
Computer Science Review 59 (2026) 100854

A
1

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

Graph diffusion models: A comprehensive survey of methods and

applications
Yuntao Shou a, Wei Ai a, Tao Meng a ,∗, Keqin Li b
a College of Computer and Mathematics, Central South University of Forestry and Technology, 410004, Hunan, Changsha, China
b Department of Computer Science, State University of New York, New Paltz, NY, 12561, USA

A R T I C L E I N F O

Keywords:
Graph diffusion models
Generative models
Graph neural network
Graph generation

 A B S T R A C T

Diffusion models have rapidly emerged as a new paradigm in generative modeling. Therefore, we aim to
provide a comprehensive review of graph diffusion models. We introduce various forms of diffusion models
(i.e., DDPMs, SDEs, and SGMs), their working mechanisms, and how they can be extended to graph data.
Specifically, graph diffusion models follow the modeling process of diffusion models, implement the diffusion
process in graph data, and gradually denoise and generate new graph structures through reverse steps. The
application of graph diffusion models is mainly focused on the application scenarios of generating molecules
and proteins, but graph diffusion models also show potential in recommendation systems and other fields.
We explore the performance and advantages of graph diffusion models in these specific applications, such as
using them to discover new drugs and predict protein structures. Furthermore, we also discuss the problem
of evaluating graph diffusion models and their existing challenges. Due to the complexity and diversity of
graph data, the authenticity of generated samples is an important and challenging task. We analyze their
limitations and propose potential improvement directions to better measure the effectiveness of graph diffusion
models. The summary of existing methods mentioned is in our Github: https://github.com/yuntaoshou/Graph-
Diffusion-Models.

Contents

1. Introduction .. 2
2. Traditional graph generation methods ... 2

2.1. Autoregressive models .. 2
2.2. Normalizing flows .. 3
2.3. Variational autoencoders... 4
2.4. Generative adversarial networks .. 4

3. Background on diffusion models ... 4
3.1. Denoising diffusion probabilistic models (DDPMs)... 4

3.1.1. Equivariant diffusion model (EDM).. 4
3.1.2. Discrete denoising diffusion (DiGress) .. 5
3.1.3. Diffusion with discrete state spaces (DDSS) .. 5

3.2. Score-based generative models (SGMs) ... 6
3.2.1. Graph diffusion via SDE systems (GDSS) .. 6
3.2.2. Graph spectral diffusion model (GSDM) ... 8

3.3. Stochastic differential equations (SDEs) .. 8
3.3.1. Conditional diffusion graph structures (CDGS) .. 9

4. Complexity and scalability analysis ... 10
5. Implementation challenges ... 10
6. Hyperparameter sensitivity ... 10
7. Popular benchmark datasets ... 10
8. Evaluation metrics ... 11

∗ Corresponding author.
E-mail address: mengtao@hnu.edu.cn (T. Meng).
https://doi.org/10.1016/j.cosrev.2025.100854
Received 24 June 2025; Received in revised form 15 September 2025; Accepted 4 November 2025
vailable online 10 November 2025
574-0137/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/cosrev
https://www.elsevier.com/locate/cosrev
https://orcid.org/0000-0002-9787-2002
https://github.com/yuntaoshou/Graph-Diffusion-Models-A-Comprehensive-Survey-of-Methods-and-Applications
https://github.com/yuntaoshou/Graph-Diffusion-Models-A-Comprehensive-Survey-of-Methods-and-Applications
mailto:mengtao@hnu.edu.cn
https://doi.org/10.1016/j.cosrev.2025.100854
https://doi.org/10.1016/j.cosrev.2025.100854

Y. Shou et al. Computer Science Review 59 (2026) 100854
8.1. Maximum mean discrepancy (MMD) .. 11
8.2. Fréchet ChemNet distance (FCD) ... 11

9. Experimental performance .. 12
10. Efficiency .. 14
11. Applications .. 14

11.1. Molecular design .. 14
11.2. Recommender systems .. 14
11.3. Protein design .. 15
11.4. Community generation.. 15
11.5. Program synthesis .. 16

12. Practical considerations across domains ... 16
13. Future directions ... 16
14. Conclusion .. 18

 Declaration of competing interest .. 18
 Acknowledgments .. 18
 Data availability .. 18
 References... 18
1. Introduction

In the past two years, diffusion methods [1–3] in image generation
have received widespread attention in graph generation, resulting in
a significant increase in research activities on graph diffusion models
and the emergence of more and more new methods and technolo-
gies [4–18]. As shown in Fig. 1(a), Diffusion models in the image
generation generate data by gradually applying noise and denoising
processes [19]. The basic idea is to gradually transform data into
pure noise through multiple steps of noise, and then gradually denoise
through the reverse process to restore meaningful data. As shown
in Fig. 1(b), Diffusion models [20–23] for graph generation follow a
similar paradigm. The process involves adding noise to a graph’s struc-
ture and features over several steps (forward process) and learning to
denoise noisy graphs back to their original form (reverse process) [24].
Although graph diffusion models have developed rapidly, they have
also caused researchers, especially new entrants, to face the problem
of information overload. New researchers may find it difficult to screen
out the most influential work and face challenges in understanding and
applying new methods. To help researchers understand and distinguish
different methods, there are several survey papers for graph diffusion
generation [25,26]. However, most of them focus on the description of
the current research status and lack mathematical theoretical analysis
of subsequent research progress.

Therefore, based on the above analysis, our review is the first to
comprehensively review the current status of graph diffusion model
research, covering the current main research directions and the latest
developments. As shown in Table 1, our review divides the graph gen-
eration methods into four categories, i.e., traditional graph generation
methods, which include four subcategories, i.e., autoregressive models
(AR) [27], normalizing flows [28], VAE [29], and GAN [30], and graph
diffusion methods, which include three subcategories, i.e., DDPMs [20],
SGMs [19,31], and SDEs [32,33]. We discuss the theoretical basis, prac-
tical applications, advantages, and disadvantages of different methods
so that readers can better understand the applicable scenarios and lim-
itations of each method. We will focus on highlighting the key progress
and breakthroughs in the field of graph diffusion models including
theoretical innovations, improvements in empirical performance, and
important results in practical applications. We hope that this review can
provide a useful point for researchers in the field of graph generation,
allowing them to quickly understand the basic concepts, latest progress,
and research trends of graph diffusion models. Meanwhile, we also
hope to provide experienced researchers with a broader perspective to
help them identify potential challenges.

The contributions of this paper are summarized as follows:

• Comprehensive Review: We provide the most comprehensive
review of traditional models (i.e., AR, normalizing flows, VAEs,
2
and GANs) and graph diffusion models (i.e., DDPMs, SGMs, and
SDEs) for graph generation.
Insightful Analysis. For each modeling approach, we provide a
representative model and give a mathematical theoretical deriva-
tion, which can guide readers to choose an appropriate baseline
model for their research.

• Abundant Resources: We have collected relevant resources on
graph generation, including SOTA models and publicly available
datasets on Github.1 This paper can serve as a practical guide for
learning and developing different graph generation algorithms.

• Future Directions: We analyze the limitations of existing graph
diffusion methods and propose possible future research directions
from multiple aspects, including training objectives, scalability
from 2D to 3D graph generation, and data distribution.

The paper is organized as follows: Section 2 summarizes traditional
graph generation methods. Section 3 illustrates the background, def-
initions for graph diffusion generation, and divides graph diffusion
generation methods into three categories, and gives the mathemati-
cal theory. Section 4 summarizes some of the publicly available and
popular datasets for graph generation tasks, and Section 5 gives the
performance of different algorithms. Section 6 discusses the great value
and broad prospects of graph diffusion models in practical applications.
Section 7 illustrates the future research directions and challenges of
graph diffusion models. Finally, we conclude the work.

2. Traditional graph generation methods

In this section, we briefly review traditional graph generation meth-
ods. We roughly divide the existing traditional graph generation meth-
ods into four categories, i.e., autoregressive models (AR) [27], normal-
izing flows [28], variational autoencoders (VAE) [29], and generative
adversarial networks (GAN) [30].

2.1. Autoregressive models

The basic idea of AR [27] is to decompose the graph generation
process into a series of decisions, each step is based on the previous
decision. First, AR needs to determine the order of generating nodes,
which can be a random order, the order of node degrees, or other
heuristic methods. Then generate nodes one by one in the determined
order. The generation of each node can be based on the information
of the previously generated nodes. For each generated node, decide in
turn whether there is an edge between it and all previous nodes. This

1 https://github.com/yuntaoshou/Graph-Diffusion-Models-A-
Comprehensive-Survey-of-Methods-and-Applications

https://github.com/yuntaoshou/Graph-Diffusion-Models-A-Comprehensive-Survey-of-Methods-and-Applications
https://github.com/yuntaoshou/Graph-Diffusion-Models-A-Comprehensive-Survey-of-Methods-and-Applications

Y. Shou et al. Computer Science Review 59 (2026) 100854
Table 1
We summarize variants of traditional graph generation methods and variants of diffusion models.
 Categories Year Methods

Traditional Methods

Auto-regressive

2018 GraphRNN [34]
 2019 MolecularRNN [35]
 2020 ES-GraphRNN [36], GraphGen [37]
 2021 GraphGen-Redux [38]

VAE

2018 DCRM [39], JT-VAE [40]
 2019 ConGen [41], D-VAE [42]
 2020 IMGDL [43], PCVAE [44], NECD [45], CBO-VAE [46], NeVAE [47], DGVAR [48]
 2021 DLM [49], COVAE [50], DDGSN [51]
 2022 IMGMC [52], DSG [53]

Normalizing Flows
2019 GraphNVP [54]

 2020 MoFlow [55]
 2021 GraphDF [56]

GAN

2018 LMGT [57]
 2019 CLGAN [58]
 2020 Mol-CycleGAN [59], TSGG-GAN [60]
 2021 ALMGIG [61]

Diffusion Models

DDPMs

2022 EDM [4], GeoDiff [5], DiffBP [62], DiffSBDD [63], DiffAb [64], Anand [65], PROTSEED [66]
 2023 MDM [67], Digress [68], TargetDiff [69], DIFFDOCK [70], SILVR [71], SMCDiff [72], HierDiff [73]
 2023 RINGER [74], GeoLDM [75], Diffmol [76], DecompDiff [77], HouseDiffusion [78], DiffSTG [79]
 2023 EDGE [24], EDGE++ [80], MCRDiff [81], SaGess [82], DIFUSCO [83]
 2024 MDM, MiDi [84], GCDM [85], PMDM [86], TSDiff [87]
 2024 DiffLinker [6], D3FG [88], GradeIF [89], GFMDiff [90], MUDiff [91], Pard [92]
 2024 AbDiffuser [93], SPDiff [94], LatentDiff [95], DiffCSP [96], DiffCSP++ [97], HypDiff [98]
 2024 GemsDiff [99], CrysDiff [100], CHP-MOFassemble [101], NAP [102], DDM [103], ILE [104]
 2025 GBD [105], DiffGraph [106]

SGMs

2020 EDP-GNN [107]
 2021 ConfGF [108], ColfNet [109], DGSM [110], ProteinSGM [111]
 2022 DiffPB [112], SLD [113]
 2023 DiffusionCG [114], DruM [115]
 2024 VoxMol [116]

SDEs

2022 EEDSDE [117], GraphGDP [118], NVDiff [119]
 2023 CDGS [120], DiffMD [121], EigenFold [122], JODO [123], MuDM [124]
 2023 GSDM [125], DiffusionNAG [126], Diff-POI [127]
 2024 NeuralPLexer [128], SD [129], DiffBindFR [130], HGDM [131], Graphhusion [9], ProGDM [132]
Fig. 1. The workflow of the diffusion model on images and graphs. The
arrows on the right indicate the direction of the diffusion process, showing
how noise is gradually injected into the real data to simulate the transition
from order to disorder. In this stage, the real data is gradually added with
noise through multiple iterations and finally becomes a pure noise distribution.
Guided by the arrows on the left, the sampling stage of generating samples is
shown. This stage reverses the previous diffusion process, starting from pure
noise, gradually removing noise through multiple iterations and regenerating
samples. This process can be seen as a transition from disorder to order,
gradually recovering the generated samples close to the real data through
multiple iterations and calculations.
3
decision can be made through conditional probability which is calcu-
lated based on the part of the graph that has been generated. In existing
work, GraphRNN [34] is an autoregressive model based on RNN, which
models the graph generation process as a sequence generation process
of nodes and edges, and uses RNN to capture the structural information.
ESGraphRNN [36] models the graph generation process as an edge-
by-edge prediction process. ESGraphRNN is trained by maximizing the
likelihood estimate, and the model learns to maximize the probability
of generating the graph. The teacher forcing strategy is used in the
training process, that is, the real previous edge information is used at
each step of generation. Autoregressive methods are usually suitable
for generating graph structures with fixed order and dependencies.
For graphs without obvious order or irregular structure, the effect of
autoregressive methods may not be ideal [133].

2.2. Normalizing flows

Normalizing Flows [28] is a technique that gradually transforms
a simple distribution (usually a standard normal distribution) into a
complex distribution. It maps simple distribution samples into complex
distributions through a series of reversible transformations. In graph
generation tasks, Normalizing Flows maps simple prior distributions
(such as Gaussian distributions) into graph structure distributions th-
rough a series of reversible transformations, thereby achieving graph
generation. For example, GraphNVP [54] is a model that applies Nor-
malizing Flows to molecular graph generation. Through a series of re-
versible transformations, simple distributions are mapped into complex
distributions of molecular graphs, thereby achieving efficient molec-
ular graph generation. MoFlow [55] proposes a new reversible flow
model for graph generation and optimization. Molecular generation is
achieved by mapping the attributes of molecular graphs into latent

Y. Shou et al. Computer Science Review 59 (2026) 100854
space and modeling them through flow models. The training of Nor-
malizing Flows involves the optimization of log-likelihood estimation,
and the training process may be unstable, especially when dealing with
high-dimensional data, which may cause problems such as numerical
instability and gradient vanishing [56,134].

2.3. Variational autoencoders

In graph generation tasks, VAE [29,135] encodes the structural
information of the graph into the latent space and then decodes it
to generate a new graph structure. For example, GraphVAE [136]
uses the variational autoencoder framework to combine the node and
edge attribute information of the graph to achieve small-scale graph
generation. MolVAE [137] is a variational autoencoder model which
encodes the structural information of the molecular graph into the
latent space and generates a new molecular graph through the decoder,
the molecular structure is effectively generated. To achieve sampling
from the latent space and gradient transfer, MolVAE uses the repa-
rameterization technique. By decomposing the sampling process of the
latent variables into deterministic variables and random noise, effective
gradient transfer can be achieved. The reconstruction quality of VAE
is usually lower than that of other generative models, e.g., GAN [30].
This is because VAE needs to balance the reconstruction loss and KL
divergence regularization during training, resulting in the generated
graph quality may not be high [42,47].

2.4. Generative adversarial networks

GAN [30] is consisting of a generator and a discriminator. The
generator samples from a noise vector (e.g., Gaussian distribution or
uniform distribution) to generate the node and edge structures of the
graph. The discriminator takes the real graph and the generated graph
as input and outputs a probability, indicating the probability that
the input graph is the real graph. For example, NetGAN [138] uses
random walks to generate sequences, which are then used to generate
graphs. The generator generates the local structure of the graph through
random walks, and the discriminator distinguishes between the real and
generated random walk sequences. MolGAN [139] is a GAN model for
molecular graph generation. The generator generates the node and edge
properties of the molecular graph, and the discriminator determines
whether the generated molecular graph is similar to the real molecular
graph. In addition, MolGAN also uses a reward network to optimize the
generator for specific goals (e.g., drug activity). The training process of
GAN is prone to instability. Imbalanced training of the generator and
the discriminator may lead to poor generation quality or mode collapse,
i.e., the graphs generated by the generator lack diversity [41].

3. Background on diffusion models

Diffusion models are a type of generative model that destroys the
data distribution by gradually adding noise, and then restores the data
distribution through a reverse denoising process. Diffusion models have
received widespread attention in areas such as image generation and
text generation. There are three main subtypes of diffusion models:
DDPM, SGMs, and SDEs.

3.1. Denoising diffusion probabilistic models (DDPMs)

DDPM [20] is a type of generative model that corrupts data by
gradually adding noise, and then reconstructs the data by gradually
denoising it through a learning reverse process. In DDPM, the forward
process is a fixed Markov chain that starts with the original data and
gradually adds Gaussian noise until it becomes pure noise.

Forward process. The forward process aims to transform the input
data into a standard Gaussian distribution by gradually adding Gaus-
sian noise [67,84]. Specifically, for a data distribution 𝑚 ∼ 𝑞(𝑚), the
0 0

4
forward process is a Markov chain defined between data 𝑚0 and 𝑚𝑇 ,
which can be formally defined as:

𝑞(𝑚1∶𝑇 |𝑚0) ∶=
𝑇
∏

𝑡=1
𝑞(𝑚𝑡|𝑚𝑡−1),

𝑞(𝑚𝑡|𝑚𝑡−1) ∶=  (𝑚𝑡;
√

1 − 𝛽𝑡𝑚𝑡−1, 𝛽𝑡𝐼)

(1)

where 𝛽 is the variance of the noise added at each time step. Assume
𝛼𝑡 ∶= 1 − 𝛽𝑡 and 𝛼̄𝑡 ∶=

∏𝑡
𝑠=0 𝛼𝑠, we can get:

𝑞(𝑚𝑡|𝑚0) ∶=  (𝑚𝑡;
√

𝛼̄𝑡𝑚0, (1 − 𝛼̄𝑡)𝐼) (2)

Reverse process. The reverse process uses the trained network to
predict the noise added in the forward process [62,85]. Specifically,
first, an initial noise sample 𝑚𝑇 is sampled from the distribution 𝑝(𝑇).
Next, the noise added is gradually removed using the trained neural
network. Through the above steps, the network is trained to restore
the sample 𝑚𝑡 to 𝑚𝑡−1.
𝑝𝜃(𝑚𝑡−1|𝑚𝑡) =  (𝑚𝑡−1;𝜇𝜃(𝑚𝑡, 𝑡), 𝛴𝜃(𝑚𝑡, 𝑡)) (3)

where 𝜇𝜃(𝑚𝑡, 𝑡) is the mean function, which calculates the mean from
𝑚𝑡 recovered to 𝑚𝑡−1. 𝛴𝜃(𝑚𝑡, 𝑡) is the variance function of the neural
network output, which is used to calculate the variance from 𝑚𝑡 to 𝑚𝑡−1.
By minimizing the reconstruction error from 𝑚𝑇 to 𝑚0, we can optimize
the neural network to generate new samples consistent with the true
data distribution 𝑞(𝑚0).

The training objective is to maximize 𝑝𝜃(𝑚0), which can be achieved
by minimizing its negative log-likelihood [63,70]. The variational
lower bound can be decomposed into a series of KL divergence terms:
(𝜃) = E𝑞

[

− log 𝑝𝜃(𝑚0|𝑚1)

+
𝑇
∑

𝑡=2
KL(𝑞(𝑚𝑡−1|𝑚𝑡, 𝑚0) ∥ 𝑝𝜃(𝑚𝑡−1|𝑚𝑡))

+KL(𝑞(𝑚𝑇 |𝑚0) ∥ 𝑝(𝑚𝑇))
]

(4)

In practice, the above objectives are often simplified. A common
simplified objective is to directly optimize the reconstruction error
(i.e., the prediction error of the denoising process), which can be
achieved by rewriting the KL divergence term and simplifying the
variance assumption [1,80]. Therefore, the final optimization objective
can be formally defined as follows:
(𝜃) = E𝑞(𝑚𝑡|𝑚0)

[

∥ 𝜖 − 𝜖𝜃(𝑚𝑡, 𝑡) ∥2
]

(5)

where 𝜖 is the added Gaussian noise and 𝜖𝜃 is the noise predicted by
the neural network.

DDPMs [20] for graph generation follow a similar paradigm. The
process involves adding noise to a graph’s structure and features over
several steps (forward process) and learning to denoise noisy graphs
back to their original form (reverse process). This probabilistic frame-
work allows for the generation of complex graph structures with high
fidelity. Next we summarize several representative works on graph
generation using DDPMs.

3.1.1. Equivariant diffusion model (EDM)
As shown in Fig. 2, EDM [4] is a generative model specifically

designed to preserve symmetries or invariants in the data (e.g., rota-
tional or translational invariance). EDM is particularly useful in the
molecular graph generation, where the properties of the generated
structures must remain invariant under symmetry transformations. We
define the coordinate 𝑚𝑖 with atomic features ℎ𝑖 as an equivariant
diffusion process that adds noise to the data and preserves symmetry.
Assume a set of points (𝑚𝑖, ℎ𝑖) with spatial location information and
feature information, where each node is associated with its coordinate
representation 𝑚𝑖 ∈ R3 and attribute vector ℎ𝑖 ∈ R𝑑 . The forward
equivariant noise process for the latent feature vectors 𝑧𝑡 = [𝑧𝑚𝑡 , 𝑧

ℎ
𝑡] is

defined as follows:
𝑞(𝒛 |𝒎,𝒉) =  (𝒛 |𝛼 [𝒎,𝒉], 𝜎2𝑰) (6)
𝑡 𝑚ℎ 𝑡 𝑡 𝑡

Y. Shou et al. Computer Science Review 59 (2026) 100854
Fig. 2. An example of the overall process of EDM [4]. Through a step-by-
step denoising process, EDM transforms a normally distributed random point
set into a molecular structure with specific 3D coordinates and atomic types.
The rotational isovariance ensures the direction independence of the generated
molecules, so that the generated molecules still maintain the stability of their
structure and generation probability when rotating in space.

where 𝑚ℎ is the product of the noise coordinate distribution 𝑚 and
the noise feature distribution ℎ. ℎ is defined as follows:
𝑚(𝒛

(𝑚)
𝑡 |𝛼𝑡𝒎, 𝜎2𝑡 𝑰) ⋅ (𝒛(ℎ)𝑡 |𝛼𝑡𝒉, 𝜎2𝑡 𝑰) (7)

To denoise during the generation process, we define a denoising
process based on the noise posterior distribution 𝑞(𝑧𝑠|𝑚, ℎ, 𝑧𝑡), where
the data variables 𝑚, ℎ are replaced by the approximation 𝑚̂, ℎ̂ of the
neural network. The core idea of the denoising process is to estimate
the parameters in the noise posterior distribution, thereby effectively
removing the noise and restoring the original data [1,2]. Specifically,
the denoising process is defined as follows:
𝑝(𝒛𝑠|𝒛𝑡) = 𝑚ℎ(𝒛𝑠|𝝁𝑡→𝑠([𝒎̂, 𝒉̂], 𝒛𝑡), 𝜎2𝑡→𝑠𝑰) (8)

The generative denoising process relies on the intermediate variable
𝑧𝑡, and the output predictions of the neural network 𝜙 to gradually
remove the noise. In existing diffusion models [62,85,86], it is common
to use noise parameterization to obtain the final predictions 𝑚̂ and ℎ̂.
Specifically, the model does not directly output these predictions, but
outputs parameter estimates related to the noise. From the parameter
estimates, we can infer the actual predictions. In other words, the
network 𝜙 does not directly predict the final form of the data, but
outputs noise estimates 𝜖 = [𝜖(𝑚), 𝜖(ℎ)]. This includes an estimate of the
noise of the input data at the current time step 𝑡. The calculation process
of 𝑚̂, ℎ̂ is as follows:
[𝒎̂, 𝒉̂] = 𝒛𝑡∕𝛼𝑡 − 𝝐̂𝑡 ⋅ 𝜎𝑡∕𝛼𝑡 (9)

The final optimization objective can be formally defined as follows:

𝑡 = E𝝐𝑡∼𝑚ℎ(0,𝑰)
[1
2
𝑤(𝑡) ∥ 𝝐𝑡 − 𝝐̂𝑡 ∥2

]

(10)

where 𝑤(𝑡) = (1 − 𝛼𝑡−1
1−𝛼𝑡−1

)∕ 𝛼𝑡
1−𝛼𝑡

 and 𝝐̂𝑡 = 𝜙(𝒛𝑡, 𝑡).

3.1.2. Discrete denoising diffusion (DiGress)
DiGress [68] is mainly used to generate discrete structured data

(e.g., molecular graphs, social networks, etc.) The main idea of Di-
Gress is to use the diffusion process to decompose the complex graph
generation task into multiple simple step-by-step generation steps. By
gradually removing noise during the graph generation process, the
generated graph structure is ensured to be valid and have the target
5
attributes [64]. Similar to the diffusion model for images, DiGress
performs diffusion on each node and edge feature separately. For node
type  and edge type  , the transition probabilities are defined as
[𝑷 𝑡]𝑖𝑗 = 𝑞(𝑚𝑡 = 𝑗|𝑚𝑡−1 = 𝑖) and [𝑷 𝑡]𝑖𝑗 = 𝑞(𝑒𝑡 = 𝑗|𝑒𝑡−1 = 𝑖). At each
time step 𝑡, we form 𝐺𝑡 = ( 𝑡,𝑡) by adding noise to the nodes and
edges. DiGress samples from the categorical distribution defined as:
𝑞(𝑡|𝑡−1) = ( 𝑡−1𝑷 𝑡 ,

𝑡−1𝑷 𝑡)

𝑞(𝑡|) = ( 𝑷̄ 𝑡 ,𝑷̄
𝑡
)

(11)

where 𝑷 𝑡 = {𝑷 1
 ...𝑷

𝑡
} and 𝑷̄

𝑡
 = {𝑷 1

 ...𝑷
𝑡
}. Then DiGress inputs

the noisy graph 𝑡 = ( 𝑡,𝑡) into the denoising neural network 𝜙𝜃 ,
where  𝑡 represents the noise node feature, and 𝑡 represents the
noise edge feature. The neural network 𝜙𝜃 predicts the clean node and
edge features (𝑝 , 𝑝) through calculation. To make the predicted value
(𝑝 , 𝑝) closer to the true value ( ,), DiGress uses the cross-entropy
(CE) loss to measure the difference as follows:
𝑙(𝑝̂,) =

∑

1≤𝑖≤𝑛
CE(𝑚𝑖, 𝑝̂𝑖) + 𝜆

∑

1≤𝑖,𝑗≤𝑛
CE(𝑒𝑖𝑗 , 𝑝̂𝐸𝑖𝑗) (12)

where 𝜆 ∈ R+ is a hyperparameters. When the denoising network 𝜙𝜃
is trained, DiGress uses it to sample new graphs. Specifically, DiGress
models the distribution of nodes and edges as follows:
𝑝𝜃(𝑡−1|𝑡) =

∏

1≤𝑖≤𝑛
𝑝𝜃(𝑚𝑡−1𝑖 |𝑡)

∏

1≤𝑖,𝑗≤𝑛
𝑝𝜃(𝑒𝑡−1𝑖𝑗 |𝑡) (13)

To calculate each term, DiGress marginalizes these probability dis-
tributions. Specifically, for each node and edge feature, DiGress calcu-
lates the edge probability under all possible states as follows:
𝑝𝜃(𝑚𝑡−1𝑖 |𝑡) =

∑

𝑚∈
𝑝𝜃(𝑥𝑡−1𝑖 ∣ 𝑚𝑖 = 𝑚,𝑡)𝑝̂𝑖 (𝑚) (14)

where all possible states of 𝑡−1 are combined with the current pre-
dicted probability 𝑝̂ and summed to obtain the marginalized probabil-
ity distribution, and

𝑝𝜃(𝑚𝑡−1𝑖 ∣ 𝑡) =

{

𝑞(𝑚𝑡−1𝑖 ∣ 𝑚𝑖 = 𝑚,𝑚𝑡𝑖) if 𝑞(𝑚𝑡𝑖|𝑚𝑖 = 𝑚) > 0
0 otherwise.

(15)

 Similarly, 𝑝𝜃(𝑒𝑡−1𝑖𝑗 |𝑒𝑡𝑖𝑗) =
∑

𝑒∈ 𝑝𝜃(𝑒
𝑡−1
𝑖𝑗 ∣ 𝑒𝑖𝑗 = 𝑒, 𝑒𝑡𝑖𝑗)𝑝̂


𝑖𝑗 (𝑒).

3.1.3. Diffusion with discrete state spaces (DDSS)
DDSS [140] focuses on the generation process of simple graphs.

Through the diffusion model represented by discrete processes, it can
effectively simulate the generation process of graph structures and
provide high-quality generated samples in various applications [65,
87]. The core of DDSS lies in the effective combination of forward
and reverse processes, which enables the generation model to not
only add noise, but also effectively remove noise, thereby generating
high-quality samples that meet the target distribution.

In the graph generation model, DDSS first defines a one-hot en-
coded row vector 𝑎𝑡𝑖𝑗 for element (𝑖, 𝑗) in the adjacency matrix 𝛩𝑡.
This vector belongs to the set {0, 1}2. The initial adjacency matrix
𝛩0 is a sample directly sampled, and 𝛩𝑇 represents an Erdős–Rényi
random graph [141]. The forward process implements the stepwise
noise addition process from 𝐴0 to 𝐴𝑇 by repeatedly multiplying the type
row vector 𝑞(𝒂𝑖𝑗𝑡 |𝒂𝑖𝑗𝑡) = Cat(𝒂𝑖𝑗𝑡 |𝑝 = 𝒂𝑖𝑗𝑡−1𝑸𝑡) of each adjacency matrix
element with the doubly random matrix 𝑄𝑡. 𝐶𝑎𝑡 represents a categorical
distribution, and its parameter 𝑝 is determined by the product of the
one-hot encoded row vector 𝑎𝑡−1𝑖𝑗 of the previous time step and the
matrix 𝑄𝑡. In the forward process, the operation of each edge or non-
edge 𝑖 ≠ 𝑗 is independent, which means that we can process these
elements in parallel, thereby improving computational efficiency. The
matrix 𝑄𝑡 is a doubly random matrix with a dimension of R2×2, which
is used to model the transition probability of adjacency matrix elements
between different time steps. Specifically, 𝑄𝑡 is defined as:

𝑸𝑡 =
[

1 − 𝛿𝑡 𝛿𝑡
]

(16)

𝛿𝑡 1 − 𝛿𝑡

Y. Shou et al. Computer Science Review 59 (2026) 100854
where 𝛿𝑡 represents the invariant probability of the edge state. An
important advantage of Eq. (16) is that it can be sampled directly of
the diffusion process without relying on the calculation of any previous
time step. Formally, 𝛿 can be replaced by 𝛿𝑡 = 1

2 −
1
2
∏

𝑖<𝑡(1−2𝛿𝑖). DDSS
limits the probability of 𝛿𝑡 to vary from 0 (undisturbed samples) to
0.5 (noise), ensuring that the diffusion process retains more original
information in the initial stage and tends to complete randomness in
the final stage. In particular, the noise is sampled in i.i.d. manner on
all edges.

Since the forward process is a Markov chain [20], the current state
𝜣𝑡 depends only on the previous state 𝜣𝑡−1 and has nothing to do with
earlier states. Therefore, we can denote the transition probability of
the forward process as 𝑞(𝜣𝑡|𝜣𝑡−1). According to Bayes’ formula, we can
derive 𝑞(𝜣𝑡−1|𝜣𝑡,𝜣0) as follows:

𝑞(𝜣𝑡−1|𝜣𝑡,𝜣0) = 𝑞(𝜣𝑡|𝜣𝑡−1)
𝑞(𝜣𝑡−1|𝜣0)
𝑞(𝜣𝑡|𝜣0)

(17)

Diffusion models often learn data distributions efficiently by min-
imizing a variational upper bound. Specifically, the variational upper
bound is formally defined as follows:

vb(𝜣0) ∶= E𝑞(𝜣0)

⎡

⎢

⎢

⎢

⎣

𝐷𝐾𝐿(𝑞(𝜣𝑇 |𝜣0) ∥ 𝑝𝜃(𝜣𝑇))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑇

⎤

⎥

⎥

⎥

⎦

+
𝑇
∑

𝑡=1
E𝑞(𝜣 𝑡 |𝜣0)𝐷𝐾𝐿(𝑞(𝜣 𝑡−1|𝜣 𝑡,𝜣0) ∥ 𝑝𝜃(𝜣 𝑡−1|𝜣 𝑡))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑡

−E𝑞(𝜣1 |𝜣0) log(𝑝𝜃(𝜣0|𝜣1))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

0

(18)

Many DDPMs implementations have found that using alternative
loss functions can bring significant benefits. For example, [20] derived
a simplified loss function that simplifies loss calculation by reweighting
the terms of ELBO, which can effectively reduce the complexity of
the training process while maintaining the generation quality of the
model. [1,2] proposed the use of hybrid loss methods, which bal-
ances the performance of the model in different tasks by combining
different types of loss functions. DDSS replaces the original 𝐾𝐿 term
𝑡 by parameterizing 𝑝𝜃(𝛩0|𝛩𝑡). Specifically, 𝑡 is replaced by 𝑡 =
− log(𝑝𝜃(𝛩0|𝛩𝑡)). In addition, the reweighting term 1− 2 ⋅ 𝛽𝑡 +

1
𝑇 assigns

more linear importance to samples with less noise, which can learn the
essential characteristics when processing samples with less noise. The
simplified loss definition is as follows:

s = −E𝑞(𝜣0)

𝑇
∑

𝑡=1

(

1 − 2 ⋅ 𝛽𝑡 +
1
𝑇

)

⋅ E𝑞(𝜣 𝑡 |𝜣0) log 𝑝𝜃
(

𝜣0 ∣ 𝜣 𝑡
)

(19)

3.2. Score-based generative models (SGMs)

SGMs [19,31] use score matching techniques to generate high-
quality data. The core idea of SGM is to estimate the score function
of data distribution through score matching techniques. The score
function can reveal the trend and direction of data changes at specific
points, effectively guiding the generation process and gradually gener-
ating samples that conform to the data distribution from noise [113].

First, SGMs considers the forward direction of the diffusion process,
i.e., starting from the initial state 𝑚(0) ∼ 𝑝0, the system gradually
evolves to 𝑚(𝑇) ∼ 𝑝𝑇 over time [142]. However, according to Ander-
son’s research, if we start from the final state 𝑚(𝑇) ∼ 𝑝𝑇 and evolve
through the reverse time process, we can successfully trace back to
the initial state 𝑚(0) ∼ 𝑝0 of the system. This means that its time is
backward. Specifically, this reverse diffusion process can be described
by a reverse-time SDE, which enables us to describe how the system
evolves from 𝑚(𝑇) ∼ 𝑝𝑇 to 𝑚(0) ∼ 𝑝0 in reverse:

d𝒎 = [𝒇 (𝒎, 𝑡) − 𝑔(𝑡)2∇ log 𝑝 (𝒎)]d𝑡 + 𝑔(𝑡)d𝒘̄ (20)
𝒎 𝑡

6
In the reverse time process, the Wiener process 𝑤 describes the random
behavior of the system in the reverse time direction, which is similar to
the standard Brownian motion, except that time flows backwards. The
negative time step 𝑑𝑡 represents the small step forward in time, thus
ensuring that we can gradually reverse the evolution of the system.
After knowing the score function ∇𝑚 log 𝑝𝑡(𝑚) at each time point 𝑡,
we can reconstruct the early state of the system through the inverse
diffusion equation. The score function provides us with information
on how to adjust 𝑚 at each time point, making the reverse simulation
feasible.

The core idea of score matching is to approximate the gradient
of the data distribution through a network [32,107]. To estimate
∇𝑚 log 𝑝𝑡(𝑚), SGMs generalize the score matching method to the time
domain and introduce a time-dependent score-based network, which
can capture the dynamic changes of data distribution in time. Specifi-
cally, the optimization objective is defined as follows:
𝝓∗ = argmin

𝝓
E𝑡

{

𝛾(𝑡)E𝒎(0)E𝒎(𝑡)|𝒎(0)
[

∥ 𝒔𝝓(𝒎(𝑡), 𝑡)

−∇𝒎(𝑡) log 𝑝0𝑡(𝒎(𝑡) ∣ 𝒎(0)) ∥22
]}

(21)

where 𝛾 ∶ [0, 𝑇] ↦ R>0 is a positive weight function, which can balance
the score functions at different time steps during training, allowing to
learn the dynamic changes of data distribution more stably. The data
point 𝑚(𝑡) at time 𝑡 comes from the conditional distribution 𝑝0𝑡(𝒎(𝑡) ∣
𝒎(0)).

SGMs follows the same paradigm as image generation in graph
generation tasks. First, the distribution of the graph data to be gen-
erated is clarified, and the goal is to generate new graphs from this
data distribution [19,32,107]. To utilize the score matching method,
the original graph data is added with different degrees of noise to
construct a series of noisy graphs. Next, a scoring network is trained
to estimate the gradient of the graph data at each noise level. The goal
of the scoring function is to guide how to restore the original graph
from the noisy graph. Once the scoring network is trained, it can be
restored to the form of the original graph by gradually denoising. Next
we summarize several representative works on graph generation using
SGMs.

3.2.1. Graph diffusion via SDE systems (GDSS)
GDSS [32] proposes a new score-based graph generation model

with a continuous time framework, which successfully models the
joint distribution of graph via the graph diffusion process and SDE
system. The customized score matching target and the new SDE solver
enable the model to effectively sample and generate new graphs during
the reverse diffusion process. The results show that GDSS not only
generates graphs close to the training distribution, but also maintains
the chemical valence rules in the chemical molecule generation task,
demonstrating its potential and effectiveness in modeling complex
graph data. As shown in Fig. 3, GDSS (green) can effectively capture
the potential relationship between features and structures through
its diffusion process by modeling dependencies between components,
thereby generating new samples. GDSS-seq (red) adopts a step-by-step
generation method, that is, generating features  and adjacency matrix
𝜣 in sequence. The EDP-GNN [107] framework only generates the
adjacency matrix 𝛩, and the node features  are directly sampled from
the training data. Different from the continuous-time diffusion process
of GDSS and GDSS-seq, the node features in EDP-GNN are statically
sampled.

Forward Graph Diffusion. Forward Graph Diffusion is a process of
describing the propagation of information in a graph by using a SDE
system defined on the graph structure [117]. The diffusion process can
capture the complex relationships and topological structures. Specifi-
cally, forward graph diffusion can be represented by the following SDE
system:
d 𝑡 = 𝒇 ( 𝑡, 𝑡)d𝑡 + 𝜎 ,𝑡d


𝑡

𝐴 𝛩 (22)

d𝜣𝑡 = 𝒇 (𝜣𝑡, 𝑡)d𝑡 + 𝜎𝛩,𝑡d𝑡

Y. Shou et al. Computer Science Review 59 (2026) 100854
Fig. 3. Schematic diagram of the overall process of GDSS. The forward
diffusion process involves adding noise to the graph data in continuous time,
effectively perturbing the structure and node features of the graph. The
reverse process reconstructs the original graph data by gradually removing
the noise [32].

where  𝑡 is the feature representation at time 𝑡. 𝒇 ( 𝑡, 𝑡) ∶ R𝑛×𝑛 ↦

R𝑛×𝑛 is the drift term, describing the change of the nodes features and
adjacency matrix. The drift term can include the feature update of
the node itself and the interaction with neighboring nodes. 𝜎 ,𝑡, 𝜎𝛩,𝑡
is the diffusion coefficient, describing the random fluctuation of the
feature. 

𝑡 ,
𝛩
𝑡 is a standard Brownian motion, representing a random

perturbation.
Reversed Graph Diffusion. The stochastic differential equations

for reverse time graph diffusion are used to describe the diffusion pro-
cess of information in graph data in the reverse time direction [32]. The
diffusion process usually involves deterministic changes and random
perturbations of node features to capture the complex relationships.
Specifically, the stochastic differential equations for reverse time graph
diffusion can be expressed as:

d̄ 𝑡 =
(

𝒇 (̄ 𝑡, 𝑡) − 𝜎2 ,𝑡∇ log 𝑝𝑡(̄ 𝑡, 𝜣̄𝑡)
)

d𝑡 + 𝜎 ,𝑡d̄

𝑡

d𝜣̄𝑡 =
(

𝒇𝜣 (𝜣̄𝑡, 𝑡) − 𝜎2𝛩,𝑡∇𝜣 log 𝑝𝑡(̄ 𝑡, 𝜣̄𝑡)
)

d𝑡 + 𝜎𝛩,𝑡d̄
𝜣
𝑡

(23)

 𝑡 ⟂ 𝜣𝑡|0 means that given the initial condition 0, the state
variables  𝑡 and 𝜣𝑡 are independent of each other. Therefore, the joint
probability density function 𝑝𝑡|0(̂ 𝑡, 𝜣̂𝑡) can be decomposed into two
independent parts: one is the part 𝑝𝑡|0( 𝑡|0) related to  𝑡 and the
initial state 0, and the other is the part 𝑝𝑡|0(𝜣𝑡|𝜣0) related to 𝜣0
and the initial state 𝜣0. This decomposition form greatly simplifies
the complex calculation and estimation of the joint probability density
function 𝑡|0 in the denoising score matching objective function and
reduces the computational complexity. The simplified form is defined
as follows:
̂(𝜽) ≜ E∼Unif()E𝑡| ∥ 𝑠𝜽(𝑡) − ∇ log 𝑝𝑡|0( 𝑡|0) ∥2

̂(𝝓) ≜ E∼Unif()E𝑡| ∥ 𝑠𝝓(𝑡) − ∇ log 𝑝𝑡|0(𝜣𝑡|𝜣0) ∥2
(24)

The expected value in Eq. (24) can be computed by using the
Monte Carlo estimation. It should be noted that estimating the partial
score is not equivalent to estimating ∇ 𝑡

log 𝑝𝑡( 𝑡) or ∇𝜣𝑡 log 𝑝𝑡(𝜣𝑡).
Specifically, estimating the partial score requires considering the joint
distribution of  𝑡 and 𝜣𝑡 at time 𝑡, rather than just considering the
marginal distribution of one of the variables separately. The score func-
tion of this joint distribution is more complicated because it involves
the dynamic relationship between the two variables rather than the
static properties of a single variable. By using the objective of Eq. (24),
the remaining task is to find a partial score model that learns the
underlying distribution of the graph. The model needs to be flexible
and expressive enough to capture the complex relationship between
 𝑡 and 𝜣𝑡 at time 𝑡, while also being able to accurately estimate
the score function of the joint distribution at different points in time.
Therefore, GDSS proposes a new score-based model architecture. This
new architecture aims to improve the expressiveness of the model,
enabling it to better learn and estimate partial scores of the underlying
distribution of the graph, thereby achieving more accurate sampling
and inference.
7
Algorithm 1 Optimizing GDSS
Input: 𝒔𝝓,𝑡(⋅), 𝒇 (⋅, 𝑡),𝒇𝛬(⋅, 𝑡), 𝜎𝑋,𝑡, 𝜎𝛬,𝑡.

1: Initialize 𝜽0,𝝓0
2: (0,𝜣0) ∼ 
3: 𝑡 ∼ Unif([0, 𝑇])
4:  𝑡 ∼ ∫ 𝑡0 𝑓

𝑋 ( 𝜏 , 𝜏)d𝜏 + ∫ 𝑡0 𝜎 ,𝜏d

𝜏 ,

5: 𝜣𝑡 ∼ ∫ 𝑡0 𝑓
𝛩( 𝜏 , 𝜏)d𝜏 + ∫ 𝑡0 𝜎𝛩,𝜏d

𝛩
𝜏

6: 𝒔𝜙,𝑡(𝑡) = MLP
([

{GMH
(

𝑯 𝑖,𝜣
𝑝
𝑡
)

}𝐾,𝑃𝑖=0,𝑝=1

])

7: 𝑠𝜃,𝑡(𝑡) = MLP([{𝑯 𝑖}𝐿𝑖=0])
8: ̂(𝜽) ≜ E∼Unif()E𝑡|𝑮‖𝑠𝜽(𝑡) − ∇ log 𝑝𝑡|0( 𝑡|0)‖2

9: ̂(𝜙) ≜ E∼Unif()E𝑮𝑡|‖𝑠𝜙(𝑡) − ∇ log 𝑝𝑡|0(𝜣𝑡|𝑨0)‖2

10: Return: 𝜽𝐾 ,𝝓𝐾

Algorithm 2 Sampling from GDSS
1: 𝑡 = 𝑇
2: Sample 𝐾 ,𝜣𝐾 ∼ 𝑝𝑇
3: for 𝑖 = 𝐾 − 1 to 0 do
4: 𝑺 ← 𝒔𝜃,𝑡( 𝑖+1,𝜣𝑖+1)
5: 𝑺𝛩 ← 𝒔𝜙,𝑡( 𝑖+1,𝜣𝑖+1)
6:  𝑖+1 ←  𝑖+1 +

𝛼
2𝑺 + 𝜖𝑠

√

𝛼𝒛
7: 𝜣𝑖+1 ← 𝜣𝑖+1 + 𝛼

2𝑺𝛩 + 𝜖𝑠
√

𝛼𝒛𝐴
8: 𝑡′ ← 𝑡 − 𝛿𝑡∕2
9: ̃ 𝑖 ∼ 𝑝𝑡,𝑡′ (̃ 𝑖| 𝑖+1)
10: 𝜣̃𝑖 ∼ 𝑝𝑡,𝑡′ (𝑨̃𝑖|𝜣𝑖+1)
11: ̃ 𝑖 ← ̃ 𝑖 + 𝑔21,𝑡𝑺𝛿𝑡
12: 𝜣̃𝑖 ← 𝜣̃𝑖 + 𝑔22,𝑡𝑺𝛩𝛿𝑡
13: 𝑡 ← 𝑡 − 𝛿𝑡
14:  𝑖 ∼ 𝑝𝑡′ ,𝑡( 𝑖|̃ 𝑖)
15: 𝜣𝑖 ∼ 𝑝𝑡′ ,𝑡(𝜣𝑖|𝜣̃𝑖)
16: end for
17: Return: 0, 𝜣0

Specifically, GDSS proposes a new time-based scoring model archi-
tecture based on the graph attention network [143–148], which can
capture the time-varying dependencies between  𝑡 and 𝜣𝑡 and distin-
guish the important relationships between nodes. In addition, GDSS
further uses high-order adjacency matrices to represent long-distance
dependencies. High-order adjacency matrices can capture the mutual
influence between distant nodes in the graph structure, which is crucial
for modeling complex temporal dependencies. Specifically, GDSS first
constructs the score-based modulus 𝑠𝜙,𝑡 to estimate ∇𝜣𝑡 log 𝑝𝑡( 𝑡,𝜣𝑡)
with the same dimension as 𝜣𝑡 as follows:

𝒔𝜙,𝑡(𝑡) = MLP
([

{GMH
(

𝑯 𝑖,𝜣
𝑝
𝑡
)

}𝐾,𝑃𝑖=0,𝑝=1

])

(25)

where 𝑯0 =  𝑡, 𝑯 𝑖+1 = GHM(𝜣𝑡,𝑯 𝑖), GHM is a GCN layer.
GDSS also uses MLP to improve the linear representation ability of

node features as:
𝑠𝜃,𝑡(𝑡) = MLP([{𝑯 𝑖}𝐿𝑖=0]) (26)

Next, GDSS uses the trained score models 𝒔𝜙,𝑡 and 𝒔𝜃,𝑡 to estimate the
scores of  𝑡 and 𝜣𝑡, respectively. By applying these two score models
to the reverse time SDE system, GDSS can gradually approximate the
inverse diffusion process. Specifically, at each time step, GDSS uses 𝒔𝜃,𝑡
and 𝒔𝜙,𝑡 to calculate the score of the current state and updates the state
according to the reverse time SDE as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

d 𝑡 = 𝒇 1,𝑡( 𝑡)d𝑡 + 𝑔1,𝑡d𝒘̄1 − 𝑔21,𝑡𝒔𝜃,𝑡( 𝑡,𝜣𝑡)d𝑡

d𝜣𝑡 = 𝒇 2,𝑡(𝜣𝑡)d𝑡 + 𝑔2,𝑡d𝒘̄2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐹

−𝑔22,𝑡𝒔𝜙,𝑡( 𝑡,𝜣𝑡)d𝑡
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑆

(27)

Y. Shou et al. Computer Science Review 59 (2026) 100854
From the result of the symmetric Trotter theorem [149], it can
be seen that the propagation of the calibration state ′𝑡 from time𝑡 to
𝑡 − 𝛿𝑡∕2 follows the dynamics of Eq. (27) Specifically, Eq. (27) can be
approximated by applying 𝑒 𝛿𝑡2 ̂∗

𝐹 𝑒
𝛿𝑡̂∗

𝑆𝑒
𝛿𝑡
2 ̂∗

𝐹 to ′𝑡 as:

𝑒
𝛿𝑡
2 ̂∗

𝐹  = ̃ ∼ 𝑝𝑡,𝑡−𝛿𝑡∕2(̃|) (28)

The pseudo codes of GDSS optimization and sampling process are
shown in Algorithm 1 and Algorithm 2.

3.2.2. Graph spectral diffusion model (GSDM)
GSDM [125] argues that running full-rank diffusion SDE on the

entire adjacency matrix space involves a lot of computing resources and
time. Specifically, the adjacency matrix is usually sparse, but full-rank
diffusion SDE requires processing the entire matrix, which leads to a
greatly increased computational burden, especially when dealing with
large-scale graph data. In addition, full-rank diffusion SDE introduces a
lot of noise, which causes unnecessary perturbations to the topological
structure of the graph, making it difficult to accurately capture the true
topological structure of the graph and resulting in a decrease in the
quality of the generated data.

Algorithm 3 Optimizing GSDM
Input: 𝒔𝝓,𝑡(⋅), 𝒇 (⋅, 𝑡),𝒇𝛬(⋅, 𝑡), 𝜎 ,𝑡, 𝜎𝛬,𝑡.

1: Initialize 𝜽0,𝝓0
2: (0,𝜣0) ∼ 
3: 𝜦0 ← EigenValues(𝜣0)
4: 𝑡 ∼ Unif([0, 𝑇])
5:  𝑡 ∼ ∫ 𝑡0 𝑓

 ( 𝜏 , 𝜏)d𝜏 + ∫ 𝑡0 𝜎 ,𝜏d

𝜏 ,

6: 𝜦𝑡 ∼ ∫ 𝑡0 𝑓
𝛬(𝜦𝜏 , 𝜏)d𝜏 + ∫ 𝑡0 𝜎𝛬,𝜏d

𝛬
𝜏

7: ̂(𝜽𝑘) ← ‖𝑠𝜽𝑘 ( 𝑡,𝜦𝑡) − ∇ log 𝑝𝑡|0( 𝑡|0)‖2

8: ̂(𝝓𝑘) ← ‖𝑠𝝓𝑘 ( 𝑡,𝜦𝑡) − ∇ log 𝑝𝑡|0(𝜦𝑡|𝜦0)‖2

9: Return: 𝜽𝐾 ,𝝓𝐾

Algorithm 4 Sampling from GSDM
1: 𝑡← 𝑇
2: (̂𝑇 , 𝜦̂𝑇) ∼ 𝜋, 𝑼̂ 0 ∼ Unif({𝑼 ≜ EigenVectors(𝜣), ( ,𝜣) ∼ Data})
3: for 𝑚 =𝑀 − 1 to 0 do
4: 𝑺 ← 𝒔𝜽,𝑡(̂ 𝑡, 𝜦̂𝑡, 𝑼̂ 0), 𝑺𝛬 ← 𝒔𝝓,𝑡(̂ 𝑡, 𝜦̂𝑡, 𝑼̂ 0)
5: 𝑡′ ← 𝑡 − 𝑇 ∕(2𝑀)
6: ̂ 𝑡′ ← (2 −

√

1 − 𝛽𝑚+1̂ 𝑡 + 𝛽𝑚+1𝑺) +
√

𝛽𝑚+1𝒛
7: 𝒛 ∼ 𝑁 (𝟎, 𝑰)
8: 𝜦̂𝑡′ ← (2 −

√

1 − 𝛽𝑚+1𝜦̂𝑡 + 𝛽𝑚+1𝑺𝛬) +
√

𝛽𝑚+1𝒛𝛬,
9: 𝒛𝛬 ∼ 𝑁 (𝟎, 𝑰)
10: 𝑺 ← 𝒔𝜽,𝑡′ (𝑿̂𝑡′ , 𝜦̂𝑡′ , 𝑼̂ 0), 𝑺𝛬 ← 𝒔𝝓,𝑡′ (̂ 𝑡′ , 𝜦̂𝑡′ , 𝑼̂ 0)
11: 𝑡 ← 𝑡′ − 𝑇 ∕(2𝑀)
12: ̂ 𝑡 ← ̂ 𝑡′ + 𝜖𝑖𝑺 +

√

2𝜖𝑖𝒛
13: 𝜦̂𝑡 ← 𝜦̂𝑡′ + 𝜖𝑖𝑺𝛬 +

√

2𝜖𝑖𝒛𝛬
14: end for
15: 𝜣̂0 = 𝑼̂ 0𝜦̂0𝑼̂

𝑻
0

16: Return: (̂0, 𝜣̂0)

Therefore, GSDM designs a novel Graph Spectral Diffusion Model.
The core idea of the GSDM is to capture graph structure information
through feature decomposition of the graph, and to propagate node
features or label information through the diffusion process. Specifically,
graph eigendecomposition is to perform eigenvalue decomposition on
the Laplacian matrix to obtain eigenvalues and eigenvectors. For a
graph  = ( ,), where  is the node set, 𝑬 is the edge set, the
Laplacian matrix 𝑳 is defined as 𝑳 = 𝑫 − 𝜣. Perform eigenvalue
decomposition of the Laplacian matrix 𝑳 to obtain 𝑳 = 𝑼𝜦𝑼𝑇 , where
𝑼 is the eigenvector matrix and 𝜦 is the diagonal eigenvalue matrix.
8
Through the diffusion process, node features can be smoothed in the
graph. Using the eigenvector 𝑼 and eigenvalue 𝜦 of the graph, we can
define the forward spectral diffusion via SDE system as follows:
d 𝑡 =𝒇 ( 𝑡, 𝑡)d𝑡 + 𝜎 ,𝑡d


𝑡 ,

d𝜦𝑡 =𝒇𝛬(𝜦𝑡, 𝑡)d𝑡 + 𝜎𝛬,𝑡d𝑾 𝛬
𝑡

(29)

where 𝑡 ∈ [0, 1] is the time parameter, (0,𝑨0) ∼ ,𝜣0 = 𝑼 0𝜦0𝑼⊤
0 ,

𝒇 (⋅, 𝑡) is the drift function, 𝒇𝛬(⋅, 𝑡) is the drift function for spectrum.
𝜎 ,𝑡, 𝜎𝛬,𝑡 is the diffusion coefficient, describing the random fluctuation
of the feature. 

𝑡 ,
𝐴
𝑡 is a standard Brownian motion or Wiener pro-

cess, representing a random perturbation, and 𝑾 𝛬
𝑡 ≜ diag(𝑩𝛬𝑡) is a

diagonal Brownian motion.
By defining the evolution process of 𝜣𝑡 ≜ 𝑼 0𝜦𝑡𝑼⊤

0 and using the
𝑛-dimensional Gaussian process to drive the change of eigenvalues, we
can effectively prevent the adjacency matrix from spreading arbitrarily
in the entire space. On this basis, the inverse time spectral diffusion
stochastic differential equation is established, which can gradually
reverse the damage process of the adjacency matrix and generate
high-quality graph data similar to the original graph. Specifically, the
reversed time spectral diffusion SDE system is defined as follows:
⎧

⎪

⎨

⎪

⎩

d̄ 𝑡 =
(

𝒇 (̄ 𝑡, 𝑡) − 𝜎2 ,𝑡∇ log 𝑝𝑡(̄ 𝑡, 𝜦̄𝑡)
)

d𝑡 + 𝜎 ,𝑡d̄

𝑡

d𝜦̄𝑡 =
(

𝒇𝛬(𝜦̄𝑡, 𝑡) − 𝜎2𝛬,𝑡∇𝜦 log 𝑝𝑡(̄ 𝑡, 𝜦̄𝑡)
)

d𝑡 + 𝜎𝛬,𝑡d𝑾̄
𝛬
𝑡

(30)

where d𝑡 = −d𝑡 is the negative in finitesimal time step.
Boundary conditions are imposed on the joint distribution of (1,𝜦1)

so that the joint distribution of the node feature (1 and the eigenvalue
matrix 𝜦1) at the initial time 𝑡 = 1 is the same as the prior distribution
𝜋. GSDM can use the inverse time spectrum diffusion SDE to recover the
true distribution (0,𝜦0) from the prior distribution 𝜋. According to the
score matching technique, the two score networks 𝑠𝜽(⋅, ⋅, ⋅) and 𝑠𝜙(⋅, ⋅, ⋅)
are trained by minimizing the loss function so that they approximate
the two score functions ∇ log 𝑝𝑡( , 𝛬) and ∇𝛬 log 𝑝𝑡( , 𝛬) respectively
as follows:
̂(𝜃) ≜ E∼Unif()E 𝑡 | ∥ 𝑠𝜽( 𝑡,𝜦𝑡,𝑼 0) − ∇ log 𝑝𝑡|0( 𝑡| 0) ∥2

̂(𝝓) ≜ E∼Unif()E𝜦𝑡 | ∥ 𝑠𝜙( 𝑡,𝜦𝑡,𝑼 0) − ∇ log 𝑝𝑡|0(𝜦𝑡|𝜦0) ∥2
(31)

The pseudo codes of GDSS optimization and sampling process are
shown in Algorithm 3 and Algorithm 4.

3.3. Stochastic differential equations (SDEs)

SDEs [32] model implements the forward and backward diffusion
processes through a continuous-time stochastic process. The SDE model
describes the diffusion process as a continuous stochastic process rather
than discrete time steps [150,151]. Specifically, a data point is usually
gradually diffused from the data space to the Gaussian noise space
through SDEs [117].

Forward Process: The forward process perturbs the data into noise
through SDE [60]. The equation is defined as follows:

𝑑𝑡 = 𝑓 (𝑡, 𝑡)𝑑𝑡 + 𝑔(𝑡)𝑑𝑊𝑡 (32)

Reverse Process: The reverse process converts noise into data
through reverse time SDE [117]. This process is the reverse operation
of the forward process, removing the gradually added data noise and
reconstructing a clear image or data. The equation is defined as follows:

𝑑𝑡 =
[

𝑓 (𝑡, 𝑡) − 𝑔(𝑡)2∇𝑥 log 𝑝𝑡(𝑡)
]

𝑑𝑡 + 𝑔(𝑡)𝑑𝑊̃𝑡 (33)

where ∇𝑥 log 𝑝𝑡(𝑡) is the gradient information of the data, which helps
to guide the reverse process.

Since continuous SDEs are difficult to handle in practical com-
putations, discretization schemes (e.g., Euler–Maruyama) are used to
discretize the SDE into a series of time-step update processes and used

Y. Shou et al. Computer Science Review 59 (2026) 100854
Fig. 4. An example illustrating the overall CDGS process [120].

to approximately solve the SDE. The discretization process is defined
as follows:
𝑡+𝛥𝑡 = 𝑡 + 𝑓 (𝑡, 𝑡)𝛥𝑡 + 𝑔(𝑡)

√

𝛥𝑡𝑍 (34)

The application of SDEs in graph generation provides an effective
method to generate the target graph structure from initial noise by
defining the diffusion process of nodes and edges [129,142]. Thanks to
the development of SDEs and diffusion models, graph generation tasks
have made significant progress in many fields and have shown broad
application prospects [33,113,152–156]. Next we summarize several
representative works on graph generation using SDEs.

3.3.1. Conditional diffusion graph structures (CDGS)
Understanding the underlying distribution requires not only accu-

rately modeling the complex distribution of molecular structures, but
also the ability to quickly generate new molecular graphs that meet
practical needs. To address this challenge, CDGS [120] proposes a
conditional diffusion model to generate molecular graphs. As shown
in Fig. 4, CDGS constructs a forward graph diffusion process and
intrinsic features with SDEs, and derives the discrete graph structure
as a condition for the reverse generation process.

Specifically, given a graph  = (𝜣,), the node feature matrix 
is represented by an 𝐹 -dimensional real vector. The edge information
matrix 𝜣 describes the edge connections and types in the graph. The
forward diffusion process of the graph can be described by SDE, and
the time variable 𝑡 ∈ [0, 𝑇] represents the time scale of the diffusion
process, starting from the initial state 𝑡 = 0 and ending at the final
state 𝑡 = 𝑇 as follows:
d𝑡 = 𝑓 (𝑡)𝑡d𝑡 + 𝑔(𝑡)d𝒘𝑡 (35)

where 𝑓 (𝑡) = d log 𝛼𝑡
d𝑡 denotes the drift coefficient, 𝑔2(𝑡) = d𝜎2𝑡

d𝑡 − 2 d log 𝛼𝑡
d𝑡 𝜎2𝑡

is the diffusion coefficient. Correspondingly, the reverse-time SDE is
formally defined as:
d𝑡 = [𝑓 (𝑡)𝑡 − 𝑔2(𝑡)∇ log 𝑞𝑡(𝑡)]d𝑡 + 𝑔(𝑡)d𝒘̄𝑡 (36)

To simplify the above steps, CDGS splits it into two parts that share
the same drift coefficient and diffusion coefficient:
{

d 𝑡 = [𝑓 (𝑡) 𝑡 − 𝑔2(𝑡)∇ log 𝑞𝑡( 𝑡,𝜣𝑡)]d𝑡 + 𝑔(𝑡)d𝒘̄1
𝑡

d𝜣𝑡 = [𝑓 (𝑡)𝜣𝑡 − 𝑔2(𝑡)∇𝜣 log 𝑞𝑡( 𝑡,𝜣𝑡)]d𝑡 + 𝑔(𝑡)d𝒘̄2
𝑡

(37)

CDGS uses a network 𝜖𝜽(𝑡, 𝜣̄𝑡, 𝑡) with discrete graph structure
conditions to parameterize the score. Specifically, the neural network
𝜖𝜽 accepts the graph 𝑡 and its discrete graph structure 𝜣̄ and time 𝑡
as input, and generates estimates of nodes and edges. The node output
𝜖𝜽, (𝑡, 𝜣̄𝑡, 𝑡) corresponds to the gradient estimate of the node feature,
capturing the direction of change of the node feature. The edge output
𝜖𝜽,𝜣 (𝑡, 𝜣̄𝑡, 𝑡) corresponds to the gradient estimate of the edge feature,
capturing the direction of change of the edge feature. The training
objective is optimized by minimizing the following loss function:
min
𝜽

E𝑡{𝑤(𝑡)E0E𝑡|0 [∥ 𝝐𝜽, (𝑡, 𝜣̄𝑡, 𝑡) − 𝝐 ∥22

+ ∥ 𝝐𝜽,𝑨(𝑡, 𝜣̄𝑡, 𝑡) − 𝝐𝜣 ∥22]}
(38)

where 𝝐 , 𝝐𝜽 denote the Gaussian noise, 𝑡 = (𝛼𝑡̄0+𝜎𝑡𝜖 , 𝛼𝑡𝜣0+𝜎𝑡𝜖𝜣).
To generate a parameterized SDE graph, a numerical solver is

needed to simulate the SDE trajectory. Compared with the EM solver,
9
the advantage of using a probability flow ODE solver is that it can
utilize advanced ODE solving algorithms (e.g., the Runge–Kutta method
[157]) to significantly reduce the number of sampling steps while main-
taining high accuracy, thereby achieving fast sampling. In the specific
implementation process, CDGS can apply a black-box ODE solver to the
above probability flow ODE equations and generate high-fidelity graphs
by optimizing the solution process. Therefore, the parameterized ODE
of the graph is formally defined as follows:

d𝑡∕d𝑡 = 𝑓 (𝑡)𝑡 +
𝑔2(𝑡)
2𝜎𝑡

𝝐𝜽(𝑡, 𝜣̄𝑡, 𝑡) (39)

Traditional black-box ODE solvers [32] are usually unable to rec-
ognize and exploit the semilinear structure of probability flow ODEs,
which results in many unnecessary calculations during the solution
process, increasing the time complexity and computational cost. There-
fore, CDGS further extends the fast solver based on the semilinear
ODE structure. By redefining the time variable and parameterizing the
graph diffusion process, the ODE solver is able to exploit the semilinear
structure to optimize the solution process. Specifically, by introducing
the time variable 𝜆 to change the time variable from 𝑡 to 𝜆, and 𝜆𝑡 ∶=
log(𝛼𝑡∕𝜎𝑡), 𝑡 = 𝑡𝜆(𝜆(𝑡)), ̂𝜆 ∶= 𝑡𝜆(𝜆), 𝝐̂𝜽(̂𝜆, 𝜣̄

′
𝜆, 𝜆) ∶= 𝝐𝜽(𝑡𝜆(𝜆), 𝜣̄𝑡𝜆(𝜆), 𝜆),

CDGS is able to operate on a new time scale, making the equation form
more suitable for fast solution using the semilinear structure. Therefore,
the exact solution to the semilinear probability flow ODE is as follows:

𝑡 =
𝛼𝑡
𝛼𝑠

𝑠 − 𝛼𝑡 ∫

𝜆𝑡

𝜆𝑠
𝑒−𝜆𝝐̂𝜽(̂𝜆, 𝜣̄

′
𝜆, 𝜆)d𝜆 (40)

The initial graph ̃𝑡0 ∶= ̃𝑇 = (𝑇 ,𝜣𝑇) is sampled from the prior
distribution, with node features 𝑋𝑇 and edge information𝐴𝑇 . At each
time step 𝑡𝑖, the first-order GDPMS is used to iteratively calculate {̃𝑡𝑖 =
(̃𝑡𝑖 , 𝛩̃𝑡𝑖)}

𝑀
𝑖=1 as follows:

⎧

⎪

⎨

⎪

⎩

̃ 𝑡𝑖 =
𝛼𝑡𝑖
𝛼𝑡𝑖−1

̃ 𝑡𝑖−1 − 𝛾𝑖𝝐̂𝜽, (̃𝑡𝑖−1 , 𝜣̄
′
𝑡𝑖−1
, 𝑡𝑖−1)

𝜣̃𝑡𝑖 =
𝛼𝑡𝑖
𝛼𝑡𝑖−1

𝜣̃𝑡𝑖−1 − 𝛾𝑖𝝐̂𝜽,𝜣 (̃𝑡𝑖−1 , 𝜣̄
′
𝑡𝑖−1
, 𝑡𝑖−1)

(41)

where 𝛾𝑖 = 𝜎𝑡𝑖 (𝑒
𝜆𝑡𝑖−𝜆𝑡𝑖−1 − 1).

The probability flow ODE maps the input graph data into a latent
space [20]. This latent space is determined by parameterized ODEs,
and its properties allow flexible manipulation and transformation of
the data [1]. The graph DPM solver, combined with gradient-guided
techniques, enables efficient search and optimization in the latent
space. The gradient-guided assisted solver uses the gradient information
of the latent representation to help find the optimal solution that
meets specific constraints. By defining similarity constraints in the
latent space, CDGS can ensure that the molecules in the optimization
process still retain their original chemical properties and functions.
Combining the above methods, CDGS proposes an optimization process
that can effectively find the optimal molecules that meet the similarity
constraints in the latent space.

Specifically, CDGS trains a time-dependent graph property predictor
𝑹𝜓 (𝑡, 𝑡) on the noise graph to estimate the properties of the graph at
different time steps. The parameterized ODE solver in Eq. (39) is used
to map the initial molecular graph to the encoding 𝑡𝜉 in the latent
space. This mapping process involves the adjustment of the time step
𝑡𝜉 . According to the common latent space optimization method [40,55],
the graph property predictor is used to predict the properties, and the
properties of the graph are generated by gradient ascent optimization
to generate the latent graph sequence {𝑘𝑡𝜉 }

𝐾
𝑘=0. In the decoding process,

a gradient-guided ODE is introduced to decode the latent graph to the
molecular graph space. In this process, the gradient term of 𝛁𝑹𝝍 (𝑡, 𝑡)
is used to guide the sampling process to ensure that the generated graph
has the desired high properties. The guided ODE can be modified from
Eq. (39) as follows:
⎧

⎪

⎨

⎪

⎩

d 𝑡∕d𝑡 = 𝑓 (𝑡) 𝑡 +
𝑔2(𝑡)
2𝜎𝑡

[𝝐𝜽, − 𝑟𝜎𝑡∇∗
𝑹𝝍]

d𝜣𝑡∕d𝑡 = 𝑓 (𝑡)𝑨𝑡 +
𝑔2(𝑡)
2𝜎𝑡

[𝝐𝜽,𝜣 − 𝑟𝜎𝑡∇∗
𝜣𝑹𝝍]

(42)

Y. Shou et al. Computer Science Review 59 (2026) 100854
Table 2
Complexity and scalability comparison of representative graph generative models. Here 𝑛 is the number of nodes, 𝑚 is the number of edges, 𝑑 is the embedding
dimension, and 𝑇 is the number of diffusion steps.
 Model Family Time Complexity Space Complexity Scalability (w.r.t graph size)
 VAE-based 𝑂(𝑛𝑑2 + 𝑚𝑑) 𝑂(𝑛𝑑 + 𝑚) Moderate (scales to 105 nodes with sparse ops)
 GAN-based 𝑂(𝑛𝑑2 + 𝑚𝑑) 𝑂(𝑛𝑑 + 𝑚) Limited (training instability grows with graph size)
 Autoregressive (AR) 𝑂(𝑛2𝑑) 𝑂(𝑛2) Poor (sequential decoding hinders large graphs)
 Diffusion-based 𝑂(𝑇 ⋅ 𝑓 (𝑛, 𝑚, 𝑑)), typically 𝑂(𝑇 𝑛2) 𝑂(𝑛𝑑 + 𝑚) Limited (large 𝑇 and 𝑛2 cost); improved by sparse/active node methods
4. Complexity and scalability analysis

In this section, we analyze the representative families of graph
generative models, including VAE-based, GAN-based, autoregressive,
and diffusion-based in terms of time complexity, space complexity,
scalability with graph size, and theoretical convergence guarantees.
Table 2 summarizes the complexity characteristics and convergence
properties of these model families.

Time and space complexity. For VAE-based and GAN-based mod-
els, the dominant cost arises from message passing in graph neural
network (GNN) encoders and decoders, yielding a time complexity
of 𝑂(𝑛𝑑2 + 𝑚𝑑), where 𝑛 is the number of nodes, 𝑚 the number
of edges, and 𝑑 the embedding dimension. Their memory footprint
is 𝑂(𝑛𝑑 + 𝑚) under sparse adjacency representation. Autoregressive
models, however, require sequential prediction of node or edge proba-
bilities, leading to 𝑂(𝑛2𝑑) complexity and 𝑂(𝑛2) space when modeling
adjacency explicitly, which severely limits their scalability to large
graphs. Diffusion-based approaches incur an iterative cost of 𝑂(𝑇 ⋅
𝑓 (𝑛, 𝑚, 𝑑)), typically 𝑂(𝑇 𝑛2), where 𝑇 is the number of diffusion steps.
This iterative nature makes diffusion models computationally demand-
ing, though recent improvements such as EDGE [24] reduce the per-
step cost to 𝑂(min(𝐾2,𝑀)) with 𝐾 denoting active nodes and 𝑀 the
number of edges.

Scalability across graph sizes. VAE-based models generally scale
to graphs of size up to 105 nodes when combined with sparse opera-
tions, whereas GAN-based methods are more restricted due to training
instability. Autoregressive models scale poorly beyond small graphs be-
cause of their sequential decoding nature. Diffusion-based models can
in principle leverage parallelism, but their dependence on large 𝑇 and
quadratic complexity in 𝑛 poses challenges for million-scale networks.
Sparse or subgraph-based variants represent promising solutions.

Convergence guarantees. VAE models benefit from the evidence
lower bound (ELBO), ensuring a principled optimization target. Au-
toregressive models provide exact likelihood training but may suffer
from exposure bias during inference. GAN-based models lack formal
convergence guarantees due to adversarial dynamics. In contrast, diffu-
sion models offer convergence under the framework of score matching,
and continuous-time SDE/ODE variants provide stronger theoretical
backing, though practical convergence often depends on numerical
stability.

5. Implementation challenges

Despite the rapid progress of graph generative models, practical
implementation still faces a number of challenges. First, large-scale
training often leads to substantial memory consumption, especially
for diffusion-based approaches that require iterative denoising and
intermediate feature storage. Techniques such as gradient checkpoint-
ing, sparse tensor operations, and mini-batch subgraph sampling have
been widely adopted to alleviate this issue. Second, autoregressive
models typically suffer from slow sequential decoding, which hampers
their scalability to graphs with tens of thousands of nodes. While
parallelization strategies and heuristic node-ordering schemes have
been proposed, their effectiveness remains dataset-dependent. Third,
adversarial frameworks like GAN-based models are often unstable dur-
ing training due to the delicate balance between the generator and
10
discriminator, requiring careful tuning and multiple restarts in prac-
tice. Finally, diffusion-based methods, although flexible, incur high
computational cost because of the large number of denoising steps; ef-
ficient variants such as fast-sampling schedulers or sparse/active-node
diffusion have emerged as potential remedies.

6. Hyperparameter sensitivity

Another important practical aspect concerns the sensitivity of graph
generative models to hyperparameter choices. Different families of
models exhibit distinct critical parameters that directly impact both
convergence and generation quality. For VAE-based methods, latent
dimensionality and regularization strength significantly influence the
trade-off between reconstruction fidelity and generalization. GAN-
based methods are highly sensitive to the learning rate and the relative
update frequency between generator and discriminator, which can
easily lead to mode collapse if not carefully balanced. Autoregressive
models depend heavily on node-ordering schemes and context window
size, both of which affect sampling efficiency and likelihood estima-
tion. Diffusion-based models are especially sensitive to the number of
denoising steps 𝑇 and the choice of noise schedule; insufficient steps
may degrade sample quality, while excessive steps lead to prohibitively
high computation costs. In practice, hyperparameter tuning often re-
quires extensive empirical search, and small deviations may result in
noticeable performance fluctuations.

7. Popular benchmark datasets

In graph generation research, it is very important to use stan-
dard datasets for algorithm verification and performance evaluation.
As shown in Table 3, we have counted some commonly used graph
generation datasets. Next, we briefly describe each graph generation
dataset.

Community-small: Community-small [107,158] is a small dataset
for studying and testing graph algorithms, especially in tasks such
as community detection and graph clustering. The Community-small
dataset contains obvious community structures. Each community repre-
sents a subgroup in the graph, which contains not only node and edge
information but also node features (e.g., labels, attributes) and edge
weights (e.g., connection strength).

Ego-small: Ego-small [107,159] is a small-scale dataset2 that con-
tains subgraphs from social networks that are centered on the ego and
include its directly connected neighbor nodes. The Ego-small dataset
contains detailed information between nodes (individuals) and their
edges (relationships), including properties (e.g., node features and edge
weights).

Grid: The Grid dataset [34] consists of multiple grid graphs whose
nodes are arranged in a regular two-dimensional grid. Each node is
usually connected to its four neighboring nodes, forming a regular
grid structure. The Grid dataset contains grid graphs of different sizes,
ranging from small 5x5 grids to large 100 × 100 grids.

QM9: QM9 [160] is a dataset widely used in quantum chemistry
and molecular machine learning research, containing about 134,000
stable small molecules. These molecules are composed of five elements:

2 https://github.com/ermongroup/GraphScoreMatching

https://github.com/ermongroup/GraphScoreMatching

Y. Shou et al. Computer Science Review 59 (2026) 100854
Table 3
Popular benchmark dataset in graph generation. We counted the types of different data sets, etc.
 Dataset Dimensionality Category No. of Graphs (G) No. of Nodes (N)
 Community-small [107,158] 2D Social 100 11 < 𝑁 < 20
 Ego-small [107,159] 2D Social 200 3 < 𝑁 < 18
 Grid [34] 2D Grid 100 𝑁 <= 400
 QM9 [160] 3D Bioinformatics/Molecular 130,831 3 < 𝑁 < 29
 ZINC250K [161] 3D Bioinformatics/Molecular 249,456 6 < 𝑁 < 38
 Enzymes [162] 3D Bioinformatics/Protein 600 9 < 𝑁 < 125
 SBM-27 [163] 2D Social 200 24 < 𝑁 < 27
 Planar-60 [163,164] 2D Social 200 𝑁 = 60
 AIDS [165] 2D Bioinformatics/Molecular 2000 –
 Synthie [166] 2D Social 300 𝑁 = 100
 Proteins [167] 3D Bioinformatics/Protein 1113 𝑁 = 39.1
hydrogen (H), carbon (C), oxygen (O), nitrogen (N), and fluorine (F).
The QM9 dataset contains physical and chemical properties, such as
molecular geometry (atomic coordinates), energy, Hall effect, electric
dipole moment, vibration frequency, thermodynamic properties (such
as enthalpy, and free energy), etc. The property data in the QM9 dataset
are calculated by density functional theory (DFT), specifically using the
B3LYP function and the 6-31G (2df, p) basis set.

ZINC250K: ZINC250K [161] is a dataset widely used in molecular
machine learning and drug design research. It contains 250,000 small
molecules screened from the ZINC database, which have diverse struc-
tural and chemical properties. The ZINC database is a free and publicly
available database of chemical substances designed specifically for vir-
tual screening and computer-aided drug design. The ZIN-C250K dataset
contains a wide variety of compounds (e.g. different ring systems,
functional groups, and stereochemistry).

Enzymes: The Enzymes dataset [162] consists of 600 graphs rep-
resenting enzyme molecules. The nodes of each graph represent amino
acid residues, and the edges represent the interactions between these
residues. The Enzymes dataset contains 6 different types of enzymes,
and each graph is classified according to the function of the enzyme.
In addition to the graph structure, Enzymes also contain attribute
information (e.g., the attributes of the nodes may include chemical
properties, geometric information, etc.).

SBM-27: Stochastic Block Model - 27 (SBM-27) [163] is a dataset
for studying community detection and graph clustering algorithms.
SBM-27 is generated based on the stochastic block model, which is
a statistical model commonly used to generate random graphs with
community structure. The SBM-27 dataset contains 27 communities,
each of which represents a subpopulation in the graph.

Planar-60: The Planar-60 dataset [163,164] consists of 60 planar
graphs. A planar graph can be drawn on a plane without crossing edges.
The graphs in the Planar-60 dataset have diverse structural features,
including different numbers of nodes and edges, different connection
patterns, etc.

AIDS: The AIDS dataset [165] is a well-known dataset in chemin-
formatics and is often used for the analysis and research of molecular
graphs. The AIDS dataset (AIDS Antiviral Screen Data) was origi-
nally provided by the National Cancer Institute (NCI) of the United
States to evaluate the inhibitory effect of compounds on HIV (hu-
man immunodeficiency virus) replication. The AIDS dataset contains
the molecular structures and biological activity information of thou-
sands of compounds. The biological activity data of each compound
mainly describes its inhibitory effect on the HIV virus. The data is
usually represented by binary classification (active or inactive) or
multi-classification (according to the different degrees of inhibition).

Synthie: The Synthie dataset [166] is generated synthetically, and
the structure of the graph, and the properties of nodes and edges can
be adjusted as needed. The Synthie dataset contains multiple graphs,
each of which represents a data sample. Since the generation method of
the graph is controllable, researchers can create graph data of different
difficulty and complexity by modifying the generation parameters to
test.
11
Proteins: The Proteins dataset [167] consists of a set of protein
molecules, each of which is represented as a graph in which nodes
represent amino acids and edges represent interactions between these
amino acids. The graphs in the Proteins dataset directly reflect the ac-
tual biological structure of protein molecules and have high biological
relevance.

8. Evaluation metrics

8.1. Maximum mean discrepancy (MMD)

Evaluating the quality of generated graphs requires principled sta-
tistical distances that go beyond visual inspection or simple average
statistics. Maximum Mean Discrepancy (MMD) has become one of the
most widely used metrics for graph generation, as it compares two
empirical distributions across all moments in a reproducing kernel
Hilbert space (RKHS). Formally, with kernel function 𝑘(⋅, ⋅), the squared
MMD between two distributions 𝑝 and 𝑞 is:
MMD2(𝑝 ∥ 𝑞) = E𝑥,𝑥′∼𝑝[𝑘(𝑥, 𝑥′)] + E𝑦,𝑦′∼𝑞[𝑘(𝑦, 𝑦′)]

− 2E𝑥∼𝑝,𝑦∼𝑞[𝑘(𝑥, 𝑦)]
(43)

Directly computing distances over full graph distributions is in-
tractable. Therefore, MMD is typically estimated on selected graph
statistics  = {𝑀1,… ,𝑀𝑘}, including the degree distribution, cluster-
ing coefficient distribution, and motif or orbit counts. These statistics
are embedded using kernels such as the Wasserstein or RBF kernel,
enabling comparison of structural patterns between generated and real
graphs.

Domain relevance. MMD is particularly suitable for social net-
works and citation networks, where capturing structural fidelity is
crucial. In these domains, preserving degree distributions reflects the
presence of hubs and power-law connectivity, while clustering co-
efficients characterize community structures and small-world effects.
Similarly, motif counts provide insights into collaboration cliques or
citation cycles that are critical for realistic graph synthesis. Thus,
MMD not only serves as a general-purpose divergence measure, but
also directly links to domain-specific challenges in social and citation
networks: ensuring that generated graphs reproduce the characteristic
structural statistics that underpin network connectivity, community
formation, and information flow.

8.2. Fréchet ChemNet distance (FCD)

While MMD is widely applied for evaluating structural fidelity in
social and citation networks, the Fréchet ChemNet Distance (FCD)
is specifically designed to assess the quality of molecular graph gen-
eration. FCD measures the distance between the distribution 𝑝(⋅) of
generated molecules and the distribution 𝑝𝑤(⋅) of real molecules, both
embedded into the latent representation of a pretrained molecular
property prediction network (ChemNet). By extracting activations from
the penultimate layer of ChemNet, each molecule is represented as
a feature vector. Assuming these feature vectors follow a Gaussian

Y. Shou et al. Computer Science Review 59 (2026) 100854
Table 4
We summarize existing graph generation methods according to our classification method.
 Method Generative method Generation process Permutation Compositional
 VAE GAN Flow RNN EBM Diffusion One-shot Sequential invariance generation
 GraphVAE [136] ✓ – – – – – ✓ – 7 –
 DeepGMG [168] – – – ✓ – – – ✓ 7 –
 CGVAE [169] ✓ – – – – – – ✓ 7 –
 MolGAN [139] – ✓ – – – – ✓ – – –
 RVAE [170] ✓ – – – – – ✓ – 7 –
 GCPN [171] – ✓ – – – – – ✓ 7 –
 JT-VAE [40] ✓ – – – – – – ✓ 7 –
 MolecularRNN [35] – – – ✓ – – – ✓ 7 –
 GraphNVP [54] – – ✓ – – – ✓ – 7 –
 TGCD [172] ✓ – – – – – ✓ – 7 –
 GRF [173] – – ✓ – – – ✓ – 7 –
 GraphAF [133] – – ✓ – – – – ✓ 7 –
 HierVAE [174] ✓ – – – – – – ✓ 7 –
 MoFlow [55] – – ✓ – – – ✓ – 7 –
 GraphCNF [134] – – ✓ – – – ✓ – ✓ –
 GraphEBM [175] – – – – ✓ – ✓ – ✓ ✓
 GraphRNN [34] – – – ✓ – – – ✓ 7 –
 GraphDF [56] – – ✓ – – – – ✓ 7 –
 GNF [176] – – ✓ – – – ✓ – 7 –
 EDP-GNN [107] – – – – – ✓ ✓ – ✓ –
 CCGG [177] ✓ – – – – – – ✓ 7 –
 GDSS [32] – – – – – ✓ ✓ – ✓ –
 ConGen [41] – ✓ – – – – ✓ – 7 –
 Digress [68] – – – – – ✓ ✓ – ✓ –
 GraphARM [178] ✓ – – – – – – ✓ 7 –
 EB-GFN [179] – – ✓ – – – ✓ – 7 –
 GPrinFlowNet [180] – – ✓ – – – ✓ – 7 –
 GRAN [181] – – – ✓ – – – ✓ 7 –
 PPGN-Score [2] – – – – – ✓ ✓ – ✓ –
 SubspaceDiff [182] – – – – – ✓ ✓ – ✓ –
 WSGM [142] – – – – – ✓ ✓ – ✓ –
 SPECTRE [163] – ✓ – – – – ✓ – 7 –
 SGGM [113] – – – – – ✓ ✓ – ✓ –
 GSDM [125] – – – – – ✓ ✓ – ✓ –
distribution, the mean and covariance of the generated set (𝑚,𝐶) and
the real set (𝑚𝑤, 𝐶𝑤) are computed, and the Fréchet distance is given
by:

𝑑2((𝑚,𝐶), (𝑚𝑤, 𝐶𝑤)) =∥ 𝑚 − 𝑚𝑤 ∥2 +Tr(𝐶 + 𝐶𝑤 − 2(𝐶𝐶𝑤)1∕2) (44)

Intuitively, FCD evaluates both the quality (how close the generated
molecules are to real ones in the feature space) and the diversity
(whether the covariance of generated molecules matches that of the
training set). In practice, a sufficiently large sample size (e.g., ≥5000
molecules) ensures stable estimation of mean and covariance, making
FCD a reliable measure of molecular distribution alignment.

Domain relevance. FCD is particularly suitable for molecular graph
generation, as it directly reflects the ability of generative models to
capture realistic chemical features. Unlike generic graph-level metrics,
FCD leverages task-specific pretrained networks that encode chemical
semantics, ensuring that generated molecules not only resemble real
molecules statistically but also preserve crucial biochemical properties.
For example, a low FCD score indicates that generated molecules share
similar pharmacophoric patterns and substructural motifs with real
compounds, which is essential for downstream drug discovery and
materials design tasks. Thus, FCD provides a domain-aware evaluation
that bridges statistical similarity and chemical validity in generative
modeling.

9. Experimental performance

As shown in Table 4, we first summarize the existing 33 methods
from four aspects: generative method, generation process, permutation
and compositional. Next, we will analyze the performance of these
methods on different graph generation datasets.
12
As shown in Table 5, the GPrinFlowNet [180] method performs well
in graph generation tasks, achieving the best performance compared to
the baseline methods. In particular, compared to GDSS [32], a lead-
ing graph generation method using diffusion, GPrinFlowNet’s model
achieves significantly lower MMD scores on the Enzymes and Synthie
datasets, by 2.4 and 3.0 times, respectively. These results show that
GPrinFlowNet is not only able to generate graphs that are highly similar
to the true graph structure, but also performs well in preserving the
statistical properties of the graph. Compared with diffusion models such
as GDSS, GPrinFlowNet has higher accuracy and efficiency in capturing
the structure and statistical properties of the graph.

On the generic graph generation, we present the experimental re-
sults in Table 6, which clearly demonstrate the superior performance
of GSDM [125]. GSDM demonstrates significant advantages over the
autoregressive and one-shot baselines, fully demonstrating its status
as the SOTA graph diffusion model. Moreover, GSDM significantly
outperforms the autoregressive and one-shot baselines on multiple
key performance metrics. The performance improvement is not only
reflected in the generated quality, but also in the generated diversity
and accuracy. GSDM performs diffusion across the entire graph data
space, and by leveraging spectral methods, it more effectively captures
the complex relationships and features in the graph structure, and
can generate high-quality graphs in a shorter time. The experimental
results further demonstrate that GSDM is particularly outstanding both
in handling complex graph structures and in generating realistic and
useful graph data.

On the molecules generation, GSDM [125] achieves the highest
scores on multiple metrics in Table 7. In particular, GSDM performs
particularly well on the NSPDK and FCD metrics. These high scores in-
dicate that GSDM is able to generate molecules whose data distribution
in chemical space and graph space is close to that of real molecules,
demonstrating its strong ability in molecular design. The experimental

Y. Shou et al. Computer Science Review 59 (2026) 100854
Table 5
Generation results on the conditional graph generation datasets.
 AIDS

Real. |𝑉 | ≤ 95, |𝐶| = 2
Enzymes
Real. |𝑉 | ≤ 125, |𝐶| = 6

Synthie
Synthetic. |𝑉 | ≤ 100, |𝐶| = 4

 Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus. Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓

Autoreg.

GraphRNN [34] 0.241 0.143 0.034 0.139 0.086 0.294 0.307 0.229 0.247 0.285 0.419 0.317
 GraphAF [133] 0.197 0.093 0.026 0.105 0.058 0.174 0.156 0.129 0.137 0.176 0.302 0.205
 GraphDF [56] 0.184 0.085 0.031 0.101 0.062 0.196 0.204 0.154 1.681 1.265 0.258 1.068
 GraphVAE [136] 0.358 0.284 0.127 0.256 1.249 0.687 0.381 0.772 1.554 1.074 0.232 0.953

One-shot

GNF [176] 0.224 0.159 0.018 0.133 – – – – – – –
 EDP-GNN [107] 0.127 0.082 0.024 0.077 0.067 0.241 0.225 0.177 0.148 0.185 0.347 0.226
 CCGG [177] 0.097 0.074 0.035 0.068 0.043 0.125 0.117 0.095 0.107 0.159 0.236 0.167
 GDSS [32] 0.062 0.049 0.022 0.044 0.038 0.158 0.132 0.109 0.114 0.126 0.269 0.169
 CondGen [41] 0.138 0.115 0.032 0.095 0.065 0.184 0.213 0.154 0.151 0.162 0.295 0.202
 DiGress [68] 0.06 0.048 0.021 0.043 0.033 0.146 0.085 0.088 0.109 0.097 0.158 0.121
 GraphARM [178] 0.057 0.052 0.016 0.041 0.031 0.095 0.061 0.062 0.128 0.074 0.127 0.109
 EB-GFN [179] 0.094 0.087 0.035 0.072 0.079 0.213 0.227 0.173 0.152 0.164 0.341 0.219
 GPrinFlowNet [180] 0.046 0.031 0.012 0.029 0.027 0.062 0.046 0.045 0.048 0.042 0.079 0.056
Table 6
Generation results on the conditional generic graph generation datasets of baseline methods.
 Community-small Enzymes Grid
 Synthetic, 12 ≤ |𝑉 | ≤ 20 Real, 10 ≤ |𝑉 | ≤ 125 Synthetic, 100 ≤ |𝑉 | ≤ 400

 Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓ Deg.↓ Clus.↓ Orbit↓ Avg.↓

Autoreg.

DeepGMG [168] 0.220 0.950 0.400 0.523 – – – – – – – –
 GRAPHARM [178] 0.034 0.082 0.004 – 0.029 0.054 0.015 – – – –
 GRAN [181] 0.001 0.084 0.028 0.020 – – – – 0.001 0.004 0.002 0.016
 GraphRNN [34] 0.080 0.120 0.040 0.080 0.017 0.043 0.021 0.043 0.011 0.0 0.001 0.012
 GraphAF [133] 0.18 0.20 0.02 0.133 1.669 1.283 0.266 1.073 – – – –
 GraphDF [56] 0.06 0.12 0.03 0.070 1.503 1.061 0.202 0.922 – – – –

One-shot

GraphVAE [136] 0.350 0.980 0.540 0.623 1.369 0.629 0.191 0.730 1.619 0.0 0.919 0.846
 PPGN-Score [2] 0.081 0.237 0.284 0.200 – – – – – – – –
 GNF [176] 0.200 0.200 0.110 0.170 – – – – – – – –
 DiGress [68] 0.009 0.104 0.051 0.037 0.004 0.083 0.002 – – – – –
 EDP-GNN [107] 0.053 0.144 0.026 0.074 0.023 0.268 0.082 0.124 0.455 0.238 0.328 0.340
 SubspaceDiff [182] 0.057 0.098 0.012 0.056 0.037 0.099 0.018 0.051 0.124 0.013 0.090 0.076
 WSGM [142] 0.039 0.084 0.009 0.044 0.034 0.097 0.013 0.048 0.083 0.006 0.065 0.051
 GPrinFlowNet [180] 0.021 0.068 0.021 0.037 0.021 0.088 0.009 0.039 0.056 0.042 0.015 0.038
 SPECTRE [163] 0.008 0.1067 0.046 0.025 0.136 0.195 0.125 – – – – –
 GDSS [32] 0.045 0.086 0.007 0.046 0.026 0.102 0.009 0.046 0.111 0.005 0.070 0.062
 SGGM [113] 0.041 0.079 0.010 0.043 0.030 0.073 0.013 0.039 0.114 0.0 0.065 0.060
 SGGM+SLD [113] 0.035 0.071 0.006 0.037 0.022 0.062 0.007 0.030 0.103 0.0 0.053 0.052
 GSDM [125] 0.011 0.015 0.001 0.009 0.013 0.088 0.01 0.037 0.002 0.0 0.0 0.0007
Table 7
Generation results of baseline methods on the QM9 and ZINC250k datasets.
 Method QM9 ZINC250k

 Validity (%)↑ Val. w/o corr. (%)↑ NSPDK↓ FCD↓ Time (s)↓ Validity (%)↑ Val. w/o corr. (%)↑ NSPDK↓ FCD↓ Time (s)↓

Autoreg.

GraphAF [133] 100 67 0.020 5.268 2.28𝑒3 100 68 0.044 16.289 5.72𝑒3
 GraphEBM [175] 100 8.22 0.030 6.143 35.33 100 5.29 0.212 35.471 53.72
 GRAPHARM [178] 100 90.25 0.002 1.22 1.52𝑒1 100 88.23 0.055 16.26 1.328𝑒2
 GraphAF+FC [133] 100 74.43 0.021 5.625 2.32𝑒3 100 68.47 0.044 16.023 5.91𝑒3
 GraphDF [56] 100 82.67 0.063 10.816 5.08𝑒4 100 89.03 0.176 34.202 5.87𝑒4
 GraphDF+FC [56] 100 93.88 0.064 10.928 4.72𝑒4 100 90.61 0.177 33.546 5.79𝑒4

One-shot

MoFlow [55] 100 91.36 0.017 4.467 4.58 100 63.11 0.046 20.931 2.59𝑒1
 EDP-GNN [107] 100 47.52 0.005 2.680 4.13𝑒3 100 82.97 0.049 16.737 8.41𝑒3
 SGGM [113] 100 95.91 0.006 2.745 4.93𝑒1 100 97.28 0.018 13.931 1.01𝑒3
 SGGM+SLD [113] 100 97.35 0.004 2.593 – 100 98.32 0.014 11.379 1.12𝑒3
 SPECTRE [163] 100 87.3 0.163 47.96 3.3 100 90.2 0.109 18.44 103.1
 GDSS [32] 100 95.72 0.003 2.900 1.06𝑒2 100 97.01 0.019 14.656 2.11𝑒3
 GDSS-EM [32] 100 95.72 0.003 2.900 1.06𝑒2 100 97.01 0.019 14.656 2.11𝑒3
 GDSS-VP-EM [32] 100 95.72 0.003 2.900 1.06𝑒2 100 97.01 0.019 14.656* 2.11𝑒3
 GSDM [125] 100 99.90 0.003 2.650 1.80𝑒1 100 92.70 0.017 12.956 4.59𝑒1
results demonstrate that the proposed GSDM is not only suitable for
general graph generation but also for molecular design. One of the main
advantages of GSDM is its efficiency in generating molecules compared
to other diffusion models such as EDP-GNN [107] and GDSS [32].
Table 7 also shows the time (in seconds) taken to generate 10,000
molecules. The results show that GSDM takes significantly less time
13
than EDP-GNN and GDSS during inference. For example, GSDM takes
only 18.02 s and 45.91 s to generate 10,000 molecular graphs on the
QM9 [160] and Zinc250k [161] datasets, while GDSS takes 1060 s
and 2110 s, respectively. This means that GSDM is 58 times and 46
times faster than GDSS. In summary, the results fully demonstrate that
GSDM performs well in molecular design and other graphics generation

Y. Shou et al. Computer Science Review 59 (2026) 100854
Table 8
Experimental results on protein datasets.
 Method Proteins

 Deg. ↓ Clus. ↓ Orbit ↓ Spectral ↓ Wavelet ↓ Ratio ↓ Unique ↑ Novel ↑ Uniq. & Nov. ↑ 𝑡 (s) ↓
 Training set 0.0003 0.0068 0.0032 0.0009 0.0003 1.0 100.0 — — —
 Autoreg. GraphRNN [34] 0.0040 0.1475 0.5851 0.0152 0.0530 82.3 100.0 100.0 100.0 36.41
 GRAN [181] 0.0479 0.1234 0.3458 0.0125 0.0341 82.7 100.0 100.0 100.0 11.68

One-shot

MolGAN [139] 0.0008 0.0644 0.0081 0.0021 0.0012 4.2 97.3 100.0 97.3 0.003
 GG-GAN (RS) [183] 0.4727 0.1772 0.7326 0.4102 0.6278 875.8 100.0 100.0 100.0 0.482
 GG-GAN [183] 0.5192 0.5220 0.7326 0.3996 0.6157 906.5 100.0 100.0 100.0 0.485
 SPECTRE [163] 0.0056 0.0843 0.0267 0.0052 0.0118 16.9 100.0 100.0 100.0 0.507
 SPECTRE (real spectra) [163] 0.0013 0.0469 0.0287 0.0020 0.0022 6.0 100.0 100.0‡ 100.0‡ 0.485
tasks, significantly outperforming other baseline methods. Through the
spectral diffusion method, GSDM achieves higher generation quality
and efficiency.

As shown in Table 8, most GAN [183] baseline methods face train-
ing difficulties on larger real-world protein graph datasets. Notably,
MolGAN [139] excels in generating graphs with excellent statistical
metrics. However, in-depth analysis reveals that graphs generated by
MolGAN are often just slight variants of a few graphs. In fact, the
average dissimilarity of edges between any two graphs generated by
MolGAN is only 17.6%. In the SPECTRE [163] method, mode collapse,
a common problem of GANs, is successfully avoided by applying a
teacher forcing mechanism and adjusting the generator and discrimi-
nator according to real spectral features. Specifically, Teacher Forcing
helps the generator better learn to generate samples of real data by
introducing real data as a reference in training. Adjusting the generator
and discriminator further enhances the model’s generation ability by
optimizing the model’s adaptability to data features and avoiding the
phenomenon of generating monotonous graphs.

10. Efficiency

Fig. 5 presents a comparative study of the sampling efficiency of
several representative deep generative graph models. The evaluation
is conducted by recording the average wall-clock time required for
each model to generate a single graph, with results averaged over 128
independent runs for consistency. The figure reports sampling time as a
function of graph size, measured both in terms of the average number
of nodes and the average number of edges of the generated graphs. It
can be observed that most neural baselines, such as GDSS, DiscDDPM,
and DiGress, are only able to generate graphs for relatively small
datasets like Community (average 110 nodes) and Ego (average 144
nodes). GraphRNN, in contrast, can scale to larger graphs but incurs
considerably higher sampling costs, reflecting the sequential nature of
its autoregressive decoding. GraphCNF demonstrates strong efficiency
on small datasets, with sampling times that are among the lowest, while
diffusion-based methods show relatively slower performance due to
their iterative denoising process. A noteworthy observation from the
results is that the sampling time does not always increase monoton-
ically with the number of nodes. For example, Ego graphs, despite
having more nodes on average than Community graphs, require less
generation time under certain models. This is attributed to the fact that
the computational burden of some methods scales more directly with
the number of edges, and Ego graphs are typically much sparser than
Community graphs.

Overall, the comparative results highlight that while autoregressive
methods are severely limited by scalability, flow-based approaches such
as GraphCNF achieve strong efficiency on smaller graphs. Diffusion-
based models offer greater modeling flexibility but face higher sampling
costs. These findings underscore the trade-offs between scalability and
sampling speed across different categories of generative graph models.
14
11. Applications

In this section, we will delve into real-world applications of graph
generation techniques. We will focus on five specific application exam-
ples: molecular design, recommender systems, protein design, commu-
nity generation, and program synthesis.

11.1. Molecular design

Molecular design is of great significance in application fields such as
drug development, material science, environmental protection, agricul-
ture, and the food industry. Through molecular design, new molecules
and new materials with specific functions and excellent properties can
be developed. In the task of molecular generation, generative design
usually has two main goals: (1) graph generation methods should
generate syntactically valid molecules; (2) the generated mole-cules
should have certain specific properties. To ensure the validity of gener-
ated molecules, sequential generation strategies can be implemented
by adding valence checks in each intermediate generation step. In
existing work, EDM [4] introduces an E(n)-equivariant diffusion model
tailored for generating 3D molecular structures, which handles both
continuous (e.g., atomic coordinates) and categorical data by integrat-
ing equivariant properties into the denoising process to ensure that
the generated molecular conformations respect the inherent symmetries
of 3D space (e.g., rotations and translations). GeoDiff [5] proposes a
geometric diffusion method for generating molecular conformations
that focuses on modeling the Boltzmann distribution of molecular
structures, ensuring that the generated conformations are physically
plausible and energetically stable. GeoDiff exploits the SE(3) group
to preserve rotational and translational invariance during diffusion
and generation. As shown in Fig. 6, GeoDiff uses a graph diffusion
model to generate highly realistic molecular conformations that have
typical characteristics of drug-like molecules. We can clearly see mul-
tiple molecular conformation examples generated by GeoDiff, each of
which shows a different molecular arrangement and structure. The
visualization results not only verify the effectiveness of the GeoDiff
model, but also demonstrate its potential application value in drug dis-
covery and materials science. DiffLinker [6] generates molecular linkers
conditioned on 3D fragments using a 3D equivariant diffusion model
that incorporates symmetry considerations, allowing it to efficiently
generate linkers that are consistent with the spatial arrangement of the
input molecular fragments.

11.2. Recommender systems

Traditional recommendation systems may not fully capture the dy-
namic changes in user preferences, while diffusion models can provide
more accurate recommendation results by generating and predicting
users’ potential interests through diverse data. In existing work, CF-
Diff [184] proposes a new collaborative filtering method based on
the diffusion model, which uses high-order connectivity information
to improve the recommendation accuracy. SDRM [185] introduces a
score-based diffusion recommendation module to generate synthetic

Y. Shou et al. Computer Science Review 59 (2026) 100854
Fig. 5. Sampling speed comparison over different models.
Fig. 6. Visualization of drug-like conformations generated by GEODIFF
demonstrates the model’s capability in generating molecular structures [5].

data for privacy-preserving recommendations. SDRM captures complex
patterns in real-world datasets, enabling accurate recommendations
while protecting user privacy. G-Diff [186] emphasizes that diffusion
models can better capture the uncertainty and potential preferences
in user behavior compared to traditional generative models such as
VAE [42,47,136] and GAN [41,61]. G-Diff learns the probability dis-
tribution of user behavior by adding noise to the target items, thereby
achieving better sequence recommendations. As shown in Fig. 7, for
the sake of brevity and clarity, G-Diff only shows the top five rec-
ommendation lists generated by three different random seeds. These
recommendation lists show the movies recommended by the system
under different initial conditions, which helps to understand the per-
formance and variability of the recommendation algorithm in practical
applications, and also helps to evaluate the accuracy and consistency
of the recommendation system in meeting user viewing preferences.

11.3. Protein design

Designing proteins with specific functions through graph gener-
ation technology can promote the development of biotechnologies
(e.g., enzyme engineering, and antibody design), and achieve effi-
cient biocatalysis and disease treatment. In existing work, GDD [7]
discusses how to use guided diffusion models to design proteins by
sampling from non-norma-lized density functions. GDD emphasizes the
efficiency of guided diffusion models in generating low-energy protein
samples via fixed-length Markov chains. RFdiffusion [188] combines
diffusion models with structure prediction networks to improve the
accuracy of protein design. This approach uses diffusion models to
create biologically plausible proteins, demonstrating their potential to
15
Fig. 7. DiffRec shows examples of user watch lists and recommended movies.
In these examples, the real movie entries are marked with red boxes to
facilitate comparison with the movie lists generated by the recommendation
system [187].

Fig. 8. The RFdiffusion track constructed a symmetric oligomer through
multiple iterations. This process demonstrates the ability of RFdiffusion to
gradually generate and optimize molecular structures to gradually meet the
design goals [188].

generating diverse and structurally plausible protein sequences. EvoD-
iff [189] combines evolutionary-scale data with the regulatory power
of diffusion models to generate high-fidelity, diverse proteins with
broad functionality and structural plausibility, pushing the boundaries
of traditional structure-based protein design methods. As shown in
Fig. 8, RFdiffusion successfully designed oligomers that met the C4
symmetry and Ni2+ binding requirements, verifying the effectiveness
of RFdiffusion in designing and generating molecular structures that
meet theoretical expectations.

11.4. Community generation

Graph generation helps simulate complex community structures and
dynamic changes in community generation, so as to better understand
and analyze the behavior and characteristics of actual community net-
works. By generating representative graphs, we can fill in the missing
parts in real data and enhance the quality and diversity of data sets.

Y. Shou et al. Computer Science Review 59 (2026) 100854
Fig. 9. GDSS shows the network structure of a small dataset of real com-
munities. The graph includes nodes and their edge connections within the
community, as well as the boundaries between different communities [32].

This is especially important for community detection and analysis,
because real community data may be incomplete or noisy. Graph gener-
ation models can generate potential community structures and predict
how communities evolve over time, which has practical application
value for social network analysis. As shown in Fig. 9, GDSS [32] is
a technique for graph data synthesis and sampling, and the graphs
it generates are intended to simulate and predict possible community
structures. The generated graphs usually reflect the community orga-
nization and node connectivity produced by the model under given
parameters. Compared with the graphs of real datasets, the graphs
generated by GDSS may show more experimental structural features.

11.5. Program synthesis

Different from traditional generation models, diffusion models can
continuously verify and adjust the code during the generation process
to ensure that the final generated code meets syntactic and semantic
correctness. DST [190] introduces a neural diffusion model that op-
erates on syntax trees to iteratively improve code while maintaining
syntactic validity. DST addresses the limitations of autoregressive mod-
els by allowing iterative editing based on runtime feedback. As shown
in Fig. 10, the leftmost column shows real renderers from the test set.
The following columns show renderers generated by different methods,
including DST and other baseline methods. Each column shows the ren-
dering effect of a method in the corresponding graphics language. By
comparing these renderers, we can see the differences in the accuracy
and detail of the generated graphics of each method. The renderer of
the DST method shows its advantages in graphics generation, especially
in the precise adjustment of details and the matching degree with the
real program. DST can generate more sophisticated graphics, better fit
the real renderer in the test set, and show higher accuracy and realism.

12. Practical considerations across domains

When applying graph generative models to different domains, sev-
eral domain-specific considerations arise. In molecular and materials
science, ensuring chemical validity is essential, which often requires the
incorporation of hard constraints or rule-based post-processing modules
within generative pipelines. In contrast, applications in social networks
and citation graphs prioritize scalability, where sparsity-aware message
passing and subgraph sampling strategies become critical to handle
million-scale graphs. Temporal or dynamic graphs, such as transaction
networks, demand architectures that explicitly model time-evolving
edges; ODE- and SDE-based formulations have been adapted to capture
such dynamics. Moreover, the evaluation protocols also differ: molec-
ular generation relies heavily on property-based metrics (e.g., QED,
logP), while community network generation emphasizes structural sim-
ilarity (e.g., degree distribution, clustering coefficient). These practical
differences suggest that a ‘‘one-size-fits-all’’ solution remains elusive,
and effective deployment requires careful alignment between model
design, hyperparameter settings, and domain constraints.
16
Fig. 10. Qualitative examples showing DST and baseline methods on two
reverse graphics languages, CSG2D (top two rows) and TinySVG (bottom two
rows) [190].

13. Future directions

Training Objectives and Optimization Problems. Although the
Evidence Lower Bound (ELBO) has been widely adopted in graph
generation tasks, its theoretical alignment with the true negative log-
likelihood remains insufficiently understood. Optimizing ELBO serves
only as a proxy for variational inference and does not necessarily
guarantee convergence to the optimal generative distribution, partic-
ularly in high-dimensional structured data like graphs. To address
this gap, several concrete research directions can be pursued: (1)
Theoretical calibration of ELBO. A systematic approach is to derive
tighter bounds by augmenting the standard ELBO with correction terms
that explicitly account for graph-specific structures. For instance, one
could integrate Rényi divergence or 𝜒2-divergence based bounds into
the training objective, and empirically evaluate whether these bounds
yield better alignment with true likelihoods on benchmark datasets.
(2) Hierarchical and domain-aware objectives. Current objectives
often treat nodes and edges uniformly, ignoring hierarchical or domain-
specific dependencies. A practical pipeline would be: (i) decompose
graphs into hierarchical units (e.g., communities in social graphs, func-
tional groups in molecular graphs), (ii) define local reconstruction
losses within each unit, and (iii) aggregate them into a global ob-
jective weighted by structural importance. This ensures that training
respects both local fidelity and global coherence. (3) Adaptive noise-
signal balancing. During diffusion, the challenge is to model noise
while preserving meaningful signal. A concrete strategy is to adopt a
curriculum-based schedule: start with high noise levels to encourage
exploration, then gradually reduce noise according to topology-aware
criteria (e.g., node degree distribution, motif frequency) so that cru-
cial structural information is preserved. This can be implemented by
dynamically adjusting the schedule conditioned on graph statistics. (4)
Hybrid loss design. Recent advances in score matching and denoising
diffusion suggest combining multiple objectives. An effective workflow
could be: (i) reconstruction error enforces fidelity to input structure,
(ii) adversarial regularization encourages realistic sample distribution,
and (iii) structural constraints (e.g., energy-based priors in molecular
graphs, modularity in social networks) guide the model toward domain
validity. Such hybrid objectives can be optimized jointly, with adaptive
weighting to prevent dominance of any single component. (5) Evalu-
ation and iterative refinement. To validate these objectives, one can
adopt a train–evaluate–refine loop: train with the proposed hybrid loss,

Y. Shou et al. Computer Science Review 59 (2026) 100854
evaluate with both likelihood-based metrics (ELBO gap, NLL approxi-
mation) and domain metrics (MMD for social/citation networks, FCD
for molecular graphs), and iteratively refine the objective weights or
noise schedules until both statistical and domain-specific performance
criteria are satisfied.

Challenges of 2D to 3D Graph Generation. As graph generation
research evolves from 2D to 3D domains, new challenges arise in
modeling spatially complex structures and ensuring geometric fidelity.
Unlike 2D graphs, 3D graphs involve intricate interdependencies be-
tween node coordinates, bond angles, and geometric constraints, which
are critical in molecular conformation and protein folding. To systemat-
ically address these challenges, several concrete approaches can be con-
sidered: (1) Domain-aware evaluation metrics. Traditional structural
metrics (degree distribution, clustering coefficient) are insufficient for
3D graphs. A practical evaluation pipeline should integrate: (i) RMSD to
measure deviation from reference conformations, (ii) steric clash scores
to penalize physically invalid overlaps, and (iii) energy-based metrics
from molecular dynamics or force-field simulations (e.g., MMFF94,
CHARMM) to assess thermodynamic plausibility. This ensures that
evaluation reflects both structural fidelity and physical validity. (2)
Equivariance and invariance modeling. Generative models must
respect SE(3) symmetries so that generated graphs remain consistent
under rotation and translation. A concrete modeling strategy is: (i)
adopt SE(3)-equivariant GNNs or tensor field networks for message
passing, (ii) ensure that coordinate updates preserve rotational/transla-
tion invariance, and (iii) combine with attention mechanisms to capture
long-range dependencies in proteins or large molecules. (3) Geometric
constraint preservation. A key step in 3D generation is maintaining
bond lengths, bond angles, and torsion angles throughout the denois-
ing trajectory. This can be achieved by: (i) embedding constraints
into the loss function (e.g., harmonic penalties for bond lengths), (ii)
projecting generated coordinates back onto physically valid manifolds
after each diffusion step, and (iii) using constraint-satisfaction layers
that correct invalid geometries before sampling the next state. (4)
Incorporating physical priors. Differentiable physics simulators and
energy-based models can serve as inductive priors. A feasible workflow
is: (i) generate coarse 3D structures using diffusion or score-based
models, (ii) refine them with energy minimization guided by force
fields, and (iii) feed the refined structures back into the generative loop
for iterative improvement. This ‘‘generate–refine–retrain’’ pipeline links
deep generative learning with molecular simulation.

Impact of Changes in Data Distribution. Another promising di-
rection lies in addressing the challenges posed by distribution shifts
between training and deployment data. In real-world applications such
as molecular design or social network modeling, the data encountered
at test time often exhibit domain-specific structures and constraints not
fully captured during training. To enhance generative fidelity, future
work should explore integrating domain-specific priors into the diffu-
sion process. For instance, in molecular generation tasks, incorporating
chemical valence constraints, ring closure rules, or energy-based physi-
cal priors into the denoising model can ensure that generated molecules
are not only structurally valid but also chemically feasible. Similarly, in
social network or community graph generation, embedding structural
priors such as modularity, community detection statistics, or degree
distributions can improve realism. Moreover, addressing distributional
shifts requires robust modeling strategies, such as out-of-distribution
(OOD) detection during sampling, domain-adaptive training objectives,
or Bayesian diffusion models that explicitly model uncertainty under
varying data regimes. These strategies will not only improve the sta-
bility and generalizability of graph diffusion models but also provide
stronger guarantees for their deployment in downstream applications
with dynamic and heterogeneous data distributions.

Permutation Invariance and Graph Alignment. Permutation in-
variance has traditionally been regarded as a fundamental property
in graph generative models, ensuring that the model outputs remain
consistent under node reordering. Many prior works emphasize this
17
property as crucial for learning stable representations and avoiding
overfitting to arbitrary node indices. However, emerging studies sug-
gest that strict permutation invariance may, in some cases, limit the
expressive power and generative performance of models. Recent re-
search has demonstrated that relaxing permutation invariance can
actually benefit generation tasks, especially in cases where alignment
between graph structures is meaningful or where canonical node order-
ings can be inferred from data. For instance, SwingNN [191] introduces
a permutation-sensitive diffusion model and shows that incorporating
alignment-aware architectures can improve sample quality in molecular
generation. Similarly, Laabid et al. [192] highlight that in retrosyn-
thesis, aligning the node ordering between reactants and products is
essential for achieving chemically plausible transformations. Even in
large-scale structural prediction tasks like AlphaFold 3 [193], canoni-
calization of node positions is used to facilitate accurate biomolecular
interaction modeling. These insights reveal a paradigm shift: rather
than enforcing strict permutation invariance, modern graph generative
models may benefit from incorporating task-specific or domain-aware
alignment strategies. This includes learning permutation-sensitive fea-
tures, introducing alignment loss terms, or leveraging canonical graph
orderings derived from heuristics or auxiliary models. Future work
in graph diffusion should therefore carefully assess when permutation
invariance is beneficial and when controlled relaxation or alignment
can provide superior performance.

Scalability of GDMs. A critical limitation of current graph diffusion
models (GDMs) is their poor scalability to large-scale graphs such as
social or citation networks. Most diffusion-based approaches require
repeated pairwise computations across all nodes during the denoising
process, while autoregressive models generate edges sequentially. Both
designs lead to quadratic or worse computational costs, which become
infeasible when the number of nodes reaches millions. Several practical
workarounds have been proposed in recent studies. One direction is
sparse or active-region diffusion, where models restrict computation to
a subset of nodes or candidate edges that are most likely to change,
instead of processing the entire dense adjacency at each step. This
reduces overhead substantially while maintaining accuracy on large,
sparse graphs. Another line of work focuses on subgraph sampling:
large graphs are divided into overlapping subgraphs for training, and
later merged through consistency constraints across boundaries. Al-
though this strategy scales linearly with the number of subgraphs
and allows parallelization, it must be carefully designed to preserve
global structural properties. A complementary solution is hierarchical
generation, which builds graphs in multiple stages. Models first gen-
erate a coarse skeleton at the community level and then refine each
community in detail. This approach not only improves efficiency but
also naturally fits the modular structure often observed in social and
biological networks. Meanwhile, diffusion-step reduction techniques,
such as distillation or adaptive noise schedules, shorten the number of
denoising iterations required, accelerating both training and inference.
Other engineering-oriented strategies include using low-rank or block-
sparse representations of adjacency matrices to cut down redundant
computations, as well as distributed and parallel training frameworks
to leverage multiple GPUs or nodes effectively. Finally, edge-budget
control and negative sampling strategies have been explored to avoid
scoring all possible node pairs, instead focusing on the most informative
edges. While these methods collectively alleviate scalability concerns,
each comes with trade-offs, for example, sparse methods risk missing
rare but important edges, subgraph sampling may lose global con-
sistency, and hierarchical generation relies heavily on the quality of
community detection. Achieving true scalability without compromising
fidelity and stability remains an open research challenge, but the
combination of these strategies provides a promising path forward.

Out-of-Distribution (OOD) Robustness. Another critical limita-
tion of current GDMs lies in their vulnerability to distribution shift
when applied to real-world data. While benchmarks typically assume
that training and test graphs come from the same distribution, real

Y. Shou et al. Computer Science Review 59 (2026) 100854
scenarios differ: social networks evolve over time, molecular libraries
expand with novel scaffolds, and citation graphs shift with emerging
domains. Such out-of-distribution (OOD) settings often cause severe
degradation in generation quality, raising concerns about the relia-
bility of current evaluation practices. Existing mitigation strategies.
Several approaches have been explored to address OOD robustness:
(1) Self-supervised and pretraining methods leverage large heterogeneous
graph corpora to learn generalizable representations that transfer better
across domains [194]. (2) Domain adaptation techniques explicitly align
source and target distributions, for example using adversarial objectives
or feature normalization to reduce domain gaps [195]. (3) Uncertainty-
aware modeling equips GDMs with Bayesian layers or ensemble scoring
to quantify confidence and detect OOD samples [196].

14. Conclusion

As one of the most advanced generative methods, diffusion-based
methods have made significant progress in graph generation tasks,
especially in areas (e.g., molecular design and material synthesis).
Therefore, we provide a comprehensive review of diffusion-based graph
generation methods. We first briefly review some traditional graph
generation methods. Second, we analyze the different paradigms of
diffusion methods, including how to apply diffusion models to graph
structures. Third, we elaborate on the application of diffusion-based
graph generation methods in various tasks, including their performance
on popular datasets. By comparing the effects of different methods in
practical applications, we can evaluate their effectiveness and advan-
tages in specific tasks. Fourth, we describe the specific performance of
diffusion-based graph generation methods in practical applications. Fi-
nally, we look forward to future research directions and challenges. We
discuss the limitations of current methods and possible future research
directions, including how to solve existing problems and explore new
application areas and technological innovations.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (Grant No. 62472165), the Hunan Provincial Natural Science
Foundation General Project, China (Grant No. 2025JJ50380), and the
Hunan Provincial Natural Science Foundation Youth Project, China
(Grant No. 2025JJ60420).

Data availability

Data will be made available on request.

References

[1] A.Q. Nichol, P. Dhariwal, Improved denoising diffusion probabilistic models, in:
International Conference on Machine Learning, PMLR, 2021, pp. 8162–8171.

[2] J. Austin, D.D. Johnson, J. Ho, D. Tarlow, R. Van Den Berg, Structured
denoising diffusion models in discrete state-spaces, Adv. Neural Inf. Process.
Syst. 34 (2021) 17981–17993.

[3] Y. Song, S. Ermon, Generative modeling by estimating gradients of the data
distribution, Adv. Neural Inf. Process. Syst. 32 (2019).

[4] E. Hoogeboom, V.G. Satorras, C. Vignac, M. Welling, Equivariant diffusion for
molecule generation in 3d, in: International Conference on Machine Learning,
PMLR, 2022, pp. 8867–8887.

[5] M. Xu, L. Yu, Y. Song, C. Shi, S. Ermon, J. Tang, GeoDiff: A geometric diffusion
model for molecular conformation generation, in: International Conference on
Learning Representations, 2022.
18
[6] I. Igashov, H. Stärk, C. Vignac, A. Schneuing, V.G. Satorras, P. Frossard, M.
Welling, M. Bronstein, B. Correia, Equivariant 3D-conditional diffusion model
for molecular linker design, Nat. Mach. Intell. (2024) 1–11.

[7] N. Gruver, S. Stanton, N. Frey, T.G. Rudner, I. Hotzel, J. Lafrance-Vanasse, A.
Rajpal, K. Cho, A.G. Wilson, Protein design with guided discrete diffusion, Adv.
Neural Inf. Process. Syst. 36 (2024).

[8] H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P.-A. Heng, S.Z. Li, A survey on
generative diffusion models, IEEE Trans. Knowl. Data Eng. (2024).

[9] L. Yang, Z. Huang, Z. Zhang, Z. Liu, S. Hong, W. Zhang, W. Yang, B. Cui, L.
Zhang, Graphusion: Latent diffusion for graph generation, IEEE Trans. Knowl.
Data Eng. (2024).

[10] L. Sun, Z. Zhang, J. Zhang, F. Wang, H. Peng, S. Su, P.S. Yu, Hyperbolic
variational graph neural network for modeling dynamic graphs, in: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, (5) 2021, pp.
4375–4383.

[11] H. Cao, Z. Zhang, L. Sun, Z. Wang, Inductive and irregular dynamic network
representation based on ordinary differential equations, Knowl.-Based Syst. 227
(2021) 107271.

[12] Y. Shou, T. Meng, W. Ai, N. Yin, K. Li, A comprehensive survey on multi-modal
conversational emotion recognition with deep learning, 2023, arXiv preprint
arXiv:2312.05735.

[13] Y. Shou, T. Meng, W. Ai, S. Yang, K. Li, Conversational emotion recognition
studies based on graph convolutional neural networks and a dependent syntactic
analysis, Neurocomputing 501 (2022) 629–639.

[14] Y. Shou, T. Meng, W. Ai, F. Zhang, N. Yin, K. Li, Adversarial alignment and
graph fusion via information bottleneck for multimodal emotion recognition in
conversations, Inf. Fusion 112 (2024) 102590.

[15] W. Ai, Y. Shou, T. Meng, K. Li, Der-gcn: Dialog and event relation-aware graph
convolutional neural network for multimodal dialog emotion recognition, IEEE
Trans. Neural Netw. Learn. Syst. 36 (3) (2024) 4908–4921.

[16] Y. Shou, H. Liu, X. Cao, D. Meng, B. Dong, A low-rank matching attention based
cross-modal feature fusion method for conversational emotion recognition, IEEE
Trans. Affect. Comput. (2024).

[17] Y. Shou, W. Ai, T. Meng, N. Yin, Graph information bottleneck for remote
sensing segmentation, 2023, arXiv preprint arXiv:2312.02545.

[18] T. Meng, Y. Shou, W. Ai, J. Du, H. Liu, K. Li, A multi-message passing frame-
work based on heterogeneous graphs in conversational emotion recognition,
Neurocomputing 569 (2024) 127109.

[19] Y. Song, S. Ermon, Improved techniques for training score-based generative
models, Adv. Neural Inf. Process. Syst. 33 (2020) 12438–12448.

[20] J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Adv. Neural
Inf. Process. Syst. 33 (2020) 6840–6851.

[21] J. Hu, B. Hooi, S. Qian, Q. Fang, C. Xu, MGDCF: Distance learning via Markov
graph diffusion for neural collaborative filtering, IEEE Trans. Knowl. Data Eng.
(2024).

[22] Y. Zhang, Z. Bao, Y. Li, B. Zheng, X. Wang, From a timeline contact graph to
close contact tracing and infection diffusion intervention, IEEE Trans. Knowl.
Data Eng. (2024) 1.

[23] P. Bao, R. Yan, C. Yang, Popularity prediction via modeling temporal de-
pendencies on dynamic evolution process, IEEE Trans. Knowl. Data Eng.
(2024).

[24] X. Chen, J. He, X. Han, L.-P. Liu, Efficient and degree-guided graph generation
via discrete diffusion modeling, in: Proceedings of the 40th International
Conference on Machine Learning, 2023, pp. 4585–4610.

[25] M. Zhang, M. Qamar, T. Kang, Y. Jung, C. Zhang, S.-H. Bae, C. Zhang, A survey
on graph diffusion models: Generative ai in science for molecule, protein and
material, 2023, arXiv preprint arXiv:2304.01565.

[26] H. Chen, C. Xu, L. Zheng, Q. Zhang, X. Lin, Diffusion-based graph generative
methods, 2024, arXiv preprint arXiv:2401.15617.

[27] D. Ghio, Y. Dandi, F. Krzakala, L. Zdeborová, Sampling with flows, diffusion,
and autoregressive neural networks from a spin-glass perspective, Proc. Natl.
Acad. Sci. 121 (27) (2024) e2311810121.

[28] G. Papamakarios, E. Nalisnick, D.J. Rezende, S. Mohamed, B. Lakshmi-
narayanan, Normalizing flows for probabilistic modeling and inference, J. Mach.
Learn. Res. 22 (57) (2021) 1–64.

[29] Y. Chen, J. Liu, L. Peng, Y. Wu, Y. Xu, Z. Zhang, Auto-encoding variational
bayes, Camb. Explor. Arts Sci. 2 (1) (2024).

[30] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, Y. Bengio, Generative adversarial networks, Commun. ACM 63 (11)
(2020) 139–144.

[31] Y. Song, S. Garg, J. Shi, S. Ermon, Sliced score matching: A scalable approach
to density and score estimation, in: Uncertainty in Artificial Intelligence, PMLR,
2020, pp. 574–584.

[32] J. Jo, S. Lee, S.J. Hwang, Score-based generative modeling of graphs via
the system of stochastic differential equations, in: International Conference on
Machine Learning, PMLR, 2022, pp. 10362–10383.

[33] Y. Shou, T. Meng, W. Ai, K. Li, Dynamic graph neural ODE network for
multi-modal emotion recognition in conversation, in: Proceedings of the 31st
International Conference on Computational Linguistics, 2025, pp. 256–268.

http://refhub.elsevier.com/S1574-0137(25)00130-3/sb1
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb1
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb1
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb2
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb2
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb2
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb2
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb2
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb3
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb3
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb3
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb4
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb4
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb4
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb4
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb4
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb5
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb5
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb5
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb5
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb5
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb6
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb6
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb6
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb6
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb6
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb7
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb7
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb7
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb7
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb7
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb8
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb8
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb8
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb9
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb9
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb9
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb9
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb9
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb10
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb10
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb10
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb10
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb10
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb10
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb10
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb11
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb11
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb11
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb11
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb11
http://arxiv.org/abs/2312.05735
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb13
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb13
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb13
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb13
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb13
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb14
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb14
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb14
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb14
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb14
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb15
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb15
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb15
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb15
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb15
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb16
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb16
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb16
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb16
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb16
http://arxiv.org/abs/2312.02545
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb18
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb18
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb18
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb18
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb18
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb19
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb19
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb19
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb20
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb20
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb20
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb21
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb21
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb21
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb21
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb21
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb22
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb22
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb22
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb22
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb22
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb23
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb23
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb23
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb23
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb23
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb24
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb24
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb24
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb24
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb24
http://arxiv.org/abs/2304.01565
http://arxiv.org/abs/2401.15617
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb27
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb27
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb27
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb27
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb27
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb28
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb28
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb28
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb28
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb28
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb29
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb29
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb29
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb30
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb30
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb30
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb30
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb30
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb31
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb31
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb31
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb31
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb31
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb32
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb32
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb32
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb32
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb32
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb33
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb33
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb33
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb33
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb33

Y. Shou et al. Computer Science Review 59 (2026) 100854
[34] J. You, R. Ying, X. Ren, W. Hamilton, J. Leskovec, Graphrnn: Generating
realistic graphs with deep auto-regressive models, in: International Conference
on Machine Learning, PMLR, 2018, pp. 5708–5717.

[35] M. Popova, M. Shvets, J. Oliva, O. Isayev, MolecularRNN: Generating realistic
molecular graphs with optimized properties, 2019, arXiv preprint arXiv:1905.
13372.

[36] D. Bacciu, A. Micheli, M. Podda, Edge-based sequential graph generation with
recurrent neural networks, Neurocomputing 416 (2020) 177–189.

[37] N. Goyal, H.V. Jain, S. Ranu, Graphgen: A scalable approach to domain-agnostic
labeled graph generation, in: Proceedings of the Web Conference 2020, 2020,
pp. 1253–1263.

[38] D. Bacciu, M. Podda, Graphgen-redux: A fast and lightweight recurrent model
for labeled graph generation, in: 2021 International Joint Conference on Neural
Networks, IJCNN, IEEE, 2021, pp. 1–8.

[39] R. Gómez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernández-Lobato, B.
Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P.
Adams, A. Aspuru-Guzik, Automatic chemical design using a data-driven
continuous representation of molecules, ACS Central Sci. 4 (2) (2018) 268–276.

[40] W. Jin, R. Barzilay, T. Jaakkola, Junction tree variational autoencoder for
molecular graph generation, in: International Conference on Machine Learning,
PMLR, 2018, pp. 2323–2332.

[41] C. Yang, P. Zhuang, W. Shi, A. Luu, P. Li, Conditional structure generation
through graph variational generative adversarial nets, Adv. Neural Inf. Process.
Syst. 32 (2019).

[42] M. Zhang, S. Jiang, Z. Cui, R. Garnett, Y. Chen, D-vae: A variational autoencoder
for directed acyclic graphs, Adv. Neural Inf. Process. Syst. 32 (2019).

[43] Y. Du, X. Guo, A. Shehu, L. Zhao, Interpretable molecule generation via disen-
tanglement learning, in: Proceedings of the 11th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics, 2020, pp.
1–8.

[44] X. Guo, Y. Du, L. Zhao, Property controllable variational autoencoder
via invertible mutual dependence, in: International Conference on Learning
Representations, 2020.

[45] X. Guo, L. Zhao, Z. Qin, L. Wu, A. Shehu, Y. Ye, Interpretable deep graph
generation with node-edge co-disentanglement, in: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2020, pp. 1697–1707.

[46] R.-R. Griffiths, J.M. Hernández-Lobato, Constrained Bayesian optimization for
automatic chemical design using variational autoencoders, Chem. Sci. 11 (2)
(2020) 577–586.

[47] B. Samanta, A. De, G. Jana, V. Gómez, P. Chattaraj, N. Ganguly, M. Gomez-
Rodriguez, Nevae: A deep generative model for molecular graphs, J. Mach.
Learn. Res. 21 (114) (2020) 1–33.

[48] J. Li, J. Yu, J. Li, H. Zhang, K. Zhao, Y. Rong, H. Cheng, J. Huang, Dirichlet
graph variational autoencoder, Adv. Neural Inf. Process. Syst. 33 (2020)
5274–5283.

[49] Y. Du, Y. Wang, F. Alam, Y. Lu, X. Guo, L. Zhao, A. Shehu, Deep latent-variable
models for controllable molecule generation, in: 2021 IEEE International
Conference on Bioinformatics and Biomedicine, BIBM, IEEE, 2021, pp. 372–375.

[50] X. Guo, Y. Du, S. Tadepalli, L. Zhao, A. Shehu, Generating tertiary protein
structures via interpretable graph variational autoencoders, Bioinform. Adv. 1
(1) (2021) vbab036.

[51] X. Guo, Y. Du, L. Zhao, Disentangled deep generative model for spatial
networks, in: ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2021.

[52] Y. Du, X. Guo, A. Shehu, L. Zhao, Interpretable molecular graph generation
via monotonic constraints, in: Proceedings of the 2022 SIAM International
Conference on Data Mining, SDM, SIAM, 2022, pp. 73–81.

[53] Y. Du, X. Guo, H. Cao, Y. Ye, L. Zhao, Disentangled spatiotemporal graph gener-
ative models, in: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, (6) 2022, pp. 6541–6549.

[54] K. Madhawa, K. Ishiguro, K. Nakago, M. Abe, GraphNVP: An invertible
flow-based model for generating molecular graphs, 2019.

[55] C. Zang, F. Wang, Moflow: an invertible flow model for generating molecular
graphs, in: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2020, pp. 617–626.

[56] Y. Luo, K. Yan, S. Ji, Graphdf: A discrete flow model for molecular graph
generation, in: International Conference on Machine Learning, PMLR, 2021,
pp. 7192–7203.

[57] W. Jin, K. Yang, R. Barzilay, T. Jaakkola, Learning multimodal graph-to-graph
translation for molecule optimization, in: International Conference on Learning
Representations, 2018.

[58] S. Fan, B. Huang, Conditional labeled graph generation with GANs, in: Proc.
ICLR Workshop Represent. Learn. Graphs Manifolds, 2019.

[59] Ł. Maziarka, A. Pocha, J. Kaczmarczyk, K. Rataj, T. Danel, M. Warchoł, Mol-
cyclegan: a generative model for molecular optimization, J. Cheminformatics
12 (1) (2020) 2.

[60] S. Yang, J. Liu, K. Wu, M. Li, Learning to generate time series conditioned
graphs with generative adversarial nets, 2020, arXiv preprint arXiv:2003.01436.
19
[61] S. Pölsterl, C. Wachinger, Adversarial learned molecular graph inference and
generation, in: Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18,
2020, Proceedings, Part II, Springer, 2021, pp. 173–189.

[62] H. Lin, Y. Huang, M. Liu, X. Li, S. Ji, S.Z. Li, Diffbp: Generative diffusion of 3d
molecules for target protein binding, 2022, arXiv preprint arXiv:2211.11214.

[63] A. Schneuing, Y. Du, C. Harris, A. Jamasb, I. Igashov, W. Du, T. Blundell, P.
Lió, C. Gomes, M. Welling, et al., Structure-based drug design with equivariant
diffusion models, 2022, arXiv preprint arXiv:2210.13695.

[64] S. Luo, Y. Su, X. Peng, S. Wang, J. Peng, J. Ma, Antigen-specific antibody design
and optimization with diffusion-based generative models for protein structures,
Adv. Neural Inf. Process. Syst. 35 (2022) 9754–9767.

[65] N. Anand, T. Achim, Protein structure and sequence generation with equivariant
denoising diffusion probabilistic models, 2022, arXiv preprint arXiv:2205.
15019.

[66] C. Shi, C. Wang, J. Lu, B. Zhong, J. Tang, Protein sequence and structure
co-design with equivariant translation, 2022.

[67] L. Huang, H. Zhang, T. Xu, K.-C. Wong, Mdm: Molecular diffusion model for
3d molecule generation, in: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, (4) 2023, pp. 5105–5112.

[68] C. Vignac, I. Krawczuk, A. Siraudin, B. Wang, V. Cevher, P. Frossard, Digress:
Discrete denoising diffusion for graph generation, in: Proceedings of the 11th
International Conference on Learning Representations, 2023.

[69] J. Guan, W.W. Qian, X. Peng, Y. Su, J. Peng, J. Ma, 3D equivariant diffusion
for target-aware molecule generation and affinity prediction, 2023.

[70] G. Corso, B. Jing, R. Barzilay, T. Jaakkola, et al., DiffDock: Diffusion steps,
twists, and turns for molecular docking, in: International Conference on
Learning Representations (ICLR 2023), 2023.

[71] N.T. Runcie, A.S. Mey, Silvr: Guided diffusion for molecule generation, J. Chem.
Inf. Model. 63 (19) (2023) 5996–6005.

[72] J. Yim, Diffusion Probabilistic Modeling of Protein Backbones in 3D for the
Motif-Scaffolding problem (Ph.D. thesis), Massachusetts Institute of Technology,
2023.

[73] B. Qiang, Y. Song, M. Xu, J. Gong, B. Gao, H. Zhou, W.-Y. Ma, Y. Lan,
Coarse-to-fine: a hierarchical diffusion model for molecule generation in 3d, in:
International Conference on Machine Learning, PMLR, 2023, pp. 28277–28299.

[74] C.A. Grambow, H. Weir, N.L. Diamant, A.M. Tseng, T. Biancalani, G. Scalia, K.V.
Chuang, RINGER: Rapid conformer generation for macrocycles with sequence-
conditioned internal coordinate diffusion, 2023, arXiv preprint arXiv:2305.
19800.

[75] M. Xu, A.S. Powers, R.O. Dror, S. Ermon, J. Leskovec, Geometric latent diffusion
models for 3d molecule generation, in: International Conference on Machine
Learning, PMLR, 2023, pp. 38592–38610.

[76] W. Zhang, X. Wang, J. Smith, J. Eaton, B. Rees, Q. Gu, Diffmol: 3d structured
molecule generation with discrete denoising diffusion probabilistic models,
in: ICML 2023 Workshop on Structured Probabilistic Inference Backslash and
Generative Modeling, 2023.

[77] J. Guan, X. Zhou, Y. Yang, Y. Bao, J. Peng, J. Ma, Q. Liu, L. Wang, Q. Gu,
DECOMPDIFF: Diffusion models with decomposed priors for structure-based
drug design, Proc. Mach. Learn. Res. 202 (2023) 11827–11846.

[78] M.A. Shabani, S. Hosseini, Y. Furukawa, Housediffusion: Vector floorplan
generation via a diffusion model with discrete and continuous denoising, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 5466–5475.

[79] H. Wen, Y. Lin, Y. Xia, H. Wan, Q. Wen, R. Zimmermann, Y. Liang, Diffstg:
Probabilistic spatio-temporal graph forecasting with denoising diffusion models,
in: Proceedings of the 31st ACM International Conference on Advances in
Geographic Information Systems, 2023, pp. 1–12.

[80] X. Chen, M. Wu, L. Liu, Edge++: Improved training and sampling of EDGE, in:
NeurIPS 2023 Workshop on Synthetic Data Generation with Generative AI.

[81] K.-H. Lee, G.J. Yun, Microstructure reconstruction using diffusion-based
generative models, Mech. Adv. Mater. Struct. (2023) 1–19.

[82] S. Limnios, P. Selvaraj, M. Cucuringu, C. Maple, G. Reinert, A. Elliott, Sagess:
Sampling graph denoising diffusion model for scalable graph generation, 2023,
arXiv preprint arXiv:2306.16827.

[83] Z. Sun, Y. Yang, Difusco: Graph-based diffusion solvers for combinatorial
optimization, Adv. Neural Inf. Process. Syst. 36 (2023) 3706–3731.

[84] C. Vignac, N. Osman, L. Toni, P. Frossard, Midi: Mixed graph and 3d denoising
diffusion for molecule generation, in: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2023, pp. 560–576.

[85] A. Morehead, J. Cheng, Geometry-complete diffusion for 3D molecule
generation and optimization, Commun. Chem. 7 (1) (2024) 150.

[86] L. Huang, T. Xu, Y. Yu, P. Zhao, X. Chen, J. Han, Z. Xie, H. Li, W. Zhong, K.-C.
Wong, et al., A dual diffusion model enables 3D molecule generation and lead
optimization based on target pockets, Nat. Commun. 15 (1) (2024) 2657.

[87] S. Kim, J. Woo, W.Y. Kim, Diffusion-based generative AI for exploring transition
states from 2D molecular graphs, Nat. Commun. 15 (1) (2024) 341.

[88] H. Lin, Y. Huang, O. Zhang, Y. Liu, L. Wu, S. Li, Z. Chen, S.Z. Li, Functional-
group-based diffusion for pocket-specific molecule generation and elaboration,
Adv. Neural Inf. Process. Syst. 36 (2024).

http://refhub.elsevier.com/S1574-0137(25)00130-3/sb34
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb34
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb34
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb34
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb34
http://arxiv.org/abs/1905.13372
http://arxiv.org/abs/1905.13372
http://arxiv.org/abs/1905.13372
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb36
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb36
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb36
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb37
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb37
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb37
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb37
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb37
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb38
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb38
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb38
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb38
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb38
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb39
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb39
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb39
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb39
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb39
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb39
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb39
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb40
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb40
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb40
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb40
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb40
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb41
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb41
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb41
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb41
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb41
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb42
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb42
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb42
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb43
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb43
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb43
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb43
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb43
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb43
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb43
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb44
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb44
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb44
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb44
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb44
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb45
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb45
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb45
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb45
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb45
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb45
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb45
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb46
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb46
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb46
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb46
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb46
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb47
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb47
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb47
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb47
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb47
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb48
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb48
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb48
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb48
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb48
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb49
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb49
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb49
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb49
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb49
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb50
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb50
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb50
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb50
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb50
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb51
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb51
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb51
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb51
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb51
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb52
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb52
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb52
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb52
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb52
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb53
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb53
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb53
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb53
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb53
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb54
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb54
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb54
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb55
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb55
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb55
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb55
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb55
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb56
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb56
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb56
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb56
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb56
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb57
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb57
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb57
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb57
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb57
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb58
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb58
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb58
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb59
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb59
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb59
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb59
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb59
http://arxiv.org/abs/2003.01436
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb61
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb61
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb61
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb61
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb61
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb61
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb61
http://arxiv.org/abs/2211.11214
http://arxiv.org/abs/2210.13695
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb64
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb64
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb64
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb64
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb64
http://arxiv.org/abs/2205.15019
http://arxiv.org/abs/2205.15019
http://arxiv.org/abs/2205.15019
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb66
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb66
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb66
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb67
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb67
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb67
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb67
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb67
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb68
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb68
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb68
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb68
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb68
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb69
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb69
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb69
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb70
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb70
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb70
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb70
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb70
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb71
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb71
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb71
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb72
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb72
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb72
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb72
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb72
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb73
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb73
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb73
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb73
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb73
http://arxiv.org/abs/2305.19800
http://arxiv.org/abs/2305.19800
http://arxiv.org/abs/2305.19800
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb75
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb75
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb75
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb75
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb75
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb76
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb76
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb76
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb76
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb76
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb76
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb76
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb77
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb77
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb77
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb77
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb77
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb78
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb78
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb78
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb78
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb78
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb78
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb78
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb79
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb79
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb79
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb79
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb79
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb79
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb79
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb80
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb80
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb80
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb81
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb81
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb81
http://arxiv.org/abs/2306.16827
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb83
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb83
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb83
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb84
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb84
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb84
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb84
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb84
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb85
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb85
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb85
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb86
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb86
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb86
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb86
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb86
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb87
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb87
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb87
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb88
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb88
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb88
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb88
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb88

Y. Shou et al. Computer Science Review 59 (2026) 100854
[89] K. Yi, B. Zhou, Y. Shen, P. Liò, Y. Wang, Graph denoising diffusion for inverse
protein folding, Adv. Neural Inf. Process. Syst. 36 (2024).

[90] C. Xu, H. Wang, W. Wang, P. Zheng, H. Chen, Geometric-facilitated denoising
diffusion model for 3D molecule generation, in: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, (1) 2024, pp. 338–346.

[91] C. Hua, S. Luan, M. Xu, Z. Ying, J. Fu, S. Ermon, D. Precup, Mudiff: Unified
diffusion for complete molecule generation, in: Learning on Graphs Conference,
PMLR, 2024, pp. 1–26.

[92] L. Zhao, X. Ding, L. Akoglu, Pard: Permutation-invariant autoregressive
diffusion for graph generation, 2024, arXiv preprint arXiv:2402.03687.

[93] K. Martinkus, J. Ludwiczak, W.-C. Liang, J. Lafrance-Vanasse, I. Hotzel, A.
Rajpal, Y. Wu, K. Cho, R. Bonneau, V. Gligorijevic, et al., AbDiffuser: full-atom
generation of in-vitro functioning antibodies, Adv. Neural Inf. Process. Syst. 36
(2024).

[94] H. Chen, J. Ding, Y. Li, Y. Wang, X.-P. Zhang, Social physics informed diffusion
model for crowd simulation, in: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, (1) 2024, pp. 474–482.

[95] C. Fu, K. Yan, L. Wang, W.Y. Au, M.C. McThrow, T. Komikado, K. Maruhashi, K.
Uchino, X. Qian, S. Ji, A latent diffusion model for protein structure generation,
in: Learning on Graphs Conference, PMLR, 2024, pp. 1–17.

[96] R. Jiao, W. Huang, P. Lin, J. Han, P. Chen, Y. Lu, Y. Liu, Crystal structure
prediction by joint equivariant diffusion, Adv. Neural Inf. Process. Syst. 36
(2024).

[97] R. Jiao, W. Huang, Y. Liu, D. Zhao, Y. Liu, Space group constrained crystal
generation, 2024.

[98] X. Fu, Y. Gao, Y. Wei, Q. Sun, H. Peng, J. Li, L. Xianxian, Hyperbolic geometric
latent diffusion model for graph generation, 2024.

[99] A. Klipfel, Y. Fregier, A. Sayede, Z. Bouraoui, Vector field oriented diffusion
model for crystal material generation, in: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 38, (20) 2024, pp. 22193–22201.

[100] Z. Song, Z. Meng, I. King, A diffusion-based pre-training framework for crystal
property prediction, in: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, (8) 2024, pp. 8993–9001.

[101] H. Park, X. Yan, R. Zhu, E.A. Huerta, S. Chaudhuri, D. Cooper, I. Foster, E.
Tajkhorshid, A generative artificial intelligence framework based on a molecular
diffusion model for the design of metal-organic frameworks for carbon capture,
Commun. Chem. 7 (1) (2024) 21.

[102] J. Lei, C. Deng, W.B. Shen, L.J. Guibas, K. Daniilidis, Nap: Neural 3d articulated
object prior, Adv. Neural Inf. Process. Syst. 36 (2024).

[103] R. Yang, Y. Yang, F. Zhou, Q. Sun, Directional diffusion models for graph
representation learning, Adv. Neural Inf. Process. Syst. 36 (2024).

[104] A. Bergmeister, K. Martinkus, N. Perraudin, R. Wattenhofer, Efficient and scal-
able graph generation through iterative local expansion, in: 12th International
Conference on Learning Representations, ICLR 2024, OpenReview, 2024.

[105] X. Liu, Y. He, B. Chen, M. Zhou, Advancing graph generation through beta diffu-
sion, in: The Thirteenth International Conference on Learning Representations,
2024.

[106] Z. Li, L. Xia, H. Hua, S. Zhang, S. Wang, C. Huang, DiffGraph: Heterogeneous
graph diffusion model, in: Proceedings of the Eighteenth ACM International
Conference on Web Search and Data Mining, 2025, pp. 40–49.

[107] C. Niu, Y. Song, J. Song, S. Zhao, A. Grover, S. Ermon, Permutation
invariant graph generation via score-based generative modeling, in: Interna-
tional Conference on Artificial Intelligence and Statistics, PMLR, 2020, pp.
4474–4484.

[108] C. Shi, S. Luo, M. Xu, J. Tang, Learning gradient fields for molecular confor-
mation generation, in: International Conference on Machine Learning, PMLR,
2021, pp. 9558–9568.

[109] W. Du, H. Zhang, Y. Du, Q. Meng, W. Chen, N. Zheng, B. Shao, T.-Y. Liu, SE (3)
equivariant graph neural networks with complete local frames, in: International
Conference on Machine Learning, PMLR, 2022, pp. 5583–5608.

[110] S. Luo, C. Shi, M. Xu, J. Tang, Predicting molecular conformation via dynamic
graph score matching, Adv. Neural Inf. Process. Syst. 34 (2021) 19784–19795.

[111] J.S. Lee, J. Kim, P.M. Kim, ProteinSGM: Score-based generative modeling for
de novo protein design, 2022, BioRxiv, 2022-2007.

[112] L. Wu, C. Gong, X. Liu, M. Ye, Q. Liu, Diffusion-based molecule generation
with informative prior bridges, Adv. Neural Inf. Process. Syst. 35 (2022)
36533–36545.

[113] L. Yang, Z. Zhang, W. Zhang, S. Hong, Score-based graph generative modeling
with self-guided latent diffusion, 2022.

[114] M. Arts, V. Garcia Satorras, C.-W. Huang, D. Zugner, M. Federici, C. Clementi,
F. Noé, R. Pinsler, R. van den Berg, Two for one: Diffusion models and force
fields for coarse-grained molecular dynamics, J. Chem. Theory Comput. 19 (18)
(2023) 6151–6159.

[115] J. Jo, D. Kim, S.J. Hwang, Graph generation with destination-predicting
diffusion mixture, 2023.

[116] P.O. O Pinheiro, J. Rackers, J. Kleinhenz, M. Maser, O. Mahmood, A. Watkins,
S. Ra, V. Sresht, S. Saremi, 3D molecule generation by denoising voxel grids,
Adv. Neural Inf. Process. Syst. 36 (2024).

[117] F. Bao, M. Zhao, Z. Hao, P. Li, C. Li, J. Zhu, Equivariant energy-guided sde for
inverse molecular design, in: The Eleventh International Conference on Learning
Representations, 2022.
20
[118] H. Huang, L. Sun, B. Du, Y. Fu, W. Lv, Graphgdp: Generative diffusion pro-
cesses for permutation invariant graph generation, in: 2022 IEEE International
Conference on Data Mining, ICDM, IEEE, 2022, pp. 201–210.

[119] X. Chen, Y. Li, A. Zhang, L.-p. Liu, Nvdiff: Graph generation through the
diffusion of node vectors, 2022, arXiv preprint arXiv:2211.10794.

[120] H. Huang, L. Sun, B. Du, W. Lv, Conditional diffusion based on discrete
graph structures for molecular graph generation, in: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, (4) 2023, pp. 4302–4311.

[121] F. Wu, S.Z. Li, DIFFMD: a geometric diffusion model for molecular dynamics
simulations, in: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, (4) 2023, pp. 5321–5329.

[122] B. Jing, E. Erives, P. Pao-Huang, G. Corso, B. Berger, T.S. Jaakkola, Eigen-
Fold: Generative protein structure prediction with diffusion models, in: ICLR
2023-Machine Learning for Drug Discovery Workshop.

[123] H. Huang, L. Sun, B. Du, W. Lv, Learning joint 2d & 3d diffusion models for
complete molecule generation, 2023, arXiv preprint arXiv:2305.12347.

[124] X. Han, C. Shan, Y. Shen, C. Xu, H. Yang, X. Li, D. Li, Training-free
multi-objective diffusion model for 3D molecule generation, in: The Twelfth
International Conference on Learning Representations, 2023.

[125] T. Luo, Z. Mo, S.J. Pan, Fast graph generation via spectral diffusion, IEEE Trans.
Pattern Anal. Mach. Intell. (2023).

[126] S. An, H. Lee, J. Jo, S. Lee, S.J. Hwang, Diffusionnag: Taskguided neural
architecture generation with diffusion models, 2023, arXiv preprint arXiv:
2305.16943.

[127] Y. Qin, H. Wu, W. Ju, X. Luo, M. Zhang, A diffusion model for poi
recommendation, ACM Trans. Inf. Syst. 42 (2) (2023) 1–27.

[128] Z. Qiao, W. Nie, A. Vahdat, T.F. Miller III, A. Anandkumar, State-specific
protein–ligand complex structure prediction with a multiscale deep generative
model, Nat. Mach. Intell. 6 (2) (2024) 195–208.

[129] T. Hsu, B. Sadigh, V. Bulatov, F. Zhou, Score dynamics: Scaling molecular
dynamics with picoseconds time steps via conditional diffusion model, J. Chem.
Theory Comput. 20 (6) (2024) 2335–2348.

[130] J. Zhu, Z. Gu, J. Pei, L. Lai, DiffBindFR: an SE (3) equivariant network for
flexible protein–ligand docking, Chem. Sci. 15 (21) (2024) 7926–7942.

[131] L. Wen, X. Tang, M. Ouyang, X. Shen, J. Yang, D. Zhu, M. Chen, X. Wei,
Hyperbolic graph diffusion model, in: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, (14) 2024, pp. 15823–15831.

[132] Y. Wang, S. Zhang, J. Ye, H. Peng, L. Sun, A mixed-curvature graph dif-
fusion model, in: Proceedings of the 33rd ACM International Conference on
Information and Knowledge Management, 2024, pp. 2482–2492.

[133] C. Shi, M. Xu, Z. Zhu, W. Zhang, M. Zhang, J. Tang, Graphaf: a flow-based
autoregressive model for molecular graph generation, 2020, arXiv preprint
arXiv:2001.09382.

[134] P. Lippe, E. Gavves, Categorical normalizing flows via continuous transforma-
tions, 2020, arXiv preprint arXiv:2006.09790.

[135] Z. Chen, Z. Song, Z. Ge, Variational inference over graph: Knowledge rep-
resentation for deep process data analytics, IEEE Trans. Knowl. Data Eng.
(2023).

[136] M. Simonovsky, N. Komodakis, Graphvae: Towards generation of small graphs
using variational autoencoders, in: Artificial Neural Networks and Machine
Learning–ICANN 2018: 27th International Conference on Artificial Neural
Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27, Springer,
2018, pp. 412–422.

[137] M.J. Kusner, B. Paige, J.M. Hernández-Lobato, Grammar variational autoen-
coder, in: International Conference on Machine Learning, PMLR, 2017, pp.
1945–1954.

[138] A. Bojchevski, O. Shchur, D. Zügner, S. Günnemann, Netgan: Generating graphs
via random walks, in: International Conference on Machine Learning, PMLR,
2018, pp. 610–619.

[139] N. De Cao, T. Kipf, Molgan: An implicit generative model for small molecular
graphs, 2018, arXiv preprint arXiv:1805.11973.

[140] K.K. Haefeli, K. Martinkus, N. Perraudin, R. Wattenhofer, Diffusion models for
graphs benefit from discrete state spaces, in: The First Learning on Graphs
Conference, OpenReview, 2022.

[141] X. Wan, H. Kenlay, B. Ru, A. Blaas, M. Osborne, X. Dong, Attacking graph clas-
sification via Bayesian optimisation, in: ICML 2021 Workshop on Adversarial
Machine Learning.

[142] F. Guth, S. Coste, V. De Bortoli, S. Mallat, Wavelet score-based generative
modeling, Adv. Neural Inf. Process. Syst. 35 (2022) 478–491.

[143] J. Baek, M. Kang, S.J. Hwang, Accurate learning of graph representa-
tions with graph multiset pooling, in: International Conference on Learning
Representations.

[144] Y. Shou, X. Cao, H. Liu, D. Meng, Masked contrastive graph representation
learning for age estimation, Pattern Recognit. 158 (2025) 110974.

[145] T. Meng, Y. Shou, W. Ai, N. Yin, K. Li, Deep imbalanced learning for multimodal
emotion recognition in conversations, IEEE Trans. Artif. Intell. (2024).

[146] T. Meng, F. Zhang, Y. Shou, H. Shao, W. Ai, K. Li, Masked graph learning
with recurrent alignment for multimodal emotion recognition in conversation,
IEEE/ACM Trans. Audio Speech Lang. Process. (2024).

http://refhub.elsevier.com/S1574-0137(25)00130-3/sb89
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb89
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb89
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb90
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb90
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb90
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb90
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb90
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb91
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb91
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb91
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb91
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb91
http://arxiv.org/abs/2402.03687
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb93
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb93
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb93
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb93
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb93
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb93
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb93
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb94
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb94
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb94
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb94
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb94
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb95
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb95
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb95
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb95
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb95
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb96
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb96
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb96
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb96
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb96
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb97
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb97
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb97
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb98
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb98
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb98
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb99
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb99
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb99
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb99
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb99
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb100
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb100
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb100
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb100
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb100
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb101
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb101
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb101
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb101
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb101
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb101
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb101
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb102
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb102
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb102
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb103
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb103
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb103
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb104
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb104
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb104
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb104
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb104
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb105
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb105
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb105
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb105
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb105
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb106
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb106
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb106
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb106
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb106
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb107
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb107
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb107
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb107
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb107
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb107
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb107
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb108
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb108
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb108
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb108
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb108
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb109
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb109
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb109
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb109
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb109
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb110
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb110
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb110
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb111
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb111
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb111
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb112
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb112
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb112
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb112
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb112
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb113
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb113
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb113
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb114
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb114
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb114
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb114
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb114
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb114
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb114
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb115
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb115
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb115
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb116
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb116
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb116
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb116
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb116
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb117
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb117
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb117
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb117
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb117
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb118
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb118
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb118
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb118
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb118
http://arxiv.org/abs/2211.10794
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb120
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb120
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb120
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb120
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb120
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb121
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb121
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb121
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb121
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb121
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb122
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb122
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb122
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb122
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb122
http://arxiv.org/abs/2305.12347
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb124
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb124
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb124
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb124
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb124
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb125
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb125
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb125
http://arxiv.org/abs/2305.16943
http://arxiv.org/abs/2305.16943
http://arxiv.org/abs/2305.16943
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb127
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb127
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb127
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb128
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb128
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb128
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb128
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb128
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb129
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb129
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb129
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb129
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb129
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb130
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb130
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb130
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb131
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb131
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb131
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb131
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb131
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb132
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb132
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb132
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb132
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb132
http://arxiv.org/abs/2001.09382
http://arxiv.org/abs/2006.09790
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb135
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb135
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb135
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb135
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb135
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb136
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb136
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb136
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb136
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb136
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb136
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb136
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb136
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb136
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb137
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb137
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb137
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb137
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb137
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb138
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb138
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb138
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb138
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb138
http://arxiv.org/abs/1805.11973
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb140
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb140
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb140
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb140
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb140
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb141
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb141
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb141
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb141
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb141
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb142
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb142
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb142
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb143
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb143
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb143
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb143
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb143
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb144
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb144
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb144
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb145
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb145
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb145
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb146
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb146
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb146
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb146
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb146

Y. Shou et al. Computer Science Review 59 (2026) 100854
[147] Y. Shou, X. Cao, D. Meng, Spegcl: Self-supervised graph spectrum contrastive
learning without positive samples, IEEE Trans. Neural Netw. Learn. Syst.
(2025).

[148] Y. Shou, T. Meng, W. Ai, K. Li, Revisiting multi-modal emotion learning with
broad state space models and probability-guidance fusion, in: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases,
Springer, 2025, pp. 509–525.

[149] H.F. Trotter, On the product of semi-groups of operators, Proc. Amer. Math.
Soc. 10 (4) (1959) 545–551.

[150] L. Sun, J. Hu, M. Li, H. Peng, R-ode: Ricci curvature tells when you will be
informed, in: Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2024, pp. 2594–2598.

[151] L. Sun, J. Hu, S. Zhou, Z. Huang, J. Ye, H. Peng, Z. Yu, P. Yu, Riccinet: Deep
clustering via a riemannian generative model, in: Proceedings of the ACM Web
Conference 2024, 2024, pp. 4071–4082.

[152] Y. Shou, H. Lan, X. Cao, Contrastive graph representation learning with
adversarial cross-view reconstruction and information bottleneck, Neural Netw.
184 (2025) 107094.

[153] Y. Shou, P. Yan, X. Yuan, X. Cao, Q. Zhao, D. Meng, Graph domain adaptation
with dual-branch encoder and two-level alignment for whole slide image-based
survival prediction, 2024, arXiv preprint arXiv:2411.14001.

[154] W. Ai, F. Zhang, Y. Shou, T. Meng, H. Chen, K. Li, Revisiting multimodal
emotion recognition in conversation from the perspective of graph spectrum,
in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39, (11)
2025, pp. 11418–11426.

[155] Y. Shou, J. Yao, T. Meng, W. Ai, C. Chen, K. Li, Gsdnet: Revisiting incomplete
multimodality-diffusion emotion recognition from the perspective of graph
spectrum, in: Proceedings of the Thirty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI-25. International Joint Conferences on Artificial
Intelligence Organization, 2025, pp. 6182–6190.

[156] Y. Shou, T. Meng, W. Ai, K. Li, Multimodal large language models meet
multimodal emotion recognition and reasoning: A survey, 2025, arXiv preprint
arXiv:2509.24322.

[157] J.C. Butcher, A history of runge-kutta methods, Appl. Numer. Math. 20 (3)
(1996) 247–260.

[158] P. Erd6s, A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hung.
Acad. Sci 5 (1960) 17–61.

[159] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad, Collective
classification in network data, AI Mag. 29 (3) (2008) 93–93.

[160] R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. Von Lilienfeld, Quantum chemistry
structures and properties of 134 kilo molecules, Sci. Data 1 (1) (2014) 1–7.

[161] J.J. Irwin, T. Sterling, M.M. Mysinger, E.S. Bolstad, R.G. Coleman, ZINC: a
free tool to discover chemistry for biology, J. Chem. Inf. Model. 52 (7) (2012)
1757–1768.

[162] C. Morris, N.M. Kriege, F. Bause, K. Kersting, P. Mutzel, M. Neumann,
Tudataset: A collection of benchmark datasets for learning with graphs, 2020,
arXiv preprint arXiv:2007.08663.

[163] K. Martinkus, A. Loukas, N. Perraudin, R. Wattenhofer, Spectre: Spectral
conditioning helps to overcome the expressivity limits of one-shot graph
generators, in: International Conference on Machine Learning, PMLR, 2022, pp.
15159–15179.

[164] D.-T. Lee, B.J. Schachter, Two algorithms for constructing a delaunay
triangulation, Int. J. Comput. Inf. Sci. 9 (3) (1980) 219–242.

[165] K. Riesen, H. Bunke, IAM graph database repository for graph based pattern
recognition and machine learning, in: Structural, Syntactic, and Statistical
Pattern Recognition: Joint IAPR International Workshop, SSPR & SPR 2008,
Orlando, USA, December 4-6, 2008. Proceedings, Springer, 2008, pp. 287–297.

[166] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, K. Borgwardt, Scalable
kernels for graphs with continuous attributes, Adv. Neural Inf. Process. Syst.
26 (2013).

[167] K.M. Borgwardt, C.S. Ong, S. Schönauer, S. Vishwanathan, A.J. Smola, H.-
P. Kriegel, Protein function prediction via graph kernels, Bioinformatics 21,
i47–i56.

[168] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, P. Battaglia, Learning deep generative
models of graphs, 2018, arXiv preprint arXiv:1803.03324.

[169] Q. Liu, M. Allamanis, M. Brockschmidt, A. Gaunt, Constrained graph variational
autoencoders for molecule design, Adv. Neural Inf. Process. Syst. 31 (2018).

[170] T. Ma, J. Chen, C. Xiao, Constrained generation of semantically valid graphs
via regularizing variational autoencoders, Adv. Neural Inf. Process. Syst. 31
(2018).

[171] J. You, B. Liu, Z. Ying, V. Pande, J. Leskovec, Graph convolutional policy
network for goal-directed molecular graph generation, Adv. Neural Inf. Process.
Syst. 31 (2018).
21
[172] X. Bresson, T. Laurent, A two-step graph convolutional decoder for molecule
generation, 2019, arXiv preprint arXiv:1906.03412.

[173] S. Honda, H. Akita, K. Ishiguro, T. Nakanishi, K. Oono, Graph residual flow for
molecular graph generation, 2019, arXiv preprint arXiv:1909.13521.

[174] W. Jin, R. Barzilay, T. Jaakkola, Hierarchical generation of molecular graphs
using structural motifs, in: International Conference on Machine Learning,
PMLR, 2020, pp. 4839–4848.

[175] M. Liu, K. Yan, B. Oztekin, S. Ji, Graphebm: Molecular graph generation with
energy-based models, 2021, arXiv preprint arXiv:2102.00546.

[176] J. Liu, A. Kumar, J. Ba, J. Kiros, K. Swersky, Graph normalizing flows, Adv.
Neural Inf. Process. Syst. 32 (2019).

[177] Y. Ommi, M. Yousefabadi, F. Faez, A. Sabour, M. Soleymani Baghshah,
H.R. Rabiee, Ccgg: A deep autoregressive model for class-conditional graph
generation, in: Companion Proceedings of the Web Conference 2022, 2022, pp.
1092–1098.

[178] L. Kong, J. Cui, H. Sun, Y. Zhuang, B.A. Prakash, C. Zhang, Autoregressive
diffusion model for graph generation, in: International Conference on Machine
Learning, PMLR, 2023, pp. 17391–17408.

[179] D. Zhang, N. Malkin, Z. Liu, A. Volokhova, A. Courville, Y. Bengio, Generative
flow networks for discrete probabilistic modeling, in: International Conference
on Machine Learning, PMLR, 2022, pp. 26412–26428.

[180] Z. Mo, T. Luo, S.J. Pan, Graph principal flow network for conditional graph
generation, in: Proceedings of the ACM on Web Conference 2024, 2024, pp.
768–779.

[181] R. Liao, Y. Li, Y. Song, S. Wang, W. Hamilton, D.K. Duvenaud, R. Urtasun,
R. Zemel, Efficient graph generation with graph recurrent attention networks,
Adv. Neural Inf. Process. Syst. 32 (2019).

[182] B. Jing, G. Corso, R. Berlinghieri, T. Jaakkola, Subspace diffusion generative
models, in: European Conference on Computer Vision, Springer, 2022, pp.
274–289.

[183] I. Krawczuk, P. Abranches, A. Loukas, V. Cevher, GG-GAN: A geometric graph
generative adversarial network, 2021.

[184] Y. Hou, J.-D. Park, W.-Y. Shin, Collaborative filtering based on diffusion
models: Unveiling the potential of high-order connectivity, in: Proceedings of
the 47th International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2024, pp. 1360–1369.

[185] D. Lilienthal, P. Mello, M. Eirinaki, S. Tiomkin, Multi-resolution diffusion for
privacy-sensitive recommender systems, IEEE Access (2024).

[186] R. Chen, J. Fan, M. Wu, R. Cheng, J. Song, G-diff: A graph-based decoding
network for diffusion recommender model, IEEE Trans. Neural Netw. Learn.
Syst. (2024).

[187] H. Du, H. Yuan, Z. Huang, P. Zhao, X. Zhou, Sequential recommendation with
diffusion models, 2023, arXiv preprint arXiv:2304.04541.

[188] J.L. Watson, D. Juergens, N.R. Bennett, B.L. Trippe, J. Yim, H.E. Eisenach,
W. Ahern, A.J. Borst, R.J. Ragotte, L.F. Milles, et al., Broadly applicable
and accurate protein design by integrating structure prediction networks and
diffusion generative models, 2022, pp. 1–54, BioRxiv.

[189] S. Alamdari, N. Thakkar, R. van den Berg, A. Lu, N. Fusi, A. Amini, K. Yang,
Protein generation with evolutionary diffusion: sequence is all you need, in:
NeurIPS 2023 Generative AI and Biology (GenBio) Workshop, 2023.

[190] S. Kapur, E. Jenner, S. Russell, Diffusion on syntax trees for program synthesis,
2024, arXiv preprint arXiv:2405.20519.

[191] Q. Yan, Z. Liang, Y. Song, R. Liao, L. Wang, SwinGNN: Rethinking permutation
invariance in diffusion models for graph generation, Trans. Mach. Learn. Res..

[192] N. Laabid, S. Rissanen, M. Heinonen, A. Solin, V. Garg, Alignment is key
for applying diffusion models to retrosynthesis, 2024, arXiv preprint arXiv:
2405.17656.

[193] J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger,
L. Willmore, A.J. Ballard, J. Bambrick, et al., Accurate structure prediction
of biomolecular interactions with AlphaFold 3, Nature 630 (8016) (2024)
493–500.

[194] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, J. Leskovec, Strategies
for pre-training graph neural networks, in: International Conference on Learning
Representations, 2020.

[195] M. Liu, Z. Fang, Z. Zhang, M. Gu, S. Zhou, X. Wang, J. Bu, Rethinking propa-
gation for unsupervised graph domain adaptation, in: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, (12) 2024, pp. 13963–13971.

[196] K. Xiao, J. Cao, Z. Zeng, W.-K. Ling, Graph-based active learning with
uncertainty and representativeness for industrial anomaly detection, IEEE Trans.
Instrum. Meas. 72 (2023) 1–14.

http://refhub.elsevier.com/S1574-0137(25)00130-3/sb147
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb147
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb147
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb147
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb147
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb148
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb148
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb148
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb148
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb148
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb148
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb148
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb149
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb149
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb149
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb150
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb150
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb150
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb150
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb150
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb151
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb151
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb151
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb151
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb151
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb152
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb152
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb152
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb152
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb152
http://arxiv.org/abs/2411.14001
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb154
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb154
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb154
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb154
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb154
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb154
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb154
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb155
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb155
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb155
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb155
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb155
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb155
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb155
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb155
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb155
http://arxiv.org/abs/2509.24322
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb157
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb157
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb157
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb158
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb158
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb158
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb159
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb159
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb159
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb160
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb160
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb160
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb161
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb161
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb161
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb161
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb161
http://arxiv.org/abs/2007.08663
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb163
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb163
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb163
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb163
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb163
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb163
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb163
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb164
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb164
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb164
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb165
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb165
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb165
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb165
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb165
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb165
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb165
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb166
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb166
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb166
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb166
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb166
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb167
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb167
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb167
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb167
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb167
http://arxiv.org/abs/1803.03324
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb169
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb169
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb169
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb170
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb170
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb170
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb170
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb170
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb171
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb171
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb171
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb171
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb171
http://arxiv.org/abs/1906.03412
http://arxiv.org/abs/1909.13521
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb174
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb174
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb174
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb174
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb174
http://arxiv.org/abs/2102.00546
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb176
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb176
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb176
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb177
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb177
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb177
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb177
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb177
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb177
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb177
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb178
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb178
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb178
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb178
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb178
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb179
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb179
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb179
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb179
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb179
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb180
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb180
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb180
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb180
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb180
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb181
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb181
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb181
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb181
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb181
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb182
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb182
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb182
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb182
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb182
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb183
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb183
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb183
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb184
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb184
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb184
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb184
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb184
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb184
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb184
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb185
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb185
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb185
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb186
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb186
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb186
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb186
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb186
http://arxiv.org/abs/2304.04541
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb188
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb188
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb188
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb188
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb188
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb188
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb188
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb189
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb189
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb189
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb189
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb189
http://arxiv.org/abs/2405.20519
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb191
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb191
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb191
http://arxiv.org/abs/2405.17656
http://arxiv.org/abs/2405.17656
http://arxiv.org/abs/2405.17656
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb193
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb193
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb193
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb193
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb193
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb193
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb193
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb194
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb194
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb194
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb194
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb194
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb195
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb195
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb195
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb195
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb195
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb196
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb196
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb196
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb196
http://refhub.elsevier.com/S1574-0137(25)00130-3/sb196

	Graph diffusion models: A comprehensive survey of methods and applications
	Introduction
	Traditional Graph Generation Methods
	Autoregressive Models
	Normalizing Flows
	Variational Autoencoders
	Generative Adversarial Networks

	BACKGROUND ON DIFFUSION MODELS
	Denoising Diffusion Probabilistic Models (DDPMs)
	Equivariant Diffusion Model (EDM)
	Discrete Denoising Diffusion (DiGress)
	Diffusion with Discrete State Spaces (DDSS)

	Score-Based Generative Models (SGMs)
	Graph Diffusion via SDE Systems (GDSS)
	Graph Spectral Diffusion Model (GSDM)

	Stochastic Differential Equations (SDEs)
	Conditional Diffusion Graph Structures (CDGS)

	Complexity and Scalability Analysis
	Implementation Challenges
	Hyperparameter Sensitivity
	Popular Benchmark Datasets
	Evaluation Metrics
	Maximum Mean Discrepancy (MMD)
	Frechet ChemNet Distance (FCD)

	Experimental Performance
	Efficiency
	Applications
	Molecular Design
	Recommender Systems
	Protein Design
	Community Generation
	Program Synthesis

	Practical Considerations Across Domains
	FUTURE DIRECTIONS
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

