  𝑡 and the 
initial state 0, and the other is the part 𝑝𝑡|0(𝜣𝑡|𝜣0) related to 𝜣0
and the initial state 𝜣0. This decomposition form greatly simplifies 
the complex calculation and estimation of the joint probability density 
function 𝑡|0 in the denoising score matching objective function and 
reduces the computational complexity. The simplified form is defined 
as follows: 
̂(𝜽) ≜ E∼Unif()E𝑡| ∥ 𝑠𝜽(𝑡) − ∇ log 𝑝𝑡|0( 𝑡|0) ∥2

̂(𝝓) ≜ E∼Unif()E𝑡| ∥ 𝑠𝝓(𝑡) − ∇ log 𝑝𝑡|0(𝜣𝑡|𝜣0) ∥2
(24)

The expected value in Eq. (24) can be computed by using the 
Monte Carlo estimation. It should be noted that estimating the partial 
score is not equivalent to estimating ∇ 𝑡

log 𝑝𝑡( 𝑡) or ∇𝜣𝑡 log 𝑝𝑡(𝜣𝑡). 
Specifically, estimating the partial score requires considering the joint 
distribution of  𝑡 and 𝜣𝑡 at time 𝑡, rather than just considering the 
marginal distribution of one of the variables separately. The score func-
tion of this joint distribution is more complicated because it involves 
the dynamic relationship between the two variables rather than the 
static properties of a single variable. By using the objective of Eq. (24), 
the remaining task is to find a partial score model that learns the 
underlying distribution of the graph. The model needs to be flexible 
and expressive enough to capture the complex relationship between 
 𝑡 and 𝜣𝑡 at time 𝑡, while also being able to accurately estimate 
the score function of the joint distribution at different points in time. 
Therefore, GDSS proposes a new score-based model architecture. This 
new architecture aims to improve the expressiveness of the model, 
enabling it to better learn and estimate partial scores of the underlying 
distribution of the graph, thereby achieving more accurate sampling 
and inference.
7 
Algorithm 1 Optimizing GDSS
Input: 𝒔𝝓,𝑡(⋅), 𝒇 (⋅, 𝑡),𝒇𝛬(⋅, 𝑡), 𝜎𝑋,𝑡, 𝜎𝛬,𝑡.

1: Initialize 𝜽0,𝝓0
2: (0,𝜣0) ∼ 
3: 𝑡 ∼ Unif([0, 𝑇 ])
4:  𝑡 ∼ ∫ 𝑡0 𝑓

𝑋 ( 𝜏 , 𝜏)d𝜏 + ∫ 𝑡0 𝜎 ,𝜏d

𝜏 ,

5: 𝜣𝑡 ∼ ∫ 𝑡0 𝑓
𝛩( 𝜏 , 𝜏)d𝜏 + ∫ 𝑡0 𝜎𝛩,𝜏d

𝛩
𝜏

6: 𝒔𝜙,𝑡(𝑡) = MLP
([

{GMH
(

𝑯 𝑖,𝜣
𝑝
𝑡
)

}𝐾,𝑃𝑖=0,𝑝=1

])

7: 𝑠𝜃,𝑡(𝑡) = MLP([{𝑯 𝑖}𝐿𝑖=0])
8: ̂(𝜽) ≜ E∼Unif()E𝑡|𝑮‖𝑠𝜽(𝑡) − ∇ log 𝑝𝑡|0( 𝑡|0)‖2

9: ̂(𝜙) ≜ E∼Unif()E𝑮𝑡|‖𝑠𝜙(𝑡) − ∇ log 𝑝𝑡|0(𝜣𝑡|𝑨0)‖2

10: Return: 𝜽𝐾 ,𝝓𝐾

Algorithm 2 Sampling from GDSS 
1: 𝑡 = 𝑇
2: Sample 𝐾 ,𝜣𝐾 ∼ 𝑝𝑇
3: for 𝑖 = 𝐾 − 1 to 0 do
4:  𝑺 ← 𝒔𝜃,𝑡( 𝑖+1,𝜣𝑖+1)
5:  𝑺𝛩 ← 𝒔𝜙,𝑡( 𝑖+1,𝜣𝑖+1)
6:   𝑖+1 ←  𝑖+1 +

𝛼
2𝑺 + 𝜖𝑠

√

𝛼𝒛
7:  𝜣𝑖+1 ← 𝜣𝑖+1 + 𝛼

2𝑺𝛩 + 𝜖𝑠
√

𝛼𝒛𝐴
8:  𝑡′ ← 𝑡 − 𝛿𝑡∕2
9:  ̃ 𝑖 ∼ 𝑝𝑡,𝑡′ (̃ 𝑖| 𝑖+1)
10:  𝜣̃𝑖 ∼ 𝑝𝑡,𝑡′ (𝑨̃𝑖|𝜣𝑖+1)
11:  ̃ 𝑖 ← ̃ 𝑖 + 𝑔21,𝑡𝑺𝛿𝑡
12:  𝜣̃𝑖 ← 𝜣̃𝑖 + 𝑔22,𝑡𝑺𝛩𝛿𝑡
13:  𝑡 ← 𝑡 − 𝛿𝑡
14:   𝑖 ∼ 𝑝𝑡′ ,𝑡( 𝑖|̃ 𝑖)
15:  𝜣𝑖 ∼ 𝑝𝑡′ ,𝑡(𝜣𝑖|𝜣̃𝑖)
16: end for
17: Return: 0, 𝜣0

Specifically, GDSS proposes a new time-based scoring model archi-
tecture based on the graph attention network [143–148], which can 
capture the time-varying dependencies between  𝑡 and 𝜣𝑡 and distin-
guish the important relationships between nodes. In addition, GDSS 
further uses high-order adjacency matrices to represent long-distance 
dependencies. High-order adjacency matrices can capture the mutual 
influence between distant nodes in the graph structure, which is crucial 
for modeling complex temporal dependencies. Specifically, GDSS first 
constructs the score-based modulus 𝑠𝜙,𝑡 to estimate ∇𝜣𝑡 log 𝑝𝑡( 𝑡,𝜣𝑡)
with the same dimension as 𝜣𝑡 as follows: 

𝒔𝜙,𝑡(𝑡) = MLP
([

{GMH
(

𝑯 𝑖,𝜣
𝑝
𝑡
)

}𝐾,𝑃𝑖=0,𝑝=1

])

(25)

where 𝑯0 =  𝑡, 𝑯 𝑖+1 = GHM(𝜣𝑡,𝑯 𝑖), GHM is a GCN layer.
GDSS also uses MLP to improve the linear representation ability of 

node features as: 
𝑠𝜃,𝑡(𝑡) = MLP([{𝑯 𝑖}𝐿𝑖=0]) (26)

Next, GDSS uses the trained score models 𝒔𝜙,𝑡 and 𝒔𝜃,𝑡 to estimate the 
scores of  𝑡 and 𝜣𝑡, respectively. By applying these two score models 
to the reverse time SDE system, GDSS can gradually approximate the 
inverse diffusion process. Specifically, at each time step, GDSS uses 𝒔𝜃,𝑡
and 𝒔𝜙,𝑡 to calculate the score of the current state and updates the state 
according to the reverse time SDE as: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

d 𝑡 = 𝒇 1,𝑡( 𝑡)d𝑡 + 𝑔1,𝑡d𝒘̄1 − 𝑔21,𝑡𝒔𝜃,𝑡( 𝑡,𝜣𝑡)d𝑡

d𝜣𝑡 = 𝒇 2,𝑡(𝜣𝑡)d𝑡 + 𝑔2,𝑡d𝒘̄2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐹

−𝑔22,𝑡𝒔𝜙,𝑡( 𝑡,𝜣𝑡)d𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑆

(27)
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From the result of the symmetric Trotter theorem [149], it can 
be seen that the propagation of the calibration state ′𝑡 from time𝑡 to 
𝑡 − 𝛿𝑡∕2 follows the dynamics of Eq. (27) Specifically, Eq. (27) can be 
approximated by applying 𝑒 𝛿𝑡2 ̂∗

𝐹 𝑒
𝛿𝑡̂∗

𝑆𝑒
𝛿𝑡
2 ̂∗

𝐹  to ′𝑡 as: 

𝑒
𝛿𝑡
2 ̂∗

𝐹  = ̃ ∼ 𝑝𝑡,𝑡−𝛿𝑡∕2(̃|) (28)

The pseudo codes of GDSS optimization and sampling process are 
shown in Algorithm 1 and Algorithm 2.

3.2.2. Graph spectral diffusion model (GSDM)
GSDM [125] argues that running full-rank diffusion SDE on the 

entire adjacency matrix space involves a lot of computing resources and 
time. Specifically, the adjacency matrix is usually sparse, but full-rank 
diffusion SDE requires processing the entire matrix, which leads to a 
greatly increased computational burden, especially when dealing with 
large-scale graph data. In addition, full-rank diffusion SDE introduces a 
lot of noise, which causes unnecessary perturbations to the topological 
structure of the graph, making it difficult to accurately capture the true 
topological structure of the graph and resulting in a decrease in the 
quality of the generated data.

Algorithm 3 Optimizing GSDM
Input: 𝒔𝝓,𝑡(⋅), 𝒇 (⋅, 𝑡),𝒇𝛬(⋅, 𝑡), 𝜎 ,𝑡, 𝜎𝛬,𝑡.

1: Initialize 𝜽0,𝝓0
2: (0,𝜣0) ∼ 
3: 𝜦0 ← EigenValues(𝜣0)
4: 𝑡 ∼ Unif([0, 𝑇 ])
5:  𝑡 ∼ ∫ 𝑡0 𝑓

 ( 𝜏 , 𝜏)d𝜏 + ∫ 𝑡0 𝜎 ,𝜏d

𝜏 ,

6: 𝜦𝑡 ∼ ∫ 𝑡0 𝑓
𝛬(𝜦𝜏 , 𝜏)d𝜏 + ∫ 𝑡0 𝜎𝛬,𝜏d

𝛬
𝜏

7: ̂(𝜽𝑘) ← ‖𝑠𝜽𝑘 ( 𝑡,𝜦𝑡) − ∇ log 𝑝𝑡|0( 𝑡|0)‖2

8: ̂(𝝓𝑘) ← ‖𝑠𝝓𝑘 ( 𝑡,𝜦𝑡) − ∇ log 𝑝𝑡|0(𝜦𝑡|𝜦0)‖2

9: Return: 𝜽𝐾 ,𝝓𝐾

Algorithm 4 Sampling from GSDM
1: 𝑡← 𝑇
2: (̂𝑇 , 𝜦̂𝑇 ) ∼ 𝜋, 𝑼̂ 0 ∼ Unif({𝑼 ≜ EigenVectors(𝜣), ( ,𝜣) ∼ Data})
3: for 𝑚 =𝑀 − 1 to 0 do
4:  𝑺 ← 𝒔𝜽,𝑡(̂ 𝑡, 𝜦̂𝑡, 𝑼̂ 0), 𝑺𝛬 ← 𝒔𝝓,𝑡(̂ 𝑡, 𝜦̂𝑡, 𝑼̂ 0)
5:  𝑡′ ← 𝑡 − 𝑇 ∕(2𝑀)
6:  ̂ 𝑡′ ← (2 −

√

1 − 𝛽𝑚+1̂ 𝑡 + 𝛽𝑚+1𝑺 ) +
√

𝛽𝑚+1𝒛
7:  𝒛 ∼ 𝑁 (𝟎, 𝑰)
8:  𝜦̂𝑡′ ← (2 −

√

1 − 𝛽𝑚+1𝜦̂𝑡 + 𝛽𝑚+1𝑺𝛬) +
√

𝛽𝑚+1𝒛𝛬,
9:  𝒛𝛬 ∼ 𝑁 (𝟎, 𝑰)
10:  𝑺 ← 𝒔𝜽,𝑡′ (𝑿̂𝑡′ , 𝜦̂𝑡′ , 𝑼̂ 0), 𝑺𝛬 ← 𝒔𝝓,𝑡′ (̂ 𝑡′ , 𝜦̂𝑡′ , 𝑼̂ 0)
11:  𝑡 ← 𝑡′ − 𝑇 ∕(2𝑀)
12:  ̂ 𝑡 ← ̂ 𝑡′ + 𝜖𝑖𝑺 +

√

2𝜖𝑖𝒛
13:  𝜦̂𝑡 ← 𝜦̂𝑡′ + 𝜖𝑖𝑺𝛬 +

√

2𝜖𝑖𝒛𝛬
14: end for
15: 𝜣̂0 = 𝑼̂ 0𝜦̂0𝑼̂

𝑻
0

16: Return: (̂0, 𝜣̂0)

Therefore, GSDM designs a novel Graph Spectral Diffusion Model. 
The core idea of the GSDM is to capture graph structure information 
through feature decomposition of the graph, and to propagate node 
features or label information through the diffusion process. Specifically, 
graph eigendecomposition is to perform eigenvalue decomposition on 
the Laplacian matrix to obtain eigenvalues and eigenvectors. For a 
graph  = ( ,), where  is the node set, 𝑬 is the edge set, the 
Laplacian matrix 𝑳 is defined as 𝑳 = 𝑫 − 𝜣. Perform eigenvalue 
decomposition of the Laplacian matrix 𝑳 to obtain 𝑳 = 𝑼𝜦𝑼𝑇 , where 
𝑼 is the eigenvector matrix and 𝜦 is the diagonal eigenvalue matrix. 
8 
Through the diffusion process, node features can be smoothed in the 
graph. Using the eigenvector 𝑼 and eigenvalue 𝜦 of the graph, we can 
define the forward spectral diffusion via SDE system as follows: 
d 𝑡 =𝒇 ( 𝑡, 𝑡)d𝑡 + 𝜎 ,𝑡d


𝑡 ,

d𝜦𝑡 =𝒇𝛬(𝜦𝑡, 𝑡)d𝑡 + 𝜎𝛬,𝑡d𝑾 𝛬
𝑡

(29)

where 𝑡 ∈ [0, 1] is the time parameter, (0,𝑨0) ∼ ,𝜣0 = 𝑼 0𝜦0𝑼⊤
0 ,

𝒇 (⋅, 𝑡) is the drift function, 𝒇𝛬(⋅, 𝑡) is the drift function for spectrum. 
𝜎 ,𝑡, 𝜎𝛬,𝑡 is the diffusion coefficient, describing the random fluctuation 
of the feature. 

𝑡 ,
𝐴
𝑡  is a standard Brownian motion or Wiener pro-

cess, representing a random perturbation, and 𝑾 𝛬
𝑡 ≜ diag(𝑩𝛬𝑡 ) is a 

diagonal Brownian motion.
By defining the evolution process of 𝜣𝑡 ≜ 𝑼 0𝜦𝑡𝑼⊤

0  and using the 
𝑛-dimensional Gaussian process to drive the change of eigenvalues, we 
can effectively prevent the adjacency matrix from spreading arbitrarily 
in the entire space. On this basis, the inverse time spectral diffusion 
stochastic differential equation is established, which can gradually 
reverse the damage process of the adjacency matrix and generate 
high-quality graph data similar to the original graph. Specifically, the 
reversed time spectral diffusion SDE system is defined as follows: 
⎧

⎪

⎨

⎪

⎩

d̄ 𝑡 =
(

𝒇 (̄ 𝑡, 𝑡) − 𝜎2 ,𝑡∇ log 𝑝𝑡(̄ 𝑡, 𝜦̄𝑡)
)

d𝑡 + 𝜎 ,𝑡d̄

𝑡

d𝜦̄𝑡 =
(

𝒇𝛬(𝜦̄𝑡, 𝑡) − 𝜎2𝛬,𝑡∇𝜦 log 𝑝𝑡(̄ 𝑡, 𝜦̄𝑡)
)

d𝑡 + 𝜎𝛬,𝑡d𝑾̄
𝛬
𝑡

(30)

where d𝑡 = −d𝑡 is the negative in finitesimal time step.
Boundary conditions are imposed on the joint distribution of (1,𝜦1)

so that the joint distribution of the node feature (1 and the eigenvalue 
matrix 𝜦1) at the initial time 𝑡 = 1 is the same as the prior distribution 
𝜋. GSDM can use the inverse time spectrum diffusion SDE to recover the 
true distribution (0,𝜦0) from the prior distribution 𝜋. According to the 
score matching technique, the two score networks 𝑠𝜽(⋅, ⋅, ⋅) and 𝑠𝜙(⋅, ⋅, ⋅)
are trained by minimizing the loss function so that they approximate 
the two score functions ∇ log 𝑝𝑡( , 𝛬) and ∇𝛬 log 𝑝𝑡( , 𝛬) respectively 
as follows: 
̂(𝜃) ≜ E∼Unif()E 𝑡 | ∥ 𝑠𝜽( 𝑡,𝜦𝑡,𝑼 0) − ∇ log 𝑝𝑡|0( 𝑡| 0) ∥2

̂(𝝓) ≜ E∼Unif()E𝜦𝑡 | ∥ 𝑠𝜙( 𝑡,𝜦𝑡,𝑼 0) − ∇ log 𝑝𝑡|0(𝜦𝑡|𝜦0) ∥2
(31)

The pseudo codes of GDSS optimization and sampling process are 
shown in Algorithm 3 and Algorithm 4.

3.3. Stochastic differential equations (SDEs)

SDEs [32] model implements the forward and backward diffusion 
processes through a continuous-time stochastic process. The SDE model 
describes the diffusion process as a continuous stochastic process rather 
than discrete time steps [150,151]. Specifically, a data point is usually 
gradually diffused from the data space to the Gaussian noise space 
through SDEs [117].

Forward Process: The forward process perturbs the data into noise 
through SDE [60]. The equation is defined as follows: 

𝑑𝑡 = 𝑓 (𝑡, 𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑𝑊𝑡 (32)

Reverse Process: The reverse process converts noise into data 
through reverse time SDE [117]. This process is the reverse operation 
of the forward process, removing the gradually added data noise and 
reconstructing a clear image or data. The equation is defined as follows:

𝑑𝑡 =
[

𝑓 (𝑡, 𝑡) − 𝑔(𝑡)2∇𝑥 log 𝑝𝑡(𝑡)
]

𝑑𝑡 + 𝑔(𝑡)𝑑𝑊̃𝑡 (33)

where ∇𝑥 log 𝑝𝑡(𝑡) is the gradient information of the data, which helps 
to guide the reverse process.

Since continuous SDEs are difficult to handle in practical com-
putations, discretization schemes (e.g., Euler–Maruyama) are used to 
discretize the SDE into a series of time-step update processes and used 
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Fig. 4. An example illustrating the overall CDGS process [120].

to approximately solve the SDE. The discretization process is defined 
as follows: 
𝑡+𝛥𝑡 = 𝑡 + 𝑓 (𝑡, 𝑡)𝛥𝑡 + 𝑔(𝑡)

√

𝛥𝑡𝑍 (34)

The application of SDEs in graph generation provides an effective 
method to generate the target graph structure from initial noise by 
defining the diffusion process of nodes and edges [129,142]. Thanks to 
the development of SDEs and diffusion models, graph generation tasks 
have made significant progress in many fields and have shown broad 
application prospects [33,113,152–156]. Next we summarize several 
representative works on graph generation using SDEs.

3.3.1. Conditional diffusion graph structures (CDGS)
Understanding the underlying distribution requires not only accu-

rately modeling the complex distribution of molecular structures, but 
also the ability to quickly generate new molecular graphs that meet 
practical needs. To address this challenge, CDGS [120] proposes a 
conditional diffusion model to generate molecular graphs. As shown 
in Fig.  4, CDGS constructs a forward graph diffusion process and 
intrinsic features with SDEs, and derives the discrete graph structure 
as a condition for the reverse generation process.

Specifically, given a graph  = (𝜣, ), the node feature matrix 
is represented by an 𝐹 -dimensional real vector. The edge information 
matrix 𝜣 describes the edge connections and types in the graph. The 
forward diffusion process of the graph can be described by SDE, and 
the time variable 𝑡 ∈ [0, 𝑇 ] represents the time scale of the diffusion 
process, starting from the initial state 𝑡 = 0 and ending at the final 
state 𝑡 = 𝑇  as follows: 
d𝑡 = 𝑓 (𝑡)𝑡d𝑡 + 𝑔(𝑡)d𝒘𝑡 (35)

where 𝑓 (𝑡) = d log 𝛼𝑡
d𝑡  denotes the drift coefficient, 𝑔2(𝑡) = d𝜎2𝑡

d𝑡 − 2 d log 𝛼𝑡
d𝑡 𝜎2𝑡

is the diffusion coefficient. Correspondingly, the reverse-time SDE is 
formally defined as: 
d𝑡 = [𝑓 (𝑡)𝑡 − 𝑔2(𝑡)∇ log 𝑞𝑡(𝑡)]d𝑡 + 𝑔(𝑡)d𝒘̄𝑡 (36)

To simplify the above steps, CDGS splits it into two parts that share 
the same drift coefficient and diffusion coefficient: 
{

d 𝑡 = [𝑓 (𝑡) 𝑡 − 𝑔2(𝑡)∇ log 𝑞𝑡( 𝑡,𝜣𝑡)]d𝑡 + 𝑔(𝑡)d𝒘̄1
𝑡

d𝜣𝑡 = [𝑓 (𝑡)𝜣𝑡 − 𝑔2(𝑡)∇𝜣 log 𝑞𝑡( 𝑡,𝜣𝑡)]d𝑡 + 𝑔(𝑡)d𝒘̄2
𝑡

(37)

CDGS uses a network 𝜖𝜽(𝑡, 𝜣̄𝑡, 𝑡) with discrete graph structure 
conditions to parameterize the score. Specifically, the neural network 
𝜖𝜽 accepts the graph 𝑡 and its discrete graph structure 𝜣̄ and time 𝑡
as input, and generates estimates of nodes and edges. The node output 
𝜖𝜽, (𝑡, 𝜣̄𝑡, 𝑡) corresponds to the gradient estimate of the node feature, 
capturing the direction of change of the node feature. The edge output 
𝜖𝜽,𝜣 (𝑡, 𝜣̄𝑡, 𝑡) corresponds to the gradient estimate of the edge feature, 
capturing the direction of change of the edge feature. The training 
objective is optimized by minimizing the following loss function: 
min
𝜽

E𝑡{𝑤(𝑡)E0E𝑡|0 [∥ 𝝐𝜽, (𝑡, 𝜣̄𝑡, 𝑡) − 𝝐 ∥22

+ ∥ 𝝐𝜽,𝑨(𝑡, 𝜣̄𝑡, 𝑡) − 𝝐𝜣 ∥22]}
(38)

where 𝝐 , 𝝐𝜽 denote the Gaussian noise, 𝑡 = (𝛼𝑡̄0+𝜎𝑡𝜖 , 𝛼𝑡𝜣0+𝜎𝑡𝜖𝜣 ).
To generate a parameterized SDE graph, a numerical solver is 

needed to simulate the SDE trajectory. Compared with the EM solver, 
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the advantage of using a probability flow ODE solver is that it can 
utilize advanced ODE solving algorithms (e.g., the Runge–Kutta method
[157]) to significantly reduce the number of sampling steps while main-
taining high accuracy, thereby achieving fast sampling. In the specific 
implementation process, CDGS can apply a black-box ODE solver to the 
above probability flow ODE equations and generate high-fidelity graphs 
by optimizing the solution process. Therefore, the parameterized ODE 
of the graph is formally defined as follows: 

d𝑡∕d𝑡 = 𝑓 (𝑡)𝑡 +
𝑔2(𝑡)
2𝜎𝑡

𝝐𝜽(𝑡, 𝜣̄𝑡, 𝑡) (39)

Traditional black-box ODE solvers [32] are usually unable to rec-
ognize and exploit the semilinear structure of probability flow ODEs, 
which results in many unnecessary calculations during the solution 
process, increasing the time complexity and computational cost. There-
fore, CDGS further extends the fast solver based on the semilinear 
ODE structure. By redefining the time variable and parameterizing the 
graph diffusion process, the ODE solver is able to exploit the semilinear 
structure to optimize the solution process. Specifically, by introducing 
the time variable 𝜆 to change the time variable from 𝑡 to 𝜆, and 𝜆𝑡 ∶=
log(𝛼𝑡∕𝜎𝑡), 𝑡 = 𝑡𝜆(𝜆(𝑡)), ̂𝜆 ∶= 𝑡𝜆(𝜆), 𝝐̂𝜽(̂𝜆, 𝜣̄

′
𝜆, 𝜆) ∶= 𝝐𝜽(𝑡𝜆(𝜆), 𝜣̄𝑡𝜆(𝜆), 𝜆), 

CDGS is able to operate on a new time scale, making the equation form 
more suitable for fast solution using the semilinear structure. Therefore, 
the exact solution to the semilinear probability flow ODE is as follows:

𝑡 =
𝛼𝑡
𝛼𝑠

𝑠 − 𝛼𝑡 ∫

𝜆𝑡

𝜆𝑠
𝑒−𝜆𝝐̂𝜽(̂𝜆, 𝜣̄

′
𝜆, 𝜆)d𝜆 (40)

The initial graph ̃𝑡0 ∶= ̃𝑇 = (𝑇 ,𝜣𝑇 ) is sampled from the prior 
distribution, with node features 𝑋𝑇  and edge information𝐴𝑇 . At each 
time step 𝑡𝑖, the first-order GDPMS is used to iteratively calculate {̃𝑡𝑖 =
(̃𝑡𝑖 , 𝛩̃𝑡𝑖 )}

𝑀
𝑖=1 as follows: 

⎧

⎪

⎨

⎪

⎩

̃ 𝑡𝑖 =
𝛼𝑡𝑖
𝛼𝑡𝑖−1

̃ 𝑡𝑖−1 − 𝛾𝑖𝝐̂𝜽, (̃𝑡𝑖−1 , 𝜣̄
′
𝑡𝑖−1
, 𝑡𝑖−1)

𝜣̃𝑡𝑖 =
𝛼𝑡𝑖
𝛼𝑡𝑖−1

𝜣̃𝑡𝑖−1 − 𝛾𝑖𝝐̂𝜽,𝜣 (̃𝑡𝑖−1 , 𝜣̄
′
𝑡𝑖−1
, 𝑡𝑖−1)

(41)

where 𝛾𝑖 = 𝜎𝑡𝑖 (𝑒
𝜆𝑡𝑖−𝜆𝑡𝑖−1 − 1).

The probability flow ODE maps the input graph data into a latent 
space [20]. This latent space is determined by parameterized ODEs, 
and its properties allow flexible manipulation and transformation of 
the data [1]. The graph DPM solver, combined with gradient-guided 
techniques, enables efficient search and optimization in the latent 
space. The gradient-guided assisted solver uses the gradient information 
of the latent representation to help find the optimal solution that 
meets specific constraints. By defining similarity constraints in the 
latent space, CDGS can ensure that the molecules in the optimization 
process still retain their original chemical properties and functions. 
Combining the above methods, CDGS proposes an optimization process 
that can effectively find the optimal molecules that meet the similarity 
constraints in the latent space.

Specifically, CDGS trains a time-dependent graph property predictor 
𝑹𝜓 (𝑡, 𝑡) on the noise graph to estimate the properties of the graph at 
different time steps. The parameterized ODE solver in Eq. (39) is used 
to map the initial molecular graph to the encoding 𝑡𝜉  in the latent 
space. This mapping process involves the adjustment of the time step 
𝑡𝜉 . According to the common latent space optimization method [40,55], 
the graph property predictor is used to predict the properties, and the 
properties of the graph are generated by gradient ascent optimization 
to generate the latent graph sequence {𝑘𝑡𝜉 }

𝐾
𝑘=0. In the decoding process, 

a gradient-guided ODE is introduced to decode the latent graph to the 
molecular graph space. In this process, the gradient term of 𝛁𝑹𝝍 (𝑡, 𝑡)
is used to guide the sampling process to ensure that the generated graph 
has the desired high properties. The guided ODE can be modified from 
Eq. (39) as follows: 
⎧

⎪

⎨

⎪

⎩

d 𝑡∕d𝑡 = 𝑓 (𝑡) 𝑡 +
𝑔2(𝑡)
2𝜎𝑡

[𝝐𝜽, − 𝑟𝜎𝑡∇∗
𝑹𝝍 ]

d𝜣𝑡∕d𝑡 = 𝑓 (𝑡)𝑨𝑡 +
𝑔2(𝑡)
2𝜎𝑡

[𝝐𝜽,𝜣 − 𝑟𝜎𝑡∇∗
𝜣𝑹𝝍 ]

(42)
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Table 2
Complexity and scalability comparison of representative graph generative models. Here 𝑛 is the number of nodes, 𝑚 is the number of edges, 𝑑 is the embedding 
dimension, and 𝑇  is the number of diffusion steps.
 Model Family Time Complexity Space Complexity Scalability (w.r.t graph size)  
 VAE-based 𝑂(𝑛𝑑2 + 𝑚𝑑) 𝑂(𝑛𝑑 + 𝑚) Moderate (scales to 105 nodes with sparse ops)  
 GAN-based 𝑂(𝑛𝑑2 + 𝑚𝑑) 𝑂(𝑛𝑑 + 𝑚) Limited (training instability grows with graph size)  
 Autoregressive (AR) 𝑂(𝑛2𝑑) 𝑂(𝑛2) Poor (sequential decoding hinders large graphs)  
 Diffusion-based 𝑂(𝑇 ⋅ 𝑓 (𝑛, 𝑚, 𝑑)), typically 𝑂(𝑇 𝑛2) 𝑂(𝑛𝑑 + 𝑚) Limited (large 𝑇  and 𝑛2 cost); improved by sparse/active node methods 
4. Complexity and scalability analysis

In this section, we analyze the representative families of graph 
generative models, including VAE-based, GAN-based, autoregressive, 
and diffusion-based in terms of time complexity, space complexity, 
scalability with graph size, and theoretical convergence guarantees. 
Table  2 summarizes the complexity characteristics and convergence 
properties of these model families.

Time and space complexity. For VAE-based and GAN-based mod-
els, the dominant cost arises from message passing in graph neural 
network (GNN) encoders and decoders, yielding a time complexity 
of 𝑂(𝑛𝑑2 + 𝑚𝑑), where 𝑛 is the number of nodes, 𝑚 the number 
of edges, and 𝑑 the embedding dimension. Their memory footprint 
is 𝑂(𝑛𝑑 + 𝑚) under sparse adjacency representation. Autoregressive 
models, however, require sequential prediction of node or edge proba-
bilities, leading to 𝑂(𝑛2𝑑) complexity and 𝑂(𝑛2) space when modeling 
adjacency explicitly, which severely limits their scalability to large 
graphs. Diffusion-based approaches incur an iterative cost of 𝑂(𝑇 ⋅
𝑓 (𝑛, 𝑚, 𝑑)), typically 𝑂(𝑇 𝑛2), where 𝑇  is the number of diffusion steps. 
This iterative nature makes diffusion models computationally demand-
ing, though recent improvements such as EDGE [24] reduce the per-
step cost to 𝑂(min(𝐾2,𝑀)) with 𝐾 denoting active nodes and 𝑀 the 
number of edges.

Scalability across graph sizes. VAE-based models generally scale 
to graphs of size up to 105 nodes when combined with sparse opera-
tions, whereas GAN-based methods are more restricted due to training 
instability. Autoregressive models scale poorly beyond small graphs be-
cause of their sequential decoding nature. Diffusion-based models can 
in principle leverage parallelism, but their dependence on large 𝑇  and 
quadratic complexity in 𝑛 poses challenges for million-scale networks. 
Sparse or subgraph-based variants represent promising solutions.

Convergence guarantees. VAE models benefit from the evidence 
lower bound (ELBO), ensuring a principled optimization target. Au-
toregressive models provide exact likelihood training but may suffer 
from exposure bias during inference. GAN-based models lack formal 
convergence guarantees due to adversarial dynamics. In contrast, diffu-
sion models offer convergence under the framework of score matching, 
and continuous-time SDE/ODE variants provide stronger theoretical 
backing, though practical convergence often depends on numerical 
stability.

5. Implementation challenges

Despite the rapid progress of graph generative models, practical 
implementation still faces a number of challenges. First, large-scale 
training often leads to substantial memory consumption, especially 
for diffusion-based approaches that require iterative denoising and 
intermediate feature storage. Techniques such as gradient checkpoint-
ing, sparse tensor operations, and mini-batch subgraph sampling have 
been widely adopted to alleviate this issue. Second, autoregressive 
models typically suffer from slow sequential decoding, which hampers 
their scalability to graphs with tens of thousands of nodes. While 
parallelization strategies and heuristic node-ordering schemes have 
been proposed, their effectiveness remains dataset-dependent. Third, 
adversarial frameworks like GAN-based models are often unstable dur-
ing training due to the delicate balance between the generator and 
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discriminator, requiring careful tuning and multiple restarts in prac-
tice. Finally, diffusion-based methods, although flexible, incur high 
computational cost because of the large number of denoising steps; ef-
ficient variants such as fast-sampling schedulers or sparse/active-node 
diffusion have emerged as potential remedies.

6. Hyperparameter sensitivity

Another important practical aspect concerns the sensitivity of graph 
generative models to hyperparameter choices. Different families of 
models exhibit distinct critical parameters that directly impact both 
convergence and generation quality. For VAE-based methods, latent 
dimensionality and regularization strength significantly influence the 
trade-off between reconstruction fidelity and generalization. GAN-
based methods are highly sensitive to the learning rate and the relative 
update frequency between generator and discriminator, which can 
easily lead to mode collapse if not carefully balanced. Autoregressive 
models depend heavily on node-ordering schemes and context window 
size, both of which affect sampling efficiency and likelihood estima-
tion. Diffusion-based models are especially sensitive to the number of 
denoising steps 𝑇  and the choice of noise schedule; insufficient steps 
may degrade sample quality, while excessive steps lead to prohibitively 
high computation costs. In practice, hyperparameter tuning often re-
quires extensive empirical search, and small deviations may result in 
noticeable performance fluctuations.

7. Popular benchmark datasets

In graph generation research, it is very important to use stan-
dard datasets for algorithm verification and performance evaluation. 
As shown in Table  3, we have counted some commonly used graph 
generation datasets. Next, we briefly describe each graph generation 
dataset.

Community-small: Community-small [107,158] is a small dataset 
for studying and testing graph algorithms, especially in tasks such 
as community detection and graph clustering. The Community-small 
dataset contains obvious community structures. Each community repre-
sents a subgroup in the graph, which contains not only node and edge 
information but also node features (e.g., labels, attributes) and edge 
weights (e.g., connection strength).

Ego-small: Ego-small [107,159] is a small-scale dataset2 that con-
tains subgraphs from social networks that are centered on the ego and 
include its directly connected neighbor nodes. The Ego-small dataset 
contains detailed information between nodes (individuals) and their 
edges (relationships), including properties (e.g., node features and edge 
weights).

Grid: The Grid dataset [34] consists of multiple grid graphs whose 
nodes are arranged in a regular two-dimensional grid. Each node is 
usually connected to its four neighboring nodes, forming a regular 
grid structure. The Grid dataset contains grid graphs of different sizes, 
ranging from small 5x5 grids to large 100 × 100 grids.

QM9: QM9 [160] is a dataset widely used in quantum chemistry 
and molecular machine learning research, containing about 134,000 
stable small molecules. These molecules are composed of five elements: 

2 https://github.com/ermongroup/GraphScoreMatching

https://github.com/ermongroup/GraphScoreMatching
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Table 3
Popular benchmark dataset in graph generation. We counted the types of different data sets, etc.
 Dataset Dimensionality Category No. of Graphs (G) No. of Nodes (N) 
 Community-small [107,158] 2D Social 100 11 < 𝑁 < 20  
 Ego-small [107,159] 2D Social 200 3 < 𝑁 < 18  
 Grid [34] 2D Grid 100 𝑁 <= 400  
 QM9 [160] 3D Bioinformatics/Molecular 130,831 3 < 𝑁 < 29  
 ZINC250K [161] 3D Bioinformatics/Molecular 249,456 6 < 𝑁 < 38  
 Enzymes [162] 3D Bioinformatics/Protein 600 9 < 𝑁 < 125  
 SBM-27 [163] 2D Social 200 24 < 𝑁 < 27  
 Planar-60 [163,164] 2D Social 200 𝑁 = 60  
 AIDS [165] 2D Bioinformatics/Molecular 2000 –  
 Synthie [166] 2D Social 300 𝑁 = 100  
 Proteins [167] 3D Bioinformatics/Protein 1113 𝑁 = 39.1  
hydrogen (H), carbon (C), oxygen (O), nitrogen (N), and fluorine (F). 
The QM9 dataset contains physical and chemical properties, such as 
molecular geometry (atomic coordinates), energy, Hall effect, electric 
dipole moment, vibration frequency, thermodynamic properties (such 
as enthalpy, and free energy), etc. The property data in the QM9 dataset 
are calculated by density functional theory (DFT), specifically using the 
B3LYP function and the 6-31G (2df, p) basis set.

ZINC250K: ZINC250K [161] is a dataset widely used in molecular 
machine learning and drug design research. It contains 250,000 small 
molecules screened from the ZINC database, which have diverse struc-
tural and chemical properties. The ZINC database is a free and publicly 
available database of chemical substances designed specifically for vir-
tual screening and computer-aided drug design. The ZIN-C250K dataset 
contains a wide variety of compounds (e.g. different ring systems, 
functional groups, and stereochemistry).

Enzymes: The Enzymes dataset [162] consists of 600 graphs rep-
resenting enzyme molecules. The nodes of each graph represent amino 
acid residues, and the edges represent the interactions between these 
residues. The Enzymes dataset contains 6 different types of enzymes, 
and each graph is classified according to the function of the enzyme. 
In addition to the graph structure, Enzymes also contain attribute 
information (e.g., the attributes of the nodes may include chemical 
properties, geometric information, etc.).

SBM-27: Stochastic Block Model - 27 (SBM-27) [163] is a dataset 
for studying community detection and graph clustering algorithms. 
SBM-27 is generated based on the stochastic block model, which is 
a statistical model commonly used to generate random graphs with 
community structure. The SBM-27 dataset contains 27 communities, 
each of which represents a subpopulation in the graph.

Planar-60: The Planar-60 dataset [163,164] consists of 60 planar 
graphs. A planar graph can be drawn on a plane without crossing edges. 
The graphs in the Planar-60 dataset have diverse structural features, 
including different numbers of nodes and edges, different connection 
patterns, etc.

AIDS: The AIDS dataset [165] is a well-known dataset in chemin-
formatics and is often used for the analysis and research of molecular 
graphs. The AIDS dataset (AIDS Antiviral Screen Data) was origi-
nally provided by the National Cancer Institute (NCI) of the United 
States to evaluate the inhibitory effect of compounds on HIV (hu-
man immunodeficiency virus) replication. The AIDS dataset contains 
the molecular structures and biological activity information of thou-
sands of compounds. The biological activity data of each compound 
mainly describes its inhibitory effect on the HIV virus. The data is 
usually represented by binary classification (active or inactive) or 
multi-classification (according to the different degrees of inhibition).

Synthie: The Synthie dataset [166] is generated synthetically, and 
the structure of the graph, and the properties of nodes and edges can 
be adjusted as needed. The Synthie dataset contains multiple graphs, 
each of which represents a data sample. Since the generation method of 
the graph is controllable, researchers can create graph data of different 
difficulty and complexity by modifying the generation parameters to 
test.
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Proteins: The Proteins dataset [167] consists of a set of protein 
molecules, each of which is represented as a graph in which nodes 
represent amino acids and edges represent interactions between these 
amino acids. The graphs in the Proteins dataset directly reflect the ac-
tual biological structure of protein molecules and have high biological 
relevance.

8. Evaluation metrics

8.1. Maximum mean discrepancy (MMD)

Evaluating the quality of generated graphs requires principled sta-
tistical distances that go beyond visual inspection or simple average 
statistics. Maximum Mean Discrepancy (MMD) has become one of the 
most widely used metrics for graph generation, as it compares two 
empirical distributions across all moments in a reproducing kernel 
Hilbert space (RKHS). Formally, with kernel function 𝑘(⋅, ⋅), the squared 
MMD between two distributions 𝑝 and 𝑞 is: 
MMD2(𝑝 ∥ 𝑞) = E𝑥,𝑥′∼𝑝[𝑘(𝑥, 𝑥′)] + E𝑦,𝑦′∼𝑞[𝑘(𝑦, 𝑦′)]

− 2E𝑥∼𝑝,𝑦∼𝑞[𝑘(𝑥, 𝑦)]
(43)

Directly computing distances over full graph distributions is in-
tractable. Therefore, MMD is typically estimated on selected graph 
statistics  = {𝑀1,… ,𝑀𝑘}, including the degree distribution, cluster-
ing coefficient distribution, and motif or orbit counts. These statistics 
are embedded using kernels such as the Wasserstein or RBF kernel, 
enabling comparison of structural patterns between generated and real 
graphs.

Domain relevance. MMD is particularly suitable for social net-
works and citation networks, where capturing structural fidelity is 
crucial. In these domains, preserving degree distributions reflects the 
presence of hubs and power-law connectivity, while clustering co-
efficients characterize community structures and small-world effects. 
Similarly, motif counts provide insights into collaboration cliques or 
citation cycles that are critical for realistic graph synthesis. Thus, 
MMD not only serves as a general-purpose divergence measure, but 
also directly links to domain-specific challenges in social and citation 
networks: ensuring that generated graphs reproduce the characteristic 
structural statistics that underpin network connectivity, community 
formation, and information flow.

8.2. Fréchet ChemNet distance (FCD)

While MMD is widely applied for evaluating structural fidelity in 
social and citation networks, the Fréchet ChemNet Distance (FCD)
is specifically designed to assess the quality of molecular graph gen-
eration. FCD measures the distance between the distribution 𝑝(⋅) of 
generated molecules and the distribution 𝑝𝑤(⋅) of real molecules, both 
embedded into the latent representation of a pretrained molecular 
property prediction network (ChemNet). By extracting activations from 
the penultimate layer of ChemNet, each molecule is represented as 
a feature vector. Assuming these feature vectors follow a Gaussian 
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Table 4
We summarize existing graph generation methods according to our classification method.
 Method Generative method Generation process Permutation Compositional 
 VAE GAN Flow RNN EBM Diffusion One-shot Sequential invariance generation  
 GraphVAE [136] ✓ – – – – – ✓ – 7 –  
 DeepGMG [168] – – – ✓ – – – ✓ 7 –  
 CGVAE [169] ✓ – – – – – – ✓ 7 –  
 MolGAN [139] – ✓ – – – – ✓ – – –  
 RVAE [170] ✓ – – – – – ✓ – 7 –  
 GCPN [171] – ✓ – – – – – ✓ 7 –  
 JT-VAE [40] ✓ – – – – – – ✓ 7 –  
 MolecularRNN [35] – – – ✓ – – – ✓ 7 –  
 GraphNVP [54] – – ✓ – – – ✓ – 7 –  
 TGCD [172] ✓ – – – – – ✓ – 7 –  
 GRF [173] – – ✓ – – – ✓ – 7 –  
 GraphAF [133] – – ✓ – – – – ✓ 7 –  
 HierVAE [174] ✓ – – – – – – ✓ 7 –  
 MoFlow [55] – – ✓ – – – ✓ – 7 –  
 GraphCNF [134] – – ✓ – – – ✓ – ✓ –  
 GraphEBM [175] – – – – ✓ – ✓ – ✓ ✓  
 GraphRNN [34] – – – ✓ – – – ✓ 7 –  
 GraphDF [56] – – ✓ – – – – ✓ 7 –  
 GNF [176] – – ✓ – – – ✓ – 7 –  
 EDP-GNN [107] – – – – – ✓ ✓ – ✓ –  
 CCGG [177] ✓ – – – – – – ✓ 7 –  
 GDSS [32] – – – – – ✓ ✓ – ✓ –  
 ConGen [41] – ✓ – – – – ✓ – 7 –  
 Digress [68] – – – – – ✓ ✓ – ✓ –  
 GraphARM [178] ✓ – – – – – – ✓ 7 –  
 EB-GFN [179] – – ✓ – – – ✓ – 7 –  
 GPrinFlowNet [180] – – ✓ – – – ✓ – 7 –  
 GRAN [181] – – – ✓ – – – ✓ 7 –  
 PPGN-Score [2] – – – – – ✓ ✓ – ✓ –  
 SubspaceDiff [182] – – – – – ✓ ✓ – ✓ –  
 WSGM [142] – – – – – ✓ ✓ – ✓ –  
 SPECTRE [163] – ✓ – – – – ✓ – 7 –  
 SGGM [113] – – – – – ✓ ✓ – ✓ –  
 GSDM [125] – – – – – ✓ ✓ – ✓ –  
distribution, the mean and covariance of the generated set (𝑚,𝐶) and 
the real set (𝑚𝑤, 𝐶𝑤) are computed, and the Fréchet distance is given 
by: 

𝑑2((𝑚,𝐶), (𝑚𝑤, 𝐶𝑤)) =∥ 𝑚 − 𝑚𝑤 ∥2 +Tr(𝐶 + 𝐶𝑤 − 2(𝐶𝐶𝑤)1∕2) (44)

Intuitively, FCD evaluates both the quality (how close the generated 
molecules are to real ones in the feature space) and the diversity 
(whether the covariance of generated molecules matches that of the 
training set). In practice, a sufficiently large sample size (e.g., ≥5000 
molecules) ensures stable estimation of mean and covariance, making 
FCD a reliable measure of molecular distribution alignment.

Domain relevance. FCD is particularly suitable for molecular graph 
generation, as it directly reflects the ability of generative models to 
capture realistic chemical features. Unlike generic graph-level metrics, 
FCD leverages task-specific pretrained networks that encode chemical 
semantics, ensuring that generated molecules not only resemble real 
molecules statistically but also preserve crucial biochemical properties. 
For example, a low FCD score indicates that generated molecules share 
similar pharmacophoric patterns and substructural motifs with real 
compounds, which is essential for downstream drug discovery and 
materials design tasks. Thus, FCD provides a domain-aware evaluation 
that bridges statistical similarity and chemical validity in generative 
modeling.

9. Experimental performance

As shown in Table  4, we first summarize the existing 33 methods 
from four aspects: generative method, generation process, permutation 
and compositional. Next, we will analyze the performance of these 
methods on different graph generation datasets.
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As shown in Table  5, the GPrinFlowNet [180] method performs well 
in graph generation tasks, achieving the best performance compared to 
the baseline methods. In particular, compared to GDSS [32], a lead-
ing graph generation method using diffusion, GPrinFlowNet’s model 
achieves significantly lower MMD scores on the Enzymes and Synthie 
datasets, by 2.4 and 3.0 times, respectively. These results show that 
GPrinFlowNet is not only able to generate graphs that are highly similar 
to the true graph structure, but also performs well in preserving the 
statistical properties of the graph. Compared with diffusion models such 
as GDSS, GPrinFlowNet has higher accuracy and efficiency in capturing 
the structure and statistical properties of the graph.

On the generic graph generation, we present the experimental re-
sults in Table  6, which clearly demonstrate the superior performance 
of GSDM [125]. GSDM demonstrates significant advantages over the 
autoregressive and one-shot baselines, fully demonstrating its status 
as the SOTA graph diffusion model. Moreover, GSDM significantly 
outperforms the autoregressive and one-shot baselines on multiple 
key performance metrics. The performance improvement is not only 
reflected in the generated quality, but also in the generated diversity 
and accuracy. GSDM performs diffusion across the entire graph data 
space, and by leveraging spectral methods, it more effectively captures 
the complex relationships and features in the graph structure, and 
can generate high-quality graphs in a shorter time. The experimental 
results further demonstrate that GSDM is particularly outstanding both 
in handling complex graph structures and in generating realistic and 
useful graph data.

On the molecules generation, GSDM [125] achieves the highest 
scores on multiple metrics in Table  7. In particular, GSDM performs 
particularly well on the NSPDK and FCD metrics. These high scores in-
dicate that GSDM is able to generate molecules whose data distribution 
in chemical space and graph space is close to that of real molecules, 
demonstrating its strong ability in molecular design. The experimental 
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Table 5
Generation results on the conditional graph generation datasets.
 AIDS 

Real. |𝑉 | ≤ 95, |𝐶| = 2
Enzymes 
Real. |𝑉 | ≤ 125, |𝐶| = 6

Synthie 
Synthetic. |𝑉 | ≤ 100, |𝐶| = 4

 Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus. Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓  
 
Autoreg.

GraphRNN [34] 0.241 0.143 0.034 0.139 0.086 0.294 0.307 0.229 0.247 0.285 0.419 0.317  
 GraphAF [133] 0.197 0.093 0.026 0.105 0.058 0.174 0.156 0.129 0.137 0.176 0.302 0.205  
 GraphDF [56] 0.184 0.085 0.031 0.101 0.062 0.196 0.204 0.154 1.681 1.265 0.258 1.068  
 GraphVAE [136] 0.358 0.284 0.127 0.256 1.249 0.687 0.381 0.772 1.554 1.074 0.232 0.953  
 

One-shot

GNF [176] 0.224 0.159 0.018 0.133 – – – – – – –  
 EDP-GNN [107] 0.127 0.082 0.024 0.077 0.067 0.241 0.225 0.177 0.148 0.185 0.347 0.226  
 CCGG [177] 0.097 0.074 0.035 0.068 0.043 0.125 0.117 0.095 0.107 0.159 0.236 0.167  
 GDSS [32] 0.062 0.049 0.022 0.044 0.038 0.158 0.132 0.109 0.114 0.126 0.269 0.169  
 CondGen [41] 0.138 0.115 0.032 0.095 0.065 0.184 0.213 0.154 0.151 0.162 0.295 0.202  
 DiGress [68] 0.06 0.048 0.021 0.043 0.033 0.146 0.085 0.088 0.109 0.097 0.158 0.121  
 GraphARM [178] 0.057 0.052 0.016 0.041 0.031 0.095 0.061 0.062 0.128 0.074 0.127 0.109  
 EB-GFN [179] 0.094 0.087 0.035 0.072 0.079 0.213 0.227 0.173 0.152 0.164 0.341 0.219  
 GPrinFlowNet [180] 0.046 0.031 0.012 0.029 0.027 0.062 0.046 0.045 0.048 0.042 0.079 0.056  
Table 6
Generation results on the conditional generic graph generation datasets of baseline methods.
 Community-small Enzymes Grid
 Synthetic, 12 ≤ |𝑉 | ≤ 20 Real, 10 ≤ |𝑉 | ≤ 125 Synthetic, 100 ≤ |𝑉 | ≤ 400

 Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓  
 
Autoreg.

DeepGMG [168] 0.220 0.950 0.400 0.523 – – – – – – – –  
 GRAPHARM [178] 0.034 0.082 0.004 – 0.029 0.054 0.015 – – – –   
 GRAN [181] 0.001 0.084 0.028 0.020 – – – – 0.001 0.004 0.002 0.016  
 GraphRNN [34] 0.080 0.120 0.040 0.080 0.017 0.043 0.021 0.043 0.011 0.0 0.001 0.012  
 GraphAF [133] 0.18 0.20 0.02 0.133 1.669 1.283 0.266 1.073 – – – –  
 GraphDF [56] 0.06 0.12 0.03 0.070 1.503 1.061 0.202 0.922 – – – –  
 

One-shot

GraphVAE [136] 0.350 0.980 0.540 0.623 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846  
 PPGN-Score [2] 0.081 0.237 0.284 0.200 – – – – – – – –  
 GNF [176] 0.200 0.200 0.110 0.170 – – – – – – – –  
 DiGress [68] 0.009 0.104 0.051 0.037 0.004 0.083 0.002 – – – – –  
 EDP-GNN [107] 0.053 0.144 0.026 0.074 0.023 0.268 0.082 0.124 0.455 0.238 0.328 0.340  
 SubspaceDiff [182] 0.057 0.098 0.012 0.056 0.037 0.099 0.018 0.051 0.124 0.013 0.090 0.076  
 WSGM [142] 0.039 0.084 0.009 0.044 0.034 0.097 0.013 0.048 0.083 0.006 0.065 0.051  
 GPrinFlowNet [180] 0.021 0.068 0.021 0.037 0.021 0.088 0.009 0.039 0.056 0.042 0.015 0.038  
 SPECTRE [163] 0.008 0.1067 0.046 0.025 0.136 0.195 0.125 – – – – –  
 GDSS [32] 0.045 0.086 0.007 0.046 0.026 0.102 0.009 0.046 0.111 0.005 0.070 0.062  
 SGGM [113] 0.041 0.079 0.010 0.043 0.030 0.073 0.013 0.039 0.114 0.0 0.065 0.060  
 SGGM+SLD [113] 0.035 0.071 0.006 0.037 0.022 0.062 0.007 0.030 0.103 0.0 0.053 0.052  
 GSDM [125] 0.011 0.015 0.001 0.009 0.013 0.088 0.01 0.037 0.002 0.0 0.0 0.0007 
Table 7
Generation results of baseline methods on the QM9 and ZINC250k datasets.
 Method QM9 ZINC250k

 Validity (%)↑ Val. w/o corr. (%)↑ NSPDK↓ FCD↓ Time (s)↓ Validity (%)↑ Val. w/o corr. (%)↑ NSPDK↓ FCD↓ Time (s)↓ 
 

Autoreg.

GraphAF [133] 100 67 0.020 5.268 2.28𝑒3 100 68 0.044 16.289 5.72𝑒3  
 GraphEBM [175] 100 8.22 0.030 6.143 35.33 100 5.29 0.212 35.471 53.72  
 GRAPHARM [178] 100 90.25 0.002 1.22 1.52𝑒1 100 88.23 0.055 16.26 1.328𝑒2  
 GraphAF+FC [133] 100 74.43 0.021 5.625 2.32𝑒3 100 68.47 0.044 16.023 5.91𝑒3  
 GraphDF [56] 100 82.67 0.063 10.816 5.08𝑒4 100 89.03 0.176 34.202 5.87𝑒4  
 GraphDF+FC [56] 100 93.88 0.064 10.928 4.72𝑒4 100 90.61 0.177 33.546 5.79𝑒4  
 

One-shot

MoFlow [55] 100 91.36 0.017 4.467 4.58 100 63.11 0.046 20.931 2.59𝑒1  
 EDP-GNN [107] 100 47.52 0.005 2.680 4.13𝑒3 100 82.97 0.049 16.737 8.41𝑒3  
 SGGM [113] 100 95.91 0.006 2.745 4.93𝑒1 100 97.28 0.018 13.931 1.01𝑒3  
 SGGM+SLD [113] 100 97.35 0.004 2.593 – 100 98.32 0.014 11.379 1.12𝑒3  
 SPECTRE [163] 100 87.3 0.163 47.96 3.3 100 90.2 0.109 18.44 103.1  
 GDSS [32] 100 95.72 0.003 2.900 1.06𝑒2 100 97.01 0.019 14.656 2.11𝑒3  
 GDSS-EM [32] 100 95.72 0.003 2.900 1.06𝑒2 100 97.01 0.019 14.656 2.11𝑒3  
 GDSS-VP-EM [32] 100 95.72 0.003 2.900 1.06𝑒2 100 97.01 0.019 14.656* 2.11𝑒3  
 GSDM [125] 100 99.90 0.003 2.650 1.80𝑒1 100 92.70 0.017 12.956 4.59𝑒1  
results demonstrate that the proposed GSDM is not only suitable for 
general graph generation but also for molecular design. One of the main 
advantages of GSDM is its efficiency in generating molecules compared 
to other diffusion models such as EDP-GNN [107] and GDSS [32]. 
Table  7 also shows the time (in seconds) taken to generate 10,000 
molecules. The results show that GSDM takes significantly less time 
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than EDP-GNN and GDSS during inference. For example, GSDM takes 
only 18.02 s and 45.91 s to generate 10,000 molecular graphs on the 
QM9 [160] and Zinc250k [161] datasets, while GDSS takes 1060 s 
and 2110 s, respectively. This means that GSDM is 58 times and 46 
times faster than GDSS. In summary, the results fully demonstrate that 
GSDM performs well in molecular design and other graphics generation 
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Table 8
Experimental results on protein datasets.
 Method Proteins

 Deg.  ↓ Clus.  ↓ Orbit  ↓ Spectral  ↓ Wavelet  ↓ Ratio  ↓ Unique  ↑ Novel  ↑ Uniq. & Nov.  ↑ 𝑡 (s)  ↓ 
 Training set 0.0003 0.0068 0.0032 0.0009 0.0003 1.0 100.0 — — —  
 Autoreg. GraphRNN [34] 0.0040 0.1475 0.5851 0.0152 0.0530 82.3 100.0 100.0 100.0 36.41  
 GRAN [181] 0.0479 0.1234 0.3458 0.0125 0.0341 82.7 100.0 100.0 100.0 11.68  
 

One-shot

MolGAN [139] 0.0008 0.0644 0.0081 0.0021 0.0012 4.2 97.3 100.0 97.3 0.003  
 GG-GAN (RS) [183] 0.4727 0.1772 0.7326 0.4102 0.6278 875.8 100.0 100.0 100.0 0.482  
 GG-GAN [183] 0.5192 0.5220 0.7326 0.3996 0.6157 906.5 100.0 100.0 100.0 0.485  
 SPECTRE [163] 0.0056 0.0843 0.0267 0.0052 0.0118 16.9 100.0 100.0 100.0 0.507  
 SPECTRE (real spectra) [163] 0.0013 0.0469 0.0287 0.0020 0.0022 6.0 100.0 100.0‡ 100.0‡ 0.485  
tasks, significantly outperforming other baseline methods. Through the 
spectral diffusion method, GSDM achieves higher generation quality 
and efficiency.

As shown in Table  8, most GAN [183] baseline methods face train-
ing difficulties on larger real-world protein graph datasets. Notably, 
MolGAN [139] excels in generating graphs with excellent statistical 
metrics. However, in-depth analysis reveals that graphs generated by 
MolGAN are often just slight variants of a few graphs. In fact, the 
average dissimilarity of edges between any two graphs generated by 
MolGAN is only 17.6%. In the SPECTRE [163] method, mode collapse, 
a common problem of GANs, is successfully avoided by applying a 
teacher forcing mechanism and adjusting the generator and discrimi-
nator according to real spectral features. Specifically, Teacher Forcing 
helps the generator better learn to generate samples of real data by 
introducing real data as a reference in training. Adjusting the generator 
and discriminator further enhances the model’s generation ability by 
optimizing the model’s adaptability to data features and avoiding the 
phenomenon of generating monotonous graphs.

10. Efficiency

Fig.  5 presents a comparative study of the sampling efficiency of 
several representative deep generative graph models. The evaluation 
is conducted by recording the average wall-clock time required for 
each model to generate a single graph, with results averaged over 128 
independent runs for consistency. The figure reports sampling time as a 
function of graph size, measured both in terms of the average number 
of nodes and the average number of edges of the generated graphs. It 
can be observed that most neural baselines, such as GDSS, DiscDDPM, 
and DiGress, are only able to generate graphs for relatively small 
datasets like Community (average 110 nodes) and Ego (average 144 
nodes). GraphRNN, in contrast, can scale to larger graphs but incurs 
considerably higher sampling costs, reflecting the sequential nature of 
its autoregressive decoding. GraphCNF demonstrates strong efficiency 
on small datasets, with sampling times that are among the lowest, while 
diffusion-based methods show relatively slower performance due to 
their iterative denoising process. A noteworthy observation from the 
results is that the sampling time does not always increase monoton-
ically with the number of nodes. For example, Ego graphs, despite 
having more nodes on average than Community graphs, require less 
generation time under certain models. This is attributed to the fact that 
the computational burden of some methods scales more directly with 
the number of edges, and Ego graphs are typically much sparser than 
Community graphs.

Overall, the comparative results highlight that while autoregressive 
methods are severely limited by scalability, flow-based approaches such 
as GraphCNF achieve strong efficiency on smaller graphs. Diffusion-
based models offer greater modeling flexibility but face higher sampling 
costs. These findings underscore the trade-offs between scalability and 
sampling speed across different categories of generative graph models.
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11. Applications

In this section, we will delve into real-world applications of graph 
generation techniques. We will focus on five specific application exam-
ples: molecular design, recommender systems, protein design, commu-
nity generation, and program synthesis.

11.1. Molecular design

Molecular design is of great significance in application fields such as 
drug development, material science, environmental protection, agricul-
ture, and the food industry. Through molecular design, new molecules 
and new materials with specific functions and excellent properties can 
be developed. In the task of molecular generation, generative design 
usually has two main goals: (1) graph generation methods should 
generate syntactically valid molecules; (2) the generated mole-cules 
should have certain specific properties. To ensure the validity of gener-
ated molecules, sequential generation strategies can be implemented 
by adding valence checks in each intermediate generation step. In 
existing work, EDM [4] introduces an E(n)-equivariant diffusion model 
tailored for generating 3D molecular structures, which handles both 
continuous (e.g., atomic coordinates) and categorical data by integrat-
ing equivariant properties into the denoising process to ensure that 
the generated molecular conformations respect the inherent symmetries 
of 3D space (e.g., rotations and translations). GeoDiff [5] proposes a 
geometric diffusion method for generating molecular conformations 
that focuses on modeling the Boltzmann distribution of molecular 
structures, ensuring that the generated conformations are physically 
plausible and energetically stable. GeoDiff exploits the SE(3) group 
to preserve rotational and translational invariance during diffusion 
and generation. As shown in Fig.  6, GeoDiff uses a graph diffusion 
model to generate highly realistic molecular conformations that have 
typical characteristics of drug-like molecules. We can clearly see mul-
tiple molecular conformation examples generated by GeoDiff, each of 
which shows a different molecular arrangement and structure. The 
visualization results not only verify the effectiveness of the GeoDiff 
model, but also demonstrate its potential application value in drug dis-
covery and materials science. DiffLinker [6] generates molecular linkers 
conditioned on 3D fragments using a 3D equivariant diffusion model 
that incorporates symmetry considerations, allowing it to efficiently 
generate linkers that are consistent with the spatial arrangement of the 
input molecular fragments.

11.2. Recommender systems

Traditional recommendation systems may not fully capture the dy-
namic changes in user preferences, while diffusion models can provide 
more accurate recommendation results by generating and predicting 
users’ potential interests through diverse data. In existing work, CF-
Diff [184] proposes a new collaborative filtering method based on 
the diffusion model, which uses high-order connectivity information 
to improve the recommendation accuracy. SDRM [185] introduces a 
score-based diffusion recommendation module to generate synthetic 
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Fig. 5. Sampling speed comparison over different models.
Fig. 6. Visualization of drug-like conformations generated by GEODIFF 
demonstrates the model’s capability in generating molecular structures [5].

data for privacy-preserving recommendations. SDRM captures complex 
patterns in real-world datasets, enabling accurate recommendations 
while protecting user privacy. G-Diff [186] emphasizes that diffusion 
models can better capture the uncertainty and potential preferences 
in user behavior compared to traditional generative models such as 
VAE [42,47,136] and GAN [41,61]. G-Diff learns the probability dis-
tribution of user behavior by adding noise to the target items, thereby 
achieving better sequence recommendations. As shown in Fig.  7, for 
the sake of brevity and clarity, G-Diff only shows the top five rec-
ommendation lists generated by three different random seeds. These 
recommendation lists show the movies recommended by the system 
under different initial conditions, which helps to understand the per-
formance and variability of the recommendation algorithm in practical 
applications, and also helps to evaluate the accuracy and consistency 
of the recommendation system in meeting user viewing preferences.

11.3. Protein design

Designing proteins with specific functions through graph gener-
ation technology can promote the development of biotechnologies 
(e.g., enzyme engineering, and antibody design), and achieve effi-
cient biocatalysis and disease treatment. In existing work, GDD [7] 
discusses how to use guided diffusion models to design proteins by 
sampling from non-norma-lized density functions. GDD emphasizes the 
efficiency of guided diffusion models in generating low-energy protein 
samples via fixed-length Markov chains. RFdiffusion [188] combines 
diffusion models with structure prediction networks to improve the 
accuracy of protein design. This approach uses diffusion models to 
create biologically plausible proteins, demonstrating their potential to 
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Fig. 7. DiffRec shows examples of user watch lists and recommended movies. 
In these examples, the real movie entries are marked with red boxes to 
facilitate comparison with the movie lists generated by the recommendation 
system [187].

Fig. 8. The RFdiffusion track constructed a symmetric oligomer through 
multiple iterations. This process demonstrates the ability of RFdiffusion to 
gradually generate and optimize molecular structures to gradually meet the 
design goals [188].

generating diverse and structurally plausible protein sequences. EvoD-
iff [189] combines evolutionary-scale data with the regulatory power 
of diffusion models to generate high-fidelity, diverse proteins with 
broad functionality and structural plausibility, pushing the boundaries 
of traditional structure-based protein design methods. As shown in 
Fig.  8, RFdiffusion successfully designed oligomers that met the C4 
symmetry and Ni2+ binding requirements, verifying the effectiveness 
of RFdiffusion in designing and generating molecular structures that 
meet theoretical expectations.

11.4. Community generation

Graph generation helps simulate complex community structures and 
dynamic changes in community generation, so as to better understand 
and analyze the behavior and characteristics of actual community net-
works. By generating representative graphs, we can fill in the missing 
parts in real data and enhance the quality and diversity of data sets. 
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Fig. 9. GDSS shows the network structure of a small dataset of real com-
munities. The graph includes nodes and their edge connections within the 
community, as well as the boundaries between different communities [32].

This is especially important for community detection and analysis, 
because real community data may be incomplete or noisy. Graph gener-
ation models can generate potential community structures and predict 
how communities evolve over time, which has practical application 
value for social network analysis. As shown in Fig.  9, GDSS [32] is 
a technique for graph data synthesis and sampling, and the graphs 
it generates are intended to simulate and predict possible community 
structures. The generated graphs usually reflect the community orga-
nization and node connectivity produced by the model under given 
parameters. Compared with the graphs of real datasets, the graphs 
generated by GDSS may show more experimental structural features.

11.5. Program synthesis

Different from traditional generation models, diffusion models can 
continuously verify and adjust the code during the generation process 
to ensure that the final generated code meets syntactic and semantic 
correctness. DST [190] introduces a neural diffusion model that op-
erates on syntax trees to iteratively improve code while maintaining 
syntactic validity. DST addresses the limitations of autoregressive mod-
els by allowing iterative editing based on runtime feedback. As shown 
in Fig.  10, the leftmost column shows real renderers from the test set. 
The following columns show renderers generated by different methods, 
including DST and other baseline methods. Each column shows the ren-
dering effect of a method in the corresponding graphics language. By 
comparing these renderers, we can see the differences in the accuracy 
and detail of the generated graphics of each method. The renderer of 
the DST method shows its advantages in graphics generation, especially 
in the precise adjustment of details and the matching degree with the 
real program. DST can generate more sophisticated graphics, better fit 
the real renderer in the test set, and show higher accuracy and realism.

12. Practical considerations across domains

When applying graph generative models to different domains, sev-
eral domain-specific considerations arise. In molecular and materials 
science, ensuring chemical validity is essential, which often requires the 
incorporation of hard constraints or rule-based post-processing modules 
within generative pipelines. In contrast, applications in social networks 
and citation graphs prioritize scalability, where sparsity-aware message 
passing and subgraph sampling strategies become critical to handle 
million-scale graphs. Temporal or dynamic graphs, such as transaction 
networks, demand architectures that explicitly model time-evolving 
edges; ODE- and SDE-based formulations have been adapted to capture 
such dynamics. Moreover, the evaluation protocols also differ: molec-
ular generation relies heavily on property-based metrics (e.g., QED, 
logP), while community network generation emphasizes structural sim-
ilarity (e.g., degree distribution, clustering coefficient). These practical 
differences suggest that a ‘‘one-size-fits-all’’ solution remains elusive, 
and effective deployment requires careful alignment between model 
design, hyperparameter settings, and domain constraints.
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Fig. 10. Qualitative examples showing DST and baseline methods on two 
reverse graphics languages, CSG2D (top two rows) and TinySVG (bottom two 
rows) [190].

13. Future directions

Training Objectives and Optimization Problems. Although the 
Evidence Lower Bound (ELBO) has been widely adopted in graph 
generation tasks, its theoretical alignment with the true negative log-
likelihood remains insufficiently understood. Optimizing ELBO serves 
only as a proxy for variational inference and does not necessarily 
guarantee convergence to the optimal generative distribution, partic-
ularly in high-dimensional structured data like graphs. To address 
this gap, several concrete research directions can be pursued: (1) 
Theoretical calibration of ELBO. A systematic approach is to derive 
tighter bounds by augmenting the standard ELBO with correction terms 
that explicitly account for graph-specific structures. For instance, one 
could integrate Rényi divergence or 𝜒2-divergence based bounds into 
the training objective, and empirically evaluate whether these bounds 
yield better alignment with true likelihoods on benchmark datasets.
(2) Hierarchical and domain-aware objectives. Current objectives 
often treat nodes and edges uniformly, ignoring hierarchical or domain-
specific dependencies. A practical pipeline would be: (i) decompose 
graphs into hierarchical units (e.g., communities in social graphs, func-
tional groups in molecular graphs), (ii) define local reconstruction 
losses within each unit, and (iii) aggregate them into a global ob-
jective weighted by structural importance. This ensures that training 
respects both local fidelity and global coherence. (3) Adaptive noise-
signal balancing. During diffusion, the challenge is to model noise 
while preserving meaningful signal. A concrete strategy is to adopt a 
curriculum-based schedule: start with high noise levels to encourage 
exploration, then gradually reduce noise according to topology-aware 
criteria (e.g., node degree distribution, motif frequency) so that cru-
cial structural information is preserved. This can be implemented by 
dynamically adjusting the schedule conditioned on graph statistics. (4) 
Hybrid loss design. Recent advances in score matching and denoising 
diffusion suggest combining multiple objectives. An effective workflow 
could be: (i) reconstruction error enforces fidelity to input structure, 
(ii) adversarial regularization encourages realistic sample distribution, 
and (iii) structural constraints (e.g., energy-based priors in molecular 
graphs, modularity in social networks) guide the model toward domain 
validity. Such hybrid objectives can be optimized jointly, with adaptive 
weighting to prevent dominance of any single component. (5) Evalu-
ation and iterative refinement. To validate these objectives, one can 
adopt a train–evaluate–refine loop: train with the proposed hybrid loss, 
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evaluate with both likelihood-based metrics (ELBO gap, NLL approxi-
mation) and domain metrics (MMD for social/citation networks, FCD 
for molecular graphs), and iteratively refine the objective weights or 
noise schedules until both statistical and domain-specific performance 
criteria are satisfied.

Challenges of 2D to 3D Graph Generation. As graph generation 
research evolves from 2D to 3D domains, new challenges arise in 
modeling spatially complex structures and ensuring geometric fidelity. 
Unlike 2D graphs, 3D graphs involve intricate interdependencies be-
tween node coordinates, bond angles, and geometric constraints, which 
are critical in molecular conformation and protein folding. To systemat-
ically address these challenges, several concrete approaches can be con-
sidered: (1) Domain-aware evaluation metrics. Traditional structural 
metrics (degree distribution, clustering coefficient) are insufficient for 
3D graphs. A practical evaluation pipeline should integrate: (i) RMSD to 
measure deviation from reference conformations, (ii) steric clash scores 
to penalize physically invalid overlaps, and (iii) energy-based metrics 
from molecular dynamics or force-field simulations (e.g., MMFF94, 
CHARMM) to assess thermodynamic plausibility. This ensures that 
evaluation reflects both structural fidelity and physical validity. (2) 
Equivariance and invariance modeling. Generative models must 
respect SE(3) symmetries so that generated graphs remain consistent 
under rotation and translation. A concrete modeling strategy is: (i) 
adopt SE(3)-equivariant GNNs or tensor field networks for message 
passing, (ii) ensure that coordinate updates preserve rotational/transla-
tion invariance, and (iii) combine with attention mechanisms to capture 
long-range dependencies in proteins or large molecules. (3) Geometric 
constraint preservation. A key step in 3D generation is maintaining 
bond lengths, bond angles, and torsion angles throughout the denois-
ing trajectory. This can be achieved by: (i) embedding constraints 
into the loss function (e.g., harmonic penalties for bond lengths), (ii) 
projecting generated coordinates back onto physically valid manifolds 
after each diffusion step, and (iii) using constraint-satisfaction layers 
that correct invalid geometries before sampling the next state. (4) 
Incorporating physical priors. Differentiable physics simulators and 
energy-based models can serve as inductive priors. A feasible workflow 
is: (i) generate coarse 3D structures using diffusion or score-based 
models, (ii) refine them with energy minimization guided by force 
fields, and (iii) feed the refined structures back into the generative loop 
for iterative improvement. This ‘‘generate–refine–retrain’’ pipeline links 
deep generative learning with molecular simulation.

Impact of Changes in Data Distribution. Another promising di-
rection lies in addressing the challenges posed by distribution shifts 
between training and deployment data. In real-world applications such 
as molecular design or social network modeling, the data encountered 
at test time often exhibit domain-specific structures and constraints not 
fully captured during training. To enhance generative fidelity, future 
work should explore integrating domain-specific priors into the diffu-
sion process. For instance, in molecular generation tasks, incorporating 
chemical valence constraints, ring closure rules, or energy-based physi-
cal priors into the denoising model can ensure that generated molecules 
are not only structurally valid but also chemically feasible. Similarly, in 
social network or community graph generation, embedding structural 
priors such as modularity, community detection statistics, or degree 
distributions can improve realism. Moreover, addressing distributional 
shifts requires robust modeling strategies, such as out-of-distribution 
(OOD) detection during sampling, domain-adaptive training objectives, 
or Bayesian diffusion models that explicitly model uncertainty under 
varying data regimes. These strategies will not only improve the sta-
bility and generalizability of graph diffusion models but also provide 
stronger guarantees for their deployment in downstream applications 
with dynamic and heterogeneous data distributions.

Permutation Invariance and Graph Alignment. Permutation in-
variance has traditionally been regarded as a fundamental property 
in graph generative models, ensuring that the model outputs remain 
consistent under node reordering. Many prior works emphasize this 
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property as crucial for learning stable representations and avoiding 
overfitting to arbitrary node indices. However, emerging studies sug-
gest that strict permutation invariance may, in some cases, limit the 
expressive power and generative performance of models. Recent re-
search has demonstrated that relaxing permutation invariance can 
actually benefit generation tasks, especially in cases where alignment 
between graph structures is meaningful or where canonical node order-
ings can be inferred from data. For instance, SwingNN [191] introduces 
a permutation-sensitive diffusion model and shows that incorporating 
alignment-aware architectures can improve sample quality in molecular 
generation. Similarly, Laabid et al. [192] highlight that in retrosyn-
thesis, aligning the node ordering between reactants and products is 
essential for achieving chemically plausible transformations. Even in 
large-scale structural prediction tasks like AlphaFold 3 [193], canoni-
calization of node positions is used to facilitate accurate biomolecular 
interaction modeling. These insights reveal a paradigm shift: rather 
than enforcing strict permutation invariance, modern graph generative 
models may benefit from incorporating task-specific or domain-aware 
alignment strategies. This includes learning permutation-sensitive fea-
tures, introducing alignment loss terms, or leveraging canonical graph 
orderings derived from heuristics or auxiliary models. Future work 
in graph diffusion should therefore carefully assess when permutation 
invariance is beneficial and when controlled relaxation or alignment 
can provide superior performance.

Scalability of GDMs. A critical limitation of current graph diffusion 
models (GDMs) is their poor scalability to large-scale graphs such as 
social or citation networks. Most diffusion-based approaches require 
repeated pairwise computations across all nodes during the denoising 
process, while autoregressive models generate edges sequentially. Both 
designs lead to quadratic or worse computational costs, which become 
infeasible when the number of nodes reaches millions. Several practical 
workarounds have been proposed in recent studies. One direction is 
sparse or active-region diffusion, where models restrict computation to 
a subset of nodes or candidate edges that are most likely to change, 
instead of processing the entire dense adjacency at each step. This 
reduces overhead substantially while maintaining accuracy on large, 
sparse graphs. Another line of work focuses on subgraph sampling: 
large graphs are divided into overlapping subgraphs for training, and 
later merged through consistency constraints across boundaries. Al-
though this strategy scales linearly with the number of subgraphs 
and allows parallelization, it must be carefully designed to preserve 
global structural properties. A complementary solution is hierarchical 
generation, which builds graphs in multiple stages. Models first gen-
erate a coarse skeleton at the community level and then refine each 
community in detail. This approach not only improves efficiency but 
also naturally fits the modular structure often observed in social and 
biological networks. Meanwhile, diffusion-step reduction techniques, 
such as distillation or adaptive noise schedules, shorten the number of 
denoising iterations required, accelerating both training and inference. 
Other engineering-oriented strategies include using low-rank or block-
sparse representations of adjacency matrices to cut down redundant 
computations, as well as distributed and parallel training frameworks 
to leverage multiple GPUs or nodes effectively. Finally, edge-budget 
control and negative sampling strategies have been explored to avoid 
scoring all possible node pairs, instead focusing on the most informative 
edges. While these methods collectively alleviate scalability concerns, 
each comes with trade-offs, for example, sparse methods risk missing 
rare but important edges, subgraph sampling may lose global con-
sistency, and hierarchical generation relies heavily on the quality of 
community detection. Achieving true scalability without compromising 
fidelity and stability remains an open research challenge, but the 
combination of these strategies provides a promising path forward.

Out-of-Distribution (OOD) Robustness. Another critical limita-
tion of current GDMs lies in their vulnerability to distribution shift 
when applied to real-world data. While benchmarks typically assume 
that training and test graphs come from the same distribution, real 
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scenarios differ: social networks evolve over time, molecular libraries 
expand with novel scaffolds, and citation graphs shift with emerging 
domains. Such out-of-distribution (OOD) settings often cause severe 
degradation in generation quality, raising concerns about the relia-
bility of current evaluation practices. Existing mitigation strategies.
Several approaches have been explored to address OOD robustness: 
(1) Self-supervised and pretraining methods leverage large heterogeneous 
graph corpora to learn generalizable representations that transfer better 
across domains [194]. (2) Domain adaptation techniques explicitly align 
source and target distributions, for example using adversarial objectives 
or feature normalization to reduce domain gaps [195]. (3) Uncertainty-
aware modeling equips GDMs with Bayesian layers or ensemble scoring 
to quantify confidence and detect OOD samples [196].

14. Conclusion

As one of the most advanced generative methods, diffusion-based 
methods have made significant progress in graph generation tasks, 
especially in areas (e.g., molecular design and material synthesis). 
Therefore, we provide a comprehensive review of diffusion-based graph 
generation methods. We first briefly review some traditional graph 
generation methods. Second, we analyze the different paradigms of 
diffusion methods, including how to apply diffusion models to graph 
structures. Third, we elaborate on the application of diffusion-based 
graph generation methods in various tasks, including their performance 
on popular datasets. By comparing the effects of different methods in 
practical applications, we can evaluate their effectiveness and advan-
tages in specific tasks. Fourth, we describe the specific performance of 
diffusion-based graph generation methods in practical applications. Fi-
nally, we look forward to future research directions and challenges. We 
discuss the limitations of current methods and possible future research 
directions, including how to solve existing problems and explore new 
application areas and technological innovations.
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